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ABSTRACT

At the core of causal inference lies the challenge of determining reliable causal1

graphs solely based on observational data. Since the well-known back-door cri-2

terion depends on the graph structure, any errors in the estimated graph structure3

affect the correctness of the estimated causal effects. In this work, to construct a4

valid back-door adjustment set, we propose to use a topological or causal order5

among graph nodes, which is easier to get from domain experts. Given a node6

pair, causal order is easier to elicit from domain experts compared to graph edges7

since determining the existence of an edge depends extensively on other variables.8

Interestingly, we observe that the same principle holds for Large Language Mod-9

els (LLMs) such as GPT-3.5-turbo and GPT-4, motivating an automated method to10

obtain causal order (and hence causal effect) with LLMs acting as virtual domain11

experts. To this end, we employ different prompting strategies and contextual12

cues to propose a robust technique for obtaining causal order from LLMs. Ac-13

knowledging LLMs’ limitations, we also study possible techniques to integrate14

LLMs with established causal discovery algorithms, including constraint-based15

and score-based methods, to enhance their performance. Extensive experiments16

demonstrate that our approach significantly improves causal ordering accuracy as17

compared to discovery algorithms, highlighting the potential of LLMs to enhance18

causal inference across diverse fields.19

1 INTRODUCTION20

Causal inference plays a pivotal role across scientific disciplines, aiding researchers in uncovering21

fundamental causal relationships and how they affect observed phenomena. For example, causal22

inference is used to discern the causes of diseases and design effective interventions for diagnosis23

and treatment in epidemiology (Mahmood et al., 2014), to evaluate policy impact based on observa-24

tional studies in economics (Imbens & Rubin, 2015), and to understand the effects of pollution on25

ecosystems in environmental science (Boslaugh, 2023). A key technical question for these studies26

is estimating the causal effect of variables on a specific outcome variable.27

Inferring causal effect from observational data, however, is a challenging task because the effect esti-28

mate depends critically on the causal graph considered in the analysis. While there has been progress29

in graph discovery algorithms, especially for specific parametric settings (Shimizu et al., 2006;30

Hoyer et al., 2008b; Hyvärinen et al., 2010; Rolland et al., 2022), studies on real-world datasets31

such as from atmospheric science (Huang et al., 2021) and healthcare (Tu et al., 2019) show that in-32

ferring the causal graph from data remains a challenging problem in practice (Reisach et al., 2021).33

Hence, causal inference studies often rely on human experts to provide the causal graph.34

In this paper, based on the fact that the topological/causal order over the graph variables is enough35

for effect inference, we leverage Large Language Models (LLMs) as virtual domain experts to pro-36

pose an automated method to query causal order (and hence causal effect). Moreover, providing37

the order between variables is the right question to ask experts because order depends only on the38

variables under question, unlike existence of a graph edge that depends on which other variables39

are present (to account for direct and indirect effects). For example, consider the data-generating40

process, lung cancer→ doctor visit→ positive Xray. If an expert is asked whether there should be41

a causal edge from lung cancer to positive Xray, they would answer “Yes” (indeed, such an edge42

exists in the BNLearn Cancer dataset (Scutari & Denis, 2014)). However, if they are told that the43

set of observed variables additionally includes doctor visit, then the correct answer would be to not44
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Figure 1: The LLM-augmented causal inference process based on inferring causal order. We propose a triplet-
based prompting technique to infer all three-variable subgraphs and aggregate them using majority voting to
produce a causal order. The causal order can then be used to identify a valid backdoor adjustment set. Ties in
causal order are broken using another LLM (e.g., GPT-4). For robustness, LLM-generated causal order may be
used in conjunction with discovery algorithms like PC or CaMML.

create a direct edge between lung cancer and positive Xray, but rather create edges mediated through45

doctor visit. However, note that the causal order, lung cancer ≺ positive Xray remains the same in46

both settings (a ≺ b indicates that a occurs before b in a casual process).47

We show that large language models (LLMs) like GPT-3.5 (Hagendorff et al., 2022) and GPT-48

4 (Peng et al., 2023) can be used to approximate experts’ capability to provide causal order, thereby49

automating the process of causal inference. Extending results using LLMs for pairwise causal dis-50

covery (Kıcıman et al., 2023), we find that LLMs can provide accurate causal order for a diverse set51

of benchmark graphs. To do so, we propose a novel triplet-based prompting strategy that asks LLM52

to consider three variables at once, compared to the pairwise prompts employed in past work (Kıcı-53

man et al., 2023; Willig et al., 2022; Long et al., 2023; 2022). Causal order outputted using the54

triplet-based prompt outperforms pairwise prompts across all benchmark datasets we considered.55

Importantly, it avoids cycles in the predicted order whereas LLM outputs from pairwise prompts56

often yield cycles.57

Still, LLMs can exhibit unknown failure modes. Therefore, a more principled way is to adapt58

existing graph discovery algorithms to utilize LLM output. To this end, we present two algorithms59

based on constraint-based and score-based discovery algorithms respectively. The first uses causal60

order from an LLM to orient the undirected edges outputted by a constraint-based algorithm such61

as PC (Spirtes et al., 2000). The second algorithm utilizes the LLM causal order as a prior to62

a score-based algorithm like CaMML (Wallace et al., 1996). Results show that LLM-augmented63

algorithms outperform the base causal discovery algorithms in determining the causal order. The64

overall methodology is depicted in Figure 1. Our contributions can be summarized as follows.65

• We argue that in causal effect estimation, querying a domain expert for a causal order is more66

principled than asking for exact causal structure among variables.67

• We provide a novel prompting strategy based on triplets and show that LLMs like GPT-3.5 can be68

used to obtain causal order for a diverse range of datasets.69

• We propose two algorithms combining causal discovery algorithms with LLM output and show70

that the final causal order is substantially more accurate than the discovery algorithms alone.71

2 RELATED WORK72

Combining graph discovery and causal inference. Historically, causal discovery and causal effect73

inference have been studied separately. Graph discovery algorithms can broadly be divided into (i)74

algorithms using conditional independence tests (constraint-based) (Glymour et al., 2019); (ii) algo-75

rithms using a score function to evaluate predicted graph (score-based) (Glymour et al., 2019); (iii)76
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algorithms that determine a causal order and then infer edges (order-based) (Rolland et al., 2022;77

Teyssier & Koller, 2005); and (iv) deep learning-based methods that formulate an optimization prob-78

lem based on acyclicity and sparsity constraints (Zheng et al., 2018; Lachapelle et al., 2020). Causal79

discovery methods are evaluated on error with respect to the true graph, e.g., using the structural80

hamming distance (SHD) (Acid & de Campos, 2003; Tsamardinos et al., 2006). In contrast, causal81

inference methods focus on the estimation of causal effect given a causal graph (Pearl, 2009); the82

graphs are assumed to be known. A natural way to combine these approaches to use the graph out-83

putted by discovery algorithms in inference methods, as in (Hoyer et al., 2008a; Mooij et al., 2016;84

Maathuis et al., 2010; Gupta et al., 2022). In this paper, we show that there exists a simpler way to85

combine the two approaches: only a causal order is needed instead of the full graph.86

Knowledge-driven Causal Discovery: Prior knowledge has been used in causal discovery liter-87

ature (Hasan & Gani, 2022; Constantinou et al., 2023; Heckerman & Geiger, 2013; Teshima &88

Sugiyama, 2021; O’Donnell et al., 2006; Wallace et al., 1996). These methods rely on prior knowl-89

edge such as domain expert opinions and documented knowledge from randomized controlled trials90

(RCT). Various priors have been studies in literature, including the priors of the form edge existence,91

forbidden edge, ancestral constraints (Constantinou et al., 2023; Ban et al., 2023). Prior knowledge92

significantly reduces the search space over all possible causal graphs.93

Recent advancements in LLMs has led to more attention towards knowledge-driven causal discov-94

ery (Kıcıman et al., 2023; Ban et al., 2023; Long et al., 2023; Willig et al., 2022). Unlike causal95

discovery algorithms that use statistical patterns in the data, LLM-based algorithms use metadata96

such as variable names. Most of these methods use only LLMs to predict the causal relationships97

among a set of variables (Kıcıman et al., 2023; Willig et al., 2022; Long et al., 2022). Recent work98

also shows how LLMs can be used as priors or imperfect experts which can be combined with dif-99

ferent types of discovery algorithms like (Long et al., 2023) uses LLMs to improve output of a100

constraint-based algorithm for full graph discovery by orienting undirected edges in the CPDAG101

and (Ban et al., 2023) uses LLMs as priors for scoring-based methods. However, the focus of these102

works has been on minimizing graph error metrics such as SHD. Instead, we focus on the down-103

stream causal inference task and choose causal order as the metric since it directly correlates with104

accuracy in effect estimation whereas SHD does not.105

LLM Prompting Strategies for Causal Discovery: Existing LLM-based algorithms for graph dis-106

covery (Kıcıman et al., 2023; Long et al., 2022; Ban et al., 2023) use a pairwise prompt, essentially107

asking “does A cause B” with varying levels of prompt complexity. Extending this line of work, we108

propose a triplet-based prompt that provides more accurate answers and avoids cycles when query-109

ing relationships between variables. As a result, our triplet-based prompt may be of independent110

interest to improve LLM-based graph discovery. We also explore the chain-of-thought prompting111

strategy (Wei et al., 2022) in our experiments.112

3 BACKGROUND AND PROBLEM FORMULATION113

Let G(X,E) be a causal directed acyclic graph (DAG) consisting of a set of variables X =114

{X1, . . . , Xn} and a set of directed edges E among the variables in X. A directed edge115

Xi → Xj ∈ E denotes the direct causal influence of the variable Xi on the variable Xj . Let116

pa(Xi) = {Xk|Xk → Xi}, de(Xi) = {Xk|Xk ← · · · ← Xi} denote the set of parents and117

descendants of Xi respectively. We focus on a downstream application of causal graph discovery118

called causal effect inference, defined as follows.119

Definition 3.1. (Average Causal Effect (Pearl, 2009)) The average causal effect (ACE) of a variable120

Xi on a variable Xj is defined as121

ACE
Xj

Xi
= E[Xj |do(Xi = xi)]− E[Xj |do(Xi = x∗

i )] (1)

In Defn 3.1, Xi is called the treatment variable and Xj is called the target variable. do(Xi = xi)122

denotes an external intervention to the variable Xi with the value xi. The interventional quantity123

E[Xj |do(Xi = xi)] is different from conditional E[Xj |Xi = xi] since it involves setting the value124

of Xi rather than conditioning on it. To estimate the quantity E[Xj |do(Xi = xi)] from observational125

data, the backdoor adjustment formula is used.126

Definition 3.2. (Back-door Adjustment (Pearl, 2009)) Given a DAG G, a set of variables Z satisfies127

back-door criterion relative to a pair of treatment and target variables (Xi, Xj) if128
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(i) no variable in Z is a descendant of Xi; and129

(ii) Z blocks every path between Xi and Xj that contains an arrow into Xi.130

where a path in a causal DAG is a sequence of unique vertices Xi, Xi+1, . . . , Xj with a directed131

edge between each consecutive vertices Xk and Xk+1 (either Xk → Xk+1 or Xk+1 → Xk).132

If a set of variables Z satisfies the back-door criterion relative to (Xi, Xj), E[Xj |do(Xi = xi)]133

can be computed using the formula: E[Xj |do(Xi = xi)] = Ez∼ZE[Xj |Xi = xi,Z = z] (Thm.134

3.3.2 of (Pearl, 2009)). To ensure that all variables in Z are observed, we assume that there are no135

unobserved variables in the underlying causal graph.136

4 CAUSAL ORDER IS SUFFICIENT FOR EFFECT ESTIMATION137

Although backdoor adjustment is defined with respect to a DAG G, we now show that the causal138

order is sufficient to find a valid backdoor set. We also discuss why providing the causal order is a139

better task for experts than providing the graph.140

4.1 CAUSAL (TOPOLOGICAL) ORDER YIELDS A VALID BACKDOOR SET141

Definition 4.1. (Topological Order.) Given a causal graph G(X,E), a sequence π of variables X142

is said to be a topological order iff for each edge Xi → Xj ∈ E, πi < πj .143

Proposition 4.2. (Pearl, 2009; Cinelli et al., 2022) Under the no confounding assumption, given an144

pair of treatment and target variables (Xi, Xj) in G, Z = {Xk|πk < πi} is a valid adjustment set145

relative to (Xi, Xj) for any topological ordering π of G.146

Proof of all Propositions are in Appendix § A. Propn 4.2 states that all the variables that precede the147

treatment variable in a topological order π of G constitute a valid adjustment set. Note that the set Z148

may contain variables that are not necessary to adjust for, e.g., ancestors of only treatment or only149

target variables. For statistical estimation, ancestors of target variable are beneficial for precision150

whereas ancestors of treatment can be harmful (Cinelli et al., 2022). On balance though, causal151

effect practitioners tend to include all confounders that do not violate the backdoor criterion; we are152

following the same principle.153

In practice, however, we may not know the true order. To evaluate the goodness of a given causal154

order, we use the topological divergence metric from (Rolland et al., 2022) (for an example, see Fig-155

ure 3). The topological divergence of an estimated topological order π̂ with ground truth adjacency156

matrix A, denoted by Dtop(π̂, A), is defined as Dtop(π̂, A) =

n∑
i=1

∑
j:π̂i>π̂j

Aij . Where Aij = 1 if157

there is a directed arrow from node i to j else Aij = 0. Dtop(π̂, A) counts the number of edges that158

cannot be recovered due to estimated topological order π̂.159

4.2 TOPOLOGICAL DIVERGENCE IS THE CORRECT METRIC FOR EFFECT ESTIMATION160

Below we show that Dtop is a valid metric to optimize for effect estimation: Dtop = 0 for a topo-161

logical order is equivalent to obtaining the correct backdoor adjustment set using Proposition 4.2.162

Proposition 4.3. For an estimated topological order π̂ and a true topological order π of a causal163

DAG G with the corresponding adjacency matrix A, Dtop(π̂, A) = 0 iff Z = {Xk|π̂k < π̂i} is a164

valid adjustment set relative to (Xi, Xj), ∀πi < πj .165

We now compare Dtop to structural hamming distance (SHD), a common metric used to evaluate166

graph discovery algorithms. Given a true causal DAG G and an estimated causal DAG Ĝ, SHD167

counts the number of missing, falsely detected, and falsely directed edges in Ĝ. Formally, Dtop acts168

as a lower-bound on the structural hamming distance (SHD) (Rolland et al., 2022). However, as169

we show below, SHD is not a good metric for evaluating downstream effect estimation accuracy.170

Specifically, we show that SHD can be very high even when Dtop = 0 and a valid backdoor set171

can be inferred. This result is of significance since most estimated graphs (included those that are172

LLM-generated (Ban et al., 2023; Long et al., 2023)) are evaluated on SHD.173

Definition 4.4. (Level Order.) Given a causal graph G(X,E), the level order refers to a systematic174

assignment of levels to variables. This assignment begins with the set of variables {Xi|pa(Xi) = ∅}175

at level 0. Subsequently, each of the remaining variables is assigned a level i such that all nodes176

within a given level i has a directed path of length i from one/more nodes in level 0.177
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Proposition 4.5. In a causal DAG G with N levels in the level-ordering of variables where the level i178

contains ni variables,∃ Ĝ s.t. SHD(Ĝ,G) ≥
N−1∑
i=1

(ni×
N∑

j=i+1

nj)−|E| and Dtop(π̂, A) = 0 ∀π̂ of Ĝ.179

Figure 2: Variability of SHD for various graph sizes
with consistent Dtop = 0 within each graph.

Figure 2 shows the unsuitability of SHD for180

our work empirically. Given a fixed number181

of nodes, we sample a graph at random as the182

“ground-truth” and then consider all graph ori-183

entations of the same size (number of nodes)184

such that Dtop = 0 with respect to to ground-185

truth graph. For these set of graphs, we com-186

pute the SHD with respect to the ground-truth187

graph. Notice that SHD exhibits high variance.188

For graphs with six nodes, SHD can vary from189

0 to 14 even as Dtop = 0 and backdoor set190

validity stays the same. Figure 3 shows this191

phenomenon on a real-world BNLearn dataset,192

Cancer. The candidate graph (right panel) has193

Dtop = 0 with respect to the true graph (left)194

and yields valid backdoor identification sets. However, its SHD is high (6), showing the disconnect195

between SHD and causal effect identification.196

4.3 CAUSAL ORDER IS MORE SUITABLE TO ELICIT FROM EXPERTS THAN GRAPH EDGES197

Pollution Smoking

Cancer

X-ray Dyspnoea

Pollution Smoking

Cancer

X-ray Dyspnoea

Figure 3: Left: Causal graph of Cancer dataset.
Right: GPT-3.5’s estimated causal graph of Cancer
dataset. GPT-3.5 gets causal order correct at the cost
of higher SHD score, which is not a relevant metric for
causal inference. Here Dtop = 0 and SHD = 6,
showing the importance of Dtop in our study as com-
pared to SHD.

In addition to the favorable theoretical prop-198

erties, causal order is easier to elicit from ex-199

perts and can be objectively evaluated. This200

is because given two variables, their relative201

causal order does not depend on other variables202

whereas existence of an edge between them203

depends on which other variables are consid-204

ered. To see this, let us continue the exam-205

ple from Figure 3 (left) where pollution causes206

dyspnoea (breathing difficulty) through the in-207

termediary node cancer. Whether an edge ex-208

ists between pollution and dyspnoea depends209

on whether Cancer variable is part of the study.210

In case an expert is only provided pollution and211

dyspnoea, they may add an edge between the212

two, but if Cancer node is also provided, they may not. Apriori, it is difficult to know which nodes213

may be relevant for a pair; hence experts’ answers may not be consistent for questions about edges,214

but will always be consistent on causal order.215

5 LARGE LANGUAGE MODELS AS VIRTUAL EXPERTS FOR CAUSAL ORDER216

While causal order is a simpler construct than the graph, it still needs to be provided by a domain217

expert. We now study whether LLMs can used to obtain causal order, thereby making automating218

the process. We propose two kinds of prompting strategies; 1) Pairwise; and 2) Triplet-based. These219

methods employ variable names or extra metadata without utilizing the associated data.220

5.1 PROMPT TECHNIQUES BASED ON A PAIR OF VARIABLES221

A natural way to elicit causal order from LLMs is to ask about each pair of variables and aggregate222

the result. A similar pairwise strategy has been adopted by past work on inferring graph edges (Kıcı-223

man et al., 2023; Ban et al., 2023; Long et al., 2022). Here we augment such strategies with addi-224

tional contextual information. Our hypothesis is that adding context relevant to the pair of variables225

may help increase the accuracy of the LLM answers.226

We propose four types of pairwise prompts (see Appendix § D for full prompts).227

• Basic prompt. This is the simplest technique. We directly ask LLM to find the causal direction228

between a given pair of variables (Kıcıman et al., 2023).229
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• Iterative Context. Here we provide the previously oriented pairs as context in the prompt. Since230

the LLM has access to its previous decisions, we expect that it may avoid creating cycles through231

its predictions.232

• Markov Blanket Context. Providing previously oriented pairs may become prohibitive for233

large graphs. Using the fact that a variable is independent of all other nodes given the Markov234

Blanket (Pearl, 2009), here we provide the Markov Blanket of the given node pairs as additional235

context in the prompt.236

• Chain-of-Thought (+In-context learning). Based on encouraging results of providing in-context237

examples in the prompt for various tasks (Brown et al., 2020), here we include 3 examples of238

the ordering task that we expect the LLM to perform. Effectively, we provide example node239

pairs and their correct causal ordering before asking the question about the given nodes. Each240

example answer also contains an explanation of the answer, generated using Bing GPT-4. Adding241

the explanation encourages LLM to employ chain-of-thought reasoning (Wei et al., 2022) when242

deciding the causal order. To avoid overfitting, we select node pairs from graphs that are not243

evaluated in our study. Node pairs with and without direct edges were equally chosen. Examples244

of LLM’s answers (and their explanations) using the CoT prompt can be found in Table A13 and245

Table A14 in Appendix.246

5.2 PROMPT TECHNIQUE BASED ON TRIPLETS247

As we shall see, while pairwise prompts are conceptually simple, they are prone to yielding cycles248

in the graph since they decide about each edge separately. Taking inspiration from the PC algorithm249

that employs constraints over three variables , we now describe a prompting technique based on250

iterating over all possible triplets given a set of nodes. Once the LLM has provided subgraphs for251

each triplet, we determine causal order between a pair by aggregating over all triplet LLM answers252

where the pair was included. To resolve ties, we use another LLM. The algorithm is as follows:253

• From a given set of nodes in the graph, we generate all possible triplets, each triplet treated as254

independently from the others.255

• We prompt the LLM to orient nodes of each triplet group to form a Directed Acyclic Graph256

representing the causal relationship between the nodes of the triplet. This will result in multiple257

mini graphs representing causal relationship for each triplet group.258

• LLMs will be prompted to directly orient the three nodes for each triplet, hence identifying causal259

relationship based on the third node, similar to how PC functions.260

• Once we have DAGs representing each triplet, we focus on merging them. Our Merging process261

can be broken down into two major steps:262

– We iterate over all node pairs, and for each combination we check what is the majority263

orientation between them over all the triplets containing the node pair.264

– In case there occurs a clash (same number of votes) between any of the two or all three265

possible edge orientation (A → B; B → A; No connection between A and B nodes), we266

resort to GPT-4 to resolve the clash by taking the final decision via CoT prompt.267

In addition, the triplet prompt uses the techniques of in-context examples and chain-of-thought from268

the pairwise setup. An example prompt is shown in Table A12.269

6 ALGORITHMS FOR LLM-GUIDED CAUSAL DISCOVERY270

LLMs using the above prompts may yield accurate causal order predictions, but may also exhibit271

some unknown failure modes (Kıcıman et al., 2023). To increase robustness of the final result, we272

now provide algorithms for combining LLM-outputted causal order with existing causal discovery273

paradigms: (i) constraint-based and (ii) score-based methods.274

6.1 CONSTRAINT-BASED METHODS USING POST-HOC EDGE ORIENTATION BY LLMS275

Constraint-based algorithms return a graph where some edges may not be oriented. Given a graph276

from constraint-based algorithm like PC, we use the causal order π̂ from LLM to orient the undi-277

rected edges. Iterating over the undirected edges, we first check if the nodes of that edge are occur-278

ring in π̂. If yes, we orient the edge according to the causal order. Since there is a possibility that279

LLM’s final graph might have some isolated nodes which won’t be in π̂, therefore if either (or both)280

nodes of the undirected edge are not included in π̂, we query GPT-4 using pairwise CoT prompt281

(from Section 5.1) to finalise a direction between the pair.282
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Algorithm 1 Combining constraint based methods and experts to get π̂ for a given set of variables.

1: Input: LLM topological ordering π̂, Expert EGPT4, PC-CPDAG Ĝ
2: Output: Estimated topological order π̂final of {X1, . . . , Xn}.
3: for (i− j) ∈ undirected-edges(Ĝ) do
4: If both the node i and j are in π̂ and if π̂i < π̂j , orient (i− j) as (i → j) in Ĝ.
5: Otherwise, use the expert EGPT4 with CoT prompt to orient the edge (i− j).
6: end for
7: π̂final = topological ordering of Ĝ
8: return π̂

6.2 SCORE-BASED METHODS USING EXPERT PRIORS283

Algorithm 2 Combining score based methods and ex-
perts to get π̂ for a given set of variables.

1: Input: D, variables {X1, . . . , Xn}, Expert E ,
Score based method S, Prior probability p.

2: Output: Estimated topological order π̂ of
{X1, . . . , Xn}.

3: Ĝ = E(X1, . . . , Xn)

4: L = level order of Ĝ.
5: for cycle C ∈ Ĝ do
6: for node ∈ C do
7: L(node) = min(level(c) ∀c ∈ C)
8: end for
9: end for

10: Ĝ = S(D, L, p)

11: π̂ = topological ordering of Ĝ
12: return π̂

We utilize the output of LLM as a prior in the284

score-based algorithms. We provide the level285

order of the causal graph returned by LLM as286

a prior for a score-based algorithm. Unlike287

a similar LLM-prior approach by Ban et al.288

(2023), where they combine the output of LLM289

and a score based method using an ancestral290

constraint as a prior, ours is a sequential ap-291

proach where a score based algorithm starts292

with the order based constraint, aligning with293

our goal of recovering causal order among vari-294

ables. Optionally, we can provide prior prob-295

ability to control the influence of prior on the296

algorithm. Algorithm on the right outlines the297

steps to combine score based method and ex-298

pert knowledge in terms of variables’ level order.299

7 EXPERIMENTS AND RESULTS300

To evaluate the accuracy of LLM-based algorithms on inferring causal order, we perform experi-301

ments on the benchmark datasets from Bayesian network repository (Scutari & Denis, 2014): Earth-302

quake, Cancer, Survey, Asia, Asia modified (Asia-M), and Child. Asia-M is derived from Asia303

by removing the node either since it is not a node with a semantic meaning (see Appendix§ C304

for details). We also used a medium sized subset graph (refer Figure A6 in Appendix) from the305

Neuropathic dataset (Tu et al., 2019) used for pain diagnosis. Except Child (with 20 nodes) and306

Neuropathic subgraph (with 22 nodes), all other graphs are small-scale graphs with <10 nodes.307

7.1 Dtop CORRELATES WITH EFFECT ESTIMATION ERROR308

Cancer
SHD vs. ϵACE | Dtop = 0 Dtop vs. ϵACE | SHD = 2

SHD ϵACE Dtop ϵACE

0 0.00 0 0.00
2 0.00 1 0.25
4 0.00 2 0.50

Asia
SHD vs. ϵACE | Dtop = 0 Dtop vs. ϵACE | SHD = 3

SHD ϵACE Dtop ϵACE

0 0.00 1 0.14
6 0.00 2 0.22

10 0.00 3 0.57

Survey
SHD vs. ϵACE | Dtop = 0 Dtop vs. ϵACE | SHD = 2

SHD ϵACE Dtop ϵACE

0 0.00 0 0.00
2 0.00 1 0.25
4 0.03 2 0.50

Table 1: ϵACE vs. SHD (Dtop) given Dtop (SHD)

Before comparing methods on the Dtop metric,309

we first show that Dtop has a strong correla-310

tion with effect estimation error and hence is311

the correct metric for effect inference. Specif-312

ically, we study how the error in causal ef-313

fect, ϵACE , changes as values of the metrics314

SHD,Dtop change. For the datasets Can-315

cer, Asia and Survey, we consider dyspnoea,316

dyspnoea, and Travel respectively as the tar-317

get variables. In each graph, we evaluate causal318

effects of each variable on the target variable.319

We iterate through estimated causal graphs with320

different values of SHD and Dtop and report321

the mean absolute difference between estimated322

and true causal effects. As Table 1 shows, when323

Dtop is zero, effect error ϵACE is also zero.324

And as Dtop increases (right panel), effect error325

increases. In contrast, SHD has no correlation326

with the ϵACE .327

7



Under review as a conference paper at ICLR 2024

Dataset Dtop SHD IN/TN Cycles

Base Prompt

Earthquake 0 7 0/5 0
Cancer 0 6 0/5 0
Survey 3 12 0/6 0
Asia - 21 0/8 7

Asia-M - 15 0/7 6
Child - 177 0/20 20

Neuropathic - 212 0/22 22

All Directed Edges

Earthquake 1 9 0/5 0
Cancer 1 7 0/5 0
Survey 2 11 0/6 0
Asia - 21 0/8 8

Asia-M 0 13 0/7 0
Child - 139 0/20 18

Neuropathic - 194 0/22 20

Markov Blanket

Earthquake 0 8 0/5 0
Cancer 0 6 0/5 0
Survey 3 12 0/6 0
Asia - 21 0/8 5

Asia-M 0 14 0/7 0
Child - 167 0/20 20

Neuropathic - 204 0/22 21

Table 2: Comparison of various prompt-
ing strategies for only LLM based setups,
providing different contextual cues in each
setup about the graph. IN: Isolated Nodes,
TN:Total Nodes.

Dataset Dtop SHD IN/TN Cycles

Chain of Thought

Earthquake 1 4 0/5 0
Survey 1 6 2/6 0
Asia 1 17 0/8 0

Asia-M 1 11 0/7 0
Child - 91 0/20 13

Neuropathic - 64 0/22 8

Triplet Prompt

Earthquake 0 4 0/5 0
Cancer 0 4 1/5 0
Survey 0 6 0/6 0
Asia 1 7 1/8 0

Asia-M 0 3 2/7 0
Child 0 29 11/20 0

Neuropathic 2 23 16/22 0

Table 3: Triplet Prompt output using variable
names with their descriptions (Cancer not in-
cluded since CoT prompt has examples from
this graph). IN: Isolated Nodes, TN:Total
Nodes.

7.2 TRIPLET PROMPTING TECHNIQUE IS MOST ACCURATE FOR CAUSAL ORDER328

Tables 2 and 3 compare the different prompting techniques. As the graph size increases, we observe329

limitations with pairwise prompts. In many cases, pairwise prompts yield cycles in many cases330

due to which Dtop cannot be computed. In particular, for Child dataset with 20 nodes, pairwise331

prompts yield anywhere from 13-79 cycles. LLM output tends to connect more edges than needed,332

which explains why SHD is high. Overall, among the pairwise prompts, the chain of thought prompt333

performs the best: it has the lowest Dtop on the four small graphs and the lowest number of cycles334

for Child and Neuropathic datasets. This indicates that in-context examples and chain-of-thought335

reasoning helps to increase accuracy of causal order output, but other contextual cues do not matter.336

Finally, the triplet prompt provides the most accurate causal order. Even for medium-size graphs337

like Child and Neuropathic, the LLM output includes no cycles and SHD is fairly low betwen 4-338

29. Moreover, Dtop is zero for all datasets, except for Asia and Neuropathic where it is 1 and339

2 respectively. That said, we do see that isolated nodes in the output increase compared to the340

pairwise prompts (all graphs are connected, so outputting an isolated node is an error). Considering341

LLMs as virtual experts, this indicates that there are some nodes on which the LLM expert cannot342

determine the causal order. This is still a better tradeoff than outputting the wrong causal order,343

which can confuse downstream algorithms. Overall, therefore, we conclude that the triplet prompt344

provides the most robust causal order predictions.345

7.3 LLMS IMPROVE CAUSAL ORDER ACCURACY OF EXISTING DISCOVERY ALGORITHMS346

We now study whether LLM output can be used to increase accuracy of discovery algorithms in347

inferring causal order. We compare with popular causal discovery methods: PC (Spirtes et al., 2000),348

SCORE (Rolland et al., 2022), ICA-LiNGAM (Shimizu et al., 2006), Direct-LiNGAM (Shimizu349

et al., 2011), NOTEARS (Zheng et al., 2018), and Causal discovery via minimum message length350

(CaMML) (Wallace et al., 1996); across five different sample sizes: 250, 500, 1000, 5000, 10000.351

For LLM, we use the triplet prompt. Table 4 shows the Dtop metric for different algorithms and352

compares it to the Dtop of our combined algorithms: PC+LLM and CaMML+LLM. Among the353

discovery algorithms, we find that PC and CaMML perform the best, with the lowest Dtop across354

the five datasets. For Neuropathic dataset, ICA LiNGAM is also competitive.355
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Dataset PC SCORE ICA Direct NOTEARS CaMML Ours Ours
LiNGAM LiNGAM (PC+LLM) (CaMML+LLM)

Earthquake 0.30±0.44 4.00±0.00 3.20±0.39 3.00±0.00 1.80±0.74 2.00±0.00 0.00±0.00 0.00±0.00
Cancer 0.00±0.00 3.00±0.00 4.00±0.00 3.60±0.48 2.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00
Survey 0.50±0.00 3.00±0.00 6.00±0.00 6.00±0.00 3.20±0.39 3.33±0.94 0.00±0.00 3.33±0.94
Asia 2.33±0.59 5.00±0.00 6.20±0.74 7.00±0.00 4.00±0.00 1.85±0.58 0.00±0.00 0.97±0.62

Asia-M 2.00±0.00 5.00±0.00 7.60±0.48 6.20±1.16 3.40±0.48 1.00±0.00 0.00±0.00 1.71±0.45

N
=

2
5
0

Child 8.16±1.58 8.80±2.70 12.8±0.97 13.0±0.63 15.0±1.09 3.00±0.00 4.00±0.00 3.53±0.45
Neuropathic 3.25±0.00 6.00±0.00 13.0±6.16 10.0±0.00 9.00±0.00 10.4±1.95 1.00±0.00 5.00±0.00

Earthquake 0.85±0.65 4.00±0.00 3.20±0.39 3.40±0.48 1.20±0.40 0.00±0.00 0.4±0.89 0.00±0.00
Cancer 0.00±0.00 3.00±0.00 3.40±0.48 3.00±0.00 2.00±0.00 1.00±0.00 0.00±0.00 1.00±0.00
Survey 1.75±0.00 4.00±0.00 6.00±0.0 6.00±0.00 3.40±0.48 3.39±0.08 1.00±0.00 3.33±0.94
Asia 3.00±0.00 5.00±0.00 5.60±0.48 7.00±0.00 3.20±0.39 3.81±0.39 1.00±0.00 0.97±0.62

Asia-M 2.00±0.00 6.00±0.00 7.60±0.48 5.00±0.00 3.80±0.39 2.00±0.00 1.00±0.00 0.17±0.45

N
=

5
0
0

Child 9.79±1.17 6.20±1.32 12.2±0.74 10.6±1.35 15.4±0.48 2.00±0.00 4.6±1.34 2.00±0.00
Neuropathic 7.50±0.00 6.00±0.00 9.00±1.41 13.0±0.00 11.0±0.00 5.32±0.57 8.00±0.00 7.49±0.64

Earthquake 0.80±0.57 4.00±0.00 3.00±0.00 3.00±0.00 1.00±0.00 0.00±0.00 0.20±0.44 0.00±0.00
Cancer 0.00±0.00 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 1.60±0.48 0.00±0.00 0.00±0.00
Survey 1.00±0.00 4.00±0.00 5.80±0.39 5.40±0.48 3.20±0.39 2.71±0.27 1.00±0.00 2.83±0.00
Asia 3.09±1.05 4.00±0.00 6.20±0.74 6.60±0.48 3.40±0.48 1.75±0.43 1.75±0.95 0.97±0.62

Asia-M 2.50±0.00 4.00±0.00 8.00±0.00 5.20±0.39 3.40±0.48 2.04±0.51 2.00±0.00 0.65±0.47

N
=

1
0
00

Child 9.61±1.07 3.80±0.74 12.2±1.72 11.8±0.74 15.2±0.97 2.00±0.00 8.0±0.00 2.00±0.40
Neuropathic - 6.00±0.00 4.00±0.81 12.0±0.00 12.0±0.00 5.54±0.75 - 10.1±2.12

Earthquake 0.30±0.67 4.00±0.00 2.80±0.39 3.00±0.00 1.00±0.00 0.80±0.97 0.00±0.00 0.00±0.00
Cancer 0.00±0.00 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00
Survey 2.00±0.00 4.00±0.00 5.00±0.00 5.00±0.00 3.00±0.00 3.33±0.69 2.00±0.00 2.60±0.00
Asia 3.05±0.94 4.00±0.00 6.60±0.79 4.40±1.35 3.40±0.48 1.75±0.43 2.80±1.30 0.97±0.62

Asia-M 1.00±0.00 4.00±0.00 7.60±0.48 4.60±0.48 3.20±0.39 1.68±0.46 0.20±0.44 0.00±0.00

N
=

50
00

Child 8.42±0.75 3.00±0.00 12.6±0.79 10.8±1.72 14.2±0.40 3.00±0.00 7.00±0.00 3.00±0.00
Neuropathic 9.00±0.00 6.00±0.00 9.33±0.94 10.0±0.00 10.0±0.00 4.20±0.96 9.00±0.00 1.23±0.42
Earthquake 0.00±0.00 4.00±0.00 3.00±0.00 3.00±0.00 1.00±0.00 0.40±0.48 0.00±0.00 0.00±0.00

Cancer 0.00±0.00 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 0.60±0.80 0.00±0.00 0.00±0.00
Survey 2.00±0.00 4.00±0.00 5.00±0.00 5.00±0.00 3.00±0.00 3.60±1.35 2.00±0.00 1.83±0.00
Asia 1.95±0.41 4.00±0.00 6.00±0.00 4.40±1.35 3.00±0.00 1.40±0.48 1.20±0.83 0.34±0.47

Asia-M 1.75±0.00 4.00±0.00 8.00±0.00 4.80±0.39 3.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00

N
=

10
00

0

Child 7.67±0.65 3.00±0.00 12.2±1.46 11.6±0.48 14.4±0.48 2.80±0.84 7.00±0.00 1.00±0.00
Neuropathic 10.00±0.00 6.00±0.00 1.00±0.00 10.0±0.00 10.0±0.00 3.00±0.00 10.00±0.00 1.00±0.00

Table 4: Comparison with existing discovery methods. Mean and std dev of Dtop over 5 runs. (For
Neuropathic subgraph (1k samples), PC Algorithm returns cyclic graphs in the MEC)

For the BNLearn datasets, adding LLM output decreases the Dtop of both algorithms further. Specif-356

ically, PC+LLM leads to a significant reduction in Dtop and the gains are larger at lower sample357

sizes. This indicates that obtaining causal order from LLMs may matter more in limited sample358

settings. At sample size of 500, Dtop of PC is nearly double that of PC+LLM for most datasets.359

Going from CaMML to CaMML+LLM, we also see significant reductions in Dtop. Interestingly,360

CaMML+LLM yields benefits even at higher sample sizes. At a sample size of 10,000, CaMML’s361

Dtop for Child and Asia surpasses CaMML+LLM by three and fivefold respectively.362

For the Neuropathic dataset, we see a similar pattern: adding LLM to existing algorithms improves363

Dtop or keeps it constant, except at sample sizes 500 and 1000 where CaMML+LLM yields a worse364

Dtop than CaMML alone. However, as sample size increases to 5000 and 10000, we do see that365

CaMML+LLM improves the Dtop substantially compared to CaMML. Overall, these results show366

that LLM output can signficantly improve the accuracy of existing causal discovery algorithms.367

8 LIMITATIONS AND CONCLUSIONS368

We presented causal order as a suitable metric for evaluating quality of causal graphs for downstream369

effect inference tasks. Using a novel formulation of LLM prompts based on triplets, we showed that370

LLMs can be useful in the generating accurate causal order, both individually and in combination371

with existing discovery algorithms. Our results point to techniques that can automate the causal372

inference process.373

That said, our work has limitations. We studied LLMs utility on popular benchmarks which may374

have been partially memorized. It will be interesting to extend our experiments to diverse and375

bigger datasets. In addition, we studied only one downstream task (effect inference). Identifying376

the necessary graph metrics for tasks such as causal prediction and counterfactual inference will be377

useful future work.378
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APPENDIX483

A PROOFS OF PROPOSITIONS484

Proposition 4.2. (Pearl, 2009; Cinelli et al., 2022) Under the no confounding assumption, given an485

pair of treatment and target variables (Xi, Xj) in G, Z = {Xk|πk < πi} is a valid adjustment set486

relative to (Xi, Xj) for any topological ordering π of G.487

Proof. We need to show that the set Z = {Xk|πk < πi} satisfies the conditions (i) and (ii) in488

Defn 3.2. For any variable Xk such that πk < πi, we have Xk ̸∈ de(Xi) and hence the condition489

(i) is satisfied. Additionally, for each Xk ∈ pa(Xi) we have πk < πi and hence pa(Xi) ⊆ Z. Since490

pa(Xi) blocks all paths from Xi to Xj that contains an arrow into Xi (Peters & Bühlmann, 2015),491

Z satisfies condition (ii).492

Proposition 4.3. For an estimated topological order π̂ and a true topological order π of a causal493

DAG G with the corresponding adjacency matrix A, Dtop(π̂, A) = 0 iff Z = {Xk|π̂k < π̂i} is a494

valid adjustment set relative to (Xi, Xj), ∀πi < πj .495

Proof. The statement of proposition is of the form A ⇐⇒ B with A being “Dtop(π̂, A) = 0”496

and B being “Z = {Xk|π̂k < π̂i} is a valid adjustment set relative to (Xi, Xj), ∀i, j”. We prove497

A ⇐⇒ B by proving (i) A =⇒ B and (ii) B =⇒ A.498

(i) Proof of A =⇒ B: If Dtop(π̂, A) = 0, for all pairs of nodes (Xi, Xj), we have π̂i <499

π̂j whenever πi < πj . That is, causal order in estimated graph is same that of the causal order500

in true graph. Hence, from Propn 4.2, Z = {Xk|π̂k < π̂i} is a valid adjustment set relative to501

(Xi, Xj), ∀i, j.502

(ii) Proof of B =⇒ A: we prove the logical equivalent form of B =⇒ A i.e., ¬A =⇒ ¬B,503

the contrapositive of B =⇒ A. To this end, assume Dtop(π̂, A) ̸= 0, then there will be at least504

one edge Xi → Xj that cannot be oriented correctly due to the estimated topological order π̂. i.e.,505

π̂j < π̂i but πj > πi. Hence, to find the causal effect of Xi on Xl; l ̸= j, Xj is included in the506

back-door adjustment set Z relative to (Xi, Xl). Adding Xj to Z renders Z an invalid adjustment507

set because it violates the condition (i) of Defn 3.2.508

Proposition 4.5. In a causal DAG G with N levels in the level-ordering of variables where the level i509

contains ni variables,∃ Ĝ s.t. SHD(Ĝ,G) ≥
N−1∑
i=1

(ni×
N∑

j=i+1

nj)−|E| and Dtop(π̂, A) = 0 ∀π̂ of Ĝ.510

Proof. Recall that SHD counts the number of missing, falsely detected, and falsely directed edges511

in the estimated causal graph as compared to the ground truth graph. Since we want Dtop(π̂, A) =512

0; ∀π̂ of Ĝ, there cannot be an edge Xi → Xj in Ĝ such that Xi ← Xj is in G. This constraint513

avoids the possibility of having falsely directed edges in Ĝ. Consider a Ĝ with all the edges in G514

and in addition, each variable in level i having a directed edge to each variable in all levels below515

level i. All such edges contribute to the SHD score while still obeying the causal ordering in G.516

This number will be equal to
N−1∑
i=1

(ni ×
N∑

j=i+1

nj) − |E|. The quantity
N−1∑
i=1

(ni ×
N∑

j=i+1

nj) is the517

number of edges possible from each node to the every other node in the levels below it. We need518

to subtract the number of existing edges in E to count the newly added edges that contribute to the519

SHD score. Now, we can remove some of the edges Xi → Xj from Ĝ such that Xi → Xj is in G520

while still leading to same causal ordering of variables. This leads to increased SHD score due to521

missing edges in Ĝ. Since it will only increase the SHD score, we ignore such corner cases.522

B ADDITIONAL RESULTS523

Table A1 shows the results of various prompt strategies and their improvements over no-prior meth-524

ods.525
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Ours Ours Ours Ours
Dataset PC CaMML (CoT) (CoT) (Triplet Pairwise) (Triplet Pairwise)

(PC+LLM) (CaMML+LLM) (PC+LLM) (CaMML+LLM)

Earthquake 0.30±0.44 2.00±0.00 0.00±0.00 2.75±0.43 0.2±0.44 0.00±0.00
Cancer 0.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Survey 0.50±0.00 3.33±0.94 0.00±0.00 3.33±0.94 0.00±0.00 2.66±0.94
Asia 2.33±0.59 1.85±0.58 0.00±0.00 0.97±0.62 1.00±0.00 3.39±0.62

Asia-M 2.00±0.00 1.00±0.00 0.00±0.00 1.71±0.45 0.00±0.00 1.71±0.45

N
=

25
0

Child 8.16± 1.58 3.00±0.00 4.70±1.34 3.53±0.45 8.00±3.17 4.00±0.00
Neuropathic 3.25±0.00 10.4±1.95 1.00±0.00 8.00±0.00 0.00±0.00 12.63±1.92

Earthquake 0.85±0.65 0.00±0.00 0.4±0.89 2.60±0.48 1.00±0.00 0.00±0.00
Cancer 0.00±0.00 3.00±0.00 0.00±0.00 1.00±0.00 0.00±0.00 0.00±0.00
Survey 1.75±0.00 3.39±0.08 1.00±0.00 3.33±0.94 0.60±0.00 2.66±0.94
Asia 3.00±0.00 3.81±0.39 1.00±0.00 0.97±0.62 0.00±0.00 3.28±0.64

Asia-M 2.00±0.00 2.00±0.00 1.00±0.00 0.17±0.45 1.00±0.00 1.04±0.20

N
=

50
0

Child 9.79±1.17 2.00±0.00 4.60±1.34 2.00±0.00 9.20±2.16 3.00±0.00
Neuropathic 7.50±0.00 5.32±0.57 9.00±0.00 8.90±0.00 9.00±0.00 12.1±1.56

Earthquake 0.80±0.57 0.00±0.00 0.20±0.44 2.00±0.00 1.40±1.31 0.00±0.00
Cancer 0.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Survey 1.00±0.00 2.71±0.27 1.00±0.00 2.83±0.00 1.00±0.00 2.16±0.74
Asia 3.09±1.05 1.75±0.43 1.75±0.95 0.97±0.62 3.00±0.00 1.78±0.41

Asia-M 2.50±0.00 2.04±0.51 2.00±0.00 0.65±0.47 1.00±0.00 0.65±0.47

N
=

10
00

Child 9.61±1.07 2.00±0.00 8.00±0.00 2.00±0.40 6.6±1.14 2.83±0.00
Neuropathic - 5.54±0.75 - 6.00±0.00 - 4.00±0.00
Earthquake 0.30±0.67 0.80±0.97 0.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00

Cancer 0.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Survey 2.00±0.00 3.33±0.69 2.00±0.00 2.60±0.00 2.00±0.00 1.80±0.83
Asia 3.05±0.94 1.75±0.43 2.80±1.30 0.97±0.62 0.00±0.00 1.78±0.41

Asia-M 1.00±0.00 1.68±0.46 0.20±0.44 0.00±0.00 2.00±0.00 1.00±0.00

N
=

50
00

Child 8.42±0.75 3.00±0.00 7.00±0.00 3.00±0.00 7.4±1.51 1.00±0.00
Neuropathic 9.00±0.00 4.20±0.96 9.00±0.00 3.00±0.00 9.00±0.00 3.31±0.00

Earthquake 0.00±0.00 0.40±0.48 0.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00
Cancer 0.00±0.00 2.00±0.00 0.60±0.80 0.00±0.00 0.00±0.00 0.00±0.00
Survey 2.00±0.00 3.60±1.35 2.00±0.00 1.83±0.00 2.00±0.00 1.08±0.64
Asia 1.95±0.41 1.40±0.48 1.20±0.83 0.34±0.47 0.00±0.00 1.78±0.41

Asia-M 1.75±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 1.00±0.00

N
=

10
00

0

Child 7.67±0.65 2.80±0.84 4.66±3.05 1.00±0.00 5.80±1.48 1.00±0.00
Neuropathic 10.00±0.00 3.00±0.00 - 2.39±0.48 10.00±0.00 1.00±0.00

Table A1: Dtop metric results. Comparison with various prompting strategies. Neuropathic sub-
graph for 1k samples return cyclic graphs in the MEC. Using LLM CoT prior with Neuropathic 10k
samples, orients the undirected edges to create cyclic graphs
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B.1 LLMS USED IN POST PROCESSING FOR GRAPH DISCOVERY526

We conducted some experiments where we utilised discovery algorithms like PC for creating skele-527

tons of the graph and employed LLMs for orienting the undirected edges. The idea was to utilise528

LLMs ability to correctly estimate the causal direction while leveraging PC algorithm’s ability to529

give a skeleton which could be oriented in a post processing setup. We saw that LLM ended up530

giving improved results as compared to PC alone.531

1000 samples

Context Base prompt Past iteration Markov Blanket PC
orientations (Avg. over MEC)

Dtop 8.0 5.3 6.6 9.61
SHD 14.33 12.66 14.0 17.0

10000 samples

Dtop 6.33 9.66 6.0 7.67
SHD 9.0 13.33 8.33 12.0

Table A2: PC + LLM results where LLM is used to orient the undirected edges of the skeleton PC
returns over different data sample sizes. We show how LLMs can be used in a post processing setup
for edge orientation besides having the capability of acting as a strong prior for different discovery
algorithms.

Dataset Number of Number of Description
Nodes Edges (used as a context)

Asia 8 8 Model the possible respiratory problems
someone can have who has recently visited
Asia and is experiencing shortness of breath

Cancer 5 4 Model the relation between various variables
responsible for causing Cancer and its possible
outcomes

Earthquake 5 5 Model factors influencing the probability of a burglary

Survey 6 6 Model a hypothetical survey whose aim is to investigate
the usage patterns of different means of transport

Child 20 25 Model congenital heart disease in babies

Neuropathic Pain
Diagnosis (subgraph) 22 25 For neuropathic pain diagnosis

Table A3: Overview of the datasets used.
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C CAUSAL GRAPHS USED IN EXPERIMENTS532

Figures A1-A5 show the causal graphs and details we considered from BNLearn repository (Scutari533

& Denis, 2014).534

Figure A1: Earthquake Bayesian network. Abbreviations/Descriptions: Burglary: burglar entering, Earth-
quake: earthquake hitting, Alarm: home alarm going off in a house, JohnCalls: first neighbor to call to inform
the alarm sound, Marycalls: second neighbor to call to inform the alarm sound.

Figure A2: Cancer Bayesian network. Abbreviations/Descriptions: Pollution: exposure to pollutants, Smoker:
smoking habit, Cancer: Cancer, Dyspnoea: Dyspnoea, Xray: getting positive xray result.
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Figure A3: Survey Bayesian network. Abbreviations: A=Age/Age of people using transport, S=Sex/male
or female, E=Education/up to high school or university degree, O=Occupation/employee or self-employed,
R=Residence/the size of the city the individual lives in, recorded as either small or big, T=Travel/the means of
transport favoured by the individual.

Figure A4: Asia Bayesian network. Abbreviations/Descriptions: asia=visit to Asia/visiting Asian countries
with high exposure to pollutants, smoke=smoking habit, tub=tuberculosis, lung=lung cancer, either=either
tuberculosis or lung cancer, bronc=bronchitis, dysp=dyspnoea, xray=getting positve xray result.
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Figure A5: Child Bayesian network. Abbreviations: BirthAsphyxia: Lack of oxygen to the blood during
the infant’s birth, HypDistrib: Low oxygen areas equally distributed around the body, HypoxiaInO2: Hypoxia
when breathing oxygen, CO2: Level of carbon dioxide in the body, ChestXray: Having a chest x-ray, Grunting:
Grunting in infants, LVHreport: Report of having left ventricular hypertrophy, LowerBodyO2: Level of oxygen
in the lower body, RUQO2: Level of oxygen in the right upper quadricep muscle, CO2Report: A document
reporting high levels of CO2 levels in blood, XrayReport: Report of having a chest x-ray, Disease: Presence
of an illness, GruntingReport: Report of infant grunting, Age: Age of infant at disease presentation, LVH:
Thickening of the left ventricle, DuctFlow: Blood flow across the ductus arteriosus, CardiacMixing: Mixing of
oxygenated and deoxygenated blood, LungParench: The state of the blood vessels in the lungs, LungFlow: Low
blood flow in the lungs, Sick: Presence of an illness
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Figure A6: For Neuropathic dataset, we consider a sub-graph induced
by one of the root nodes, containing the following 22 nodes and corre-
sponding edges taken from https://observablehq.com/@turuibo/
the-complete-causal-graph-of-neuropathic-pain-diagnosis: ‘right C7’,
‘right elbow trouble’, ‘left shoulder trouble’, ‘left bend of arm problem’, ’right shoulder trouble’,
‘right hand problem’, ‘left medival elbow problems’, ‘right finger trouble’, ‘left neck problems’,
‘left wrist problems’, ’left shoulder problem’, ‘right neck’, ‘right wrist problem’, ‘right shoulder
problem’, ‘discoligment injury C6 C7’, ‘left hand problem’, ‘left C7’, ‘right arm band’, ‘left lower
arm disorders’, ‘neck pain’, ‘left finger trouble’, ‘left arm’. We did not use descriptions for the
nodes of Neuropathic graph.
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D VARIOUS PROMPT STRATEGIES STUDIED535

Question: For a causal graph used to model relationship of various factors and outcomes related to
cancer with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’],
Which cause-and-effect relationship is more likely between nodes ’smoker’ and ’cancer’?

A. changing the state of node ’smoker’ causally effects a change in another node ’cancer’.

B. changing the state of node ’cancer’ causally effects a change in another node ’smoker’.

C. There is no causal relation between the nodes ’cancer’ and ’smoker’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Answer: The causal effect of "smoker" directing to "cancer" is based on the strong evidence from epi-
demiological studies linking smoking to an increased risk of developing cancer. Smoking introduces
harmful substances into the respiratory system, leading to cellular damage and mutation, which sig-
nificantly raises the likelihood of cancer development in the lungs or respiratory tract, subsequently
impacting the occurrence of respiratory problems like shortness of breath. Therefore answer is <An-
swer>A</Answer>

Question: For a causal graph used to model relationship of various factors and outcomes related to
cancer with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which cause-
and-effect relationship is more likely between nodes ’xray’ and ’dyspnoea’?

A. changing the state of node ’xray’ causally effects a change in another node ’dyspnoea’.

B. changing the state of node ’dyspnoea’ causally effects a change in another node ’xray’.

C. There is no causal relation between the nodes ’xray’ and ’dyspnoea’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Answer: Reasoning behind the lack of causal relation between X-ray and dyspnoea is that X-ray and
dyspnoea are both effects of having cancer, but they do not directly cause or affect each other. X-ray is
a diagnostic test that can help detect cancer in the lungs or other organs, while dyspnoea is a symptom
of cancer that involves feeling short of breath. Therefore, X-ray and dyspnoea are not causally related,
but they are both associated with cancer. Therefore answer is <Answer>C</Answer>

Question: For a causal graph used to model relationship of various factors and outcomes related to
cancer with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which cause-
and-effect relationship is more likely between nodes ’xray’ and ’cancer’?

A. changing the state of node ’xray’ causally effects a change in another node ’cancer’.

B. changing the state of node ’cancer’ causally effects a change in another node ’xray’.

C. There is no causal relation between the nodes ’xray’ and ’cancer’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Table A4: Chain of Thought Prompt
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Answer: The causal effect of cancer on X-ray is that X-rays are often used to diagnose or detect
cancer in different parts of the body, such as the bones, lungs, breasts, or kidneys123. X-rays use low
doses of radiation to create pictures of the inside of the body and show the presence, size, and location
of tumors. X-rays can also help monitor the response to treatment or check for signs of recurrence.
Therefore, having cancer may increase the likelihood of getting an X-ray as part of the diagnostic
process or follow-up care. Therefore answer is <Answer>B</Answer>

Question: For a causal graph used to model relationship of various factors and outcomes related to
cancer with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which
cause-and-effect relationship is more likely between nodes ’pollution’ and ’cancer’?

A. changing the state of node ’pollution’ causally effects a change in another node ’cancer’.

B. changing the state of node ’cancer’ causally effects a change in another node ’pollution’.

C. There is no causal relation between the nodes ’pollution’ and ’cancer’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer
in the following format: <Answer>A/B/C</Answer>. It is very important that you output the
final Causal graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be
processed.

Answer: The causal effect of pollution on cancer is that air pollution contains carcinogens (cancer-
causing substances) that may be absorbed into the body when inhaled and damage the DNA of cells.
Another possible reasoning is that particulate matter (tiny dust-like particles) in air pollution may cause
physical damage to the cells in the lungs, leading to inflammation and oxidative stress and eventually
cell mutations. A third possible reasoning is that air pollution may create an inflamed environment in
the lungs that encourages the proliferation of cells with existing cancer-driving mutations. These are
some of the hypotheses that researchers have proposed to explain how air pollution may cause cancer,
but more studies are needed to confirm them. Therefore answer is <Answer>A</Answer>

Question: For a causal graph used to model relationship of various factors and outcomes related to
cancer with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which
cause-and-effect relationship is more likely between nodes ’pollution’ and ’smoker’?

A. changing the state of node ’pollution’ causally effects a change in another node ’smoker’.

B. changing the state of node ’smoker’ causally effects a change in another node ’pollution’.

C. There is no causal relation between the nodes ’pollution’ and ’smoker’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer
in the following format: <Answer>A/B/C</Answer>. It is very important that you output the
final Causal graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be
processed.

Answer: Reason behind the lack of causal relation between pollution and smoker is that pollution
and smoking are both independent risk factors for respiratory problems, but they do not directly cause or
affect each other. Pollution and smoking both contribute to air pollution, which can harm the health of
people and the environment. However, pollution is mainly caused by human activities such as burning
fossil fuels, deforestation, or industrial processes, while smoking is a personal choice that involves
inhaling tobacco smoke. Therefore, pollution and smoker are not causally related, but they are both
associated with respiratory problems. Therefore answer is <Answer>C</Answer>.

Table A5: Chain of Thought Prompt (continued..)
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Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Family Disease’ and
’Gene’?

A. changing the state of node ’Family Disease’ causally effects a change in another node ’Gene’.

B. changing the state of node ’Gene’ causally effects a change in another node ’Family Disease’.

C. There is no causal relation between the nodes ’Family Disease’ and ’Gene’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Answer: Reason behind the causal effect of family disease on gene is that family disease is a term that
refers to diseases or health conditions that run in the family, meaning that they are influenced by genetic
factors. Gene is a term that refers to the basic unit of heredity that carries information for a specific trait
or function. Family disease can affect gene by altering the type or frequency of genes that are inherited
by the offspring from their parents. For example, some family diseases are caused by deterministic
genes, which are genes that guarantee the development of a disease if they are present in a person’s
genome. Other family diseases are influenced by risk genes, which are genes that increase the likelihood
of developing a disease but do not guarantee it. Therefore, family disease can causally direct to gene by
changing the genetic makeup of a person or a population. Therefore answer is <Answer>A</Answer>.

Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Coronary Heart Dis-
ease’ and ’Gene’?

A. changing the state of node ’Coronary Heart Disease’ causally effects a change in another node
’Gene’.

B. changing the state of node ’Gene’ causally effects a change in another node ’Coronary Heart Dis-
ease’.

C. There is no causal relation between the nodes ’Coronary Heart Disease’ and ’Gene’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Answer: Possible reasoning behind the causal effect of gene on coronary heart disease is that gene is
a term that refers to the basic unit of heredity that carries information for a specific trait or function.
Gene can affect coronary heart disease by influencing the structure and function of the blood vessels,
the metabolism and transport of lipids (fats) in the blood, the inflammation and clotting processes, or
the response to environmental factors such as smoking or diet. For example, some genes code for
proteins that regulate the cell cycle and growth of the cells that line the arteries, which can affect their
susceptibility to damage or plaque formation. Other genes code for proteins that control the synthesis
and clearance of cholesterol or other lipids, which can affect their levels and deposition in the arteries.
Therefore, gene can causally direct to coronary heart disease by modifying the biological pathways that
contribute to the development or progression of the disease. Therefore answer is <Answer>B</Answer>

Table A6: Chain of Thought Prompt (continued..)
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Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Blood Pressure’ and
’Smoking’?

A. changing the state of node ’Blood Pressure’ causally effects a change in another node ’Smoking’.

B. changing the state of node ’Smoking’ causally effects a change in another node ’Blood Pressure’.

C. There is no causal relation between the nodes ’Blood Pressure’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Answer: Possible reasoning behind the causal effect of smoking on blood pressure is that smoking is
a habit that involves inhaling tobacco smoke, which contains nicotine and other harmful chemicals.
Smoking can affect blood pressure by activating the sympathetic nervous system (SNS), which is the
part of the nervous system that controls the body’s response to stress or danger. When the SNS is
activated, it releases hormones such as adrenaline and noradrenaline, which cause the heart to beat faster
and harder, and the blood vessels to constrict. This results in a temporary increase in blood pressure,
which can last for 15 to 20 minutes after each cigarette. Therefore, smoking can causally direct to blood
pressure by stimulating the SNS and increasing the cardiac output and vascular resistance. Therefore
answer is <Answer>B</Answer>.

Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Headache’ and ’Smok-
ing’?

A. changing the state of node ’Headache’ causally effects a change in another node ’Smoking’.

B. changing the state of node ’Smoking’ causally effects a change in another node ’Headache’.

C. There is no causal relation between the nodes ’Headache’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Answer: One possible reasoning behind the lack of causal relation between headache and smoking is
that headache and smoking are both associated with various health conditions, but they do not directly
cause or affect each other12. Headache is a term that refers to pain or discomfort in the head, scalp, or
neck, which can have many possible causes, such as stress, dehydration, infection, injury, or medication.
Smoking is a habit that involves inhaling tobacco smoke, which contains nicotine and other harmful
chemicals, which can increase the risk of diseases such as cancer, heart disease, stroke, and lung disease.
Therefore, headache and smoking are not causally related, but they are both linked to different health
problems. Therefore the answer is <Answer>C</Answer>

Table A7: Chain of Thought Prompt (continued..)
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Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Headache’ and ’Smok-
ing’?

A. changing the state of node ’Headache’ causally effects a change in another node ’Smoking’.

B. changing the state of node ’Smoking’ causally effects a change in another node ’Headache’.

C. There is no causal relation between the nodes ’Headache’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Answer: One possible reasoning behind the lack of causal relation between headache and smoking is
that headache and smoking are both associated with various health conditions, but they do not directly
cause or affect each other. Headache is a term that refers to pain or discomfort in the head, scalp, or
neck, which can have many possible causes, such as stress, dehydration, infection, injury, or medication.
Smoking is a habit that involves inhaling tobacco smoke, which contains nicotine and other harmful
chemicals, which can increase the risk of diseases such as cancer, heart disease, stroke, and lung disease.
Therefore, headache and smoking are not causally related, but they are both linked to different health
problems. Therefore the answer is <Answer>C</Answer>

Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Coronary Heart Dis-
ease’ and ’Smoking’?

A. changing the state of node ’Smoking’ causally effects a change in another node ’Coronary Heart
Disease’.

B. changing the state of node ’Coronary Heart Disease’ causally effects a change in another node
’Smoking’.

C. There is no causal relation between the nodes ’Coronary Heart Disease’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Answer: Possible reasoning behind the causal effect of smoking on coronary heart disease is smoking
damages the heart and blood vessels by raising triglycerides, lowering HDL, increasing blood clotting,
and impairing blood flow to the heart. This can lead to plaque buildup, heart attacks, and death. There-
fore answer is <Answer>A</Answer>.

Question: For a causal graph used for context with the following nodes: nodes, Which cause-and-effect
relationship is more likely between nodes X and Y?

A. changing the state of node X causally effects a change in another node Y.

B. changing the state of node Y causally effects a change in another node X.

C. There is no causal relation between the nodes X and Y.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: <Answer>A/B/C</Answer>. It is very important that you output the final Causal
graph within the tags like <Answer>A/B/C</Answer> otherwise your answer will not be processed.

Table A8: Chain of Thought Prompt (continued..)
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Which cause-and-effect relationship is more likely?

A. changing the state of node which says X causally effects a change in another node which
says Y.

B. changing the state of node which says Y causally effects a change in another node which
says X.

C. There is no causal relationship between node X and Y.

Make sure to first output a factually grounded reasoning for your answer. X and Y are nodes
of a Causal Graph. The causal graph is sparse and acyclic in nature. So option C could be
chosen if there is some uncertainity about causal relationship between X and Y.

First give your reasoning and after that please make sure to provide your final answer within
the tags <Answer>A/B/C</Answer>.
It is very important that you output your final answer between the tags like <An-
swer>A/B/C</Answer> otherwise your response will not be processed.

Table A9: Base prompt

For the nodes X and Y which form an edge in a Causal Graph, you have to identify which
cause-and-effect relationship is more likely between the nodes of the edge. This will be used
to rearrange the nodes in the edge to create a directed edge which accounts for causal relation
from one node to another in the edge.

A. changing the state of node X causally affects a change in another node Y.

B. changing the state of node Y causally affects a change in another node X.

C. There is no causal relation between the nodes X and Y.

You can also take the edges from the skeleton which have been rearranged to create a directed
edge to account for causal relationship between the nodes: directed_edges.
Make sure to first output a factually grounded reasoning for your answer. First give your
reasoning and after that please make sure to provide your final answer within the tags <An-
swer>A/B/C</Answer>.
It is very important that you output your final answer between the tags like <An-
swer>A/B/C</Answer> otherwise your response will not be processed.

Table A10: Iterative orientation prompt
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For the following undirected edge in a Causal Graph made of nodes X and Y, you have to
identify which cause-and-effect relationship is more likely between the nodes of the edge.
This will be used to rearrange the nodes in the edge to create a directed edge which accounts
for causal relation from one node to another in the edge.

A. changing the state of node X causally effects a change in another node Y.

B. changing the state of node Y causally effects a change in another node X.

C. There is no causal relation between the nodes X and Y.

You can also take the other directed edges of nodes X: X_edges and Y: Y_edges of the Causal
graph as context to redirect the edge to account for causal effect.
Make sure to first output a factually grounded reasoning for your answer. First give your
reasoning and after that please make sure to provide your final answer within the tags <An-
swer>A/B/C</Answer>.
It is very important that you output your final answer between the tags like <An-
swer>A/B/C</Answer> otherwise your response will not be processed.

Table A11: Markov Blanket prompt

Identify the causal relationships between the given variables and create a directed acyclic graph
to {context}. Make sure to give a reasoning for your answer and then output the directed graph
in the form of a list of tuples, where each tuple is a directed edge. The desired output should
be in the following form: [(‘A’,‘B’), (‘B’,‘C’)] where first tuple represents a directed edge from
Node ‘A’ to Node ‘B’, second tuple represents a directed edge from Node ‘B’ to Node ‘C’and
so on.

If a node should not form any causal relationship with other nodes, then you can add it as an
isolated node of the graph by adding it seperately. For example, if ‘C’ should be an isolated
node in a graph with nodes ‘A’, ‘B’, ‘C’, then the final DAG representation should be like
[(‘A’,‘B’), (‘C’)].
Use the description about the node provided with the nodes in brackets to form a better decision
about the causal direction orientation between the nodes.

It is very important that you output the final Causal graph within the tags <An-
swer></Answer>otherwise your answer will not be processed.

Example:
Input: Nodes: [‘A’, ‘B’, ‘C’, ‘D’];
Description of Nodes: [(description of Node A), (description of Node B), (description of Node
C), (description of Node D)]
Output: <Answer>[(‘A’,‘B’),(‘C’,‘D’)]</Answer>
Question:
Input: Nodes: {Triplet Nodes Input}
Description of Nodes: {Description of Each Node from the Triplet}
Output:

Table A12: The triplet prompt template, which includes a concise context of the graph, the input
triplet nodes and their respective descriptions. As an example, for the Child graph, the context is
"to model congenital heart disease in babies", the three nodes may be (‘HypoxiaInO2’, ‘Grunting’,
‘GruntingReport’); and their node descriptions are ["hypoxia when breathing oxygen", "grunting in
infants", "report of infant grunting"] respectively.
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Input: (‘HypDistrib’, ‘LowerBodyO2’)

Answer: Low oxygen areas equally distributed around the body can affect the level of oxygen in the
lower body by reducing the amount of oxygen available for circulation. Therefore, the answer is <An-
swer>A</Answer>.

Input: (‘Disease’, ‘LungFlow’)

Answer: Infant methemoglobinemia is a condition where the blood is unable to carry enough oxygen,
which can lead to low blood flow in the lungs. Therefore, the answer is <Answer>A</Answer>.

Input: (‘CardiacMixing’, ‘HypDistrib’)

Answer: Mixing of oxygenated and deoxygenated blood is a common cause of congenital heart disease
in babies. This mixing can occur due to structural defects in the heart, such as a hole between the heart
chambers or abnormal connections between the blood vessels. This mixing can lead to low oxygen
areas equally distributed around the body. Therefore, the answer is <Answer>B</Answer>.

Table A13: Example LLM (GPT-3.5-turbo) outputs for estimating the causal direction between a
given pair of nodes (with their descriptions) using the CoT Prompt (refer Table A4 in Appendix for
the prompt). Given a pair (X,Y), Option A refers to X causing Y, option B refers to Y causing X,
and option C refers to no causal relationship between the variables. The pairs shown are from the
Child graph from BNLearn repository (Scutari & Denis, 2014), that is used for modeling Congenital
Heart Disease in infants.

Input: (‘Right C7’,‘Discoligment injury C6-C7’)

Answer: Discoligment injury C6-C7 can cause compression of the nerve roots that exit the
spinal cord at the C7 level, which can lead to symptoms such as pain, numbness, and weak-
ness in the right C7 dermatome. Therefore, the answer is <Answer>B</Answer>.

Input: (‘Right C7’, ‘Left C7’)

Answer: Right C7 and left C7 are both parts of the cervical spine and are not known to
directly influence each other. Therefore, the answer is <Answer>C</Answer>.

Input: (‘Right elbow trouble’, ‘Left shoulder trouble’)

Answer: There is no direct causal relationship between right elbow trouble and left shoulder
trouble. They may both be symptoms of a larger underlying condition, but they do not directly
cause or affect each other. Therefore the answer is <Answer>C</Answer>.

Table A14: Example LLM (GPT-3.5-turbo) reasoning outputs for estimating causal directionality
between different pairs of nodes using CoT Prompt (refer Table A4 for the prompt) for Neuropathic
subgraph (used for pain diagnosis).
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Dataset Samples LLM Ground Truth PC (Average over MEC)

250 1.00±0.00 0.00±0.00 2.00±0.00
Asia 1000 3.00±0.00 2.00±0.00 3.00±0.00

10000 3.00±0.00 3.00±0.00 3.00±0.00

250 5.00±0.00 5.00±0.00 6.50±0.00
Child 1000 6.00±0.00 6.00±0.00 8.43±0.00

10000 9.00±0.00 9.00±0.00 9.75±0.00

Table A15: Comparing Dtop of final graph using LLM order vs Ground truth order as prior to PC
algorithm for Child and Asia graph, averaged over 4 runs

Dataset Samples ϵATE(S1) ϵATE(S2) ϵATE(S3) ∆12 ∆13

250 0.70±0.40 0.70±0.39 0.69±0.39 0.00±0.00 0.00±0.00
500 0.64±0.39 0.64±0.39 0.64±0.38 0.00±0.00 0.00±0.00

Asia 1000 0.59±0.32 0.59±0.32 0.59±0.32 0.00±0.00 0.00±0.00
5000 0.59±0.30 0.59±0.30 0.59±0.29 0.00±0.00 0.00±0.00

10000 0.49±0.00 0.49±0.00 0.49±0.00 0.00±0.00 0.00±0.00

Table A16: Results on Asia dataset. Here we test the difference in the estimated causal effect
of lung on dyspnoea when the causal effect is estimated using the backdoor set S1 = {smoke} vs.
the causal effect estimated when all variables in two topological orders as backdoor sets: S2 =
{asia, smoke}, S2= {asia, tub, smoke}. ∆12,∆13 refers to the absolute difference between the
pairs ϵATE(S1), ϵATE(S2) and ϵATE(S1), ϵATE(S3) respectively. From the last two columns, we
observe that using the variables that come before the treatment node in a topological order as a
backdoor set does not result in the deviation of causal effects from the ground truth effects.
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