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Abstract

Human visual experience is markedly different from the large scale computer vi-1

sion datasets constructed by scraping the internet. Babies densely sample a few2

3D scenes with diverse variations, while datasets like ImageNet contain one sin-3

gle snapshot from millions of 3D scenes. We investigated how these differences4

in input data composition (ie., visual diet) impact the Out-Of-Distribution (OOD)5

generalization capabilities of a visual system. We found that training models on6

a dataset mimicking attributes of the human-like visual diet improved generaliza-7

tion to OOD lighting, material, and viewpoint changes by up to 18%. This was8

true despite being trained on 1, 000-fold lesser training data. Furthermore, when9

trained on purely synthetic data and tested on natural images, incorporating these10

attributes in the training dataset improved OOD generalization by 17%. These11

experiments are enabled by our newly proposed benchmark—the Human Visual12

Diet (HVD) dataset, and a new model (Human Diet Network) designed to lever-13

age the attributes of a human-like diet. These findings highlight a critical problem14

in modern day Artificial Intelligence—building better datasets requires thinking15

beyond dataset size, and improving data composition. All data and source code16

are available at https://bit.ly/3yX3PAM.17

1 Introduction18

The development of the human visual system is intricately tied to the visual experiences encountered19

from infancy [1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 7]. These visual experiences are constrained by the structure20

of the spaces we occupy, resulting in data significantly different from large-scale datasets used in21

computer vision. Fig. 1(a) illustrates two such differences. First, children learn from the physical22

space they occupy—a few 3D scenes and objects viewed under diverse real-world transformations23

including viewpoints, lighting, object textures, and natural occlusions. Second, children always24

view objects in the context of their surroundings. We refer to these as real-world transformational25

diversity (RWTD) and scene context, respectively. Here, we investigate how these differences in26

input data composition impact Out-Of-Distribution (OOD) generalization performance.27

We found that incorporating these attributes into the training data significantly improves general-28

ization. Models trained with a human-like visual diet achieve up to 18% improved performance on29

OOD lighting, materials, and viewpoint changes. In fact, training with such data outperforms train-30

ing models on 1000-fold larger internet-scraped datasets. These experiments are enabled by two key31

technical contributions. First, the Human Visual Diet (HVD) dataset, which contains both transfor-32

mational diversity and scene context [10, 11] (Figure Sup1). Second, the Human Diet Network33

(HDNet) model designed to leverage the attributes present in HVD (See Fig. 1(c)). HDNet exploits34

transformational diversity by employing a contrastive loss over real-world transformations (lighting,35

material, 3D viewpoint changes), and uses a two-stream architecture to jointly reason over target36
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Figure 1: Mimicking the human visual diet. (a),(b) Comparing human and machine visual diets:
The desk in the 3D room is viewed under a variety of real-world transformations, and objects are
seen in the context of their surroundings. Both attributes are missing in internet scraped images of
desks. (c) Human Visual Diet (HVD) dataset contains images with disentangled lighting, material,
and viewpoint changes to a 3D scene where objects are shown in context. (d) Human Diet Network
(HDNet) leverages these attributes by using a two-stream architecture which reasons over both target
object and its surrounding scene context, and uses a contrastive loss over real-world transformations.

and scene context to perform context aware visual recognition. We add to a growing body of works37

positing the importance of mimicking the human visual diet [11, 7, 6, 12, 10, 13, 14] by extending38

them, and showcasing the improved OOD generalization resulting from such training data.39

2 Related Work40

Out-of-Distribution (OOD) generalization continues to be the Achilles heel of Modern AI [15,41

16, 17]. Failure modes include OOD rotations and translations [15, 16, 17], real-world transfor-42

mations including 3D viewpoints [18, 19, 20, 21, 22, 23], changes in lighting [21, 24, 25], and43

color changes [26, 27], among other transformations. Existing approaches to counter this include—44

specialized architectures [28, 29, 30, 31, 32, 33, 34], novel pre-processing and data augmentation45

strategies [35, 36, 37, 38, 39], and generative modeling [40, 41], among others. Lately, practition-46

ers have made datasets larger than ever in the hopes that billion scale datasets like LAION-5B [42]47

and IG-1B Targeted [43] will contain enough information to leave very little out of the distribution.48

However, despite unprecedented progress, OOD samples remain an unsolved problem [44, 45, 46].49

In contrast, some recent work has emphasized the importance of training with more human like50

data [8, 9, 6, 7]. This includes incorporating scene context [47], temporal structure [12], binocular51

vision [48, 49], and goal-directed/active sampling [14, 13, 50, 51, 52], among others. Our work52

extends these to Out-of-Distribution generalization.53

3 Datasets with controlled variations in lighting, materials and viewpoints54

We present three new benchmarks for measuring OOD generalization across real-world transforma-55

tions in lighting, materials, and viewpoint changes.56

3.1 Human visual diet (HVD) Dataset57

1,288 3D scenes from ScanNet [53] were reconstructed using the OpenRooms framework [54, 55],58

and 15 photo-realistic domains were constructed with these scenes by introducing 3 real-world59

transformations—lighting, material, and viewpoint changes. For each domain, 19, 800 images were60

rendered resulting in a total of 300, 000 images containing 1 million object instances with controlled61

2



(a) (b) (c) (d)

Figure 2: Real-world transformational diversity significantly improved generalization. (a)
Models struggle to generalize across real-world transformations—especially material and viewpoint
changes for HVD, and (b) for Semantic-iLab. (c) Generalization improves significantly as real-
world transformational diversity (RWTD) is increased for HVD, and (d) for Semantic-ilab.

variations in lighting, object materials, and viewpoints (see Fig. Sup1(a)). Additional details on the62

construction of OOD material, viewpoint and lighting domains are provided in Sec. Sup1.63

3.2 Semantic-iLab dataset64

Images from iLab [56] were modified to create a natural image dataset with variations in lighting,65

material and viewpoints (Fig. Sup1 (b)). iLab contains objects from 15 categories placed on a66

turntable and photographed from varied viewpoints. Fist, a foreground detector was used to extract67

the object. Then, material variations were implemented using AdaIN [57] based style transfer on68

these object masks and the style transferred object was overlayed onto the original background.69

Lighting changes were simulated by modifying the white balance. Unlike HVD, this dataset does70

not contain scene context. Additional details can be found in supplementary Sec. B.71

3.3 Syn2Real dataset: Natural image test set from ScanNet72

The Syn2Real dataset is composed of a test set of natural images from the ScanNet dataset, and a73

training set of only synthetic images from HVD. The natural image test set was created by annotating74

images from ScanNet [53]. To capture distinct images, one frame was sampled every 100 frames75

from ScanNet’s raw video footage. These frames were then annotated using LabelMe.76

4 Human Diet Network (HDNet)77

A schematic of the proposed HDNet is shown in Fig Sup5. Given the training dataset D =78

{xi, yi}ni=1, HDNet is presented with an image xi with multiple objects and the bounding box for79

a single target object location. The target (Ii,t) is obtained by cropping the input image xi to the80

bounding box whereas Ii,c covers the entire contextual area of the image xi. yi is the ground truth81

class label for Ii,t. Inspired by the eccentricity dependence of human vision, HDNet has one stream82

that processes only the target object (It, 224 ⇥ 224), and a second stream devoted to the periphery83

(Ic, 224 ⇥ 224) which processes the contextual area. We also utilize contrastive learning over real-84

world transformations—Samples of the same object category (but different lighting, 3D viewpoint,85

or texture) serve as positive pairs, while samples of different object category serve as negative pairs.86

Additional details on the model are provided in Sec. D.87

5 Results88

One domain per transformation was held out as the OOD test set and never used for training. As89

Real-World Transformational Diversity (RWTD) was increased from 1 to 4 domains (corresponding90

to 20% to 80% data diversity), the number of images sampled per domain were reduced. This91

ensured a fixed training dataset size. All models were pre-trained on ImageNet.92
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Figure 3: Scene Context improves OOD generalization. (a) HDNet explicitly leverages scene
context resulting in substantially better generalization than domain generalization approaches like
ERM [61] and IRM [30] for all three transformations (lighting, material, and viewpoint changes).
(b) Human-like visual diet enables improved generalization from synthetic to natural image data.
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Light 0.82 0.80 0.81 0.81 0.75 0.83 0.95 0.98
Materials 0.75 0.75 0.75 0.74 0.74 0.75 0.78 0.94

Viewpoints 0.75 0.77 0.79 0.79 0.76 0.78 0.65 0.83

Table 1: Contextual information improves OOD generalization. All models were trained with
80% transformational diversity and tested on the held-out 20%. HDNet beats all specialized domain
generalization baselines and a FasterRCNN modified to do object recognition, by a large margin.

5.1 Models with low diversity and minimal context struggle to generalize.93

Fig.2 presents generalization performance of models trained with low transformational diversity and94

minimal scene context—data was sampled from only 1 domain, and images were cropped to show95

only the target object. This diet is representative of internet scraped datasets like ImageNet [58], and96

these models served as a lower baseline to quantify the impact of a human-like visual diet.97

For HVD (Fig. 2(a)), ResNet18 generalized better across lighting changes than material changes98

(two-sided t-test, p < 10�5) or viewpoint changes (two-sided t-test, p < 10�6). There is ample99

room for improvement, especially when tested on OOD material and viewpoints. Similar conclu-100

sions can be drawn for DenseNet [59] and ViT [60] architectures. For Semantic-iLab (Fig. 2(b))101

as well, ResNet18 generalized better across OOD lighting than OOD materials (two-sided t-test,102

p < 10�6) or OOD viewpoints (two-sided t-test, p < 10�6). In the Semantic-iLab dataset, the103

degree of generalization for material and viewpoints were particularly low. These conclusions held104

true for DenseNet and ViT as well. In sum, models trained with minimal diversity and context105

showed only moderate generalization, especially struggling with material and viewpoint changes.106

5.2 Utilizing real-word transformational diversity (RWTD) improves generalization107

OOD Generalization improved with transformational diversity for all three transformations in the108

HVD dataset (Fig. 2(c)). For lighting: 0.85 to 0.94, p < 10�6; material: 0.64 to 0.89, p < 10�5;109

viewpoint: 0.63 to 0.73, p < 10�6. This improvement was significantly greater for OOD materials110

than for OOD lighting (p < 10�4) and OOD viewpoints (p < 10�4). Transformational diversity111

improved generalization for the Semantic-iLab dataset as well (Fig. 2(d)). For lighting: 0.93 to 1.0,112

p < 10�3; materials: 0.36 to 0.96, p < 10�4; viewpoint: 0.46 to 0.75, p < 10�7. As with the HVD113

dataset, improvement in generalization was higher for unseen materials than for unseen lighting (p <114

10�3) and unseen viewpoints (p < 10�6). Thus, OOD generalization improved across all real-world115

transformations with transformational diversity. Inn fact, with sufficient diversity, generalization to116

OOD lighting and materials reached almost ceiling levels. However, despite improvement, OOD117

viewpoints remained a challenge.118
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Transforma-

tion
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V2

ResNet50
SWSL

ResNet18
SWSL

ResNext101
32x4d
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ResNext101
32x16d
SWSL

ResNext50
32x4d
SWSL

HDNet
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Light 0.94 0.9 0.88 0.93 0.93 0.91 0.98
Materials 0.79 0.73 0.67 0.77 0.79 0.74 0.94

Viewpoints 0.74 0.72 0.65 0.74 0.78 0.73 0.83

Table 2: Our approach beats models trained with 1000x more data. HDNet was pre-trained on
ImageNet and finetuned on data with both transformational diversity and scene context. Baselines
were pre-trained on 1000-fold more data, but fine-tuned on data not containing these two attributes.
HDNet beats all baselines by a large margin for all three transformations, despite being trained on
1000-fold smaller training data.

5.3 Utilizing scene context improves generalization.119

We compared HDNet with a suite of baselines that do not utilize scene context. This includes domain120

generalization (DG) architectures, and a modified FasterRCNN model designed to perform visual121

recognition. We also added a recent context-aware model (CRTNet [63]) to the comparison. All122

models were trained with 80% Transformational Diversity, i.e., 4 training domains. HDNet beat all123

DG methods with statistical significance (two-sided t-test, p < 0.05) for all three transformations.124

Top three baselines are presented in Fig. 2(e). The remaining baselines are shown in Table 1. The125

best performing baseline was another context-aware model—CRTNET [63]. HDNet outperformed126

all benchmarks on all three transformations. In summary, approaches utilizing scene context (HDNet127

and CRTNet) outperformed all specialized DG approaches on all real-world transformations, and our128

proposed HDNet also outperformed the closest baseline (CRTNet). We present several additional129

experiments on the role of scene context in the supplement in Sec. F.130

5.4 Human-like visual diet outperforms billion-scale internet-scraped datasets131

Next, we compared HDNet with visual recognition models trained with 1,000x more data (Table. 2).132

All models except HDNet were pre-trained on the IG-1B dataset [43], and then fine-tuned on data133

with 20% RWTD and with object crops ie., low transformational diversity and minimal context. In134

comparison, HDNet was pre-trained on ImageNet and fine-tuned with data consisting of 80% RWTD135

and scene context ie., human-like visual diet. All models were fine-tuned on the same number of136

images. HDNet outperformed all billion-scale baselines by large margins despite being trained on137

1000x less data (Table. 2, two-sided t-test, p < 0.001).138

5.5 Human-like visual diet enables generalization to real-world images139

HDNet trained with RWTD and scene context achieved an accuracy of 0.69, while the best baseline140

(IRM [30]) trained without a human-like diet achieved an accuracy of 0.51 (Fig. 3(b)). Thus, in-141

corporating these attributes into the training dataset enabled HDNet to generalize significantly well142

from a purely synthetic training data to a natural image test set (two-sided t-test, p < 0.05).143

6 Conclusions144

We investigated the impact of data composition on the out-of-distribution generalization capabilities145

of visual recognition models. Specifically, we demonstrated that incorporating two key components146

of the human visual diet—transformational diversity and scene context improve generalization to147

OOD viewpoints, lighting, and material changes. Our contributions include three new benchmarks,148

and a novel architecture that model and leverage these human-like visual attributes. This work149

provides an approach complementary to existing directions on data augmentation and specialized150

domain generalization architectures. While our results are promising, the human visual diet is com-151

plex and multifaceted, with several additional features like temporal information, egocentric views,152

embodiment, and goal-driven/active sampling warranting future investigation. We believe this work153

opens new avenues for aligning biological and artificial vision systems, and advancing generaliza-154

tion in Artificial Intelligence.155
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NeurIPS paper checklist156

1. Claims157

Question: Do the main claims made in the abstract and introduction accurately reflect the158

paper’s contributions and scope?159

Answer: [Yes]160

Justification: Abstract and introduction state the main claims, approach and the experiments161

support the claims.162

Guidelines:163

• The answer NA means that the abstract and introduction do not include the claims164

made in the paper.165

• The abstract and/or introduction should clearly state the claims made, including the166

contributions made in the paper and important assumptions and limitations. A No or167

NA answer to this question will not be perceived well by the reviewers.168

• The claims made should match theoretical and experimental results, and reflect how169

much the results can be expected to generalize to other settings.170

• It is fine to include aspirational goals as motivation as long as it is clear that these171

goals are not attained by the paper.172

2. Limitations173

Question: Does the paper discuss the limitations of the work performed by the authors?174

Answer: [Yes]175

Justification: They are provided in the conclusions section.176

Guidelines:177

• The answer NA means that the paper has no limitation while the answer No means178

that the paper has limitations, but those are not discussed in the paper.179

• The authors are encouraged to create a separate ”Limitations” section in their paper.180

• The paper should point out any strong assumptions and how robust the results are to181

violations of these assumptions (e.g., independence assumptions, noiseless settings,182

model well-specification, asymptotic approximations only holding locally). The au-183

thors should reflect on how these assumptions might be violated in practice and what184

the implications would be.185

• The authors should reflect on the scope of the claims made, e.g., if the approach was186

only tested on a few datasets or with a few runs. In general, empirical results often187

depend on implicit assumptions, which should be articulated.188

• The authors should reflect on the factors that influence the performance of the ap-189

proach. For example, a facial recognition algorithm may perform poorly when image190

resolution is low or images are taken in low lighting. Or a speech-to-text system might191

not be used reliably to provide closed captions for online lectures because it fails to192

handle technical jargon.193

• The authors should discuss the computational efficiency of the proposed algorithms194

and how they scale with dataset size.195

• If applicable, the authors should discuss possible limitations of their approach to ad-196

dress problems of privacy and fairness.197

• While the authors might fear that complete honesty about limitations might be used by198

reviewers as grounds for rejection, a worse outcome might be that reviewers discover199

limitations that aren’t acknowledged in the paper. The authors should use their best200

judgment and recognize that individual actions in favor of transparency play an impor-201

tant role in developing norms that preserve the integrity of the community. Reviewers202

will be specifically instructed to not penalize honesty concerning limitations.203

3. Theory Assumptions and Proofs204

Question: For each theoretical result, does the paper provide the full set of assumptions and205

a complete (and correct) proof?206

Answer: [NA]207
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Justification: We have no Proofs.208

Guidelines:209

• The answer NA means that the paper does not include theoretical results.210

• All the theorems, formulas, and proofs in the paper should be numbered and cross-211

referenced.212

• All assumptions should be clearly stated or referenced in the statement of any theo-213

rems.214

• The proofs can either appear in the main paper or the supplemental material, but if215

they appear in the supplemental material, the authors are encouraged to provide a216

short proof sketch to provide intuition.217

• Inversely, any informal proof provided in the core of the paper should be comple-218

mented by formal proofs provided in appendix or supplemental material.219

• Theorems and Lemmas that the proof relies upon should be properly referenced.220

4. Experimental Result Reproducibility221

Question: Does the paper fully disclose all the information needed to reproduce the main222

experimental results of the paper to the extent that it affects the main claims and/or conclu-223

sions of the paper (regardless of whether the code and data are provided or not)?224

Answer: [Yes]225

Justification: All details are provided alongside code and data.226

Guidelines:227

• The answer NA means that the paper does not include experiments.228

• If the paper includes experiments, a No answer to this question will not be perceived229

well by the reviewers: Making the paper reproducible is important, regardless of230

whether the code and data are provided or not.231

• If the contribution is a dataset and/or model, the authors should describe the steps232

taken to make their results reproducible or verifiable.233

• Depending on the contribution, reproducibility can be accomplished in various ways.234

For example, if the contribution is a novel architecture, describing the architecture235

fully might suffice, or if the contribution is a specific model and empirical evaluation,236

it may be necessary to either make it possible for others to replicate the model with237

the same dataset, or provide access to the model. In general. releasing code and data238

is often one good way to accomplish this, but reproducibility can also be provided via239

detailed instructions for how to replicate the results, access to a hosted model (e.g., in240

the case of a large language model), releasing of a model checkpoint, or other means241

that are appropriate to the research performed.242

• While NeurIPS does not require releasing code, the conference does require all sub-243

missions to provide some reasonable avenue for reproducibility, which may depend244

on the nature of the contribution. For example245

(a) If the contribution is primarily a new algorithm, the paper should make it clear246

how to reproduce that algorithm.247

(b) If the contribution is primarily a new model architecture, the paper should describe248

the architecture clearly and fully.249

(c) If the contribution is a new model (e.g., a large language model), then there should250

either be a way to access this model for reproducing the results or a way to re-251

produce the model (e.g., with an open-source dataset or instructions for how to252

construct the dataset).253

(d) We recognize that reproducibility may be tricky in some cases, in which case au-254

thors are welcome to describe the particular way they provide for reproducibility.255

In the case of closed-source models, it may be that access to the model is limited in256

some way (e.g., to registered users), but it should be possible for other researchers257

to have some path to reproducing or verifying the results.258

5. Open access to data and code259

Question: Does the paper provide open access to the data and code, with sufficient instruc-260

tions to faithfully reproduce the main experimental results, as described in supplemental261

material?262
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Answer: [Yes]263

Justification: Data and code are provided and are free for anyone to use.264

Guidelines:265

• The answer NA means that paper does not include experiments requiring code.266

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/267

public/guides/CodeSubmissionPolicy) for more details.268

• While we encourage the release of code and data, we understand that this might not269

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not270

including code, unless this is central to the contribution (e.g., for a new open-source271

benchmark).272

• The instructions should contain the exact command and environment needed to run to273

reproduce the results. See the NeurIPS code and data submission guidelines (https:274

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.275

• The authors should provide instructions on data access and preparation, including how276

to access the raw data, preprocessed data, intermediate data, and generated data, etc.277

• The authors should provide scripts to reproduce all experimental results for the new278

proposed method and baselines. If only a subset of experiments are reproducible, they279

should state which ones are omitted from the script and why.280

• At submission time, to preserve anonymity, the authors should release anonymized281

versions (if applicable).282

• Providing as much information as possible in supplemental material (appended to the283

paper) is recommended, but including URLs to data and code is permitted.284

6. Experimental Setting/Details285

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-286

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the287

results?288

Answer: [Yes]289

Justification: Yes, all information are provided.290

Guidelines:291

• The answer NA means that the paper does not include experiments.292

• The experimental setting should be presented in the core of the paper to a level of293

detail that is necessary to appreciate the results and make sense of them.294

• The full details can be provided either with the code, in appendix, or as supplemental295

material.296

7. Experiment Statistical Significance297

Question: Does the paper report error bars suitably and correctly defined or other appropri-298

ate information about the statistical significance of the experiments?299

Answer: [Yes]300

Justification: Yes, we used two-sided t-tests for statistical significance.301

Guidelines:302

• The answer NA means that the paper does not include experiments.303

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-304

dence intervals, or statistical significance tests, at least for the experiments that support305

the main claims of the paper.306

• The factors of variability that the error bars are capturing should be clearly stated (for307

example, train/test split, initialization, random drawing of some parameter, or overall308

run with given experimental conditions).309

• The method for calculating the error bars should be explained (closed form formula,310

call to a library function, bootstrap, etc.)311

• The assumptions made should be given (e.g., Normally distributed errors).312

• It should be clear whether the error bar is the standard deviation or the standard error313

of the mean.314
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-315

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of316

Normality of errors is not verified.317

• For asymmetric distributions, the authors should be careful not to show in tables or318

figures symmetric error bars that would yield results that are out of range (e.g. negative319

error rates).320

• If error bars are reported in tables or plots, The authors should explain in the text how321

they were calculated and reference the corresponding figures or tables in the text.322

8. Experiments Compute Resources323

Question: For each experiment, does the paper provide sufficient information on the com-324

puter resources (type of compute workers, memory, time of execution) needed to reproduce325

the experiments?326

Answer: [Yes]327

Justification: Yes, details are provided in experimental details.328

Guidelines:329

• The answer NA means that the paper does not include experiments.330

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,331

or cloud provider, including relevant memory and storage.332

• The paper should provide the amount of compute required for each of the individual333

experimental runs as well as estimate the total compute.334

• The paper should disclose whether the full research project required more compute335

than the experiments reported in the paper (e.g., preliminary or failed experiments336

that didn’t make it into the paper).337

9. Code Of Ethics338

Question: Does the research conducted in the paper conform, in every respect, with the339

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?340

Answer: [Yes]341

Justification: We have read and reviewed the code of ethics.342

Guidelines:343

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.344

• If the authors answer No, they should explain the special circumstances that require a345

deviation from the Code of Ethics.346

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-347

eration due to laws or regulations in their jurisdiction).348

10. Broader Impacts349

Question: Does the paper discuss both potential positive societal impacts and negative350

societal impacts of the work performed?351

Answer: [NA]352

Justification: There are no societal imapct of the work.353

Guidelines:354

• The answer NA means that there is no societal impact of the work performed.355

• If the authors answer NA or No, they should explain why their work has no societal356

impact or why the paper does not address societal impact.357

• Examples of negative societal impacts include potential malicious or unintended uses358

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations359

(e.g., deployment of technologies that could make decisions that unfairly impact spe-360

cific groups), privacy considerations, and security considerations.361

• The conference expects that many papers will be foundational research and not tied362

to particular applications, let alone deployments. However, if there is a direct path to363

any negative applications, the authors should point it out. For example, it is legitimate364

to point out that an improvement in the quality of generative models could be used to365
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generate deepfakes for disinformation. On the other hand, it is not needed to point out366

that a generic algorithm for optimizing neural networks could enable people to train367

models that generate Deepfakes faster.368

• The authors should consider possible harms that could arise when the technology is369

being used as intended and functioning correctly, harms that could arise when the370

technology is being used as intended but gives incorrect results, and harms following371

from (intentional or unintentional) misuse of the technology.372

• If there are negative societal impacts, the authors could also discuss possible mitiga-373

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,374

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from375

feedback over time, improving the efficiency and accessibility of ML).376

11. Safeguards377

Question: Does the paper describe safeguards that have been put in place for responsible378

release of data or models that have a high risk for misuse (e.g., pretrained language models,379

image generators, or scraped datasets)?380

Answer: [NA]381

Justification: This work raises no such risks.382

Guidelines:383

• The answer NA means that the paper poses no such risks.384

• Released models that have a high risk for misuse or dual-use should be released with385

necessary safeguards to allow for controlled use of the model, for example by re-386

quiring that users adhere to usage guidelines or restrictions to access the model or387

implementing safety filters.388

• Datasets that have been scraped from the Internet could pose safety risks. The authors389

should describe how they avoided releasing unsafe images.390

• We recognize that providing effective safeguards is challenging, and many papers do391

not require this, but we encourage authors to take this into account and make a best392

faith effort.393

12. Licenses for existing assets394

Question: Are the creators or original owners of assets (e.g., code, data, models), used in395

the paper, properly credited and are the license and terms of use explicitly mentioned and396

properly respected?397

Answer: [NA]398

Justification: No such assets were used.399

Guidelines:400

• The answer NA means that the paper does not use existing assets.401

• The authors should cite the original paper that produced the code package or dataset.402

• The authors should state which version of the asset is used and, if possible, include a403

URL.404

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.405

• For scraped data from a particular source (e.g., website), the copyright and terms of406

service of that source should be provided.407

• If assets are released, the license, copyright information, and terms of use in the pack-408

age should be provided. For popular datasets, paperswithcode.com/datasets has409

curated licenses for some datasets. Their licensing guide can help determine the li-410

cense of a dataset.411

• For existing datasets that are re-packaged, both the original license and the license of412

the derived asset (if it has changed) should be provided.413

• If this information is not available online, the authors are encouraged to reach out to414

the asset’s creators.415

13. New Assets416

Question: Are new assets introduced in the paper well documented and is the documenta-417

tion provided alongside the assets?418
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Answer: [Yes]419

Justification: Dataset comes with details on how to use it.420

Guidelines:421

• The answer NA means that the paper does not release new assets.422

• Researchers should communicate the details of the dataset/code/model as part of their423

submissions via structured templates. This includes details about training, license,424

limitations, etc.425

• The paper should discuss whether and how consent was obtained from people whose426

asset is used.427

• At submission time, remember to anonymize your assets (if applicable). You can428

either create an anonymized URL or include an anonymized zip file.429

14. Crowdsourcing and Research with Human Subjects430

Question: For crowdsourcing experiments and research with human subjects, does the pa-431

per include the full text of instructions given to participants and screenshots, if applicable,432

as well as details about compensation (if any)?433

Answer: [NA]434

Justification: No crowdsourcing nor research with human subjects.435

Guidelines:436

• The answer NA means that the paper does not involve crowdsourcing nor research437

with human subjects.438

• Including this information in the supplemental material is fine, but if the main contri-439

bution of the paper involves human subjects, then as much detail as possible should440

be included in the main paper.441

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-442

tion, or other labor should be paid at least the minimum wage in the country of the443

data collector.444

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human445

Subjects446

Question: Does the paper describe potential risks incurred by study participants, whether447

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)448

approvals (or an equivalent approval/review based on the requirements of your country or449

institution) were obtained?450

Answer: [NA]451

Justification: No crowdsourcing nor research with human subjects.452

Guidelines:453

• The answer NA means that the paper does not involve crowdsourcing nor research454

with human subjects.455

• Depending on the country in which research is conducted, IRB approval (or equiva-456

lent) may be required for any human subjects research. If you obtained IRB approval,457

you should clearly state this in the paper.458

• We recognize that the procedures for this may vary significantly between institutions459

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the460

guidelines for their institution.461

• For initial submissions, do not include any information that would break anonymity462

(if applicable), such as the institution conducting the review.463
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[30] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-539

mization. arXiv preprint arXiv:1907.02893, 2019.540

[31] Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. Selfreg:541

Self-supervised contrastive regularization for domain generalization. In Proceedings of the542

IEEE/CVF International Conference on Computer Vision, pages 9619–9628, 2021.543

[32] Ramakrishna Vedantam, David Lopez-Paz, and David J Schwab. An empirical investigation544

of domain generalization with empirical risk minimizers. Advances in Neural Information545

Processing Systems, 34, 2021.546

[33] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas,547

Dinghuai Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via548

risk extrapolation (rex). In International Conference on Machine Learning, pages 5815–5826.549

PMLR, 2021.550

[34] Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott.551

Domain generalization by marginal transfer learning. arXiv preprint arXiv:1711.07910, 2017.552

[35] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon553

Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In554

Proceedings of the IEEE/CVF international conference on computer vision, pages 6023–6032,555

2019.556

[36] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-557

narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.558

arXiv preprint arXiv:1912.02781, 2019.559

[37] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond560

empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.561

13



[38] Spandan Madan, Zoya Bylinskii, Carolina Nobre, Matthew Tancik, Adria Recasens, Kimberli562

Zhong, Sami Alsheikh, Aude Oliva, Fredo Durand, and Hanspeter Pfister. Parsing and sum-563

marizing infographics with synthetically trained icon detection. In 2021 IEEE 14th Pacific564

Visualization Symposium (PacificVis), pages 31–40, 2021.565

[39] Spandan Madan, Zoya Bylinskii, Carolina Nobre, Matthew Tancik, Adria Recasens, Kimberli566

Zhong, Sami Alsheikh, Aude Oliva, Fredo Durand, and Hanspeter Pfister. Parsing and sum-567

marizing infographics with synthetically trained icon detection. In 2021 IEEE 14th Pacific568

Visualization Symposium (PacificVis). IEEE, April 2021.569

[40] Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and Max Welling. Diva: Domain in-570

variant variational autoencoders. In Medical Imaging with Deep Learning, pages 322–348.571

PMLR, 2020.572

[41] Guoqing Wang, Hu Han, Shiguang Shan, and Xilin Chen. Cross-domain face presentation573

attack detection via multi-domain disentangled representation learning. In Proceedings of the574

IEEE/CVF conference on computer vision and pattern recognition, pages 6678–6687, 2020.575

[42] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,576

Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-577

5b: An open large-scale dataset for training next generation image-text models. Advances in578

Neural Information Processing Systems, 35:25278–25294, 2022.579
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Supplementary Materials681

A Details on the construction of HVD domains682

Original Image Lighting Change Material Change Viewpoint Change

(b) Semantic-iLab Dataset

ScanNet (test image)

(c)Syn2Real Test Dataset

HVD (train images)

(a) Human  Visual Diet (HVD) Dataset

Lighting Change

Material Change

Viewpoint Change

Target (Sofa) viewed in
context of surrouding objects

Figure Sup1: Datasets with real-world transformations. (a) Sample images from the Human
visual diet dataset: We created 15 photo-realistic domains with three, disentangled real-world
transformations—lighting, material, and viewpoint changes. Each 3D scene was created by re-
constructing an existing ScanNet [53] scene using the OpenRooms framework [54], followed by
introduction of controlled changes in scene parameters before rendering these images. (b) Sample
images from the Semantic-iLab dataset: We modify the existing iLab dataset [56] by augmenting
images with changes in lighting and material. These changes are achieved by modifying the white
balance and using AdaIN [64] based style transfer, respectively. (c) Syn2Real dataset constructed
with paired 3D scenes—synthetic images for training and natural images for testing.
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Figure Sup2: Example images showing lighting tranformations. We show paired images from dif-
ferent lighting transformation domains between the right and left column in each row. All other
parameters held constant.
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Figure Sup3: Example images showing material tranformations. We show paired images from
different material transformation domains between the right and left column in each row. All other
parameters held constant
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Figure Sup4: Example images showing viewpoint tranformations. We show paired images from
different viewpoint transformation domains between the right and left column in each row. All other
parameters held constant
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A.1 Lighting, Material, and Viewpoint domains:683

Material shift domains: We used 250 high quality, procedural materials from Adobe Substances684

including different types of wood, fabrics, floor and wall tiles, and metals, among others. These were685

split into sets of 50 materials each to create 5 different material domains (supplementary Fig. Sup3).686

For each domain, its 50 materials were randomly assigned to scene objects. One domain was held687

out for testing (OOD Materials), and never used for training any model.688

Light shift domains: Outdoor lighting was controlled using 250 High Dynamic Range (HDR)689

environment maps from the Laval Outdoor HDR Dataset [65] and OpenRooms, which were split690

into 5 sets of 50 each (one set per domain). Disjoint sets of indoor lighting were created by splitting691

the HSV color space into chunks of disjoint hue values. Each domain sampled indoor light color and692

intensity from one chunk (supplementary Fig. Sup2). One domain was held out for testing (OOD693

Light), and never used for training.694

Viewpoint shift domains: Controlling object viewpoints presents a challenge as indoor objects are695

seen across a variety of azimuth angles (i.e., side vs front) across 3D scenes. Thus, to create disjoint696

viewpoint domains (supplementary Fig. Sup4) we chose to control the zenith angle by changing the697

height at which the camera is focusing. Again, of the 5 domains, one was held out for testing (OOD698

Viewpoints). We show sample images from the Semantic iLab dataset in Fig. Sup1(b) created by699

modifying the existing iLab [56] dataset. This is a multi-view dataset, and hence already contains700

viewpoint shifted variations of the same objects. We modify the dataset to also contain material and701

light shifts. To mimick light shift, we modified the white balance of the original images, as shown702

in Fig. Sup1(b)(b). For material shifts, we first run a foreground detector on these objects using703

Google’s Cloud Vision API. We also run style transfer on these images using AdaIn [57]. Then, we704

overlay the style transferred image on to the object mask on the original image to mimick material705

shifts. Note that this is approximate, and does not model the physics of material transfer in the same706

way as our rendered HVD dataset which is far more photorealistic, as shown in Fig. Sup3. Material707

shifted Semantic iLab images are shown in Fig. Sup1(b)(c). As the dataset is originally multi-view,708

we do not need to generate new viewpoints and can use images of a different viewpoint from the709

original dataset as shown in Fig. Sup1(b)(d).710

A.2 Sample images from the HVD Dataset711

We present additional images from the HVD dataset. Each figure shows change in one scene pa-712

rameter, while holding all others constant. In Fig. Sup2 we show images from two different light713

domains. Note that the first three rows in Fig Sup2 show different indoor lighting conditions con-714

trolled using indoor light color and intensity sampled from disjoint chunks of the HSV space. The715

last two rows show different outdoor lighting settings created by changing the environment maps.716

Similarly, Fig. Sup3 shows five different scenes from two training domains with a material shift.717

Fig. Sup4 shows viewpoint shifted domains.718

B Details on the construction of the Semantic iLab dataset719

We show sample images from the Semantic iLab dataset in Fig. Sup1(b) created by modifying the720

existing iLab [56] dataset. This is a multi-view dataset, and hence already contains viewpoint shifted721

variations of the same objects. We modify the dataset to also contain material and light shifts. To722

mimick light shift, we modified the white balance of the original images, as shown in Fig. Sup1(b).723

For material shifts, we first run a foreground detector on these objects using Google’s Cloud Vision724

API. We also run style transfer on these images using AdaIn [57]. Then, we overlay the style725

transferred image on to the object mask on the original image to mimick material shifts. Note that726

this is approximate, and does not model the physics of material transfer in the same way as our727

rendered HVD dataset which is far more photorealistic, as shown in Fig. Sup3. Material shifted728

Semantic iLab images are shown in Fig. Sup1(b). As the dataset is originally multi-view, we do729

not need to generate new viewpoints and can use images of a different viewpoint from the original730

dataset as shown in Fig. Sup1(b).731
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Figure Sup5: Architecture overview for the Human Diet Network(HDNet). (a) Modular steps
carried out by HDNet in context-aware object recognition. HDNet consists of 3 modules: feature
extraction, integration of context and target information, and confidence-modulated classification.
HDNet takes the cropped target object It and the entire context image Ic as inputs and extracts
their respective features. These feature maps are tokenized and information from the two streams
is integrated over multiple cross-attention layers. HDNet also estimates a confidence score p for
recognition using the target object features alone, which is used to modulate the contributions of
Ft and Ft,c in the final weighted prediction yp. (b) To help HDNet learn generic representations
across domains, we introduce contrastive learning on the context-modulated object representations
Ft,c in the embedding space. Target and context representations for objects of the same category are
enforced to attract each other, while those from different categories are enforced to repel. Pairs for
contrastive learning are generated using various material, lighting or viewpoint shifts (Sec. 3.1).

C Details on the construction of the Syn2Real dataset732

We made three adaptations for these experiments. Firstly, as both ScanNet and ImageNet contain733

natural images and overlapping categories, we trained models from scratch to ensure pre-training734

does not interfere with our results. Thus, these models never saw any real-world images, not even735

ImageNet as they were not pretrained on those datasets. Secondly, we trained and tested models736

on overlapping classes between HVD and ScanNet. Finally, we used the LabelMe [66] software737

to manually annotate a test set from ScanNet and training set for the HVD dataset using the same738

procedure to make sure biases from the annotation procedure do not impact experiments. Thus, all739

models were trained purely on synthetic data from HVD and tested on only real-world natural image740

data from ScanNet as shown in Fig. Sup1(c).741

D Details on the Human Diet Network742

The context stream is a transformer decoder, and the network integrates object and context infor-743

mation via hierarchical reasoning through a stack of cross-attention layers in the transformer. This744

allows HDNet to be more robust under distribution shifts in object context. Furthermore, HDNet745

utilizes a contrastive learning method on 3D transformations.746

A model that always relies on context can make mistakes under distribution shifts. Thus, to increase747

robustness, HDNet makes a second prediction yt, using only the target object information alone.748

A 2D CNN is used to extract feature maps Ft from It, and estimates the confidence p of this749

prediction yt. Finally, HDNet computes a confidence-weighted average of yt and yt,c to get the750

final prediction yp. If the model makes a confident prediction with the object only, it overrules the751

context reasoning stage.752

Contrastive learning has benefited many applications in computer vision tasks (e.g., [67, 68, 69, 70,753

31]). However, all these approaches require sampling positive and negative pairs from real-world754

data. To curate positive and negative pairs, image and video augmentations operate in 2D image755

planes or spatial-temporal domains in videos. Here we introduce a contrastive learning method on756

3D transformations.757

Our contrastive learning framework builds on top of the supervised contrastive learning loss758

[71]. Given the training dataset D = {xi, yi}ni=1, we randomly sample N data and label pairs759

{xk, yk}Nk=1. The corresponding batch pairs used for constrative learning consist of 2N pairs760
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{x̃l, ỹl}2Nl=1, where x̃2k and x̃2k�1 are two views created with random semantic domain shifts of761

xk(k = 1, ..., N) and ỹ2k = ỹ2k�1 = ỹk. Domain shifts are randomly selected from a set of HVD762

domains specified during training. For example, if xk is from a material domain, x̃2k and x̃2k�1763

could be images from the same 3D scene but with different materials. For brevity, we refer to a set764

of N samples as a batch and the set of 2N domain-shifted samples as their multiviewed batch.765

Within a multiviewed batch, let m 2 M := {1, ..., 2N} be the index of an arbitrary domain shifted766

sample. Let j(m) be the index of the other domain shifted samples originating from the same source767

samples belonging to the same object category, also known as the positive. Then A(m) := M\{m}768

refers to the rest of indices in M except for m itself. Hence, we can also define P (m) := {p 2769

A(m) : ỹp = ỹm} as the collection of indices of all positives in the multiviewed batch distinct from770

m. |P (m)| is the cardinality. The supervised contrastive learning loss is:771

Lcontrast =
X

m2M

Lm =
X

m2M

�1

|P (m)|
X

p2P (m)

log
exp(zm · zp/⌧)P

a2A(m) exp(zm · za/⌧)
(Sup1)

Here, zm refers to the context-dependent object features Fm,t,c on x̃m after L2 normalization. The772

design motivation is to encourage HDNet to attract the objects and their associated context from the773

same category and repel the objects and irrelevant context from different categories.774

As previous works have demonstrated the essential role of context in object recognition [63, 47],775

contrastive learning on the context-modulated object representations enforces HDNet to learn776

generic category-specific semantic representations across various domains. ⌧ is a scalar temper-777

ature value which we empirically set to 0.1.778

Overall, HDNet is jointly trained end-to-end with two types of loss functions: first, given any input779

xm consisting of image pairs Im,c and Im,t, HDNet learns to classify the target object using the780

cross-entropy loss with the ground truth label ym; and second, contrastive learning is performed781

with features Fm,t,c extracted from the context streams:782

L = ↵Lcontrast,c,t + Lclassi,t + Lclassi,p + Lclassi,c,t (Sup2)

Hyperparameter ↵ is set to 0.5 to balance the supervision from constrastive learning and the classifi-783

cation loss. Supplementary Table Sup2 shows that the contrastive loss introduced in HDNet results784

in improved performance across all real-world transformations.785

E Additional experiments with real-world transformational diversity786

E.1 Real-world transformations outperform traditional data augmentation.787

We investigated how real-world transformational diversity (RWTD) compares to traditional data788

augmentation strategies including 2D rotations, scaling, and changes in contrast. Models trained789

with a visual diet consisting of 80% RWTD were reported in Fig.3(e). We compared these with790

models trained with a visual diet consisting of 20% RWTD + traditional augmentation. As before,791

all models were tested on unseen lighting, material, and viewpoint changes.792

The number of training images was kept constant across all training scenarios to evaluate the quality793

of the training images rather than their quantity. Training set size equalization was achieved by sam-794

pling fewer images per domain in the 80% RTWD training set. For instance, for HVD experiments795

with unseen viewpoints we sampled 15, 000 training images per viewpoint domain to construct the796

training set with 20% RWTD + Data Augmentations. In comparison, we sampled only 3, 750 per797

viewpoint domain to construct the 80% RWTD training set. Thus, the initial sizes of the 80%RWTD798

and the 20%RWTD+Data Augmentation training sets was identical. However, due to data aug-799

mentations being stochastic the total number of unique images shown to models trained with data800

augmentations was much larger. Assuming a unique image was created by data augmentation in801

every epoch, over 50 epochs the dataset size would be 50 times larger with data augmentations.802

Additional details on dataset construction can be found in the methods in Methods.803

HDNet trained on HVD with 80% RWTD outperformed the same architecture trained with 20%804

RWTD+traditional data augmentation for lighting changes (two-sided t test, p < 10�4), mate-805

rial changes (two-sided t test, p < 10�5), and viewpoint changes (two-sided t test, p < 10�6)806

(Fig. Sup6(a)). Similar conclusions were reached for the Semantic-iLab dataset. A ResNet model807
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trained with 80% RWTD outperformed the same architecture trained with 20% RWTD+traditional808

data augmentation for lighting changes (two-sided t test, p < 10�4), material changes (two-sided t809

test, p < 10�7), and viewpoint changes (two-sided t test, p < 10�5) (Fig. Sup6(b)).810

Traditional data augmentation largely involves 2D affine operations (crops, rotations) or image-811

processing based methods (contrast, solarize) which are not necessarily representative of real-world812

transformations. In summary, the positive impact of a visual diet consisting of diverse lighting, ma-813

terial, and viewpoint changes (real-world transformational diversity) cannot be replicated by using814

traditional data augmentation applied to the dataset after data collection—diversity must be ensured815

at the data collection level.816

E.2 Real-world transformations outperform augmentation with generative AI.817

Several existing works rely on increasing data diversity using AdaIn-based methods [64, 72]. These818

style transfer methods change the colors in the image while retaining object boundaries, but do not819

modify materials explicitly as done in our HVD dataset. We evaluated how well models perform820

if diversity is increased using style transfer as opposed to material diversity. We started with one821

material domain, and created four additional domains using style transfer. Sample images of style822

transfer domains are shown in Fig. Sup6(c). Corresponding images from the HVD dataset with823

real-world transformation in materials can be seen in Fig. Sup1(a). The total number of domains824

(and images) created using style transfer was kept the same as the material domains in HVD. The825

only difference in the training data was that instead of four additional material domains, we have826

four additional style transfer domains. We compared models trained with these two different visual827

diets—one consisting of four material domains, and the other consisting of four style transfer do-828

mains. All models were then tested on the same held-out OOD Materials domain. Style transfer829

domains did not enable models to generalize to new materials as well as the material shift domains830

presented in HVD (Fig. Sup6(d)).831

These experiments support the notion that in order to build visual recognition models that can gen-832

eralize to unseen materials, it is important to explicitly increase diversity using additional materials833

at the time of training data collection. The impact of diverse materials cannot be replicated by using834

style transfer to augment the dataset after data collection.835

E.3 Each individual real-world transformation is helpful836

Some real-world transformations are easier to capture than others. For instance, capturing light837

changes during data collection might be significantly easier than collecting multiple possible room838

layouts, or object viewpoints. Thus, it would be beneficial if training with one transforma-839

tion (e.g., light changes) can improve performance on a different transformation (e.g., viewpoint840

changes). We refer to such a regime as assymetric diversity—as models are trained with one kind of841

diversity, and tested on a different kind of diversity (Fig. Sup6(e),(f)). In all cases, the best general-842

ization performance was obtained when training and testing with the same real-world transformation843

for both HVD (Fig. Sup6(e)) and Semantic-iLab datasets (Fig. Sup6(f)). In most cases, there was a844

drop in performance of 10% or more when training in one transformation and testing with a different845

(assymetric) transformation. These experiments imply that to build models that generalize well, it846

is important to collect training data with multiple real-world transformations.847

F Additional experiments for the role of context848

Given the success of HDNet, we asked whether implementing a two-stream separation of target and849

context would also improve performance for other architectures. We modified ResNet18 [73] and850

ViT [60] to leverage scene context in the same way as HDNet. For ResNet, a two-stream version851

was made where each stream is a ResNet backbone. One stream operates on the target, and the other852

one on the scene context. Output features from each stream were concatenated, and passed through853

a fully connected layer for classification as shown in Fig. 1(c). The two-stream architecture for ViT854

was analogous. In contrast, the one-stream architecture did not use scene context and operated on the855

target object alone (see methods for additional details). The two-stream architectures consistently856

led to improved performance (two-sided t test, p < 0.05), as shown in Table Sup1.857
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(a)

Real-world transformational diversity outperforms Data augmentation

Human Visual Diet (HVD) Dataset Semantic iLab Dataset

(c)

Original Image

Generalization performance
with unseen materials

Images after Style Transfer

(d)

Generalization from one transformation to another is poor

Human Visual Diet (HVD) Dataset Semantic iLab Dataset

Real-world material diversity outperforms style transfer

Train Set: Lighting Changes Train Set: Material Changes Train Set: Viewpoint Changes

80% Real-World Transformational Diversity (RWTD) 20% RWTD + Data Augmentations

(b)

(e) (f )

Figure Sup6: Data post-processing does not match gains from collecting data mimicking the
human visual diet. (a),(b) Models trained with 80% real-world transformational diversity (RWTD)
outperform those trained with 20% RWTD and traditional data augmentation for all transformations
(lighting, material, and viewpoint) across both HVD and Semantic-iLab datasets. Number of images
is held constant in these experiments. (c) Sample images from style transfer domains created using
AdaIn [64]. (d) Models trained on style transfer domains generalize significantly worse than those
trained with material diversity. (e),(f) Asymmetric diversity does not help generalization as much as
training with the correct transformation—generalization to unseen materials is best when material
diversity is added during training, as opposed to adding light or viewpoint diversity during training.
Same result holds for lighting and viewpoint transformations.
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Real-World
Transformation Architecture 1 Stream 2 Stream

Lighting

ResNet 0.85± 0.004 0.95± 0.009⇤

ViT 0.91± 0.003 0.97± 0.007⇤

HDNet (Ours) - 0.98± 0.001

Materials

ResNet 0.64± 0.03 0.83± 0.008⇤

ViT 0.78± 0.01 0.92± 0.003⇤

HDNet (Ours) - 0.94± 0.002

Viewpoint

ResNet 0.63± 0.02 0.72± 0.009⇤

ViT 0.77± 0.01 0.83± 0.001⇤

HDNet (Ours) - 0.83± 0.006

Table Sup1: Adding scene context improves performance independent of architecture. Fol-
lowing the design of HDNet shown in Fig. 1(c), we modified standard architectures to have two
streams—one operating on the target, and the other one on the contextual information. Representa-
tions for both streams are then concatenated and passed through a classification layer as shown in
Fig. 1(c). We train the standard one-stream and these modified two-stream architectures on HVD,
and report the average Top-1 accuracy for all models . We also report error bars, which measures
the variance in accuracies over categories. Both the ResNet and the ViT architectures lead to a
large improvement in generalization for all semantic shifts when modified to leverage scene context.
To ensure we study impact of context independent of data diversity, all models were trained on 4
domains, i.e., 80% transformational diversity and tested on the held out domain. Best performing
model (HDNet) has been shown in boldface for all real-world transformations. A ⇤ refers to statisti-
cally significant improvement in performance when using a two-stream architecture as compared to
a one-stream architecture (two-sided t-test, p < 0.05).

Semantic
Shift

Without
Contrastive Loss

With Contrastive
Loss

Viewpoint 0.79 0.82
Material 0.89 0.94
Lighting 0.98 0.98

Table Sup2: Impact of removing contrastive loss. We evaluate the contribution of the contrastive
loss by training and testing HDNet on the HVD dataset with and without the contrastive loss. The
contrastive loss results in an improvement across all three semantic shifts.

Semantic
Shift

Full
Context
(� = 0)

Less
Context
(� = 25)

Least
Context

(� = 125)
Lighting 0.98± 0.001 0.96± 0.001 0.94± 0.001
Material 0.94± 0.002 0.88± 0.01 0.83± 0.006

Viewpoint 0.83± 0.006 0.77± 0.01 0.76± 0.01

Table Sup3: Blurring scene context worsens generalization performance. We trained and tested
HDNet with the scene context in HVD images blurred using a Gaussian blur. Here, � is the standard
deviation for the gaussian kernel applied to the image as a filter. Thus, blurring increases with �.
We applied three values for �—0,25, and 125. For brevity, numbers less than 0.001 are reported as
0.001.
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To further understand the role of contextual information on visual recognition, we conducted two858

additional experiments. Firstly, we evaluated the impact of reducing scene context information by859

blurring it using a Gaussian Blur. As shown in Table. Sup3, performance dropped consistently for860

all three transformations as contextual information is reduced. Secondly, we confirmed that the in-861

crease in performance is due to the addition of contextual information and not due to the two-stream862

architecture per se by training HDNet with both streams receiving only the target information. This863

removal of context led to a drop in performance, as reported in Table. Sup4 (see Sec. F for details).864

Besides results on the role of context presented in Table. Sup1, we present here two additional865

experiments evaluating the contribution of scene context on generalization. Firstly, we also evaluated866

the impact of blurring the scene context while keeping the target intact [47]. For each real-world867

transformation, we trained and tested models with increasing levels of Gaussian blurring applied to868

the scene context. These results are presented in Blurring was applied to the images in the form of a869

Gaussian kernel filter, with the kernel standard deviation (�) set to 0, 25, or 125. The cropped image870

of the target object was passed to the second stream of the network without blurring. These results871

are reported in Table Sup3. As can be seen, there was a drop in performance as context blurred for872

all three real-world transformations.873

Semantic
Shift

Target
only

Target and
Context

Viewpoint 0.77 0.82
Material 0.85 0.94
Lighting 0.97 0.98

Table Sup4: Training a two-stream HDNet with only target information. As a third control
for confirming the role of context, we train HDNet where both streams are passed just the target
object. Thus, it is forced to learn without scene context. This results in a drop in performance for all
semantic shifts, providing further evidence in support of the utility of scene context.

Secondly, we train HDNet such that both streams are trained with the target object. Thus, this874

modified version is forced to learn without scene context. These results are shown in Table. Sup4.875

For all semantic shifts, forcing HDNet to learn with only the target results in a drop in accuracy.876

This provides further evidence supporting the utility of scene context in enabling generalization.877

G Additional experiments with HDNet and contrastive loss878

We evaluate the contribution of the contrastive loss by training variations of HDNet on HVD with879

and without the contrastive loss as shown in Eq. Sup2. These numbers are reported in Table Sup2.880

As can be seen, adding a contrastive loss improves performance for all three semantic shifts, provid-881

ing evidence for its utility.882

H Additional experiments with a larger, less controlled ScanNet test set.883

We extend the generalization to real-world results presented in the main paper by reporting these884

numbers on a larger test set created by annotating additional images from ScanNet. As ScanNet885

Test
Dataset

ResNet
[73]

ViT
[60]

AND
Mask
[28]

CAD
[34]

COR
AL
[29]

ERM
[32]

IRM
[30]

MTL
[61]

Self
Reg
[31]

VREx
[33]

HDNet
(ours)

ScanNet 0.35 0.29 0.43 0.40 0.42 0.48 0.46 0.46 0.53 0.42 0.61

Table Sup5: Human visual diet improves generalization to larger real world dataset as well. We
curated a larger subset of ScanNet images, allowing more complex real world scenarios like blurry
images, clutter and occlusions. We report the capability of models to generalize from synthetic
HVD images to this more complex subset of ScanNet. HDNet leveraging human-like visual-diet
outperforms all baselines on this more complex dataset as well.
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was created by shooting video footage of 3D scenes, many frames can be blurry. In the original,886

smaller test-set such blurry frames were removed to ensure a higher quality test set. However, here887

we also include additional images with lower fidelity to report numbers on a larger test set. These888

numbers are reported in Table. Sup5. The trend is consistent with results reported on a smaller,889

more controlled subset in the main paper—HDNet outperforms all other benchmarks by a large890

margin. As expected, including these images in the test set results in a drop in accuracy across all891

methods. All models were trained on synthetic images from HVD and were tested on a test set of892

natural images from ScanNet.893

I Hyperparameters894

HDNet: As our model builds on top of CRTNet [63] as backbone, we use the same hyperparameters895

for the backbone as reported in the original paper. All models were trained for 20 epochs with a896

learning rate of 0.0001, with a batch size of 15 on a Tesla V100 16Gb GPU.897

Domain generalization: We used the code from Gulrajani et al. [74] to train and test domain898

generalization methods on our dataset. The code is available here: https://github.com/899

facebookresearch/DomainBed. To begin, we ran all available models and tried 10 random hy-900

perparameter initializations. Of these, we picked the best performing hyperparameter seed—24596.901

We also picked the top performing algorithms as the baselines reported in the paper.902

FasterRCNN: We used the code from Bomatter et al. [63] to train and test the modified Faster-903

RCNN model for recognition. The code is available here: https://github.com/kreimanlab/904

WhenPigsFlyContext, and we used the exact hyperparameters mentioned in the repository.905

J Experimental Details906

HDNet was compared against several baselines presented below. All models were trained on907

NVIDIA Tesla V100 16G GPUs. Optimal hyper-parameters for benchmarks were identified using908

random search, and all hyper-parameters are available in the supplement in Sec. I.909

J.1 Baseline Approaches910

We compared the impact of a human-like visual diet with a diverse set of alternative approaches911

popular in machine learning. This includes:912

2D feed-forward object recognition networks: Previous works have tested popular object recog-913

nition models in generalization tests [75, 76]. We include the same popular architectures ranging914

from 2D-ConvNets to transformers: DenseNet [77], ResNet [73], and ViT [60]. These models do915

not use context, and take the target object patch It as input.916

Domain generalization methods: We also compare HDNet to an array of state-of-the-art domain917

generalization methods (Table 1). These methods also use only the target object, and do not use918

contextual information.919

Context-aware recognition models: To compare against models which use scene context, we in-920

clude CRTNet [63] and Faster R-CNN [62]. CRTNet fuses object and contextual information with921

a cross-attention transformer to reason about the class label of the target object. We also compare922

HDNet with a Faster R-CNN [62] model modified to perform recognition by replacing the region923

proposal network with the ground truth location of the target object.924

Billion-Scale self and semi supervised architectures: We presented results with a suite of mod-925

ern approaches trained on 1000-fold more data to emphasize the importance of data quality over926

sheer dataset size. These included—Dino V2, ResNet50 SWSL, ResNet18 SWSL, 32x4d SWSL,927

ResNext101 32x16d SWSL, and ResNext50 32x4d SWSL.928

J.2 Evaluation of computational models929

Performance for all models is evaluated as the Top-1 classification accuracy. Error bars reported930

on all figures refer to the variance of per-class accuracies of different models. For statistical test-931

ing, p-values were calculated using a two-sample paired t-test on the per-category accuracies for932
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different models. The t-test checks for the null hypothesis that these two independent samples have933

identical average (expected) values. For ScanNet, a t-test is not optimal due to the smaller number934

of samples, and thus a Wilcoxon rank-sum test was employed for hypothesis testing as suggested in935

past works [78, 79]. All statistical testing was conducting using the python package scipy, and the936

threshold for statistical significance was set at 0.05.937
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