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ABSTRACT

Large text corpora are the backbone of language models. However, we have a
limited understanding of the content of these corpora, including general statistics,
quality, social factors, and inclusion of evaluation data (contamination). In this
work, we propose WHAT’S IN MY BIG DATA? (WIMBD), a platform and a set
of sixteen analyses that allow us to reveal and compare the contents of large text
corpora. WIMBD builds on two basic capabilities—count and search—at scale,
which allows us to analyze more than 35 terabytes on a standard compute node.
We apply WIMBD to ten different corpora used to train popular language models,
including C4, The Pile, and RedPajama. Our analysis uncovers several surprising
and previously undocumented findings about these corpora, including the high
prevalence of duplicate, synthetic, and low-quality content, personally identifiable
information, toxic language, and benchmark contamination. For instance, we find
that about 50% of the documents in RedPajama and LAION-2B-en are duplicates.
In addition, several datasets used for benchmarking models trained on such corpora
are contaminated with respect to important benchmarks, including the Winograd
Schema Challenge and parts of GLUE and SuperGLUE. We open-source WIMBD’s
code and artifacts to provide a standard set of evaluations for new text-based
corpora and to encourage more analyses and transparency around them.

1 INTRODUCTION

Data is the foundation upon which machine learning (ML) is built. The introduction of new datasets
drives progress, playing a crucial role in facilitating research and the creation of models with novel
capabilities. Over time, the computational cost of AI experiments has dramatically increased, partly
due to training increasingly large models on increasingly large datasets (Schwartz et al., 2020; Sevilla
et al., 2022); today, some of the most impactful datasets are being created by scraping text from the
entire publicly-available internet (Raffel et al., 2020; Together Computer, 2023; Penedo et al., 2023;
Soldaini et al., 2024). These are some of the largest text datasets that have ever been built, and they
are typically introduced with only a description of how they were made but no documentation of their
contents. This is an important distinction, as we are now training models on massive text corpora
without knowing what ideas, topics, toxicity, or personal information they contain.

Meanwhile, language models (LMs) have become ubiquitous and are used by people worldwide
daily. These AI systems directly impact people’s lives, and thus, it has become vitally important
to understand their capabilities and drawbacks. Models are only capable of learning from the data
they were trained on, but analysis of pretraining corpora is hindered by lack of public release and by
their massive size. Work analyzing the contents of web-scale corpora typically focuses on a subset
of important dimensions, and there has been almost no work analyzing multiple datasets across the
same dimensions. This means that ML practitioners have no practical tools to describe differences
between datasets before choosing which one(s) to use.
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Figure 1: An overview of WIMBD. We implement two fundamental capabilities: Count and Search, allowing
quick processing and access to large text corpora, which enables a wide range of analyses.

In this work, we propose to investigate the content of large text corpora using WHAT’S IN MY BIG
DATA (WIMBD), a set of tools that enables practitioners to easily explore and quickly analyze large
language datasets. We also use this tool to provide some of the first measurements across different
web-scale datasets that are directly comparable. WIMBD has two components: (1) a search tool that
enables programmatic access to search for documents containing a query using an Elasticsearch1 (ES)
index. ES is a search engine that allows retrieving strings from a corpus, the documents where they
appeared, and the number of times they appeared. (2) a count functionality, built using map-reduce
(Dean & Ghemawat, 2008), allowing quick iteration over an entire dataset and extraction of relevant
information, e.g., the character length distribution of documents, duplicates, domain counts, finding
personally identifiable information (PII), and more. WIMBD is extendable and can be used to index,
count, and analyze other corpora at scale (we benchmark the runtimes in Appendix D).

Using these tools, we perform a set of sixteen analyses on ten different English corpora used to
train LMs, including C4 (used to train T5; Raffel et al., 2020), The Pile (used to train Pythia; Gao
et al., 2020; Biderman et al., 2022; 2023), and RedPajama (used to reproduce Llama, Touvron et al.,
2023, and to train RedPajama-INCITE; Together Computer, 2023). We divide our analyses into four
categories: (1) data statistics (e.g., number of tokens and domain distribution; §4.2); (2) data quality
(e.g., most frequent n-grams and measuring duplicate documents; §4.3); (3) community- and society-
relevant measurements (e.g., benchmark contamination and personally identifiable information
detection; §4.4); and (4) cross-corpora analysis (e.g., comparing the most common n-gram and
document overlap; §B.4). An illustration of WIMBD is presented in Figure 1.

Our work presents many insights on data distribution and anomalies. For example, inspecting the
distribution over document lengths exposes anomalies where specific lengths are overrepresented
relative to neighboring lengths; these anomalies often correspond to near-duplicate template-generated
text or documents arbitrarily truncated to a specific character length. As another example, punctuation
sequences are frequently the most common n-grams, such as a dash (‘-’) repeated ten times as the
most common 10-gram in The Pile. WIMBD offers both retrospective documentation and grounding
of model behavior to their training data and actionable insights for higher-quality corpora curation.

2 BACKGROUND: ON THE IMPORTANCE OF DATA UNDERSTANDING

There have been repeated calls for ML practitioners to provide better data documentation (e.g.,
McMillan-Major et al., 2023; Bender & Friedman, 2018; Mitchell et al., 2023; Pistilli et al., 2023;
Paullada et al., 2021; Gebru et al., 2021). On the other hand, some of the most impactful ML
models are increasingly opaque, specifically with respect to the most important component of recent
advancements: data. With the increasingly competitive nature of the field, developers of systems like
GPT-4 (OpenAI, 2023) and PaLM-2 (Google, 2023) have been offering little transparency into the
most important development decisions, including the sources, size, and contents of their training data.

As web-scale datasets drive this rapid progress in modern ML systems, the gap between data
transparency and documentation is more striking than ever (Kaddour et al., 2023). From a technical
standpoint, the massive size of these datasets makes analysis of their contents challenging; even if
OpenAI or Google shared their training data, it’s unclear where to start understanding it in its entirety.
Tools like the Data Measurements Tool (Luccioni et al., 2021) and Know Your Data (Google, 2021)
work towards improving data documentation, but focus on smaller datasets since the scale of web data
leads to significant technical challenges. Our work aims to address this critical missing component.

1https://www.elastic.co/elasticsearch/
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While other works support indexing and analyses of large corpora (Piktus et al., 2023a; Marone &
Van Durme, 2023; Simig et al., 2022; Piktus et al., 2023b; Razeghi et al., 2022b), these efforts support
a single corpus and often do not support programmatic access to the data or the analysis. Instead, we
offer a holistic approach that combines search and counting with a package that allows programmatic
access through wrappers on top of the ES API and extendable efficient counting capabilities.

Additional efforts are concerned with the effect of data on model behavior. Longpre et al. (2023)
investigate how the composition of LMs’ pretraining data influences their downstream performance.
Razeghi et al. (2022a) measure high correlation between term frequency and LMs’ few-shot reasoning
capabilities with those terms. Shin et al. (2022) study the effect of pretraining corpora on in-context
abilities. Seshadri et al. (2023) demonstrate that text-to-image models mimic biases from their
training data. Akyurek et al. (2022) study fact tracing for identifying pretraining examples that enable
a factual assertion, while Guu et al. (2023) offer a training run simulator, which allows making
counterfactual queries on what a model would have learned under a different training procedure.
These efforts separately built dedicated infrastructure to perform the studies. Our work provides
a dedicated interface and tooling that allows performing a wide range of analyses on large-scale
corpora, categorizing and offering novel analyses that highlight new insights into these large corpora.

3 WIMBD: THE PLATFORM

Table 1: Summary of the capabilities WIMBD provides
and the analyses enabled by them.

Basic Ability Analyses

Exact Counts (§3.1)

Document Counts, min/max doc length, #tokens,
domain distribution, utterance date statistics,
geolocation, language distribution, length distribution,
toxic language, personally identifiable information,
demographic sentiment co-occurrences

Compressed Counts (§3.1) Duplicates, most & least common n-grams

Search (§3.2) Benchmark contamination, n-gram counts

A core desideratum of WIMBD is to enable quick
processing of terabytes of data. As such, we fo-
cus on uncomplicated, standard methods from
the information retrieval and data management
communities. WIMBD is comprised of two ba-
sic components: counting and search (retrieval).
Fast counting and retrieving enable us to an-
swer fundamental questions about data, as we
demonstrate in Section 4. We summarize the
framework abilities and types of analyses in Table 1. We run our experiments using a compute node
machine with 224 CPUs and 882GB RAM, and an Elasticsearch cluster for the indexed corpora.

3.1 COUNTING

Due to the sparsity of language data and the scale of the data of interest, accurate counting can be
challenging. We leverage the map-reduce framework (Dean & Ghemawat, 2008). We provide two
approaches for counting, described below.

Exact Counts The exact counts approach is designed for cases where the number of possible values
is tractable and can fit in memory. This fits cases where we are interested in calculating a bound
number of variables of interest (e.g., number of documents,§4.2, or document length, §4.3.3).

Compressed Counts The compressed counts approach is designed for cases where the number of
possible values is intractable. For instance, the total 10-grams in a large corpus can be very high,
and the memory usage to compute all of them would be overwhelming. Similarly, finding duplicates
requires keeping and comparing the strings of all documents in memory. In the case of C4, that would
require over 800 GB of RAM. Instead, we apply a compression function (e.g., hashing, Bloom, 1970)
to those values, reducing memory footprint while sacrificing some accuracy (due to hash collisions).
For example, when finding the most common 10-grams, we store a table of counts where the keys
in the table correspond to hashes of 10-grams. The hash table size is configurable according to the
amount of memory available. The larger the hash table, the smaller the probability of hash collisions
and, therefore, the higher the accuracy of the counts. E.g., unigram estimates are more accurate than
10-gram estimates since the number of possible values is much smaller.

3.2 SEARCHING

The second part of WIMBD allows fast text retrieval. For instance, we can get the number of documents
mentioning a word or sequence (document frequency). It also allows more complex Boolean queries.
While search and retrieval have numerous implementations, such as reverse indices, suffix arrays,

3



Published as a conference paper at ICLR 2024

Table 2: Summary statistics of the corpora, along with the models trained on them. * signifies that the model was
not trained on the exact version we consider, either due to some data mismatch, or the original data being private.

Corpus Origin Model Size (GB) # Documents # Tokens max(# Tokens) min(# Tokens)
OpenWebText Gokaslan & Cohen (2019) GPT-2* (Radford et al., 2019) 41.2 8,005,939 7,767,705,349 95,139 128
C4 Raffel et al. (2020) T5 (Raffel et al., 2020) 838.7 364,868,892 153,607,833,664 101,898 5
mC4-en Chung et al. (2023) umT5 (Chung et al., 2023) 14,694.0 3,928,733,374 2,703,077,876,916 181,949 1
OSCAR Abadji et al. (2022) BLOOM* (Scao et al., 2022) 3,327.3 431,584,362 475,992,028,559 1,048,409 1
The Pile Gao et al. (2020) GPT-J/Neo & Pythia (Biderman et al., 2023) 1,369.0 210,607,728 285,794,281,816 28,121,329 0
RedPajama Together Computer (2023) LLaMA* (Touvron et al., 2023) 5,602.0 930,453,833 1,023,865,191,958 28,121,329 0
S2ORC Lo et al. (2020) SciBERT* (Beltagy et al., 2019) 692.7 11,241,499 59,863,121,791 376,681 1
peS2o Soldaini & Lo (2023) - 504.3 8,242,162 44,024,690,229 97,043 154
LAION-2B-en Schuhmann et al. (2022) Stable Diffusion* (Rombach et al., 2022) 570.2 2,319,907,827 29,643,340,153 131,077 0
The Stack Kocetkov et al. (2023) StarCoder* (Li et al., 2023) 7,830.8 544,750,672 1,525,618,728,620 26,298,134 0

suffix trees for exact match search, and dense retrieval for fuzzy search, in this work, we use ES, an
inverted index. We build a wrapper on top of the ES API, allowing tailored and customized searches
to fit our analysis requirements. We leave it to future work to explore other search alternatives.

4 WIMBD: THE ANALYSES

This section presents analyses conducted in WIMBD, grouped by category. First, we describe the
ten corpora considered in this study (§4.1). We then consider four high-level categories, each split
into several analyses: data statistics (§4.2), data quality (§4.3), and community- and society-relevant
measurements (§4.4). Cross-corpus analyses, as well as elaborations and more analyses are presented
in the appendix (§B). Our analyses are inspired by previous works (Dodge et al., 2021; Gao et al.,
2020), but we expand them to multiple corpora, extend the types of analyses, and open-source our
modular toolkit to encourage researchers to scrutinize their corpora. We offer the first extensive
analyses on ten, combining extension of previous analyses and several novel ones.

4.1 CORPORA

We cover ten different large corpora, spanning across text-only (e.g., C4) to image captions (LAION-
2B-en) and code (The Stack). These corpora have been used in training language models (or similar
large-scale models, such as Stable Diffusion; Rombach et al. 2022). A high-level description of these
datasets using WIMBD is presented in Table 2, and further details about the construction and origin of
these corpora are detailed in Appendix A.

4.2 DATA STATISTICS

Main Findings

• Four out of the ten corpora we consider have ‘empty’ documents (meaning they contain
only space-like characters), while The Pile and RedPajama contain the same longest document
(with over 28 million tokens) of an encyclopedia.
• While the most common source of webpages in C4 originates from www.nytimes.com,

it consists of less than 0.05% of the total web pages, mC4-en most common domain is
google.com (over 5% of the documents), and cdn.shopify.com contributes almost 6% to the
total documents in LAION-2B-en.

4.2.1 SUMMARY STATISTICS

We begin by computing some summary statistics and present the results in Table 2. Using the
Exact Counts we compute the following high-level statistics of a corpus: (1) size, (2) number of

documents, (3) number of tokens,2 (4) the size of the longest document, and (5) the size of the
shortest document. Out of all corpora, mC4-en is the largest, which takes 14.7TB of disk, and 2.7
trillion tokens. After that comes The Stack with a size of 7.8TB, and more than 1.5 trillion tokens.
Interestingly, four corpora contain documents with empty strings: LAION-2B-en (81 total), which
typically contain a sequence of white spaces. In The Stack (1,350 total), RedPajama (3,877), and The

2We use Unicode text segmentation (Unicode, 2023) as a tokenizer, but we support any tokenizer supported
by HuggingFace’s tokenizers library (Moi & Patry, 2023).
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Figure 2: Domain distribution of the ten most common domains per token for C4, LAION-2B-en, and RedPajama.

Pile (7,533), documents typically contain a mix of special characters that denote spacing (e.g., ‘\n’,
or ‘\t’). In RedPajama, all of the empty strings are from the arXiv subset. The longest document in
The Stack is a json file, with 26,298,134 tokens from http://jquery.com/. The longest document in
The Pile and RedPajama is the same encyclopedia book called “INTERNATIONAL ENCYCLOPEDIA
OF THE SOCIAL & BEHAVIORAL SCIENCES” from the Books3 subset with 28,121,329 tokens.

4.2.2 INTERNET DOMAIN DISTRIBUTION

Some corpora contain metadata information about the URL where the documents came from. As
such, we employ the Exact Counts functionality, to parse the entire corpus, and extract informa-
tion from the URLs about the (1) schemas (e.g., http, https), (2) domains (e.g., www.google.com,
en.wikipedia.org, etc.), and (3) suffixes (e.g., com, org, de, etc.).

We apply these counts on the corpora that contain this information, namely C4, mC4-en, OSCAR,
RedPajama, and LAION-2B-en. Starting with the domain analysis, we perform these counts twice:
once when each domain is counted per document (yielding documents per domain) and another
where each domain is counted per token (yielding tokens per domain). We present the results
of three corpora per token in Figure 2 (and the full results in Appendix B.1). First, we note
that C4 contains documents from a diverse set of domains, and even the percentage of the most
common one, patents.google.com, is less than 0.05%. On the other hand, in the case of LAION-
2B-en, cdn.shopify.com is responsible for more than 6% of the documents. Similarly, arxiv.org
is responsible for more than 12% of the documents in RedPajama. We showcase the results of the
domains for the other corpora, as well as the schemas and suffixes in Appendix B.1.

4.3 DATA QUALITY

Main Findings

• The most common n-grams often correspond to repeated punctuation marks and duplicates.
• While more than 60% of documents in The Pile are duplicates (unsurprisingly due to

oversampling), RedPajama and LAION-2B-en also contain about 50% duplicate documents.
• Document length distribution reveals interesting (and unexpected) outliers of documents,

often resulting from duplicate documents and idiosyncratic data decisions.

4.3.1 MOST & LEAST COMMON n-GRAMS

Measuring outliers can reveal interesting insights about a corpus (Mitchell et al., 2023), We explore
the most and least common token n-grams of each corpus using the Compressed Counts . We
compute the 10K most common n-grams for all corpora, with n ∈ {1, 2, 3, 10}. We report the results
of the ten most common 10-grams in Table 3 and of the ten most common uni-, bi-, and tri-grams in
Table 9 in the Appendix. Identical n-grams across corpora are highlighted in the same colors.

The different corpora contain a lot of uncleaned html or markdown format (e.g., ten times ‘?’
or ‘amp’), or boilerplate texts such as: “. You can follow any responses to this
entry through” in C4, or “( Log Out / Change ) You are commenting using”
in OSCAR, and formatting (“[1][2][3][”) in S2ORC and peS2o, which signifies references.

A striking finding from this analysis is the vast repetition of such 10-grams. For instance, ‘?’, ‘.’,
and ‘-’ repeated ten times appear 9, 7.2, and 4.4 million times, respectively, in C4. We perform a
manual analysis on the repeating question marks in C4 to better understand the scenarios where they
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Table 3: Most common 10-grams in five of the corpora we consider. n-grams from the top-10 that occur in more
than one corpus are highlighted in the same color.

OpenWebText C4 mC4-en OSCAR The Pile
n-gram Count n-gram Count n-gram Count n-gram Count n-gram Count

- - - - - - - - - - 3.4M ? ? ? ? ? ? ? ? ? ? 9M . . . . . . . . . . 1.76B 773M - - - - - - - - - - 3.64B
. . . . . . . . . . 1.05M . . . . . . . . . . 7.27M - - - - - - - - - - 823M \ \ \ \ \ \ \ \ \ \ 395M = = = = = = = = = = 602M
= = = = = = = = = = 830K - - - - - - - - - - 4.41M 349M - - - - - - - - - - 175M * * * * * * * * * * 188M
* * * * * * * * * * 595K * * * * * * * * * * 3.87M * * * * * * * * * * 314M . . . . . . . . . . 91.6M ) { ref - type = " fig " } 59.1M
# # # # # # # # # # 302K ! ! ! ! ! ! ! ! ! ! 1.91M \ / s \ / files \ / 1 \ 183M * * * * * * * * * * 34.9M / / / / / / / / / / 56.2M

amp ; amp ; amp ; amp ; amp ; 278K . You can follow any responses to this entry through 784K / s \ / files \ / 1 \ / 183M = = = = = = = = = = 22.9M . . . . . . . . . . 54.9M
; amp ; amp ; amp ; amp ; amp 265K 753K \ / \ / cdn.shopify.com \ / s \ / 182M ( Opens in new window ) Click to share on 15.7M # # # # # # # # # # 38.3M
— — — — — — — — — — 249K You can follow any responses to this entry through the 752K / cdn.shopify.com \ / s \ / files \ / 182M Log Out / Change ) You are commenting using your 13.6M } - - - - - - - - - 30.1M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88.1K can follow any responses to this entry through the RSS 752K \ / cdn.shopify.com \ / s \ / files \ 182M ( Log Out / Change ) You are commenting using 13.6M { ref - type = " fig " } ) 28.9M
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 83.3K follow any responses to this entry through the RSS 2.0 748K / \ / cdn.shopify.com \ / s \ / files 182M . ( Log Out / Change ) You are commenting 13.6M } = = = = = = = = = 21.8M

RedPajama S2ORC peS2o LAION-2B-en The Stack
n-gram Count n-gram Count n-gram Count n-gram Count n-gram Count

. . . . . . . . . . 670M q q q q q q q q q q 30.2M . . . . . . . . . . 1.42M - - - - - - - - - - 1.65M - - - - - - - - - - 4.29B
- - - - - - - - - - 507M . . . . . . . . . . 5.49M [ 1 ] [ 2 ] [ 3 ] [ 457K 1.43M * * * * * * * * * * 3.87B
\ \ \ \ \ \ \ \ \ \ 213M + + + + + + + + + + 3.03M ] [ 2 ] [ 3 ] [ 4 ] 453K . . . . . . . . . . 1.15M 0 0 0 0 0 0 0 0 0 0 2.75B
* * * * * * * * * * 195M * * * * * * * * * * 1.93M 1 ] [ 2 ] [ 3 ] [ 4 453K \ \ \ \ \ \ \ \ \ \ 809K = = = = = = = = = = 2.62B
= = = = = = = = = = 145M º º º º º º º º º º 1.73M [ 5 ] [ 6 ] [ 7 ] [ 450K < br / > < br / > < br 797K , " resolved " : " https : / / 1.46B
/ / / / / / / / / / 79.3M · · · · · · · · · · 1.56M [ 6 ] [ 7 ] [ 8 ] [ 448K / > < br / > < br / > 796K " , " resolved " : " https : / 1.46B

. . / . . / . . / . 35.3M - - - - - - - - - - 1.11M ] [ 6 ] [ 7 ] [ 8 ] 448K br / > < br / > < br / 796K " resolved " : " https : / / registry.npmjs.org 1.42B

. / . . / . . / . . 35.3M [ 5 ] [ 6 ] [ 7 ] [ 646K 5 ] [ 6 ] [ 7 ] [ 8 446K > < br / > < br / > < 576K resolved " : " https : / / registry.npmjs.org / 1.42B
/ . . / . . / . . / 35.2M [ 1 ] [ 2 ] [ 3 ] [ 645K ] [ 7 ] [ 8 ] [ 9 ] 446K | Price : 1 Credit ( USD $ 1 ) 437K , , , , , , , , , , 1B

# # # # # # # # # # 33M [ 6 ] [ 7 ] [ 8 ] [ 644K 6 ] [ 7 ] [ 8 ] [ 9 444K vector | Price : 1 Credit ( USD $ 1 437K . tgz " , " integrity " : " sha512 938M

appear on the ten consecutive question marks symbols and categorize each appearance into writing,
noise, and format occurrence. Analyzing 100 random documents, we found that 68% of documents
use such n-grams as part of their writing style (e.g., ... $6???????????? How is that
possible?, or ... So what do u think?????????????????????????). 18% are
due to noise as we could not understand the context or content of the writing (e.g., ... e
??????????????? kap chit-koa ??), and finally, 14% of the documents were due to
different format styles or issues (e.g., a sequence of question marks following by a ‘normal’ text, or a
sequence of question marks between keywords).

4.3.2 DUPLICATES

Previous work has found that duplication can affect the quality of pretraining data, impacting sample
efficiency (Lee et al., 2022; Tirumala et al., 2023) and memorization (Carlini et al., 2023). While more
recent work finds contradictory evidence on data with less web-scraped text (Biderman et al., 2023),
measuring duplication in pretraining data is necessary for future research on its effects. We calculate
duplicates by matching documents with an MD5 hash of their texts (using Compressed Counts ).
If more than a single document has the same hash, we consider them duplicates.3 We examine
the duplication of document text and URLs within each dataset. While some datasets explicitly
deduplicate their content, others do not, and some even oversample some sources.
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Figure 3: Percentages of document and document
cluster duplicates in corpora with > 1% documents
duplicated (corresponding to blue and orange bars).
Duplicate counts are above bars.

Table 4: Most frequent text duplicates from four
datasets with text duplicates, along with their counts.
Truncation for visualization is marked by [...].

Corpus Text

OSCAR In order to login you must be registered. Register ing
takes only a few moments but gives you increas[...]Count: 1.8M

The Pile {\n "info" : {\n "version" : 1,\n "author" : "xcode"\n
}\n}Count: 3.8K

RedPajama ACCEPTED\n\n#### According to\nInternational Pla
nt NamesIndex\n\n#### Published in\nnull\n\n####
Original n[...]Count: 213.9K

LAION-2B-en Front Cover
Count: 1M

In Figure 3 we show counts and ratios of duplication across datasets with greater than 1% documents
duplicated, and all datasets are shown in Table 13 in the appendix. These are based on two kinds
of counts: (1) the count of documents in all clusters of duplicate text (in blue) and (2) the count of
duplicate clusters (in orange). As expected, deduplicated corpora such as C4 have no exact duplicates
(as those were filtered out of the corpus). In contrast, The Pile, which intentionally oversampled some
data sources, has many duplicates (139M documents belonging to 64.6M duplicate text clusters).
LAION-2B-en has the second highest ratio of duplicate documents (1.25B documents belonging
to 342M duplicate text clusters), perhaps due to the smaller space of short sentences common in

3To test for hash collisions, we rerun the analysis with a different random seed. None of the > 7 billion
hashes across the ten corpora had a different count. This could only occur if an identical number of collisions
conflated an identical set of counts or, more likely, there were no collisions.

6



Published as a conference paper at ICLR 2024

its image “alt text” source. Figure 15 in the appendix showcase the images of the most common
duplicates in LAION-2B-en, with the most common images describe mainly receipts.

Table 4 showcases duplicates with the most occurrences in four corpora. These duplicates vary
dramatically in length and domain. LAION-2B-en, OSCAR, and RedPajama have clusters with the
most occurrences, in the hundreds of thousands and above. Top duplicates in LAION-2B-en are
shorter and describe products and website features. OSCAR’s top duplicates are all instances of
website boilerplate.4 RedPajama’s top duplicates come from similar templated citation information.

4.3.3 DOCUMENT LENGTH DISTRIBUTION
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Figure 4: Distribution over character
document lengths (in log-scale) for C4,
OSCAR and The Pile.

We compute document length distributions with Exact Counts .
We expect a smooth distribution over document lengths, and
deviation from such a distribution may indicate the presence of
artificial documents or near duplicates.5 We compute the char-
acter length distribution and present results for three corpora
in Figure 4 (additional results in Appendix B.2.3).

While C4 is free of duplicate documents, it include clusters of
template-generated near-duplicate documents exposed by out-
liers of identical document lengths. Beyond template-generated
user-facing copy (e.g., template-generated documents from a
reverse phone lookup site, each associated with a unique phone
number), we find clusters of template-generated JavaScript
snippets, and large collections of unique documents, including
numerous permutations of the same keywords, likely crafted for SEO purposes.

The Pile, featuring the longest documents, has a notable outlier with nearly 1% of its documents pre-
cisely 8,194 characters long. These outliers are derived from the DeepMind Mathematics dataset (Sax-
ton et al., 2019), truncated to fit this length. The Pile also contains a significant number of short
template-generated code snippets, e.g., a number of documents (of lengths 9, 18, and 36 tokens) each
corresponding to a unique publication in various medical journals, and to auto-generated metadata
files (of length 20 tokens) used in the Unity game engine. While OSCAR has no documents shorter
than 100 characters, as those were filtered, it contains many near-duplicate documents that correspond
to website boilerplate, e.g., template-generated FAQs about how to use the forum software phpBB.

4.4 COMMUNITY- AND SOCIETY-RELEVANT MEASUREMENTS

Main Findings

• Instances of popular benchmarks like GLUE and SuperGLUE, were found in various
corpora (e.g., C4 and RedPajama), render them unusable for fair model evaluation.
• Automatic toxicity detection reveals that 1–16.5% of the documents in the corpora contain

toxic language using an automatic classifier and between 0.01-16.6% using a taxonomy.
• An estimated 200M, 4B, and 97M of email addresses, phone numbers, and IP addresses

were found in the most PII-contaminated corpora per token (mC4-en).

4.4.1 BENCHMARK CONTAMINATION

As corpora grow and new evaluation datasets are created, the risk of contamination—where evaluation
data are included in a (pre)training corpus—increases. As such, it is important to track contamination
(Sainz et al., 2023; Jacovi et al., 2023).6 Using Search , we provide a contamination analysis of 82
datasets for four popular corpora: The Pile, C4, RedPajama, and OSCAR. We consider all datasets

4Many of these duplicate documents indicate that the user agent used to collect the dataset received automatic
responses blocking it from crawling the website’s contents.

5Outlier lengths are those whose prevalence across the corpus is significantly higher than neighboring lengths.
6When evaluating a model trained on an existing corpus, one should exempt contaminated evaluation sets.

However, in the case of new corpus construction, practitioners may use WIMBD for decontaminating the corpus
itself to maintain the evaluation data integrity.
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Figure 5: Most contaminated evaluations test sets out of 82 PromptSource (Bach et al., 2022) datasets.

from PromptSource (Bach et al., 2022), a repository containing prompts for 279 different datasets
(as of May 2023). We filter datasets we cannot automatically download, from Huggingface datasets
(Lhoest et al., 2021), and datasets that do not have a test split. In addition, we only consider datasets
that contain at least two inputs (e.g., natural language inference), leaving us with 82 datasets.

We measure contamination by testing whether all input fields are present in a single document and
report the percentage of contaminated examples from the test set. Our contamination evaluation
serves as an upper bound of exact-match dataset contamination. We provide more details of our
analysis and design choices in Appendix B.3.1.

Contaminated datasets We present the results in Figure 5. We showcase all benchmarks whose
contamination percentages are at least 5% in one of the four corpora. We find that RedPajama is the
most contaminated dataset out of the four, where in eight out of the 15 corpora, its contamination
rate is above 50%, and fully contaminated in the case of COPA (Roemmele et al., 2011). The Pile’s
contamination rates are lower, but it is also contaminated with a few datasets, such as aesic (Zhang
& Tetreault, 2019), WSC (Levesque et al., 2012) and WIC (Pilehvar & Camacho-Collados, 2019),
which were included in the SuperGLUE evaluation benchmark (Wang et al., 2019).

Most examined datasets were not found in the corpora. It is important to note that while we find
some contamination, most of the considered benchmarks do not appear in the corpora we investigated
(67 out of the 82 datasets). For instance, Winogrande (Sakaguchi et al., 2021), a large corpus in the
style of the Winograd schema, does not appear in any of the examined corpora.

4.4.2 PERSONALLY IDENTIFIABLE INFORMATION

Table 5: Extrapolated PII frequencies. Count
is the extrapolated frequency and Prec. is our
identification precision accuracy, estimated
by manual analysis of 100 random examples.

Corpus Email Addresses Phone Numbers IP Addresses
Count Prec. Count Prec. Count Prec.

OpenWebText 364K 99 533K 87 70K 54
OSCAR 62.8M 100 107M 91 3.2M 43
C4 7.6M 99 19.7M 92 796K 56
mC4-en 201M 92 4B 66 97.8M 44
The Pile 19.8M 43 38M 65 4M 48
RedPajama 35.2M 100 70.2M 94 1.1M 30
S2ORC 630K 100 1.4M 100 0K 0
peS2o 418K 97 227K 31 0K 0
LAION-2B-en 636K 94 1M 7 0K 0
The Stack 4.3M 53 45.4M 9 4.4M 55

PII is “information which can be used to distinguish or
trace an individual’s identity, such as their name, social se-
curity number, biometric records, etc.” (Johnson III, 2007).
Recent research has sought to extract PII from LMs (Car-
lini et al., 2021). These attacks highlight that LMs can
ingest and reproduce PII contained in their training data,
and show the risks of training on data that contains such
information, even if the data remains private.

We document three kinds of personally identifiable in-
formation in pretraining corpora: phone numbers, email
addresses, and IP addresses. We employ regular expres-
sions corresponding to each PII type using the Exact Counts . We provide more details about our
methodology, the regexes, additional results, and error analyses in Appendix B.3.2. We conduct a
manual analysis to estimate the precision of these methods on all corpora. The results of this analysis,
as well as the extrapolated frequency of these matches, are presented in Table 5. Our identification
method is highly precise (>80% precision) for email addresses on eight out of 10 corpora, and
for phone numbers on five of the 10 corpora. Overall, most corpora contain a high volume of PII
information, varying in type based on the corpus. For instance, RedPajama contain mainly phone
numbers (70.2M) and a smaller amount of IP Addresses (1.1M), but S2ORC and peS2o contain
mainly email addresses (630K and 418K, respectively) and no IP addresses were identified. The most
common PII across corpora is phone numbers, followed by email addresses and IP addresses (except
for The Stack, which has more IP addresses than email addresses: 4.4M vs. 4.3M, and peS2o, which
has more email addresses than phone numbers). Finally, we observe that mC4-en contains the largest
amount of PII, also when controlling for the number of tokens (Table 19 in the Appendix).
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5 DISCUSSION

Data is one of the most poorly understood and studied components in ML research since “everyone
wants to do the model work, not the data work” (Sambasivan et al., 2021). Yet, it is one of the
most critical factors for successfully training a state-of-the-art language model. While the benefit
of increasing model size is evident from the trend of recent years, it is not enough by itself, as the
amount and quality of data are crucial (Kaplan et al., 2020).

Data Curation With the increasing data needed to train LMs (and other models for other modalities),
it remains challenging to curate high-quality datasets. Besides the technical challenges of composing
a large-scale dataset and the decisions that go into making it, these decisions and their influence on
the final models are costly to assess due to the high computational resources required to train such
models. With WIMBD, we hope to ease the decisions that go into crafting large-scale datasets by
surfacing patterns and trends about what goes into them and what is left out from different aspects,
such as data quality, community and society measurements, etc. Once decisions upon what data is
important, and which should be left out of a dataset, practitioners can filter documents or passages
that adhere to such decisions. The curation of the Dolma dataset (Soldaini et al., 2024) that happened
while developing this work benefited from iterations over the insights from this work, such as the
finding of ‘noisy’ most-common n-grams, and bugs in the initial ‘de-duplication’ implementation.

Data Documentation Adding to previous works that call for more data documentation, such as
Datasheets (Gebru et al., 2021) and Data Statements (McMillan-Major et al., 2023), we argue for
the importance of documenting such information. While previous works often focused and tailored
the documentation for supervised-style datasets (e.g., “Is there a label or target associated with each
instance?”, “How was the data associated with each instance acquired?” from Datasheets, and “What
are the demographic characteristics of the annotators and annotation guideline developers?” from
Data Statements) we call for more tailored documentation of large-scale pretraining corpora.7 This
work offers a superset of the automatic full-corpus analyses proposed by Dodge et al. (2021); Gao
et al. (2020), with several additions, categorization, and programmatic interface, allowing better
understanding of the content of current and future large text corpora.

Grounding Models to their Training Data Unlike other factors of language model training, such as
model architecture or optimizer choice, training data comes in the same natural language format as
language model’s outputs and thus can be measured and described in all the same ways. As such,
the data offers a unique opportunity for grounding models. For instance, a model’s ability to recall
factual knowledge is derived from its training data (Jiang et al., 2020; Elazar et al., 2021a). On the
other hand, models often perform better on frequent occurrences (Razeghi et al., 2022a; McCoy
et al., 2023), and on documents similar to models’ training data (Longpre et al., 2023). The path
to a holistic comprehension of model behavior is through the data, which requires an infrastructure
investment to access big datasets and the right abstraction of data attributes.

6 CONCLUSION

In this work, we propose WIMBD, a framework for processing and analyzing large text corpora.
Using WIMBD, we study ten different corpora that were used to train language models (or vision and
language models, such as Stable Diffusion). We uncover interesting insights about these corpora
using sixteen different analyses across four aspects: high-level statistics, data quality, community-
and society- relevant measurements, and cross-data analysis. For instance, the most common source
of texts for the LAION-2B-en dataset are the commercial websites Pinterest, Shopify, SlidePlayer,
Amazon, and eBay. Regarding data quality, we find that about 50% of RedPajama and LAION-2B-
en’s documents are duplicates. In addition, we find that many evaluation benchmarks, including
several from GLUE and SuperGLUE, such as WSC, WIC, and RTE, are contaminated due to their
appearance in corpora such as RedPajama. Besides the analyses, WIMBD offers an extendable
platform for reproducing our analyses on other corpora, developing new ones, and answering research
questions about data. We release all the code and artifacts for WIMBD to encourage researchers to
adopt and extend our framework and analyze existing and new corpora.

7Many questions are still relevant for large pretraining corpora (e.g., “What do the instances that comprise
the dataset represent (e.g., documents, photos, people, countries)?”).
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A CORPORA: ELABORATION

We cover ten different corpora, including text-only corpora (e.g., C4), captions from image-captioning
(LAION-2B-en), and code (The Stack). A high level description of these corpora using WIMBD is
presented in Table 2, and details about the information contained in those corpora are detailed in
Table 6.

We analyze all corpora fully, including the different subsets (e.g., The Pile is constructed of multiple
sources, such as Wikipedia, arXiv, etc.). The only exceptions are mC4, and LAION, which the original
released data consist of non-English texts as well, and we focus on the English subset. Note that
while we focus on English text corpora, most of our analyses are not language dependent, and can be
easily applied to other languages as well. The only exception is the toxic language analysis (§B.3.3)
that relies on an English lexicon and classifier. However, we note that given non-English lexicon and
classifier, the analysis can be easily repeated for other languages using our framework.

OPENWEBTEXT is an open-source reproduction8 (Gokaslan & Cohen, 2019) of the data used to
train GPT-2 (Radford et al., 2019). Due to the limited information provided by Radford et al. (2019),
and never releasing the data, it is unclear how similar OpenWebText is to the original data (WebText),
but similar steps to the paper’s reports were conducted (such as deduplication, non-English filtering,
min-length filtering, etc.).

C4 is the dataset used by Raffel et al. (2020) for training T5. The dataset: The Colossal Clean
Crawled Corpus (C4 in short) is based on Common Crawl as a source of text that was scraped from
the web. As such, a lot of the data is noisy, and a set of heuristics were employed to clean it up, such
as filtering documents by length, obscene/bad words, duplicate texts, non-english, etc. C4 was not
released by Raffel et al. (2020), and instead, it was scraped, cleaned, filtered, and released by Dodge
et al. (2021).

MC4-EN is a multilingual version of C4 that was used to train mT5 (Xue et al., 2021), and later
umT5 (Chung et al., 2023). We use the latest version (v.3.1.0) which was used to train umT5,
containing documents collected from Common Crawl through August 2022, and in practice the
portion of the data that is classified as English. The main difference of mC4-en over C4 is a higher
confidence by a language classifier (from 0.7 to 0.96), while also allowing a 0.1% random set of
documents that contain “bad words” to pass through, and adaptation of the “bad words” list that
resulted in filtering more than 10% of the documents in a language.

OSCAR is a multilingual corpus based on Common Crawl (Abadji et al., 2022). It contains a
length filter for improving data quality that filters out documents with short sentences. They also
annotate the data with different labels, such as the language of the document, adult content, and
language identification, which they use for different analyses. It is an ongoing effort, and the corpus
is maintained and updated regularly.

THE PILE is a corpus consisting of 22 different domains (Gao et al., 2020). Unlike C4, the data
was not scrapped from the web and then filtered, but pre-selected, with the motivation that this way
the data will be of higher quality. The included domains in The Pile are diverse: they include data
such as Wikipedia, Github, Arxiv, EuroParl, and more. By design, most datasets are upsampled
in the hope to increase data quality, from 1.5x with domains such as OpenSubtitles, up to 3x with
Wikipedia. Models such as GPT-J (Wang & Komatsuzaki, 2021), GPT-neo (Black et al., 2022) and
Pythia (Biderman et al., 2023) were trained on this dataset.

REDPAJAMA is an open-source version reproduction of the data used to train LLaMA (Touvron
et al., 2023), and was used to train RedPajama-INCITE (Together Computer, 2023).

S2ORC is a large corpus of English academic papers, which consists the abstracts, full text,
including figures, tables, and references (Lo et al., 2020). The texts are automatically extracted from
pdfs and LATEX sources.

8skylion007.github.io/OpenWebTextCorpus
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PES2O is a derivative of S2ORC, cleaned and filtered to obtain a more usable version of the data
intended to train language models. We use peS2o V2 (Soldaini & Lo, 2023).

LAION is a large dataset of images and captions scraped from Common Crawl (Schuhmann et al.,
2022). The main dataset (LAION-5B) contains 5.8 billion examples, of which 2.32 billion of the
captions are in English (LAION-2B-en), which we use in this work. We focus on the text captions but
demonstrate qualitative examples using the associated URLs and images when appropriate.

THE STACK (Kocetkov et al., 2023) is a source-code dataset that was collected for training language
models, and parts of it were used to train SantaCoder (Allal et al., 2023) and MPT (Team, 2023).
It was compiled from GHArchive9 with some filters: files that cannot contribute to training code
such as binary files, files larger than 1MB, and some extensions. In addition, only repositories with
permissive licenses were included (18 license types in the version v1.0, and 193 in version v1.1),
and we use the v1.2. While the main purpose of code is to provide machine instructions to perform
different functionalities, it also contain natural language in the form of comments: “Roughly 40
natural languages are present in docstrings and comments with English being the most prevalent. In
python files, it makes up 96% of the dataset.”

Table 6: Metadata information contained in the ten corpora we consider. Text refers to the main information
contained in those datasets, while the type of text is different, e.g. The Stack contains source code, and
LAION2B-en descibes images. URL indicates the URL that the document was collected from, or in the case
of LAION2B-en, the link to the image that the text refers to. Scrape Date is the date that the document was
scraped from the web, Date Added is the date the data was incorporated into the corpora. Domain/Lang indicates
a subcategory of the text (e.g. field of study, the source from The Pile, code language in The Stack). ID is the
document ID. Has Split signifies whether or not the released data contains a train-test split.

Corpus Text Url Scrape Date Date Added Domain/Lang ID Has Split
OpenWebText ✓ ✗ ✗ ✗ ✗ ✓ ✗
C4 ✓ ✓ ✓ ✗ ✗ ✗ ✓
mC4-en ✓ ✓ ✓ ✓ ✓ ✓ ✓
OSCAR ✓ ✓ ✓ ✗ ✓ ✓ ✗
The Pile ✓ ✗ ✗ ✗ ✓ ✗ ✓
RedPajama ✓ ✓– ✓ ✓ ✓ ✓ ✗
S2ORC ✓ ✗ ✓ ✓ ✓ ✓ ✗
peS2o ✓ ✗ ✓ ✓ ✓ ✓ ✓
LAION-2B-en ✓ ✓– ✗ ✗ ✗ ✓ ✗
The Stack ✓ ✗ ✓ ✓ ✓ ✓ ✗

9https://gharchive.org/
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Corpus 1 25 50 75 99 N.

C4 26 264 964 3,886 137,117 15,668,300
OSCAR 21 303 1,351 6,108 440,577 15,424,393
LAION-2B-en 1 6 11 25 892 1,470,243
mC4-en 48 580 1,448 5,984 477,951 62,209,454
RedPajama 26 264 963 3,882 136,937 15,658,463

Table 7: Internet domain quantiles of each corpora with URL information. The values correspond to the number
of tokens from each internet domain quantile. N. corresponds to the number of unique internet domains.

B ADDITIONAL RESULTS

We provide additional details and extended results on all the corpora considered in this work. This
appendix is structured in a similar way to the structure in the main paper, categorized by the four
different high-level analyses: (1) Data Statistics (Appendix B.1), (2) Data Quality (Appendix B.2),
(3) Community- and Society-Relevant Measurements (Appendix B.3), and (4) Cross-Data Analysis
(Appendix B.4).

B.1 DATA STATISTICS

The summary statistics are composed of different analyses that mainly involve the additional metadata
associated with the textual documents, such as the URL from which the document was extracted, the
date it was collected, etc. We also consider some raw statistics about the corpora, described in the
main paper (4.2). The analyses we propose for data statistics are the following:

1. Summary statistics (§4.2)

2. Internet domain distribution (§4.2.2, §B.1.1)

3. Internet domain schemes (§B.1.2)

4. Internet domain suffixes (§B.1.3)

5. Utterance date statistics (§B.1.4)

6. Geolocation (§B.1.5)

7. Language distribution (§B.1.6)

B.1.1 INTERNET DOMAIN DISTRIBUTION

Here, we provide complete analyses on the five corpora that contain URL information in the corpus
metadata. Using the Exact Counts , we conduct two analyses: (1) each domain is counted per
document (yielding documents per domain), and another where each domain is counted per token
in the document (yielding tokens per domain). The results are presented in Figure 6, where the (1)
document per domain figures are presented on the left, and the (2) document per token figures are
presented on the right.

In Table 7, we analyze the number of tokens in each domain, and calculate the 1, 25, 50, 75, and
99 quantiles of these distributions. Interestingly, the 1% quantile in LAION-2B-en include domains
which have 1-or-less tokens.

B.1.2 INTERNET DOMAIN SCHEMES

This analysis computes the domain schemes of the associated URLs using the Exact Counts . The
results are presented in Figure 7. HTTP and HTTPS are two internet protocols, with the latter being an
extension of the first that provides more secure communication. While the exact portion of websites
across the web that uses each protocol is hard to assess, traffic that goes through Google primarily
uses HTTPS - 95%.10.

10https://transparencyreport.google.com/https/overview, as of September 16th, 2023.
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The trend of recent years shows an increase in the portion of HTTPS-supported websites, and as such,
we can use this portion as a proxy for the internet age of a website: HTTP websites are more likely to
be older. In addition, the portion of a corpus is an interesting comparison with the reported portion
from Google’s traffic.

All corpora containing URL information show significant proportions from Google’s reports of 95%
for the HTTPS protocol. OSCAR contains the highest proportion with 87.6% HTTPS URLs, while
C4 is the lowest with only 62.5%.

B.1.3 INTERNET DOMAIN SUFFIXES

Next, we compute the suffix distribution of the different corpora using the Exact Counts and present
the results of the ten most common ones in Figure 8. Compared to the internet domain distribution,
the suffixes provide us with a higher-level description of the sources of the documents.

Perhaps not surprisingly, the most common suffix is com, which is between 60.1% of the documents
in OSCAR and 77.5% in LAION-2B-en. The distribution of suffixes for each dataset exhibits a long
tail with a total of over 3,000 different suffixes in the different corpora. While the top 10 typically
represent suffixes from English-speaking countries (e.g., co.uk, and ca), LAION-2B-en’s top-10
contains a lot of non-English speaking countries as well, such as Germany (de, 0.7%), Russia (ru,
0.5%), France (fr, 0.4%) and Italy (it, 0.4%).

B.1.4 UTTERANCE DATE STATISTICS

In this section, we examine the temporal diversity of documents from corpora with either reliable
creation timestamps in their metadata or URL source information from which creation time can be
estimated. Language usage drifts, new concepts are introduced over time, and the truth of much
commonsense knowledge depends on the date an utterance was made. While some datasets we
consider (S2ORC and peS2o) have reliable, API-generated creation timestamps, most have creation
dates that reflect the time of a document ingestion into the source dataset and not its origin date (C4,
mC4-en, RedPajama, and LAION-2B-en). To characterize their temporal distribution, we directly
count and bin documents by year for those with reliable creation time metadata. For datasets without
this information, we fall back on using either the earliest date the URL associated with a document
was indexed by the Internet Archive or the date of ingestion into the dataset (whichever is earlier).11

Note that such a procedure does not provide us with the timestamp of the document that was scraped,
and as such, it serves as a lower bound on the document’s time creation. Given the limitations of the
Internet Archive’s API, we do this for a 10,000 document random sample of each dataset, which
allows a rough estimate of the collection time for documents in these corpora. Results are shown
in Figure 9. We can see that RedPajama and OSCAR are dominated by documents created in the
previous five years (as of September 2023), while other datasets have a more substantial proportion
of documents from the first half of the 2010s and earlier. Notably, S2ORC and pes2o contain a
non-negligible fraction of documents from the pre-internet era.

B.1.5 GEOLOCATION

In this section, we gauge the geographic diversity of corpora with URL source information in their
metadata. We use a commercially developed IP database 12 to estimate the country of origin for
100,000 randomly sampled URLs from each of the five corpora with this information included. While
there are limitations to using the location of a hosting server as a stand-in for the content creator’s
location (i.e., websites are not always hosted locally nor in one unique location), it does provide a
rough geographic origin for source material. As seen in Figure 10, most web pages across corpora
are hosted in the United States, with the bulk of the remainder distributed amongst the anglosphere.
This is unsurprising given the focus on English-language sources in the construction of the corpora
under consideration.

21



Published as a conference paper at ICLR 2024

Table 8: Percentage of documents in English per dataset.

Corpus Percentage
OpenWebText 99.68
C4 99.67
mC4-en 99.56
OSCAR 99.92
The Pile 96.12
RedPajama 96.93
S2ORC 96.44
peS2o 100.00
LAION-2B-en 95.90

B.1.6 LANGUAGE DISTRIBUTION

Here, we aim to assess the proportion of languages in all corpora. We use the CLD213 classifier to
make a prediction about what language is being used in each document, and use this prediction as
a label that we analyze in aggregate. Note that we use the classifier label also in mixed-language
documents (if CLD2’s is_reliable flag is False, we apply the label UN). Table 8 reports the percentages
of English-language documents across corpora. As expected, the English fraction is quite high, given
the targeted construction of most datasets we consider. The remaining percentages of non-English
documents are broken down for the ten remaining most common languages in Figure 11. Note that
the classifier we use, as with other classifiers, is imperfect, and as such the identified languages may
be wrong.

11The Internet Archive is a massive library that has been preserving the web since 1996. https:
//archive.org

12This work includes IP2Location LITE data available from https://lite.ip2location.com
13https://github.com/CLD2Owners/cld2
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Figure 6: Internet domain distributions of the ten most common domains for each corpus.
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Figure 7: Schema distributions of the ten most common domains for each corpus. We show the results for the
five corpora that contain URL information.
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Figure 10: Percentage of documents for each dataset originating in a given country. Only the nine most common
countries across corpora are shown with the remainder combined in ’other.’ We label URLs we were unable to
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Table 9: Most common unigrams, bigrams and trigrams and their estimated counts.

OpenWebText C4 mC4-en OSCAR The Pile RedPajama S2ORC peS2o LAION-2B-en The Stack
n-gram Count n-gram Count n-gram Count n-gram Count n-gram Count n-gram Count n-gram Count n-gram Count n-gram Count n-gram Count

Unigrams
, 342M the 4.29B to 4.29B to 4.29B to 4.29B with 4.29B the 2.77B the 2.13B - 1.13B } 4.29B
the 331M . 4.29B the 4.29B the 4.29B the 4.29B to 4.29B , 2.64B , 1.9B , 870M { 4.29B
. 323M , 4.29B of 4.29B of 4.29B of 4.29B the 4.29B . 2.3B . 1.69B . 578M the 4.29B
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B.2 DATA QUALITY

While we reported all the different analyses under data quality in the main paper, here we elaborate
and provide the full results on all corpora and the different variations (e.g., most common unigrams,
bigrams, and length distribution on token level). The analyses we propose for data quality are the
following:

1. Most and least common n-grams (§4.3.1, §B.2.1)
2. Duplicate (§4.3.2, §B.2.2)
3. Document length distribution (§4.3.3, §B.2.3)

B.2.1 MOST & LEAST COMMON n-GRAMS

Most common n-grams In addition to the most common 10-grams reported in Section 4.3.1, we
report the results for the most common unigrams, bigrams, and trigrams. Stop words and punctuation
are the most common unigrams across the different datasets, with some differences in their ranking.
Moving to bigrams, we observe more differences between the corpora. For instance, in LAION-2B-en,
we observe some marketing mentions, such as “for sale” and “- Shirt”. “of the” and “in
the” are repeating bigrams in all corpora. In the trigram results, we notice a larger diversion between
the corpora. C4 contains common English expressions, such as “one of the”, “a lot of”,
and “as well as”. However, LAION-2B-en contains much more marketing material, such as “T

- Shirt”, “for sale in”. OSCAR and The Pile have many n-grams that look like uncleaned
html (“: / /”, ‘https : /”, “type = "”) or markdown (“–-”, “===”, “###”).

Least common n-grams Similarly to the most common n-grams, we look at the other side of
n-grams distribution on the least common in a corpus. We showcase a random set of 25 unique
unigrams from the different corpora in Figures 12 and 13. We observe two noticeable trends from
such unigrams: (1) non-standard Unicode fonts like “negative squared latin” (for instance COTD
in mC4-en), and (2) non-English strings. Non-English strings are quite diverse. The sample from
OpenWebText contains unigrams from 12 languages other than English: Urdu, Arabic, Korean,
Sanskrit, Hebrew, Armenian, Bengali, Persian, Japanese, Latvian, Sindhi, and Russian.

In addition to the unique unigrams inspection, we estimate the number of unique unigrams in each
corpus and present the results in Table 10. The unique unigrams results reveal that a non-trivial
amount of unique unigrams appear in these corpora. Even the smallest corpus, OpenWebText, contains
more than 88 million unique unigrams, about 1.1% of the total unigrams in this corpus. The ratio of
unique unigrams is about an order of magnitude smaller in the other corpora, except for LAION-2B-en,
with over 554 million unique unigrams, which constitute 1.8% of the total unigrams.

26



Published as a conference paper at ICLR 2024

Table 10: Estimated unique unigrams, and their percentage of the total unigrams.

Corpus Count Percentage
OpenWebText 88,551,499 1.1
C4 759,392,762 0.5
mC4-en 4,290,392,741 0.2
OSCAR 1,280,686,454 0.3
The Pile 1,809,241,096 0.6
RedPajama 2,530,085,090 0.2
S2ORC 287,196,445 0.5
peS2o 201,729,350 0.5
LAION-2B-en 554,850,812 1.9
The Stack 4,294,966,820 0.3
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(a) OpenWebText

(b) C4

(c) mC4-en

(d) OSCAR

(e) The Pile

Figure 12: Unique unigrams in OpenWebText, C4, mC4-en, OSCAR, and The Pile.
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(a) RedPajama

(b) S2ORC

(c) peS2o

(d) LAION-2B-en

(e) The Stack

Figure 13: Unique unigrams in RedPajama, S2ORC, peS2o, LAION-2B-en, and The Stack.
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Table 11: Top 5 most occurring text duplicates from datasets with duplicates (OpenWebText and C4 don’t have
any duplicate documents). Truncation for visualization is marked by [...].

Corpus Property #1 Duplicate #2 Duplicate #3 Duplicate #4 Duplicate #5 Duplicate

mC4-en Text ’, ’text-align:left; color:w
hite;background-color:#0
564d1;’] //}); // ly.show();
var i_type = $("#fa[...]

Tada has the world’s lea
ding smart parking techn
ology and has many of the
world’s top experts. A hug
[...]

4K Ultra-clear picture with
exquisite picture quality, p
lug and play, H.265/H.26
5+, Max.512G SD card[...]

’, ’text-align:left; color:w
hite;background-color:#0
564d1;’] //}); // ly.show();
var i_type = $("#fa[...]

‘, marker.on(’click’, ma
rkerClick); if(type==0 &
& index==0){ marker.emit
(’click’, { target: marker }
[...]

Count 154 114 80 76 73

OSCAR Text In order to login you must
be registered. Registering
takes only a few moments
but gives you increas[...]

JavaScript is disabled. For
a better experience, please
enable JavaScript in your
browser before pro[...]

Privacy & Cookies: This
site uses cookies. By co
ntinuing to use this website
, you agree to their use[...]

JavaScript seems to be d
isabled in your browser.
For the best experience on
our site, be sure to tur[...]

You may not have to, it is u
p to the administrator of th
e board as to whether you
need to register i[...]

Count 1,790,064 989,919 854,143 786,678 673,136

The Pile Text {\n "info" : {\n "version" :
1,\n "author" : "xcode"\n }
\n}

\r\n\r\n\r\n \r\n\r\n\r\n\r\n
\tC-Track E-Filing\r\n\t\r\n
\t\r\n\t\r\n\t\t\r\n\r\n\t\r\n\t
\r\n\t\r\n\t\r\n\r\n\t\r\n\t\t\r
\n\t\r\n\t\r\n\t\r\n \r\n\r\n\t\
r\n\t\r\n\t\r\n[...]

/* Localized versions of Inf
o.plist keys */\n\n

<?xml version="1.0" enco
ding="UTF-8"?>\n<!DO
CTYPE plist PUBLIC "
-//Apple//DTD PLIST 1.0/
/EN" "http://[...]

Count 3,775 2,941 2,913 2,744 2,714

RedPajama Text ACCEPTED\n\n#### Acc
ording to\nInternational
Plant Names Index\n\n##
## Published in\nnull\n\
n#### Original n[...]

SYNONYM\n\n####
According to\nThe Catalo
gue of Life, 3rd January
2011\n\n#### Published
in\nnull\n\n#### Ori[...]

ACCEPTED\n\n#### Acc
ording to\nThe Catalogue
of Life, 3rd January 2011\n
\n#### Published in\nnul
l\n\n#### Or[...]

ACCEPTED\n\n#### Acc
ording to\nNUB Generator
[autonym]\n\n#### Publi
shed in\nnull\n\n#### Or
iginal name\nnull[...]

ACCEPTED\n\n#### Acc
ording to\nInterim Register
of Marine and Nonmarine
Genera\n\n#### Published
in\nnull\n[...]

Count 213,922 146,434 94,922 15,038 10,089

S2ORC Text Abstract not submitted f
or online publication\n\n\n\
n\n\u2022 Research which
is freely available for red
istrib[...]

Abstracts P1 - P16 are e
ducational and not inclu
ded for publication onli
ne\n\n\n\n\nO R A L P R
E S E N T[...]

Abstract withdrawn\n\n\n
\n\u2022 Convenient onli
ne submission \u2022 Tho
rough peer review \n\u20
22 No space constraints [...
]

Educational abstract\n\nO1
Validation of a new autom
ated volumetric breast d
ensity measurement syste
m [...]

Modeling and analysis of
monkeypox disease using
fractional derivatives\n\nT
he frequency of monkeypo
x [...]

Count 35 30 26 14 14

peS2o Text Educational abstract\n\nO1
Validation of a new autom
ated volumetric breast d
ensity measurement syste
m [...]

Reply on RC2\n\nThis man
uscripts investigates the di
screpancy of estimated v
egetation influence on cat[.
..]

COP27 climate change con
ference: urgent action n
eeded for Africa and the
world\n\nThe 2022 report
of t[...]

Reply on RC2\n\nFollowin
g your suggestion, we have
revised the manuscript ve
ry carefully. The lists be[.
..]

Reply on RC1\n\nThis pap
er uses a 1D estuary model
to explore the variability of
overtide under varyin[...]

Count 14 7 6 4 4

LAION-2B-en Text Front Cover Wall View 002 Market position of the s
elected technologies

Pointwise: Reliable CFD
meshing

Go to European Commi
ssion website

Count 1,003,863 681,753 414,986 319,524 314,423

The Stack Text #\n%\nRailCompiler: Inva
lid movement.\n

//\n// WechatAuthSDK.h\
n// WechatAuthSDK\n//\n
// Created by \u674e\u51ef
on 13-11-29.\n// Copyright
(c) 2013\u5e74 T[...]

OUTPUT_FORMAT ("
elf32-littlearm", "elf32-big
arm", "elf32-littlearm")
\nENTRY(reset_handle
r)\nSEARCH_DIR[...]

//\n// WBHttpRequest+We
iboToken.h\n// WeiboSDK
\n//\n// Created by Dannion
Qiu on 14/11/6.\n// Cop
yrigh[...]

//\n// WXApi.h\n// \u6240\
u6709Api\u63a5\u53e3
\n//\n// Created by Wechat
on 12-2-28.\n// Copyright
(c) 2012\u5e74 Tencent. A
ll[...]

Count 45 43 29 24 20

Table 12: Top 5 most occurring URL duplicates from datasets with URLs for each document and non-zero URL
duplication.

LAION-2B-en OSCAR
Text Count Text Count

UNLIKELY 33,142 https://international.thenewslens.com/tag/ 2,184
http://semantic.gs/driver_download_images/driver_download_certifications.png 27,162 https://arc.link/twitch/streaming/ 235
http://www.slickcar.com/products/hawkpadsa.jpg 10,700 https://zakiganj24news.blogspot.com/ 100
https://www.zeitauktion.info/assets/img/zeitauktion_placeholder.jpg 10,144 https://ywttvnews.com 100
https://static.uk.groupon-content.net/app/00/00/default0000.jpg 9,935 https://yellgh.com/our-services/ 100

B.2.2 DUPLICATES

URL Duplicates We also examine duplication between document URLs for the datasets that have
that metadata, which we show the top-5 URL duplicates from datasets with URL duplicates in
Table 12. LAION’s most frequent URL (with 33,142 occurrences) is an invalid URL – “UNLIKELY”,
likely resulting from a parsing error. The second most frequent URL (with 27,162 occurrences) from
LAION-2B-en leads to an all-white image from a computer driver website, and in Figure 15, we see
that among the top 25 duplicated URLs in LAION-2B-en, there are instances of image duplicates
hosted at different URLs. Meanwhile, OSCAR has a notable artifact wherein, after the top two
duplicate URLs, the next 234 URLs are duplicated exactly 100 times. Table 14 in the Appendix
shows counts and ratios for these URL duplicates as previously specified for text hashes. These find
that URL duplicate ratios are roughly an order of magnitude smaller than their text hash counterparts,
and that the count of documents duplicated by URL is not dominated by only a few clusters.
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Figure 14: Percentages of text duplicates to totals for datasets with any. The percentages of documents and
percentages of unique document clusters are each shown as bars. Duplicate counts are presented above the bars.

Table 13: Statistics about text duplicates per dataset. Counts of duplicate documents and ratio of duplicate to
total documents as well as equivalent counts for unique text clusters.

Corpus Duplicates Ratio of total Unique duplicates Uniq ratio of total
OpenWebText 0 0.00 0 0.00
C4 0 0.00 0 0.00
mC4-en 48,255 0.00 21,991 0.00
OSCAR 164,740,386 0.38 19,934,531 0.07
The Pile 138,716,558 0.66 64,623,824 0.47
RedPajama 459,530,754 0.49 218,875,070 0.32
S2ORC 3,703,001 0.33 1,767,564 0.19
peS2o 33,903 0.00 16,924 0.00
LAION-2B-en 1,254,910,523 0.54 342,174,466 0.24
The Stack 517,396 0.00 232,151 0.00

B.2.3 DOCUMENT LENGTH DISTRIBUTION

We elaborate on the results from the main paper and report the length distribution for all corpora,
both for the character and token distribution. Figure 16 showcases these distributions, and Table 15
depicts the median token and character length distributions.

LAION-2B-en, containing image alt text, has the smallest average document lengths. Beyond the
exact duplicates described above, which commonly describe products (especially home appliances),
LAION-2B-en also contains a significant number of template-generated alt texts paired with maps
describing the location of rental boats. The only outlier in OpenWebText in terms of document length

Table 14: Statistics about URL duplicates for datasets with URLs for all documents. Counts of duplicate
documents and ratio of duplicate to total documents as well as equivalent counts for unique URL clusters.

Corpus Duplicates Ratio of total Unique duplicates Unique ratio of total
C4 0 0.00 0 0.00
mC4-en 0 0.00 0 0.00
OSCAR 5,958,969 0.01 2,542,577 0.01
LAION-2B-en 158,824,858 0.07 61,674,276 0.03
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Figure 15: Images from the top 25 most duplicated URLs in LAION-2B-en.

is at exactly 100,000 characters; all documents over this length were chunked into multiple documents
of length 100,000 by the dataset builders.

RedPajama also contains template-generated user-facing copy, including, e.g., placeholder pages
for alumni of various secondary schools (each associated with a unique individual’s name). This
analysis also reveals a collection of documents comprising nearly 0.01% of the dataset, containing
what appear to be usernames or titles associated with pornographic content.

Finally, The Stack contains many template-generated new-duplicate documents; for example, a large
number of auto-generated metadata files for Unity assets, each of length 20 tokens. It also contains a
significant number of documents of length 20,000 characters that contain float and bit matrices.

The Pile also includes a significant number of auto-generated metadata files corresponding to Unity
assets, e.g.:

fileFormatVersion: 2
guid: e32f0a7fe2a7abc4289bc3c0e8a2b558
timeCreated: 1435687483
licenseType: Pro
NativeFormatImporter:
userData:
assetBundleName:
assetBundleVariant:

as well as auto-generated files corresponding to publications in medical journals, e.g.:

![](edinbmedj74198-0096){#sp1 .384}
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Figure 16: Distribution of document lengths for each of the datasets.

Table 15: Median document lengths for tokens and characters.

Corpus Median Token per Document Median Character per Document
OpenWebText 634 3,185
C4 227 1,153
mC4-en 397 1,988
OSCAR 423 2,163
The Pile 361 1,835
RedPajama 514 2,604
S2orc 4,538 23,418
peS2o 4,582 23,852
LAION-2B-en 10 54
The Stack 430 1,953
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B.3 COMMUNITY- AND SOCIETY-RELEVANT MEASUREMENTS

In this section, we provide additional results on the contamination and PII analyses from the main pa-
per, as well as conduct two more analyses: toxic language and demographic sentiment co-occurrences.
Overall the community- and society-relevant measurements contain the following analyses:

1. Benchmark contamination (§B.3.1)
2. Personally identifiable information (§B.3.2)
3. Toxic language (§B.3.3)
4. Demographic sentiment co-occurrences (§B.3.4)

B.3.1 BENCHMARK CONTAMINATION

We measure contamination by testing whether all of the input fields are present in a single document,
and report the percentage of examples from the test set that are contaminated and present the results
in Table 16. We do not test for the presence of the labels as those are not always available, and they
can come in different forms (e.g., in RTE they may appear either as ‘entailment’, ‘not-entailment’,
or as ‘0’, ‘1’). Moreover, we do not test for consecutive appearance of these inputs, as they might
appear in different orders and with different separators. As such, our contamination evaluation serves
as an upper bound of exact-match dataset contamination. By employing exact match comparison
with the pretraining data, we ignore minor changes in words or phrases that models trained on such
similar texts may exploit. An example of such influence is introduced by Emami et al. (2020), who
showed how high overlap between sentences in the Winograd Schema Challenge (Levesque et al.,
2012) and pretraining corpora inflates the results on the test set, while Elazar et al. (2021b) argue
that knowledge and reasoning capabilities from large pretraining corpora leak and inflate evaluation
benchmarks.

Rationales of the Design Choices Here, we provide the rationals behind our design choices for the
contamination experiment. Overall, our desiderata required a large benchmark that can be processed
automatically, and that matched in an inspected corpora would be of high precision. We details these
rationals in the following points:

• Choice of task type. We chose to use tasks that include two or more inputs (e.g., natural
language inference) as the co-occurrence of both inputs in the same document increase the
likelihood of these inputs to originate from an existing evaluation dataset. In contrary, texts
from tasks containing a single input (e.g., sentiment analysis) may naturally occur in some
text corpus, which decreases the likelihood of contamination.

• Ignoring the output. We decided to ignore the output of the inspected datasets since these
can appear in different formats (e.g., numeric values, text labels, etc.).

• Choice of PromptSource. Finally, we use PromptSource (Bach et al., 2022) as it is the
only large scale benchmark which we could automatically process and discern the different
input parts (e.g., this is important since many datasets contain additional fields like metadata
which are not directly part of the task).

Note that different design choices can be made for inspecting additional contamination of benchmarks.
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Table 16: Contamination percentages of the 82 datasets filtered from PromptSource (Bach et al., 2022), in C4,
OSCAR, The Pile, and RedPajama.

Dataset/Corpus C4 OSCAR The Pile RedPajama
adversarial-qa-adversarialQA 0.03 0.03 0.03 0.03
adversarial-qa-dbert 0.00 0.00 0.00 0.00
adversarial-qa-dbidaf 0.00 0.00 0.00 0.00
adversarial-qa-droberta 0.10 0.10 0.10 0.10
aeslc 1.57 0.31 45.49 0.10
amazon-reviews-multi 2.28 2.10 1.48 2.06
billsum 0.06 0.06 0.03 0.06
cosmos-qa 0.00 0.00 0.00 0.00
crows-pairs 0.00 0.20 0.00 0.60
duorc-ParaphraseRC 0.00 0.00 0.00 0.00
duorc-SelfRC 0.01 0.00 0.02 0.02
esnli 0.04 0.08 1.13 1.24
gigaword 0.15 0.36 1.18 2.82
glue-ax 1.99 1.45 5.07 6.16
glue-mnli-matched 1.65 1.77 2.17 2.26
glue-mnli-mismatched 1.73 1.91 2.11 2.17
glue-mrpc 0.06 0.00 0.64 1.16
glue-qnli 0.13 0.04 1.48 1.21
glue-qnli 0.09 0.04 1.48 1.21
glue-rte 0.20 0.17 0.13 67.47
glue-stsb 3.48 3.12 11.09 9.86
glue-wnli 0.00 0.00 0.00 2.05
head-qa-en 5.22 5.29 5.11 5.94
health-fact 7.53 3.40 1.94 18.70
hlgd 0.00 0.00 0.00 0.00
liar 29.23 13.95 10.91 45.05
math-dataset-algebra-linear-1d 0.00 0.00 0.00 0.00
math-dataset-algebra-linear-2d 0.00 0.00 0.00 0.00
math-dataset-algebra-linear-2d-composed 0.00 0.00 0.00 0.00
math-qa 0.34 0.03 0.00 0.07
mc-taco 0.00 0.00 0.00 0.14
mocha 0.00 0.00 0.00 0.03
openai-humaneval 0.00 1.22 0.00 0.00
paws-x-en 0.05 0.00 0.15 0.20
paws-labeled-final 0.05 0.04 0.25 0.35
piqa 0.06 0.03 0.06 0.13
race-all 0.14 0.06 0.00 0.28
race-high 0.11 0.00 0.00 0.26
race-middle 0.21 0.21 0.00 0.35
ropes 0.00 0.00 0.00 0.00
samsum 0.00 0.00 0.00 0.12
scan-addprim-jump 0.00 0.00 0.05 0.16
scan-addprim-turn 0.00 0.00 0.08 0.00
scan-filler-num0 0.00 0.00 0.00 0.09
scan-length 0.00 0.00 0.03 0.00
scan-simple 0.02 0.00 0.10 0.26
scan-template-around 0.00 0.00 0.00 0.18
scan-template-jump 0.00 0.00 0.00 0.09
scan-template-opposite 0.00 0.00 0.04 0.16
scan-template-right 0.00 0.00 0.11 0.16
scicite 1.78 1.51 0.86 1.72
scitail-snli-format 0.09 0.38 0.28 0.71
scitail-tsv-format 0.09 0.38 0.28 0.71
sem-eval-2014 0.35 0.18 4.89 52.81
sick 0.31 0.18 4.79 52.61
snli 0.04 0.08 1.11 1.22
squadshifts-amazon 0.00 0.00 0.00 0.00
squadshifts-new-wiki 0.01 0.01 0.01 0.03
squadshifts-nyt 0.01 0.03 0.02 0.04
stsb-multi-mt 3.48 3.12 11.09 9.86
subjqa-books 0.00 0.00 0.00 0.00
subjqa-grocery 0.00 0.00 0.00 0.00
subjqa-movies 0.00 0.00 0.00 0.00
subjqa-restaurants 0.00 0.00 0.00 0.00
super-glue-axb 1.99 1.45 5.07 6.16
super-glue-axg 0.00 0.00 0.28 0.00
super-glue-boolq 0.00 3.05 0.00 0.03
super-glue-boolq 0.00 3.05 0.00 0.03
super-glue-cb 0.00 0.00 2.00 1.60
super-glue-copa 0.60 1.00 1.20 100.00
super-glue-multirc 0.00 0.00 0.00 0.00
super-glue-record 0.00 0.00 0.00 0.00
super-glue-rte 0.20 0.17 0.13 67.47
super-glue-wic 64.43 49.43 18.57 60.21
swag-regular 2.48 1.65 2.21 2.79
tab-fact-tab 0.00 0.00 0.00 0.00
wiki-qa 0.24 0.18 0.19 0.91
winograd-wsc-wsc273 29.30 30.40 32.23 58.24
winogrande-winogrande-xl 0.00 0.00 0.00 0.00
xnli-en 0.12 0.24 0.36 0.44
xsum 2.13 0.13 3.30 4.28
zest 0.00 0.00 0.00 0.00
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B.3.2 PII

We use three regular expressions inspired by Subramani et al. (2023) to identify email addresses,
phone numbers, and IP addresses across pretraining corpora. In addition, we improved the phone
numbers regex for better precision. These regexes provide us with a high precision performance
(which we manually evaluate) and allows a fast PII identification. We apply postprocessing rules
to the resulting matches, to improve the precision of detecting personal information by seeking to
eliminate common classes of false positives (such as ISBN numbers that may be flagged as phone
numbers). These rules are enumerated in Table 17.

Applying these regular expressions to the ten corpora we study in the paper, Table 20 contains the
number of matches of each PII type in each corpus. For faster processing, we filter documents
containing a large amount of special characters (such as documents with >50 consecutive “:)”
emoticons). We further normalize this statistic, by the number of tokens in each pretraining dataset,
in order to estimate the relative proportion of PII in each corpus. These results are in Table 19. We
observe that even when controlling for the number of tokens in the different corpora, mC4-en has a
large amount of personal information compared to the other pretraining corpora.

We manually evaluate the precision of the heuristics. In order to compute this statistic, we sample
100 examples of strings detected as PII (when available), for the three PII types, over the ten
pretraining corpora in this study.These results are in Table 18. The nature of this retrieval task makes
it challenging to estimate the recall of our method, and more work is needed on the topic. We show
the types of examples that may be incorrectly identified as PII by our method in each corpus in Table
21.

Table 17: Regular expressions and postprocessing rules used to identify three PII types (email/ phone numbers/IP
addresses).

PII Type Regular Expression Postprocessing Filter

Email Addresses [.\s@,?!;:)(]*([^\s@]+@[^\s@,?!;:)(]+?)[.\s@,?!;:)(]?[\s\n\r] (1) The username cannot be only "("
(2) There must be a "." in the domain

Phone Numbers \s+(?(\d{3}))?[-\. ]*(\d{3})[-. ]?(\d{4})
(1) ‘ISBN’, ‘DOI’, or "#" cannot appear in a
context window of 50 characters from the match
(2) Cannot contain URL

IP Addresses (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)

(1) ‘ISBN’, ‘DOI’, or "#" cannot appear in a
context window of 50 characters from the match

Assumptions and Limitations: We make a number of assumptions in doing this analysis, and we
describe them below:

• We choose three types of PII: phone numbers, email addresses and IP addresses. These
three types of PII have relatively standardized formats (for example, IP addresses are always
32-bit numbers expressed in dotted decimal format), which allows us to construct regular
expressions to search for these information types in text. However, the retrieved information
types may not correspond to any one individual— for example, government organizations
have email addresses and phone numbers.

• Conversely, many types of personally identifiable information are not easily specifiable in
the structured format we use for the information types in this study, and as a result we do
not identify them in pretraining corpora.

• While many types of information individually may not appear to identify a specific individual,
they can be combined with information elsewhere on the internet to form PII. In this work,
we only identify a small proportion of potential personal information that is present in
pretraining datasets, but further work is needed to analyze the extent to which pretraining
corpora include personal information as well as how this information can be sanitized.

• Finally, we do not claim to estimate the risk level or sensitivity of the information types we
extract from the pretraining corpus, acknowledging that this is highly context-dependent
and personalized.
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Table 18: Extrapolated frequency of matches for regex searches of different kinds of PII (email/ phone numbers/IP
addresses) in pretraining corpora. This is computed by multiplying the precision of our PII identification module
for each pretraining corpus with the number of detections, in order to estimate the number of true matches.
Prec. contain the precision of our identification method, as estimated by manual verification, on each corpora.
Precision indicates the proportion of samples detected that we can reasonably infer as accurately matching the
PII type. We sample 100,000 documents from each corpora, and analyze 100 samples of each detected PII type
when available. * indicates that less than 100 samples for a PII type were found in a corpus, and we report the
precision amongst the available PII detections. The number of samples for these corpora/PII type combinations
are as follows: LAION-2B-en /Email Addresses (17), LAION-2B-en /IP Addresses (16), PeS2o/Phone Numbers
(13), PeS2o /IP Addresses (12), RedPajama/IP Addresses (95), S2ORC / Email Addresses (10), S2ORC / Phone
Numbers (1), S2ORC / IP Addresses (0)

Corpus Email Addresses Phone Numbers IP Addresses
Count Prec. Count Prec. Count Prec.

OpenWebText 363,789.4 99 532,929.8 87 70,430.0 54
OSCAR 62,802,224.0 100 107,163,132.4 91 3,237,420.6 43
C4 7,614,759.2 99 19,702,198.4 92 796,494.7 56
mC4-en 201,368,945.0 92 4,067,997,426.2 66 97,887,510.2 44
The Pile 19,882,348.2 43 38,019,831.8 65 4,078,794.7 48
RedPajama 35,217,396.0 100 70,264,985.9 94 1,126,129.5 *30
S2ORC 630,130.0 *100 1,465,947.0 *100 0.0 *0
PeS2o 418,136.9 97 226,937.5 *30.8 0.0 *0
LAION-2B-en 636,252.1 *94 1,029,066.6 7 0.0 *0
The Stack 4,329,620.3 53 45,473,381.9 9 4,481,490.7 55

Table 19: Extrapolated ratios of PII frequency (the number of PII matches multiplied by the estimated precision),

normalized by number of tokens in a corpus (
PII ∗ Precision

#Tokens
).

PII Type Email Addresses Phone Numbers IP Addresses
OpenWebText 0.000047 0.000069 0.000009
OSCAR 0.000409 0.000698 0.000021
C4 0.000003 0.000007 0.000000
mC4-en 0.000423 0.008546 0.000206
The Pile 0.000070 0.000133 0.000014
RedPajama 0.000034 0.000069 0.000001
S2ORC 0.000011 0.000024 0.000000
PeS2o 0.000009 0.000005 0.000000
LAION-2B-en 0.000021 0.000035 0.000000
The Stack 0.000003 0.000030 0.000003

Corpus Email Addresses Phone Numbers IP Addresses
OpenWebText 367,464 612,563 130,426
OSCAR 62,802,224 117,761,684 7,528,885
C4 7,691,676 21,415,433 1,422,312
mC4-en 218,879,288 6,163,632,464 222,471,614
The Pile 46,238,019 58,492,049 8,497,489
RedPajama 35,217,396 74,749,985 3,753,765
S2ORC 630,130 1,465,947 373,095
peS2o 431,069 736,810 239,912
LAION-2B-en 676,001 14,700,951 522,005
The Stack 8,169,095 505,259,799 8,148,165

Table 20: Frequency of matches for regex searches of different kinds of PII in pretraining corpora.
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Table 21: Abbreviated examples of incorrect detections by our method, for each PII type, in each pretraining
dataset. The exact span that was matched is in red. Offensive content and personal information have been
redacted from the presented examples.

Corpus Email Addresses Phone Numbers IP Addresses

OpenWebText

skremoved) has joined *
trayvonmartin sets ban on
*!*@n***.*** * trayvonmartin
has kicked whitepower from
#n****

...2017 limitation 99 pcs.
article id 472172730 ean
4012138149625 the model
was produced in the usual
minichamps...

... [stdout] awy was overriden
from notenoughitems 1.6.1.9.jar
2014-03-24 20:25:06 [info]
[minecraft-client]...

C4 “you ever googled our email ad-
dress? try googling “@fmr.com”
and “charity” together, and you
will get an idea”

on your mortgage. dis-
claimer - property reference
100103003249. the information
displayed about this property

not load file or assembly
´smswrappers, version = 3.0.0.0

mC4-en smswrappe wrote in mes-
sagenews:a30c91p63
cj6vgr...4lfg7ve8@4ax.com... i
bought gta iii at a garage sale
and it did not

"stat-major-faults": 1213, "stat-
total-memory": 3975217152,
"stat-swap-in": 0

s not constitute the consent re-
quired by n.j.a.c. 11.5.6.1 (n) for
the advertisement of listings ex-
clusively

OSCAR - ...a getty images) michael
jones9 october 2021 21:53
1633812509 andorra vs england
player ratings: phil foden shi...

...latest update software comes
with version number 10.0.0.163.
currently the update available in
the...

The Pile [@eiguren3].[]data-
label="table4"

t undefined behavior. for exam-
ple, i get that b = 2083899728
and d = -552766888. the persis-
tent thing you are

such damage. // according to
ecma-262, sections 8.6.2.2 and
8.6.2.3 you’re not // allowed to
override rea

RedPajama - watercolor baby bring a
book card printable png v
1525458984 - watercolor baby
bring a book card printable png

sh wikipedia) 18:54, 15 july
2013 (utc) if i can. 86.146.46.88
john of reading (talk) 06:38, 25
july 2013 (utc)

S2Orc - - -

PeS2o 65%@0.00262 izona institutional review
board (approval number
2003521636a002). at baseline,
the participants reported thei

-

LAION-2B-en NWA Democrat-
Gazette/Michael
Woods –03/15/2015–
w@NWAMICHAELW...

queen creek 85142 e cher-
rywood dr - property id:
1311037210

gods and glory: war for the
throne apk 3.8.10.1

The Stack remirror/ui@0.7.3 ermine the vision-agent service
is running - hsd 15010872669 -
add missing heartbeatresponse-
timersecs to the

atoaune — have you upgraded
to oracle soa suite 12.2.1.1 and
can’t find the partitions configu-
ration any l

38



Published as a conference paper at ICLR 2024

Table 22: Toxic language percentages based on a taxonomy and a classifier over entire documents in the corpora
we consider. Toxic language statistics in the corpora we consider. The document toxicity (the first two columns)
reports the percentage of documents that contain at least one mention of toxic language detected by each of the
approaches. The classifier is applied separately on each sentence. The fine-grained taxonomy mention (the last
three columns) reports the number of toxic mentions overall, and their relative appearance normalized by the
number of tokens in each corpus.

% Documents with Detected Toxicity Fine-grained Taxonomy Statistics
Corpus Classifier Taxonomy Offensive-minority Offensive-not-minority Harmless-minority

OpenWebText 16.47 13.8 149K (1.92e-05) 3.55M (4.58e-04) 13.5M (1.74e-03)
C4 5.75 0.01 158K (1.03e-06) 47 (3.06e-10) 146M (9.51e-04)
mC4-en 6.09 0.15 31.4M (1.16e-05) 6.55M (2.42e-06) 2.85B (1.05e-03)
OSCAR 9.58 8.97 8.91M (1.87e-05) 236M (4.95e-04) 549M (1.15e-03)
The Pile 8.27 7.67 4.55M (1.59e-05) 84.7M (2.96e-04) 238M (8.32e-04)
RedPajama 10.3 7.88 15.2M (1.49e-05) 283M (2.76e-04) 1.43B (1.40e-03)
S2ORC 10.52 16.55 95.9K (1.60e-06) 8.02M (1.34e-04) 33M (5.52e-04)
peS2o 9.56 17.0 47.8K (1.09e-06) 5.96M (1.35e-04) 26.7M (6.07e-04)
LAION2B-en 1.09 0.89 2.69M (9.09e-05) 25.4M (8.55e-04) 182M (6.14e-03)
The Stack 1.16 1.85 4.63M (3.04e-06) 84.8M (5.56e-05) 228M (1.50e-04)

B.3.3 TOXIC LANGUAGE

How common is toxic language used in corpora? We employ two complementary methods for
computing toxicity. The first is based on the work of (Zhou et al., 2021), who compiled a lexicon
of terms (TOXTRIG) into three categories: possibly offensive minority identity mentions, possibly
offensive non-identity mentions, and non-offensive minority identity mentions. It is then used by
matching these “toxic triggers” over texts. The model-based method uses an SVM classifier trained on
a dataset consisting of 200K examples based on Wikipedia and Twitter to identify toxic language.14

We apply such a classifier on each sentence separately and consider the document toxic in case any
sentence is found to be toxic. We present the results in Table 22. C4 is the least toxic based on
the taxonomy: only 0.01% were found to be toxic, which is expected due to the filters used in the
curation process of the dataset. On the other hand, the classifier finds more documents to be toxic:
5.75%, which may indicate subtleties that the lexicon used for filtering documents from C4 did not
catch. OpenWebText is the most toxic corpus based on the classifier, while PeS2o is the most toxic
one based on the taxonomy, perhaps surprisingly, as it is not a web-based corpus.

Explicit Content Filtering The only dataset we analyze that explicitly filtered for toxic content
(in the form of keyword matching) is C4. Indeed, the matching category from our analysis are
the “Offensive-*” categories. Our analysis, that uses a fine-grained lexicon (Zhou et al., 2021),
splits this category into “offensive-minority” and “offensive-not-minority”. In C4 we only found
47 mentions of the “offensive-not-minority” category, likely due to a difference in filter used to
create C4 and our lexicon. In comparison, other datasets that did not employ such filters contain
several million references of such phrases. Interestingly, C4 also contains 158K occurrences of the
“offensive-minority” category, which were not filtered from the dataset.

B.3.4 DEMOGRAPHIC SENTIMENT CO-OCCURRENCES

In this section, we turn to detecting biases in the corpora based on demographic factors. We
constructed a set of unigrams and bigrams associated with gender (male and female pronouns),
religion (the proper names of several major religions), and race (combinations of racial identifiers
and words like man, woman, people, etc.). The sentiment of sentences containing these terms was
computed using SpacyTextBlob and averaged over a given corpus. The results for all corpora are
shown in Figure 17. The Stack is excluded from this analysis since the contexts in which these
terms appeared were not typically natural language. Overall, we observe a neutral or weakly positive
sentiment for sentences in which most of our demographic terms appear, with the exception of those
including ‘black’ being uniformly more negative across all corpora. With minor exceptions we
don’t observe substantial variation in the sentiment for individual terms among datasets. The weak
positivity seen for all sources is in opposition to a related analysis performed in Gao et al. (2020),
which measured weak negativity for most terms. It’s likely this is due to differences in the way

14https://github.com/dimitrismistriotis/alt-profanity-check
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Figure 17: The average sentiment associated with several gender, racial, and religious demographic terms for
each dataset. Note: averages for datasets marked with * were computed for 10% samples.

average sentiment is computed (we compute sentiment at the sentence level while Gao et al. (2020)
computes sentiment only for the most frequent co-occurring terms).
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Figure 18: 1,000 most common unigrams in LAION-2B-en (rank on x-axis), and their corresponding rank in C4
(y-axis), and visa-versa. The dashed red line corresponds to y = x. Points below and above that line indicates
differences between the corpora. For instance, common unigrams in LAION-2B-en are of different adjectives
and words often used to describe objects (e.g., Black, Light, Happy, Woman’s), but those are much less common
in C4.

B.4 CROSS-DATA ANALYSIS

Main Findings

• Comparing unigrams of different corpora reveals distributional and topical differences.
• OSCAR unigram distribution is the most similar to all other corpora on average.
• 50% of RedPajama unique documents originate from C4 and 50% of OpenWebText unique

documents originate from The Pile.
• While mC4-en was supposedly a superset of C4, documents from C4 constitute only 0.04%

of mC4-en, while the later being only 10x larger in size.

Using the analyses from the previous sections we can now perform targeted comparisons between
different corpora. Such analysis is the first step of better understand the similarities and differences
between corpora. We perform the following analyses:

1. Distributional similarities (§B.4.1)
2. Corpus overlap (§B.4.2)

B.4.1 DISTRIBUTIONAL SIMILARITY

Unigram Ranking Using the most common n-gram statistics (4.3.1), we can compare the ranking
of these n-grams, to gain insights into their different usage between corpora. For the following
analysis we consider the top 10,000 most common unigrams of two corpora, and display the 1,000
most common unigrams in one corpus as a function of the same unigram rank in the other corpus.
In Figure 18 we display the rank of unigrams in C4 as a function of their ranks in LAION-2B-en.
Some very common unigrams in LAION-2B-en describing objects such as “Two”, “Black”, “blue”,
and “Light” are very common in LAION-2B-en - top 500 unigrams, but much more rare in C4’s
top 1,000. Another category is car models such as BNW and Toyota whose ranking is about 900 in
LAION-2B-en, but above 6,000 in C4. Figures 19-28 show the paired ranks for all corpora pairs.
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Figure 20: C4 top 1,00 unigrams, and their corresponding indices in the other corpora.
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Figure 21: mC4-en top 1,00 unigrams, and their corresponding indices in the other corpora.
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Figure 22: OSCAR top 1,00 unigrams, and their corresponding indices in the other corpora.
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Figure 25: S2ORC top 1,00 unigrams, and their corresponding indices in the other corpora.
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Figure 26: peS2o top 1,00 unigrams, and their corresponding indices in the other corpora.
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Figure 27: LAION-2B-en top 1,00 unigrams, and their corresponding indices in the other corpora.
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Figure 28: The Stack top 1,00 unigrams, and their corresponding indices in the other corpora.
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Figure 29: The Jensen Shannon distance between the top 1,000 most common unigrams in each corpus. The
lower the numbers the more similar the corpora are. OpenWebText, C4, mC4-en, OSCAR, The Pile and
RedPajama are quite similar to one another (in terms of the common unigrams distribution), and S2ORC, peS2o,
LAION-2B-en, and The Stack are quite different from all other corpora.

Table 23: Top 10 exact text overlaps between more than 2 datasets. C4, OSCAR, and RedPajama share the
most amount of documents, with over 1.6 million shared documents. Interestingly, even LAION-2B-en, an
image-caption corpus overlaps with other corpora, such as C4 and RedPajama (which all share more than 30
thousand documents).

Corpus Intersection Count
C4 ∩ OSCAR ∩ RedPajama 1,680,953
C4 ∩ mC4-en ∩ RedPajama 1,375,088
The Pile ∩ RedPajama ∩ The Stack 592,364
C4 ∩ The Pile ∩ RedPajama 118,432
C4 ∩ RedPajama ∩ LAION-2B-en 30,602
mC4-en ∩ OSCAR ∩ RedPajama 14,319
C4 ∩ mC4-en ∩ OSCAR 12,854
C4 ∩ mC4-en ∩ OSCAR ∩ RedPajama 12,854
OSCAR ∩ The Pile ∩ RedPajama 6,112
C4 ∩ OSCAR ∩ The Pile 6,096

Unigram Overlap Next, by comparing the 10,000 most common unigrams, we compare the
similarity between each corpora pair using the Jensen Shannon distance using (1) the intersection and
(2) the union of the two vocabularies. We present the results in Figure 29. On average, we find that
OSCAR’s unigram distribution is the most similar to all other corpora (0.19 on average). The Stack,
as expected, is the most distance corpus from all other corpora.

B.4.2 CORPUS OVERLAP

In this analysis, we compute the overlap between the different corpora, by comparing (1) the texts,
and (2) the URLs, when available. The pairwise results are presented in Figure 30 for the texts
overlap, and Figure 31 for the URL overlap. We see that text overlap diminishes quickly to zero
as more datasets are considered. Table 23 shows the largest text overlaps between more than two
datasets. While the largest two are over 1 million document clusters, this is less than 1% of clusters
in any of the involved datasets, and overlap size drops rapidly from there. This trend is similar for
URL overlaps. The largest 3-corpora overlap is between C4, mC4-en, and OSCAR, with 6,767,877
shared URLS, while the rest of the overlaps share at most a single URL.

We find that documents from S2ORC and peS2o do not appear in other corpora. While it is likely
that some of the academic papers are shared with other corpora, e.g., The Pile and RedPajama
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Figure 30: Overlaps of hashed full text between all pairs of datasets as counts and as ratio to dataset size.
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Figure 31: Overlaps of URL string between all pairs of datasets as counts and as ratio to dataset size.

that included arXiv as a data source, there are likely formatting differences that cause the exact
string matching to be different. Interestingly, even S2ORC and peS2o do not contain any exact-text
overlapping documents, despite peS2o being a cleaned version of S2ORC, due to a difference in
formatting for parsed paper sections.

While RedPajama is 2.5 times larger than C4 in number of documents and 6.6 larger in number of
tokens, we find that 50% of RedPajama unique documents originate from C4. This can be explained
by larger documents (as evident from the largest average document length in The Stack of 2,800 tokens
per document on average, compared to 420 tokens per document in C4, or by duplicate contents of
C4 documents in RedPajama. Similarly, 50% of OpenWebText unique documents overlap with The
Pile, which includes OpenWebText as a source. Another expected overlap is between datasets with
Github as a source (RedPajama and The Pile), and The Stack (which purely consist of Github code).

Finally, we also notice that while mC4-en was created from a superset the Common Crawl data used
to make C4, documents from C4 only constitute 0.04% of mC4-en, while the later is only 10 times
larger in size. We speculate that this is due to formatting differences, between the C4 and mC4-en
collection.

C LIMITATIONS

WIMBD has a few limitations, described below:

• The search tool we use is Elasticsearch. While it is scalable, it was not designed for scaling
with large text corpora. In addition, indexing these massive text corpora can take a few days,
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and keeping it running is costly. In the future, we hope to explore more cost effective and
faster indexing tools.

• Search is currently enabled using Elasticsearch, which only enables exact-match search.
Fuzzy, and semantic search are important abilities that we currently do not support.
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Table 24: Time benchmark of the different analyses on C4. We ran all of these analyses on a 224-CPUs machine,
with 881 Gb memory. * The contamination time was calculated on the test set of COPA, which contains 500 test
examples. We also report the estimated cost in dollars based on Google’s pricing of the machine we used, that is
$9.46 per hour.

Category Analysis Time Estimated Cost ($)

D
at

a
St

at
is

tic
s

Summary Statistics 6:32 1
Internet Schemas 2:25 0.4
Internet Domains 5:38 0.9
Internet Domains per Token 3:32:07 33.4
Internet Suffixes 1:56 0.3
Utterance Date Statistics 2:12 0.3
Geolocation 1:17 0.2
Language ID 5:52 0.9

D
at

a
Q

ua
lit

y

Top-1 9:08 1.4
Top-2 2:14:26 21.2
Top-3 5:45:10 54.4
Top-5 3:43:58 35.3
Top-10 8:43:40 82.6
Top-100 3:00:14 28.4
Bot-1 18:17 2.9
Duplicates 8:36 1.4
Length Distribution 8:56 1.4

C
om

m
.

M
ea

su
re

s Contamination *:48 0.1
Toxic Classifier 3:19:12 31.4
Toxic Taxonomy 3:15:27 30.8
PII 24:44 3.9
Demographic Sentiment 11:41:17 110.5

Total 46:51:51 443.1

D BENCHMARKING RUNTIMES

This section describes the benchmark times each analysis took to run on the C4 corpus. While C4 is
not the largest corpora we analyze, it is a popular one, and representative in size. All out analyses
were run on a Google cloud compute node with 882GB RAM and 224 CPUs. While the machine is
rich in RAM, our analyses typically did not use more than 250GB, and the reason for choosing such
machine was the availability of a machine with enough CPU cores, that came along with this amount
of memory.

We report the benchmark runs in Table 24. All of the analyses we conducted took less than 12 hours
to run, with 13 (out of 22) that took only several minutes, and all of the analyses on C4 took an
estimated of 46 hours and 51 seconds (excluding repeated runs, and the contamination analyses on
other evaluation datasets). Note that while the measured time for each run were calculated using the
TIME command in linux, there is some variance, and those should be taken as a rough estimate.

We also calculate the estimated costs for each analysis and report it in the same table (Table 24). We
use the estimated $9.46 per hour based on https://cloud.google.com/compute/all-pricing for
our calculations, making the total cost on C4 $443.1.15

15This estimation does not include the Elasticsearch hosting costs.
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E TECHNICAL DETAILS

This section describes the algorithms for computing the most common, least common, and total
number of unique n-grams in a large corpus. Each of these algorithms uses the same trick that was
inspired by Bloom filters (Bloom, 1970) as described in section 3.1. As a result these algorithms do
not provide exact results, and the accuracy is determined by the amount of memory available for the
hash table.

E.1 MOST COMMON n-GRAMS

To collect the (approximate) top-k n-grams we start by initializing a hash table of zeros (either u32
or u64) which represent occurrence counts for each n-gram, and an empty collection of the top-k
n-grams. Then we iterate over the n-grams in the corpus and for each n-gram encountered we take
its hash, increment the corresponding count in the hash table, and if that count is at least as large as
the current minimum count in the top-k we add that n-gram to the top-k, potentially evicting another
n-gram from the top-k.

After completing the iteration over the corpus the top-k will be complete and, in the absence of
hash collisions, correct. However, the larger the corpus is relative to the hash table, the higher the
probability of hash collisions. A large enough corpus will have more unique n-grams than there are
entries in the hash table, which guarantees hash collisions in the table, leading to inflated counts for
some n-grams and the potential for false positives in the top-k. That’s where the accuracy-memory
tradeoff comes in. The final counts reported for the top-k n-grams will always be an upper bound of
the true counts.

E.2 LEAST COMMON n-GRAMS

To collect the (approximate) bottom-k n-grams we also start by initializing a hash table of u3216 zeros
to represent occurrence counts for each n-gram, and an empty collection of the bottom-k n-grams.
But this time we have to iterate over the corpus’ n-grams twice.

During the first iteration we tally up the counts just like we do in the top-k algorithm, except that we
don’t add any n-grams to the bottom-k collection. During the second iteration we now already have
the final counts of all n-grams, so we simply look up the count of each n-gram encountered and then
add it to the bottom-k collection if its count is low enough, potentially evicting another n-gram.

Hash collisions might cause false negatives with the bottom-k, i.e. some rare n-grams may be missing
from bottom-k if they had hash collisions with more frequent n-grams. The final counts reported will
for the bottom-k n-grams always be a lower bound of the true counts.

E.3 UNIQUE n-GRAMS

To estimate the number of unique n-grams we initialize a hash table of booleans set to ‘false’. Then
we iterate over all n-grams in the corpus and for each n-gram encountered we take its hash and
update the corresponding boolean in the table to ‘true’. After iterating over the whole corpus we
simply have to tally up the number of ‘true’ entries. This number is the estimate for the number of
unique n-grams, which will always be a lower bound of the actual number of unique n-grams.

16It’s not necessary to use u64 integers when collecting the bottom-k even if there’s a possibility of overflow
counts, provided overflows are caught and kept at 232, since we only care about the exact count of rare n-grams
which are unlikely to ever reach an overflow.
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