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Abstract

Human visual experience is markedly different from the large scale computer vi-
sion datasets constructed by scraping the internet. Babies densely sample a few
3D scenes with diverse variations, while datasets like ImageNet contain one sin-
gle snapshot from millions of 3D scenes. We investigated how these differences
in input data composition (ie., visual diet) impact the Out-Of-Distribution (OOD)
generalization capabilities of a visual system. We found that training models on
a dataset mimicking attributes of the human-like visual diet improved generaliza-
tion to OOD lighting, material, and viewpoint changes by up to 18%. This was
true despite being trained on 1, 000-fold lesser training data. Furthermore, when
trained on purely synthetic data and tested on natural images, incorporating these
attributes in the training dataset improved OOD generalization by 17%. These
experiments are enabled by our newly proposed benchmark—the Human Visual
Diet (HVD) dataset, and a new model (Human Diet Network) designed to lever-
age the attributes of a human-like diet. These findings highlight a critical problem
in modern day Artificial Intelligence—building better datasets requires thinking
beyond dataset size, and improving data composition. All data and source code
are available at https://bit.ly/3yX3PAM.

1 Introduction

The development of the human visual system is intricately tied to the visual experiences encountered
from infancy [1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 7]. These visual experiences are constrained by the structure
of the spaces we occupy, resulting in data significantly different from large-scale datasets used in
computer vision. Fig. 1(a) illustrates two such differences. First, children learn from the physical
space they occupy—a few 3D scenes and objects viewed under diverse real-world transformations
including viewpoints, lighting, object textures, and natural occlusions. Second, children always
view objects in the context of their surroundings. We refer to these as real-world transformational
diversity (RWTD) and scene context, respectively. Here, we investigate how these differences in
input data composition impact Out-Of-Distribution (OOD) generalization performance.

We found that incorporating these attributes into the training data significantly improves general-
ization. Models trained with a human-like visual diet achieve up to 18% improved performance on
OOD lighting, materials, and viewpoint changes. In fact, training with such data outperforms train-
ing models on 1000-fold larger internet-scraped datasets. These experiments are enabled by two key
technical contributions. First, the Human Visual Diet (HVD) dataset, which contains both transfor-
mational diversity and scene context [10, 11] (Figure Sup1). Second, the Human Diet Network
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Figure 1: Mimicking the human visual diet. (a),(b) Comparing human and machine visual diets:
The couch in the 3D room is viewed under a variety of real-world transformations, and objects are
seen in the context of their surroundings. Both attributes are missing in internet scraped images of
couches. (c) Human Visual Diet (HVD) dataset contains images with disentangled lighting, material,
and viewpoint changes to a 3D scene where objects are shown in context. (d) Human Diet Network
(HDNet) leverages these attributes by using a two-stream architecture which reasons over both target
object and its surrounding scene context, and uses a contrastive loss over real-world transformations.

(HDNet) model designed to leverage the attributes present in HVD (See Fig. 1(c)). HDNet exploits
transformational diversity by employing a contrastive loss over real-world transformations (lighting,
material, 3D viewpoint changes), and uses a two-stream architecture to jointly reason over target
and scene context to perform context aware visual recognition. We add to a growing body of works
positing the importance of mimicking the human visual diet [11, 7, 6, 12, 10, 13, 14] by extending
them, and showcasing the improved OOD generalization resulting from such training data.

2 Related Work

Out-of-Distribution (OOD) generalization continues to be the Achilles heel of Modern AI [15,
16, 17]. Failure modes include OOD rotations and translations [15, 16, 17], real-world transfor-
mations including 3D viewpoints [18, 19, 20, 21, 22, 23], changes in lighting [21, 24, 25], and
color changes [26, 27], among other transformations. Existing approaches to counter this include—
specialized architectures [28, 29, 30, 31, 32, 33, 34], novel pre-processing and data augmentation
strategies [35, 36, 37, 38, 39], and generative modeling [40, 41], among others. Lately, practition-
ers have made datasets larger than ever in the hopes that billion scale datasets like LAION-5B [42]
and IG-1B Targeted [43] will contain enough information to leave very little out of the distribution.
However, despite unprecedented progress, OOD samples remain an unsolved problem [44, 45, 46].
In contrast, some recent work has emphasized the importance of training with more human like
data [8, 9, 6, 7]. This includes incorporating scene context [47], temporal structure [12], binocular
vision [48, 49], goal-directed/active sampling [14, 13, 50, 51, 52], and controlled rearing experi-
ments [6, 7], among others. Our work extends these to Out-of-Distribution generalization.

3 Datasets with controlled variations in lighting, materials and viewpoints

We present three new benchmarks for measuring OOD generalization across real-world transforma-
tions in lighting, materials, and viewpoint changes.

3.1 Human visual diet (HVD) Dataset

1,288 3D scenes from ScanNet [53] were reconstructed using the OpenRooms framework [54, 55],
and 15 photo-realistic domains were constructed with these scenes by introducing 3 real-world
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transformations—lighting, material, and viewpoint changes. For each domain, 19, 800 images were
rendered resulting in a total of 300, 000 images containing 1 million object instances with controlled
variations in lighting, object materials, and viewpoints (see Fig. Sup1(a)). Additional details on the
construction of OOD material, viewpoint and lighting domains are provided in Sec. Sup1.

3.2 Semantic-iLab dataset

Images from iLab [56] were modified to create a natural image dataset with variations in lighting,
material and viewpoints (Fig. Sup1 (b)). iLab contains objects from 15 categories placed on a
turntable and photographed from varied viewpoints. Fist, a foreground detector was used to extract
the object. Then, material variations were implemented using AdaIN [57] based style transfer on
these object masks and the style transferred object was overlayed onto the original background.
Lighting changes were simulated by modifying the white balance. Unlike HVD, this dataset does
not contain scene context. Additional details can be found in supplementary Sec. B.

3.3 Syn2Real dataset: Natural image test set from ScanNet

The Syn2Real dataset is composed of a test set of natural images from the ScanNet dataset, and a
training set of only synthetic images from HVD. The natural image test set was created by annotating
images from ScanNet [53]. To capture distinct images, one frame was sampled every 100 frames
from ScanNet’s raw video footage. These frames were then annotated using LabelMe.

4 Human Diet Network (HDNet)

A schematic of the proposed HDNet is shown in Fig Sup5. Given the training dataset D =
{xi, yi}ni=1, HDNet is presented with an image xi with multiple objects and the bounding box for
a single target object location. The target (Ii,t) is obtained by cropping the input image xi to the
bounding box whereas Ii,c covers the entire contextual area of the image xi. yi is the ground truth
class label for Ii,t. Inspired by the eccentricity dependence of human vision, HDNet has one stream
that processes only the target object (It, 224 ⇥ 224), and a second stream devoted to the periphery
(Ic, 224 ⇥ 224) which processes the contextual area. We also utilize contrastive learning over real-
world transformations—Samples of the same object category (but different lighting, 3D viewpoint,
or texture) serve as positive pairs, while samples of different object category serve as negative pairs.
Additional details on the model are provided in Sec. D.

5 Results

One domain per transformation was held out as the OOD test set and never used for training. As
Real-World Transformational Diversity (RWTD) was increased from 1 to 4 domains (corresponding
to 20% to 80% data diversity), the number of images sampled per domain were reduced. This
ensured a fixed training dataset size. All models were pre-trained on ImageNet.

5.1 Models with low diversity and minimal context struggle to generalize.

Fig.2 presents generalization performance of models trained with low transformational diversity and
minimal scene context—data was sampled from only 1 domain, and images were cropped to show
only the target object. This diet is representative of internet scraped datasets like ImageNet [58], and
these models served as a lower baseline to quantify the impact of a human-like visual diet.

For HVD (Fig. 2(a)), ResNet18 generalized better across lighting changes than material changes
(two-sided t-test, p < 10�5) or viewpoint changes (two-sided t-test, p < 10�6). There is ample
room for improvement, especially when tested on OOD material and viewpoints. Similar conclu-
sions can be drawn for DenseNet [59] and ViT [60] architectures. For Semantic-iLab (Fig. 2(b))
as well, ResNet18 generalized better across OOD lighting than OOD materials (two-sided t-test,
p < 10�6) or OOD viewpoints (two-sided t-test, p < 10�6). In the Semantic-iLab dataset, the
degree of generalization for material and viewpoints were particularly low. These conclusions held
true for DenseNet and ViT as well. In sum, models trained with minimal diversity and context
showed only moderate generalization, especially struggling with material and viewpoint changes.
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Figure 2: Real-world transformational diversity significantly improved generalization. (a)
Models struggle to generalize across real-world transformations—especially material and viewpoint
changes for HVD, and (b) for Semantic-iLab. (c) Generalization improves significantly as real-
world transformational diversity (RWTD) is increased for HVD, and (d) for Semantic-ilab.

(a) (b)

Figure 3: Scene Context improves OOD generalization. (a) HDNet explicitly leverages scene
context resulting in substantially better generalization than domain generalization approaches like
ERM [61] and IRM [30] for all three transformations (lighting, material, and viewpoint changes).
(b) Human-like visual diet enables improved generalization from synthetic to natural image data.

5.2 Utilizing real-word transformational diversity (RWTD) improves generalization

OOD Generalization improved with transformational diversity for all three transformations in the
HVD dataset (Fig. 2(c)). For lighting: 0.85 to 0.94, p < 10�6; material: 0.64 to 0.89, p < 10�5;
viewpoint: 0.63 to 0.73, p < 10�6. This improvement was significantly greater for OOD materials
than for OOD lighting (p < 10�4) and OOD viewpoints (p < 10�4). Transformational diversity
improved generalization for the Semantic-iLab dataset as well (Fig. 2(d)). For lighting: 0.93 to 1.0,
p < 10�3; materials: 0.36 to 0.96, p < 10�4; viewpoint: 0.46 to 0.75, p < 10�7. As with the HVD
dataset, improvement in generalization was higher for unseen materials than for unseen lighting (p <
10�3) and unseen viewpoints (p < 10�6). Thus, OOD generalization improved across all real-world
transformations with transformational diversity. Inn fact, with sufficient diversity, generalization to
OOD lighting and materials reached almost ceiling levels. However, despite improvement, OOD
viewpoints remained a challenge.

5.3 Utilizing scene context improves generalization.

We compared HDNet with a suite of baselines that do not utilize scene context. This includes do-
main generalization (DG) architectures, and a modified FasterRCNN model designed to perform
visual recognition. We also added a recent context-aware model (CRTNet [63]) to the comparison.

Real-World
Transformation

AND
Mask
[28]

CAD
[34]

COR
AL
[29]

MTL
[61]

Self
Reg
[31]

VREx
[33]

Faster
RCNN

[62]

HDNet
(ours)

Light 0.82 0.80 0.81 0.81 0.75 0.83 0.95 0.98
Materials 0.75 0.75 0.75 0.74 0.74 0.75 0.78 0.94

Viewpoints 0.75 0.77 0.79 0.79 0.76 0.78 0.65 0.83

Table 1: Contextual information improves OOD generalization. All models were trained with
80% transformational diversity and tested on the held-out 20%. HDNet beats all specialized domain
generalization baselines and a FasterRCNN modified to do object recognition, by a large margin.
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Real World
Transforma-

tion
Dino
V2

ResNet50
SWSL

ResNet18
SWSL

ResNext101
32x4d
SWSL

ResNext101
32x16d
SWSL

ResNext50
32x4d
SWSL

HDNet
(Ours)

Light 0.94 0.9 0.88 0.93 0.93 0.91 0.98
Materials 0.79 0.73 0.67 0.77 0.79 0.74 0.94

Viewpoints 0.74 0.72 0.65 0.74 0.78 0.73 0.83

Table 2: Our approach beats models trained with 1000x more data. HDNet was pre-trained on
ImageNet and finetuned on data with both transformational diversity and scene context. Baselines
were pre-trained on 1000-fold more data, but fine-tuned on data not containing these two attributes.
HDNet beats all baselines by a large margin for all three transformations, despite being trained on
1000-fold smaller training data.

All models were trained with 80% Transformational Diversity, i.e., 4 training domains. HDNet beat
all DG methods with statistical significance (two-sided t-test, p < 0.05) for all three transformations.
These baselines are presented in Table 1. The best performing baseline was another context-aware
model—CRTNET [63]. HDNet outperformed all benchmarks on all three transformations. In sum-
mary, approaches utilizing scene context (HDNet and CRTNet) outperformed all specialized DG
approaches on all real-world transformations, and our proposed HDNet also outperformed the clos-
est baseline (CRTNet). We present several additional experiments on the role of scene context in the
supplement in Sec. F.

5.4 Human-like visual diet outperforms billion-scale internet-scraped datasets

Next, we compared HDNet with visual recognition models trained with 1,000x more data (Table. 2).
All models except HDNet were pre-trained on the IG-1B dataset [43], and then fine-tuned on data
with 20% RWTD and with object crops ie., low transformational diversity and minimal context. In
comparison, HDNet was pre-trained on ImageNet and fine-tuned with data consisting of 80% RWTD
and scene context ie., human-like visual diet. All models were fine-tuned on the same number of
images. HDNet outperformed all billion-scale baselines by large margins despite being trained on
1000x less data (Table. 2, two-sided t-test, p < 0.001).

5.5 Human-like visual diet enables generalization to real-world images

HDNet trained with RWTD and scene context achieved an accuracy of 0.69, while the best baseline
(IRM [30]) trained without a human-like diet achieved an accuracy of 0.51 (Fig. 3(b)). Thus, in-
corporating these attributes into the training dataset enabled HDNet to generalize significantly well
from a purely synthetic training data to a natural image test set (two-sided t-test, p < 0.05).

6 Conclusions
We investigated the impact of data composition on the OOD generalization capabilities of recogni-
tion models. Specifically, we demonstrated that incorporating two key components of the human vi-
sual diet—transformational diversity and scene context improve generalization to OOD viewpoints,
lighting, and material changes. Our contributions include three new benchmarks, and a novel archi-
tecture that model and leverage these human-like visual attributes. This work provides an approach
complementary to existing directions on data augmentation and specialized domain generalization
architectures. While our results are promising, the human visual diet is complex and multifaceted,
with several additional features like temporal information, egocentric views, embodiment, and goal-
driven/active sampling warranting future investigation. We believe this work opens new avenues for
aligning biological and artificial vision systems, and advancing generalization in AI.
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NeurIPS paper checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and introduction state the main claims, approach and the experiments
support the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: They are provided in the conclusions section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We have no Proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details are provided alongside code and data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Data and code are provided and are free for anyone to use.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, all information are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we used two-sided t-tests for statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, details are provided in experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and reviewed the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There are no societal imapct of the work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work raises no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No such assets were used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

10

paperswithcode.com/datasets


Answer: [Yes]
Justification: Dataset comes with details on how to use it.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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Supplementary Materials

A Details on the construction of HVD domains

Original Image Lighting Change Material Change Viewpoint Change

(b) Semantic-iLab Dataset

ScanNet (test image)

(c)Syn2Real Test Dataset

HVD (train images)

(a) Human  Visual Diet (HVD) Dataset

Lighting Change

Material Change

Viewpoint Change

Target (Sofa) viewed in
context of surrouding objects

Figure Sup1: Datasets with real-world transformations. (a) Sample images from the Human
visual diet dataset: We created 15 photo-realistic domains with three, disentangled real-world
transformations—lighting, material, and viewpoint changes. Each 3D scene was created by re-
constructing an existing ScanNet [53] scene using the OpenRooms framework [54], followed by
introduction of controlled changes in scene parameters before rendering these images. (b) Sample
images from the Semantic-iLab dataset: We modify the existing iLab dataset [56] by augmenting
images with changes in lighting and material. These changes are achieved by modifying the white
balance and using AdaIN [64] based style transfer, respectively. (c) Syn2Real dataset constructed
with paired 3D scenes—synthetic images for training and natural images for testing.

17



Figure Sup2: Example images showing lighting tranformations. We show paired images from dif-
ferent lighting transformation domains between the right and left column in each row. All other
parameters held constant.

18



Figure Sup3: Example images showing material tranformations. We show paired images from
different material transformation domains between the right and left column in each row. All other
parameters held constant
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Figure Sup4: Example images showing viewpoint tranformations. We show paired images from
different viewpoint transformation domains between the right and left column in each row. All other
parameters held constant
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A.1 Lighting, Material, and Viewpoint domains:

Material shift domains: We used 250 high quality, procedural materials from Adobe Substances
including different types of wood, fabrics, floor and wall tiles, and metals, among others. These were
split into sets of 50 materials each to create 5 different material domains (supplementary Fig. Sup3).
For each domain, its 50 materials were randomly assigned to scene objects. One domain was held
out for testing (OOD Materials), and never used for training any model.

Light shift domains: Outdoor lighting was controlled using 250 High Dynamic Range (HDR)
environment maps from the Laval Outdoor HDR Dataset [65] and OpenRooms, which were split
into 5 sets of 50 each (one set per domain). Disjoint sets of indoor lighting were created by splitting
the HSV color space into chunks of disjoint hue values. Each domain sampled indoor light color and
intensity from one chunk (supplementary Fig. Sup2). One domain was held out for testing (OOD
Light), and never used for training.

Viewpoint shift domains: Controlling object viewpoints presents a challenge as indoor objects are
seen across a variety of azimuth angles (i.e., side vs front) across 3D scenes. Thus, to create disjoint
viewpoint domains (supplementary Fig. Sup4) we chose to control the zenith angle by changing the
height at which the camera is focusing. Again, of the 5 domains, one was held out for testing (OOD
Viewpoints). We show sample images from the Semantic iLab dataset in Fig. Sup1(b) created by
modifying the existing iLab [56] dataset. This is a multi-view dataset, and hence already contains
viewpoint shifted variations of the same objects. We modify the dataset to also contain material and
light shifts. To mimick light shift, we modified the white balance of the original images, as shown
in Fig. Sup1(b)(b). For material shifts, we first run a foreground detector on these objects using
Google’s Cloud Vision API. We also run style transfer on these images using AdaIn [57]. Then, we
overlay the style transferred image on to the object mask on the original image to mimick material
shifts. Note that this is approximate, and does not model the physics of material transfer in the same
way as our rendered HVD dataset which is far more photorealistic, as shown in Fig. Sup3. Material
shifted Semantic iLab images are shown in Fig. Sup1(b)(c). As the dataset is originally multi-view,
we do not need to generate new viewpoints and can use images of a different viewpoint from the
original dataset as shown in Fig. Sup1(b)(d).

A.2 Sample images from the HVD Dataset

We present additional images from the HVD dataset. Each figure shows change in one scene pa-
rameter, while holding all others constant. In Fig. Sup2 we show images from two different light
domains. Note that the first three rows in Fig Sup2 show different indoor lighting conditions con-
trolled using indoor light color and intensity sampled from disjoint chunks of the HSV space. The
last two rows show different outdoor lighting settings created by changing the environment maps.
Similarly, Fig. Sup3 shows five different scenes from two training domains with a material shift.
Fig. Sup4 shows viewpoint shifted domains.

B Details on the construction of the Semantic iLab dataset

We show sample images from the Semantic iLab dataset in Fig. Sup1(b) created by modifying the
existing iLab [56] dataset. This is a multi-view dataset, and hence already contains viewpoint shifted
variations of the same objects. We modify the dataset to also contain material and light shifts. To
mimick light shift, we modified the white balance of the original images, as shown in Fig. Sup1(b).
For material shifts, we first run a foreground detector on these objects using Google’s Cloud Vision
API. We also run style transfer on these images using AdaIn [57]. Then, we overlay the style
transferred image on to the object mask on the original image to mimick material shifts. Note that
this is approximate, and does not model the physics of material transfer in the same way as our
rendered HVD dataset which is far more photorealistic, as shown in Fig. Sup3. Material shifted
Semantic iLab images are shown in Fig. Sup1(b). As the dataset is originally multi-view, we do
not need to generate new viewpoints and can use images of a different viewpoint from the original
dataset as shown in Fig. Sup1(b).
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Figure Sup5: Architecture overview for the Human Diet Network (HDNet). (a) Modular steps
carried out by HDNet in context-aware object recognition. HDNet consists of 3 modules: feature
extraction, integration of context and target information, and confidence-modulated classification.
HDNet takes the cropped target object It and the entire context image Ic as inputs and extracts
their respective features. These feature maps are tokenized and information from the two streams
is integrated over multiple cross-attention layers. HDNet also estimates a confidence score p for
recognition using the target object features alone, which is used to modulate the contributions of
Ft and Ft,c in the final weighted prediction yp. (b) To help HDNet learn generic representations
across domains, we introduce contrastive learning on the context-modulated object representations
Ft,c in the embedding space. Target and context representations for objects of the same category are
enforced to attract each other, while those from different categories are enforced to repel. Pairs for
contrastive learning are generated using various material, lighting, or viewpoint shifts (Sec. 3.1).

C Details on the construction of the Syn2Real dataset

We made three adaptations for these experiments. Firstly, as both ScanNet and ImageNet contain
natural images and overlapping categories, we trained models from scratch to ensure pre-training
does not interfere with our results. Thus, these models never saw any real-world images, not even
ImageNet as they were not pretrained on those datasets. Secondly, we trained and tested models
on overlapping classes between HVD and ScanNet. Finally, we used the LabelMe [66] software
to manually annotate a test set from ScanNet and training set for the HVD dataset using the same
procedure to make sure biases from the annotation procedure do not impact experiments. Thus, all
models were trained purely on synthetic data from HVD and tested on only real-world natural image
data from ScanNet as shown in Fig. Sup1(c).
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D Details on the Human Diet Network

The context stream is a transformer decoder, and the network integrates object and context infor-
mation via hierarchical reasoning through a stack of cross-attention layers in the transformer. This
allows HDNet to be more robust under distribution shifts in object context. Furthermore, HDNet
utilizes a contrastive learning method on 3D transformations.

A model that always relies on context can make mistakes under distribution shifts. Thus, to increase
robustness, HDNet makes a second prediction yt, using only the target object information alone.
A 2D CNN is used to extract feature maps Ft from It, and estimates the confidence p of this
prediction yt. Finally, HDNet computes a confidence-weighted average of yt and yt,c to get the
final prediction yp. If the model makes a confident prediction with the object only, it overrules the
context reasoning stage.

Contrastive learning has benefited many applications in computer vision tasks (e.g., [67, 68, 69, 70,
31]). However, all these approaches require sampling positive and negative pairs from real-world
data. To curate positive and negative pairs, image and video augmentations operate in 2D image
planes or spatial-temporal domains in videos. Here we introduce a contrastive learning method on
3D transformations.

Our contrastive learning framework builds on top of the supervised contrastive learning loss
[71]. Given the training dataset D = {xi, yi}ni=1, we randomly sample N data and label pairs
{xk, yk}Nk=1. The corresponding batch pairs used for constrative learning consist of 2N pairs
{x̃l, ỹl}2Nl=1, where x̃2k and x̃2k�1 are two views created with random semantic domain shifts of
xk(k = 1, ..., N) and ỹ2k = ỹ2k�1 = ỹk. Domain shifts are randomly selected from a set of HVD
domains specified during training. For example, if xk is from a material domain, x̃2k and x̃2k�1

could be images from the same 3D scene but with different materials. For brevity, we refer to a set
of N samples as a batch and the set of 2N domain-shifted samples as their multiviewed batch.

Within a multiviewed batch, let m 2 M := {1, ..., 2N} be the index of an arbitrary domain shifted
sample. Let j(m) be the index of the other domain shifted samples originating from the same source
samples belonging to the same object category, also known as the positive. Then A(m) := M\{m}
refers to the rest of indices in M except for m itself. Hence, we can also define P (m) := {p 2
A(m) : ỹp = ỹm} as the collection of indices of all positives in the multiviewed batch distinct from
m. |P (m)| is the cardinality. The supervised contrastive learning loss is:

Lcontrast =
X

m2M

Lm =
X

m2M

�1

|P (m)|
X

p2P (m)

log
exp(zm · zp/⌧)P

a2A(m) exp(zm · za/⌧)
(Sup1)

Here, zm refers to the context-dependent object features Fm,t,c on x̃m after L2 normalization. The
design motivation is to encourage HDNet to attract the objects and their associated context from the
same category and repel the objects and irrelevant context from different categories.

As previous works have demonstrated the essential role of context in object recognition [63, 47],
contrastive learning on the context-modulated object representations enforces HDNet to learn
generic category-specific semantic representations across various domains. ⌧ is a scalar temper-
ature value which we empirically set to 0.1.

Overall, HDNet is jointly trained end-to-end with two types of loss functions: first, given any input
xm consisting of image pairs Im,c and Im,t, HDNet learns to classify the target object using the
cross-entropy loss with the ground truth label ym; and second, contrastive learning is performed
with features Fm,t,c extracted from the context streams:

L = ↵Lcontrast,c,t + Lclassi,t + Lclassi,p + Lclassi,c,t (Sup2)

Hyperparameter ↵ is set to 0.5 to balance the supervision from constrastive learning and the classifi-
cation loss. Supplementary Table Sup2 shows that the contrastive loss introduced in HDNet results
in improved performance across all real-world transformations.
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E Additional experiments with real-world transformational diversity

E.1 Real-world transformations outperform traditional data augmentation.

We investigated how real-world transformational diversity (RWTD) compares to traditional data
augmentation strategies including 2D rotations, scaling, and changes in contrast. Models trained
with a visual diet consisting of 80% RWTD were reported in Fig.3(e). We compared these with
models trained with a visual diet consisting of 20% RWTD + traditional augmentation. As before,
all models were tested on unseen lighting, material, and viewpoint changes.

The number of training images was kept constant across all training scenarios to evaluate the quality
of the training images rather than their quantity. Training set size equalization was achieved by sam-
pling fewer images per domain in the 80% RTWD training set. For instance, for HVD experiments
with unseen viewpoints we sampled 15, 000 training images per viewpoint domain to construct the
training set with 20% RWTD + Data Augmentations. In comparison, we sampled only 3, 750 per
viewpoint domain to construct the 80% RWTD training set. Thus, the initial sizes of the 80%RWTD
and the 20%RWTD+Data Augmentation training sets was identical. However, due to data aug-
mentations being stochastic the total number of unique images shown to models trained with data
augmentations was much larger. Assuming a unique image was created by data augmentation in
every epoch, over 50 epochs the dataset size would be 50 times larger with data augmentations.
Additional details on dataset construction can be found in the methods in Methods.

HDNet trained on HVD with 80% RWTD outperformed the same architecture trained with 20%
RWTD+traditional data augmentation for lighting changes (two-sided t test, p < 10�4), mate-
rial changes (two-sided t test, p < 10�5), and viewpoint changes (two-sided t test, p < 10�6)
(Fig. Sup6(a)). Similar conclusions were reached for the Semantic-iLab dataset. A ResNet model
trained with 80% RWTD outperformed the same architecture trained with 20% RWTD+traditional
data augmentation for lighting changes (two-sided t test, p < 10�4), material changes (two-sided t
test, p < 10�7), and viewpoint changes (two-sided t test, p < 10�5) (Fig. Sup6(b)).
Traditional data augmentation largely involves 2D affine operations (crops, rotations) or image-
processing based methods (contrast, solarize) which are not necessarily representative of real-world
transformations. In summary, the positive impact of a visual diet consisting of diverse lighting, ma-
terial, and viewpoint changes (real-world transformational diversity) cannot be replicated by using
traditional data augmentation applied to the dataset after data collection—diversity must be ensured
at the data collection level.

E.2 Real-world transformations outperform augmentation with generative AI.

Several existing works rely on increasing data diversity using AdaIn-based methods [64, 72]. These
style transfer methods change the colors in the image while retaining object boundaries, but do not
modify materials explicitly as done in our HVD dataset. We evaluated how well models perform
if diversity is increased using style transfer as opposed to material diversity. We started with one
material domain, and created four additional domains using style transfer. Sample images of style
transfer domains are shown in Fig. Sup6(c). Corresponding images from the HVD dataset with
real-world transformation in materials can be seen in Fig. Sup1(a). The total number of domains
(and images) created using style transfer was kept the same as the material domains in HVD. The
only difference in the training data was that instead of four additional material domains, we have
four additional style transfer domains. We compared models trained with these two different visual
diets—one consisting of four material domains, and the other consisting of four style transfer do-
mains. All models were then tested on the same held-out OOD Materials domain. Style transfer
domains did not enable models to generalize to new materials as well as the material shift domains
presented in HVD (Fig. Sup6(d)).
These experiments support the notion that in order to build visual recognition models that can gen-
eralize to unseen materials, it is important to explicitly increase diversity using additional materials
at the time of training data collection. The impact of diverse materials cannot be replicated by using
style transfer to augment the dataset after data collection.
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Real-World
Transformation Architecture 1 Stream 2 Stream

Lighting

ResNet 0.85± 0.004 0.95± 0.009⇤

ViT 0.91± 0.003 0.97± 0.007⇤

HDNet (Ours) - 0.98± 0.001

Materials

ResNet 0.64± 0.03 0.83± 0.008⇤

ViT 0.78± 0.01 0.92± 0.003⇤

HDNet (Ours) - 0.94± 0.002

Viewpoint

ResNet 0.63± 0.02 0.72± 0.009⇤

ViT 0.77± 0.01 0.83± 0.001⇤

HDNet (Ours) - 0.83± 0.006

Table Sup1: Adding scene context improves performance independent of architecture. Fol-
lowing the design of HDNet shown in Fig. 1(c), we modified standard architectures to have two
streams—one operating on the target, and the other one on the contextual information. Representa-
tions for both streams are then concatenated and passed through a classification layer as shown in
Fig. 1(c). We train the standard one-stream and these modified two-stream architectures on HVD,
and report the average Top-1 accuracy for all models . We also report error bars, which measures
the variance in accuracies over categories. Both the ResNet and the ViT architectures lead to a
large improvement in generalization for all semantic shifts when modified to leverage scene context.
To ensure we study impact of context independent of data diversity, all models were trained on 4
domains, i.e., 80% transformational diversity and tested on the held out domain. Best performing
model (HDNet) has been shown in boldface for all real-world transformations. A ⇤ refers to statisti-
cally significant improvement in performance when using a two-stream architecture as compared to
a one-stream architecture (two-sided t-test, p < 0.05).

Semantic
Shift

Without
Contrastive Loss

With Contrastive
Loss

Viewpoint 0.79 0.82
Material 0.89 0.94
Lighting 0.98 0.98

Table Sup2: Impact of removing contrastive loss. We evaluate the contribution of the contrastive
loss by training and testing HDNet on the HVD dataset with and without the contrastive loss. The
contrastive loss results in an improvement across all three semantic shifts.

E.3 Each individual real-world transformation is helpful

Some real-world transformations are easier to capture than others. For instance, capturing light
changes during data collection might be significantly easier than collecting multiple possible room
layouts, or object viewpoints. Thus, it would be beneficial if training with one transforma-
tion (e.g., light changes) can improve performance on a different transformation (e.g., viewpoint
changes). We refer to such a regime as assymetric diversity—as models are trained with one kind of
diversity, and tested on a different kind of diversity (Fig. Sup6(e),(f)). In all cases, the best general-
ization performance was obtained when training and testing with the same real-world transformation
for both HVD (Fig. Sup6(e)) and Semantic-iLab datasets (Fig. Sup6(f)). In most cases, there was a
drop in performance of 10% or more when training in one transformation and testing with a different
(assymetric) transformation. These experiments imply that to build models that generalize well, it
is important to collect training data with multiple real-world transformations.

F Additional experiments for the role of context

Given the success of HDNet, we asked whether implementing a two-stream separation of target and
context would also improve performance for other architectures. We modified ResNet18 [73] and
ViT [60] to leverage scene context in the same way as HDNet. For ResNet, a two-stream version
was made where each stream is a ResNet backbone. One stream operates on the target, and the other
one on the scene context. Output features from each stream were concatenated, and passed through
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(a)

Real-world transformational diversity outperforms Data augmentation

Human Visual Diet (HVD) Dataset Semantic iLab Dataset

(c)

Original Image

Generalization performance
with unseen materials

Images after Style Transfer

(d)

Generalization from one transformation to another is poor

Human Visual Diet (HVD) Dataset Semantic iLab Dataset

Real-world material diversity outperforms style transfer

Train Set: Lighting Changes Train Set: Material Changes Train Set: Viewpoint Changes

80% Real-World Transformational Diversity (RWTD) 20% RWTD + Data Augmentations

(b)

(e) (f )

Figure Sup6: Data post-processing does not match gains from collecting data mimicking the
human visual diet. (a),(b) Models trained with 80% real-world transformational diversity (RWTD)
outperform those trained with 20% RWTD and traditional data augmentation for all transformations
(lighting, material, and viewpoint) across both HVD and Semantic-iLab datasets. Number of images
is held constant in these experiments. (c) Sample images from style transfer domains created using
AdaIn [64]. (d) Models trained on style transfer domains generalize significantly worse than those
trained with material diversity. (e),(f) Asymmetric diversity does not help generalization as much as
training with the correct transformation—generalization to unseen materials is best when material
diversity is added during training, as opposed to adding light or viewpoint diversity during training.
Same result holds for lighting and viewpoint transformations.
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Semantic
Shift

Full
Context
(� = 0)

Less
Context
(� = 25)

Least
Context

(� = 125)
Lighting 0.98± 0.001 0.96± 0.001 0.94± 0.001
Material 0.94± 0.002 0.88± 0.01 0.83± 0.006

Viewpoint 0.83± 0.006 0.77± 0.01 0.76± 0.01

Table Sup3: Blurring scene context worsens generalization performance. We trained and tested
HDNet with the scene context in HVD images blurred using a Gaussian blur. Here, � is the standard
deviation for the gaussian kernel applied to the image as a filter. Thus, blurring increases with �.
We applied three values for �—0,25, and 125. For brevity, numbers less than 0.001 are reported as
0.001.

a fully connected layer for classification as shown in Fig. 1(c). The two-stream architecture for ViT
was analogous. In contrast, the one-stream architecture did not use scene context and operated on the
target object alone (see methods for additional details). The two-stream architectures consistently
led to improved performance (two-sided t test, p < 0.05), as shown in Table Sup1.

To further understand the role of contextual information on visual recognition, we conducted two
additional experiments. Firstly, we evaluated the impact of reducing scene context information by
blurring it using a Gaussian Blur. As shown in Table. Sup3, performance dropped consistently for
all three transformations as contextual information is reduced. Secondly, we confirmed that the in-
crease in performance is due to the addition of contextual information and not due to the two-stream
architecture per se by training HDNet with both streams receiving only the target information. This
removal of context led to a drop in performance, as reported in Table. Sup4 (see Sec. F for details).

Besides results on the role of context presented in Table. Sup1, we present here two additional
experiments evaluating the contribution of scene context on generalization. Firstly, we also evaluated
the impact of blurring the scene context while keeping the target intact [47]. For each real-world
transformation, we trained and tested models with increasing levels of Gaussian blurring applied to
the scene context. These results are presented in Blurring was applied to the images in the form of a
Gaussian kernel filter, with the kernel standard deviation (�) set to 0, 25, or 125. The cropped image
of the target object was passed to the second stream of the network without blurring. These results
are reported in Table Sup3. As can be seen, there was a drop in performance as context blurred for
all three real-world transformations.

Semantic
Shift

Target
only

Target and
Context

Viewpoint 0.77 0.82
Material 0.85 0.94
Lighting 0.97 0.98

Table Sup4: Training a two-stream HDNet with only target information. As a third control
for confirming the role of context, we train HDNet where both streams are passed just the target
object. Thus, it is forced to learn without scene context. This results in a drop in performance for all
semantic shifts, providing further evidence in support of the utility of scene context.

Secondly, we train HDNet such that both streams are trained with the target object. Thus, this
modified version is forced to learn without scene context. These results are shown in Table. Sup4.
For all semantic shifts, forcing HDNet to learn with only the target results in a drop in accuracy.
This provides further evidence supporting the utility of scene context in enabling generalization.

G Additional experiments with HDNet and contrastive loss

We evaluate the contribution of the contrastive loss by training variations of HDNet on HVD with
and without the contrastive loss as shown in Eq. Sup2. These numbers are reported in Table Sup2.
As can be seen, adding a contrastive loss improves performance for all three semantic shifts, provid-
ing evidence for its utility.
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Test
Dataset

ResNet
[73]

ViT
[60]

AND
Mask
[28]

CAD
[34]

COR
AL
[29]

ERM
[32]

IRM
[30]

MTL
[61]

Self
Reg
[31]

VREx
[33]

HDNet
(ours)

ScanNet 0.35 0.29 0.43 0.40 0.42 0.48 0.46 0.46 0.53 0.42 0.61

Table Sup5: Human visual diet improves generalization to larger real world dataset as well. We
curated a larger subset of ScanNet images, allowing more complex real world scenarios like blurry
images, clutter and occlusions. We report the capability of models to generalize from synthetic
HVD images to this more complex subset of ScanNet. HDNet leveraging human-like visual-diet
outperforms all baselines on this more complex dataset as well.

H Additional experiments with a larger, less controlled ScanNet test set.

We extend the generalization to real-world results presented in the main paper by reporting these
numbers on a larger test set created by annotating additional images from ScanNet. As ScanNet
was created by shooting video footage of 3D scenes, many frames can be blurry. In the original,
smaller test-set such blurry frames were removed to ensure a higher quality test set. However, here
we also include additional images with lower fidelity to report numbers on a larger test set. These
numbers are reported in Table. Sup5. The trend is consistent with results reported on a smaller,
more controlled subset in the main paper—HDNet outperforms all other benchmarks by a large
margin. As expected, including these images in the test set results in a drop in accuracy across all
methods. All models were trained on synthetic images from HVD and were tested on a test set of
natural images from ScanNet.

I Hyperparameters

HDNet: As our model builds on top of CRTNet [63] as backbone, we use the same hyperparameters
for the backbone as reported in the original paper. All models were trained for 20 epochs with a
learning rate of 0.0001, with a batch size of 15 on a Tesla V100 16Gb GPU.

Domain generalization: We used the code from Gulrajani et al. [74] to train and test domain
generalization methods on our dataset. The code is available here: https://github.com/
facebookresearch/DomainBed. To begin, we ran all available models and tried 10 random hy-
perparameter initializations. Of these, we picked the best performing hyperparameter seed—24596.
We also picked the top performing algorithms as the baselines reported in the paper.

FasterRCNN: We used the code from Bomatter et al. [63] to train and test the modified Faster-
RCNN model for recognition. The code is available here: https://github.com/kreimanlab/
WhenPigsFlyContext, and we used the exact hyperparameters mentioned in the repository.

J Experimental Details

HDNet was compared against several baselines presented below. All models were trained on
NVIDIA Tesla V100 16G GPUs. Optimal hyper-parameters for benchmarks were identified using
random search, and all hyper-parameters are available in the supplement in Sec. I.

J.1 Baseline Approaches

We compared the impact of a human-like visual diet with a diverse set of alternative approaches
popular in machine learning. This includes:

2D feed-forward object recognition networks: Previous works have tested popular object recog-
nition models in generalization tests [75, 76]. We include the same popular architectures ranging
from 2D-ConvNets to transformers: DenseNet [77], ResNet [73], and ViT [60]. These models do
not use context, and take the target object patch It as input.

Domain generalization methods: We also compare HDNet to an array of state-of-the-art domain
generalization methods (Table 1). These methods also use only the target object, and do not use
contextual information.
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Context-aware recognition models: To compare against models which use scene context, we in-
clude CRTNet [63] and Faster R-CNN [62]. CRTNet fuses object and contextual information with
a cross-attention transformer to reason about the class label of the target object. We also compare
HDNet with a Faster R-CNN [62] model modified to perform recognition by replacing the region
proposal network with the ground truth location of the target object.

Billion-Scale self and semi supervised architectures: We presented results with a suite of mod-
ern approaches trained on 1000-fold more data to emphasize the importance of data quality over
sheer dataset size. These included—Dino V2, ResNet50 SWSL, ResNet18 SWSL, 32x4d SWSL,
ResNext101 32x16d SWSL, and ResNext50 32x4d SWSL.

J.2 Evaluation of computational models

Performance for all models is evaluated as the Top-1 classification accuracy. Error bars reported
on all figures refer to the variance of per-class accuracies of different models. For statistical test-
ing, p-values were calculated using a two-sample paired t-test on the per-category accuracies for
different models. The t-test checks for the null hypothesis that these two independent samples have
identical average (expected) values. For ScanNet, a t-test is not optimal due to the smaller number
of samples, and thus a Wilcoxon rank-sum test was employed for hypothesis testing as suggested in
past works [78, 79]. All statistical testing was conducting using the python package scipy, and the
threshold for statistical significance was set at 0.05.
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