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Figure 1. Given streaming monocular RGB inputs, our EmbodiedOcc conducts embodied occupancy prediction in an online manner
for indoor scenes. Different from existing methods which focus on offline perception from monocular images, we focus on the scene-
level occupancy prediction from embodied observations. We initialize the scene to be explored with uniform 3D semantic Gaussians and
progressively update them based on new observations, similar to how humans explore unknown scenes.

Abstract

3D occupancy prediction provides a comprehensive de-
scription of the surrounding scenes and has become an es-
sential task for 3D perception. Most existing methods fo-
cus on offline perception from one or a few views and can-
not be applied to embodied agents that demand to gradu-
ally perceive the scene through progressive embodied ex-
ploration. In this paper, we formulate an embodied 3D oc-
cupancy prediction task to target this practical scenario and
propose a Gaussian-based EmbodiedOcc framework to ac-
complish it. We initialize the global scene with uniform 3D
semantic Gaussians and progressively update local regions
observed by the embodied agent. For each update, we ex-
tract semantic and structural features from the observed im-
age and efficiently incorporate them via deformable cross-
attention to refine the regional Gaussians. Finally, we em-
ploy Gaussian-to-voxel splatting to obtain the global 3D
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occupancy from the updated 3D Gaussians. Our Embod-
iedOcc assumes an unknown (i.e., uniformly distributed)
environment and maintains an explicit global memory of it
with 3D Gaussians. It gradually gains knowledge through
the local refinement of regional Gaussians, which is con-
sistent with how humans understand new scenes through
embodied exploration. We reorganize an EmbodiedOcc-
ScanNet benchmark based on local annotations to facili-
tate the evaluation of the embodied 3D occupancy predic-
tion task. Our EmbodiedOcc outperforms existing methods
by a large margin and accomplishes the embodied occu-
pancy prediction with high accuracy and efficiency. Code:
https://github.com/YkiWu/EmbodiedOcc.

1. Introduction
With the rapid development of embodied intelligence and
active agents [14, 17, 32], 3D scene perception [30, 34, 41,
42] has become a crucial task in computer vision. Intel-
ligent agents first perceive their surrounding environments
and then make decisions based on the perception results.
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Due to the low costs of camera sensors, vision-based 3D
occupancy prediction is gaining increasing popularity and
produces a comprehensive understanding of both semantics
and structures of the scene [2, 11, 13, 46, 56].

While vision-based 3D occupancy prediction has made
significant progress in outdoor driving scenes [11, 13, 22,
40, 43, 45, 46, 52, 58, 59], the application to indoor scenar-
ios is still challenging due to the diversity and complexity
of indoor scenes. Most existing methods [2, 54, 56] still fo-
cus on local 3D occupancy prediction by integrating seman-
tic and depth information extracted from the visual inputs.
However, different from outdoor scenarios, it is important to
obtain a global understanding of the room for indoor scenar-
ios, as it usually requires multiple traversals for embodied
agents. Also, it is more practical to progressively explore
and update the global occupancy of the 3D scene in an on-
line manner from embodied vision-based observations with
different positions and perspectives.

To bridge this gap, we formulate a new embodied 3D
occupancy prediction task to evaluate the ability to progres-
sively explore an unknown scene using only visual inputs.
We propose an EmbodiedOcc framework based on Gaus-
sian memories to accomplish this task, considering the ex-
plicity and structural nature of 3D Gaussians. We initialize
the global scene with uniform 3D semantic Gaussians and
progressively update the Gaussians within the field of view
observed by the agent. Throughout the exploration pro-
cess, we maintain an explicit global memory of 3D Gaus-
sians as the global understanding and derive the global 3D
occupancy with Gaussian-to-voxel splatting [13]. Specifi-
cally, we propose a structure-aware local refinement mod-
ule to update the relevant Gaussians within the current frus-
tum. We employs a simple yet effective depth-aware branch
to introduce explicit structural information for each Gaus-
sian, ensuring the update of these Gaussians to better align
with the global representation. During the continuous ex-
ploration, we read out Gaussians within the current frus-
tum from the memory as inputs to the local module for re-
finement. We assign high confidence values for updated
Gaussians and use them to reweight information from the
memory and the current input. This ensures the consistency
of the 3D representation during the fusion and update pro-
cess. We reorganize an EmbodiedOcc-ScanNet benchmark
for the embodied 3D occupancy prediction task based on
the locally annotated Occ-ScanNet dataset [3, 47, 56]. Ex-
periments show that our EmbodiedOcc outperforms exist-
ing methods by a large margin and accomplishes embodied
occupancy prediction with high accuracy and efficiency.

2. Related Work
3D Occupancy Prediction. Benefiting from its compact-
ness and versatility, 3D occupancy prediction based on
multi-view images or additional 3D information [1, 11–

13, 21, 37, 46] has gained great popularity over the last few
years. MonoScene [2] was the first to derive 3D occupancy
prediction from a single image, propelling the original 3D
Semantic Scene Completion (SSC) [4, 8, 18, 19, 33, 37] into
a more challenging stage with vision-only inputs and more
universal scenarios (both indoor and outdoor scenes). Sub-
sequent works [54, 56] further focused on addressing the
depth ambiguity in this monocular setting. However, most
of these efforts were confined to local and offline predic-
tion. SCFusion [47] proposed an incremental framework
based on RGB-D inputs. EmbodiedScan [28, 44] intro-
duced an offline global prediction framework using multi-
modal sequential inputs. Differently, the proposed embod-
ied 3D occupancy prediction aims at online prediction from
RGB-only inputs, which is more challenging and practical.

Online 3D Scene Perception. Accurate comprehension
of 3D scenes is an indispensable capability for embodied
agents, such as 3D occupancy prediction [2, 56] and ob-
ject detection [16, 31, 42]. Most existing works on in-
door 3D scene perception [9, 30, 41, 55] take pre-acquired
and reconstructed 3D data as inputs and perceive the scene
in an offline manner. To achieve online perception, On-
line3D [49] introduced an adapter-based model that equips
mainstream offline frameworks with the competence to per-
form online scene perception, enabling the process of real-
time RGB-D sequences. However, this framework still re-
quires depth information as inputs and mainly targets point
segmentation and 3D detection. Differently, we target on-
line vision-based 3D occupancy prediction which can pro-
vide a more comprehensive understanding of the scene.

3D Gaussian Splatting. 3D Gaussian Splatting [15]
uses 3D Gaussians to model a 3D scene and benefits from
fast speed and high quality in the field of neural rendering.
The physical characteristics of 3D Gaussians and the splat-
based rasterization also motivated rapid advancements in re-
search fields such as scene editing [10, 24, 29, 36], dynamic
scenarios [7, 27, 38, 48, 53], and SLAM [5, 20, 50, 57].
GaussianFormer [13] pioneers the application of 3D Gaus-
sians in outdoor 3D occupancy prediction and uses features
from multi-view images to update 3D Gaussians, which
can be converted into 3D occupancy prediction through a
Gaussian-to-voxel splatting module. However, it is still un-
clear how to employ 3D Gaussians for online global indoor
scene understanding from local observations. We achieve
this by designing a Gaussian memory mechanism and pro-
gressively updating it with structure-aware interaction.

3. Proposed Approach

3.1. Embodied 3D Occupancy Prediction

Conventional methods in indoor scenarios for occupancy
prediction accepted RGB-D as inputs to predict the seman-
tic occupancy of a 3D scene which requires depth sensors.
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Figure 2. Framework of our EmbodiedOcc for embodied 3D occupancy prediction. We maintain an explicit global memory of 3D
Gaussians during the exploration of the current scene. For each update, the Gaussians within the current frustum are taken from the memory
and updated using semantic and structural features extracted from the monocular RGB input. Each Gaussian has a confidence value to
integrate information from both the memory and the current input. Then we detach and put these updated Gaussians back into the memory.
We can obtain the current 3D occupancy prediction using a Gaussian-to-voxel splatting module whenever we need.

However, we humans are capable of effortlessly processing
the visual information from a single view to obtain 3D per-
ception of our surroundings. Recent methods begin to con-
sider endowing models with the same competence, which
accept a monocular RGB image as input and derive a 3D
occupancy prediction within the current frustum:

Ymono = Fmono(Imono), (1)

where Fmono is the proposed monocular prediction model,
Imono ∈ RH×W×3 and Ymono ∈ RX×Y×Z×C refer to the
monocular RGB input and the obtained 3D occupancy pre-
diction. X , Y , Z represent the dimensions of the local 3D
scene and C represents the total number of semantics.

This is only the initial step towards practical scenarios.
The essence of human intelligence is the capacity to ana-
lyze and respond immediately based on real-time percep-
tion of the surroundings. Correspondingly, superior embod-
ied agents are anticipated to process egocentrically gathered
real-time visual input to update the 3D occupancy predic-
tion of the current scene. This capability facilitates the exe-
cution of downstream tasks based on real-time perception.

Motivated by this, we propose an embodied 3D occu-
pancy prediction task in this paper. Let Xt = {x1, x2, ..., xt}
be an RGB sequence and the corresponding extrinsics col-
lected by the embodied agent up to the present, where
xt = (It,Mt), It ∈ RH×W×3,Mt ∈ R3×4. It is worth not-
ing that the variation in the subscripts merely represents the
change in the position and perspective of the agent when ex-
ploring the current scene continuously. Different subscripts
may correspond to similar positions and perspectives, indi-
cating that the agent has returned to a previously explored
location. In embodied occupancy prediction, re-exploration
of the same area should maintain global consistency and
even demonstrate improved performance, akin to we hu-

mans always possessing a more comprehensive understand-
ing of sights that have been encountered repeatedly.

We formulate the function of an embodied occupancy
prediction model as follows:

Yt = Fembodied(Yt−1, xt), (2)

where Fembodied is the embodied prediction model, Yt ∈
RXroom×Yroom×Zroom×C refers to the current occupancy
prediction of the whole scene (Y0 is the initialization).
Xroom, Yroom, Zroom denote the scene dimensions.

3.2. Local Refinement Module
Different from conventional methods that conducted fea-
ture integration in a voxelized space, we use a set of 3D
semantic Gaussians to represent an indoor scene [13]. In
this subsection, we will first explain our local refinement
module, which extracts semantic and structural features
from the monocular input and integrates them to update the
Gaussian-based representation of the current frustum.

Initialization. We first initialize a set of semantic Gaus-
sians to represent the current frustum. Each semantic Gaus-
sian G is represented by a vector comprising mean m ∈ R3,
scale s ∈ R3, rotation quaternion r ∈ R4, opacity o ∈ R,
and semantic logits c ∈ RC (C denotes the total num-
ber of semantic categories). We use an embedding layer
to lift each Gaussian vector G to its corresponding high-
dimensional feature vectors Q, and derive Q = {Qi ∈
Rm, i = 1, ..., N}, where m is the dimension of Qi and
N is the total number of the Gaussians.

Depth-Aware Branch. Due to the variable scales and
tight arrangements of indoor objects, depth ambiguity has
always been one of the core challenges limiting the perfor-
mance of indoor occupancy prediction models in monocular
settings. Previous work has consistently focused on how to
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Figure 3. Motivation of the depth-aware branch. Along a spe-
cific ray, Gaussians distributed in front of the true depth point are
likely to model the empty semantic (A). Gaussians distributed be-
hind the true depth point closely are likely to model valid seman-
tics (B). Gaussians that are distributed behind the true depth point
but are too far away require more information to guide their up-
dates (C). During the embodied exploration, the subsequent frames
can make up for this lack of information in the current frame.

better extract and utilize depth information from the input
image. We design a depth-aware branch to provide more ac-
curate and effective guidance for the update of 3D semantic
Gaussians in our local refinement module.

We first use a depth prediction network to obtain a rel-
atively accurate depth map Dmetric from input Imono . A
naive approach can explicitly utilize this depth informa-
tion when initializing the Gaussians, e.g., we can randomly
sample some points from the pseudo point cloud recovered
from the depth map and use these coordinates to initialize
the means of some Gaussians. Although providing direct
hints for the means of some Gaussians, this cannot exploit
the potential of the depth information. We design a sim-
ple yet effective depth-aware layer to accomplish this. We
still uniformly initialize a number of Gaussians within the
current frustum. For each Gaussian, we project its mean
m into the pixel coordinate system through the intrinsics
Kmono ∈ R3×3 and obtain the depth value d . The sampled
depth value d , along with the z-component z of the Gaus-
sian mean in the camera coordinate system, are fed into the
depth-aware layer, which is a multi-layer perceptron (MLP)
that outputs the depth-aware feature Qdepth for this Gaus-
sian. Then we add the depth-aware feature to the original
feature vector Q, injecting additional information into the
subsequent feature integration. In this way, depth informa-
tion not only affects the means of the Gaussians but also
promotes the update of other properties:

Qdepth = Mdepthaware((Dmetric(u, v), z),

Q̂ = {Q̂i, i = 1, ..., N |Q̂i = Qi +Qdepth
i },

(3)

where Mdepthaware is the depth-aware layer, (u, v) are
pixel coordinates of each Gaussian. We illustrate our depth-
aware branch in Figure 3.

Feature Integration and Gaussian Refinement. Fea-
ture integration in our local refinement module includes the

interactions among Gaussians as well as the interactions be-
tween image features and Gaussians. We voxelize the Gaus-
sian centers and conduct 3D sparse convolution on the gen-
erated grid to allow interactions among Gaussian vectors
Q̂. We project the Gaussian centers onto the image feature
map and use the deformable attention function to integrate
the queried features and the Gaussian vectors Q̂. After the
prior feature integration, these feature vectors with aggre-
gated information will be used to obtain the update amounts
∆G = (∆m,∆s,∆r,∆o,∆c) of each Gaussian. We use
the update amounts ∆G to refine the Gaussian properties:

Gnew = (∆m+m,∆s+s,∆r⊗r,∆o+o,∆c+c), (4)

where ⊗ refers to the special composition of quaternions.
We conduct the feature integration and the refinement of

Gaussians multiple times. After the final refinement, we use
a Gaussian-to-voxel splatting module [13] to obtain the final
occupancy within the frustum.

3.3. Gaussian Memory Updated Online
To explore unknown scenes, we humans continuously up-
date the objects within the scene and their relationships to
gradually construct a global scene memory. When revis-
iting this scene for further exploration, we use the visual
information to refine this memory. Inspired by this, we de-
sign an online framework (shown in Figure 2) and maintain
a Gaussian memory for global understanding.

Memory Initialization. Our local refinement module
initializes and updates Gaussians in the camera coordi-
nate system, as the extrinsics in indoor scenarios are con-
stantly changing, which will pose additional difficulties for
our local module. But in the final embodied framework,
we initialize the entire scene with uniform Gaussians in
the world coordinate system. For a novel scene to be ex-
plored, we have: Groom = {(Gi, γi), i = 1, ..., N |Gi =
(mi, si, ri,oi, ci), γi = 0, 1}, where N refers to the num-
ber of Gaussians to initialize this scene, mi and ri are the
means and rotation quaternions of these Gaussians in the
world coordinate system (si, oi and ci maintain consis-
tency between the world and camera coordinate systems).
We introduce an additional tag γ for all the Gaussians in
the memory. When initializing a novel scene, tags of these
Gaussians are set to 0. Every time we put some updated
Gaussians back into the memory, their tags are set to 1.

Memory Update. At the current step t, our embodied
occupancy prediction framework receives a posed visual in-
put xt = (It,Mt) to perform the update. During the current
update, we use a mask from coordinate system transforma-
tion to get all Gaussians Gt within the current frustum from
the memory. These Gaussians will interact and be refined
using a tailored confidence refinement module. Then we
detach these Gaussians and put them back into the memory.

Confidence Refinement. Apart from the initial update
for each scene which is akin to the local refinement, sub-
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sequent exploration involves the update of Gaussians from
the Gaussian memory, among which some have been well-
updated by previous frames (if we can derive an acceptable
local occupancy prediction from these Gaussians, we be-
lieve that they have been “well-updated”) and some still re-
main random. It is unreasonable to update these Gaussians
equally. For those Gaussians deemed well-updated, we only
need to refine them slightly based on the semantic and struc-
tural features extracted from the current image, which is ex-
actly the essence of maintaining the Gaussian memory. As
for those random Gaussians that have never been updated,
we can directly update them with a fresh perspective.

To elaborate, we generate a confidence value θ for each
Gaussian taken from the memory. For those having been
previously updated (γ = 1), we set their confidence values
to a certain value between 0 and 1, which means we will
integrate information from both the memory and the newly
observed image to update these Gaussians. For those that
have never been updated, we set their confidence values to
0 and follow the same refinement module in Sec. 3.2:

∆Gonline = (1− θ)∆G,

Gafter = ∆Gonline ⊕Gbefore,
(5)

where we use ⊕ to represent the composition of rotation
quaternions and the add operation of other parts. Figure 4
illustrates how we maintain the Gaussian memory.

Stopping Mechanism. We propose a simple stopping
mechanism to consider a room as having been effectively
explored. At the step t, we first calculate a confidence ratio
α to measure the exploration of the current room:

α =
∑N

i=0Iγi=1/N, (6)

where Iγi=1 takes the value of 1 if γi = 1. If α exceeds
a certain threshold we set before, the model can decide to
enter an adjacent room to begin a new exploration or stay
here to get a better perception of the current room.

3.4. EmbodiedOcc: An Embodied Framework
We present the training framework of our EmbodiedOcc
model for indoor embodied occupancy prediction. During
the whole prediction process, we use the current monocular
input to update our Gaussian memory in real time, which
can be easily converted into 3D occupancy prediction.

We first train our local refinement module using the fo-
cal loss Lfocal, the lovasz-softmax loss Llov, the scene-class
affinity loss Lgeo

scal and Lsem
scal following RetinaNet [23], TPV-

Former [11] and MonoScene [2]. We use monocular oc-
cupancy within the frustum Yfov

mono and the corresponding
ground truth Yfov

gt to compute the loss:

L = λ1Lfocal(Y
fov
mono,Y

fov
gt ) + Llov(Y

fov
mono,Y

fov
gt )

+Lgeo
scal(Y

fov
mono,Y

fov
gt ) + Lsem

scal(Y
fov
mono,Y

fov
gt ),

(7)

where λ1 is a balance factor.
We then use the trained local module to train our Em-

bodiedOcc. For efficient training, we initialize the Gaus-
sian memory before the first update and compute the current
loss following the equation 7 after each update. To ensure
consistency, the local occupancy ground truth used here is
obtained from the occupancy of the whole scene. After a
certain number of updates, we re-initialize the memory and
come to the next scene. Trained with such a pipeline, our
EmbodiedOcc can effectively perform the embodied occu-
pancy prediction task while ensuring consistency within the
same scene. We expect that our EmbodiedOcc can have
an improving prediction with continuous exploration rather
than undermining previous predictions when encountering
parts that have been explored before. Therefore, we conduct
some tailored tests to validate the capability of our model.

4. Experiments
4.1. EmbodiedOcc-ScanNet Benchmark
Task Descriptions. We conducted two tasks to evaluate
our EmbodiedOcc framework: local occupancy prediction
and embodied occupancy prediction. Local occupancy pre-
diction shares the same setting with previous works, which
accept monocular image as input and obtain the occupancy
within the current frustum. Embodied occupancy prediction
accepts real-time visual inputs continuously and updates the
occupancy of the current scene online. The visual input at a
certain step t during embodied occupancy prediction is still
monocular, which is a more challenging setting compared
with multi-view input or input with 3D information.

Datasets. We trained and evaluated our local refinement
module on the Occ-ScanNet dataset [56], which provides
frames in 60×60×36 voxel grids (a 4.8m×4.8m×2.88m
box in front of the camera). These frames are labeled with
12 semantics, including 11 for valid semantics (ceiling,
floor, wall, window, chair, bed, sofa, table, tvs, furniture,
objects) and 1 for empty space.



Table 1. Local Prediction Performance on the Occ-ScanNet dataset.
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TPVFormer [11] xrgb 33.39 6.96 32.97 14.41 9.10 24.01 41.49 45.44 28.61 10.66 35.37 25.31 24.94
GaussianFormer [13] xrgb 40.91 20.70 42.00 23.40 17.40 27.0 44.30 44.80 32.70 15.30 36.70 25.00 29.93
MonoScene [2] xrgb 41.60 15.17 44.71 22.41 12.55 26.11 27.03 35.91 28.32 6.57 32.16 19.84 24.62
ISO [56] xrgb 42.16 19.88 41.88 22.37 16.98 29.09 42.43 42.00 29.60 10.62 36.36 24.61 28.71
Surroundocc [46] xrgb 42.52 18.90 49.30 24.80 18.00 26.80 42.00 44.10 32.90 18.60 36.80 26.90 30.83
Ours xrgb 53.55 39.60 50.40 41.40 31.70 40.90 55.00 61.40 44.00 36.10 53.90 42.20 45.15

Table 2. Embodied Prediction Performance on the EmbodiedOcc-ScanNet dataset.
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TPVFormer [11] EmbodiedOcc 35.88 1.62 30.54 12.03 13.22 35.47 51.39 49.79 25.63 3.60 43.15 16.23 25.70
SurroundOcc [46] EmbodiedOcc 37.04 12.70 31.80 22.50 22.00 29.90 44.70 36.50 24.60 11.50 34.40 18.20 26.27
GaussianFormer [13] EmbodiedOcc 38.02 17.00 33.60 21.50 21.70 29.40 47.80 37.10 24.30 15.50 36.20 16.80 27.36
SplicingOcc EmbodiedOcc 49.01 31.60 38.80 35.50 36.30 47.10 54.50 57.20 34.40 32.50 51.20 29.10 40.74
EmbodiedOcc EmbodiedOcc 51.52 22.70 44.60 37.40 38.00 50.10 56.70 59.70 35.40 38.40 52.00 32.90 42.53

Based on this dataset, we reorganized an EmbodiedOcc-
ScanNet dataset to train and evaluate our EmbodiedOcc
framework [35, 56]. Our EmbodiedOcc-ScanNet comprises
537/137 scenes in the train/val splits. Each scene consists
of 30 posed frames with their corresponding local occupan-
cies. The resolutions of global occupancy of each scene are
calculated by lx × ly × lz/(0.08m)3, where lx × ly × lz is
the range of this scene in the world coordinate system. In
addition, we associate grid points that can be projected onto
the camera plane for each frame as the global mask of this
frame. By splicing the global mask of all processed frames,
we can easily obtain the occupancy ground truth of the ex-
plored part in the current scene.

Apart from Occ-ScanNet and EmbodiedOcc-ScanNet
datasets in the original scale, we sampled a small set from
the EmbodiedOcc-ScanNet dataset as the EmbodiedOcc-
ScanNet-mini dataset which comprises 64/16 scenes in the
train/val splits. We sampled from the Occ-ScanNet dataset
accordingly and obtained an Occ-ScanNet-mini2 dataset,
which comprises 5504/2376 frames in the train/val splits.
We conducted the local occupancy prediction task on the
Occ-ScanNet and Occ-ScanNet-mini2 datasets and con-
ducted the embodied prediction task on the EmbodiedOcc-
ScanNet and EmbodiedOcc-ScanNet-mini datasets.

Evaluation Metrics. We use mIoU and IoU as the evalu-
ation metrics. For local occupancy prediction, we calculate
the mIoU and IoU using the occupancy within the current
frustum (same with the evaluation in ISO [56]). For embod-
ied occupancy prediction, we calculate the mIoU and IoU
using the global occupancy of the current scene. It is worth
mentioning that the global occupancy used here is the union

of the frustums corresponding to 30 frames of each scene,
which represents the region that has been explored.

4.2. Implementation Details

Local Refinement Module. Following existing works [13,
56], we use a pre-trained EfficientNet-B7 [39] to initialize
the image encoder in our local module. The depth predic-
tion network used in the depth-aware branch is a fine-tuned
DepthAnything-V2 model [51] that remains frozen during
the training, and the depth-aware layer is a 3-layer MLP.
The resolutions of the monocular input are set to 480× 640
and the number of Gaussians used to conduct the local pre-
diction is 16200. We utilize the AdamW [26] optimizer with
a weight decay of 0.01. The learning rate warms up in the
first 1000 iterations to a maximum value of 2e-4 and de-
creases according to a cosine schedule [25]. We train our
local refinement module for 10 epochs using 8 NVIDIA
GeForce RTX 4090 GPUs on the Occ-ScanNet dataset and
20 epochs on the Occ-ScanNet-mini2 dataset.

EmbodiedOcc Framework. We initialize the Gaussians
with a 0.16 m interval to represent a novel scene. For each
update, the confidence value θ of well-updated Gaussians is
set to 0 in the first two refinement layers (frozen) and 0.5
in the final refinement layer. We train our EmbodiedOcc
for 5 epochs using 8 NVIDIA GeForce RTX 4090 GPUs on
the EmbodiedOcc-ScanNet dataset and 20 epochs using 4
NVIDIA GeForce RTX 4090 GPUs on the EmbodiedOcc-
ScanNet-mini dataset. The maximum value of the learning
rate is set to 2e-4 using 8 GPUs and 1e-4 using 4 GPUs.
The other settings remain the same with the training of the
local refinement module.



Table 3. Look-Back Prediction vs First-Time Prediction. For
K = k, we simply select 0, 1, ..., k− 1th frames to evaluate our
EmbodiedOcc framework and the occupancy ground truth used
here is the union of the k frustums. K was set to 3/5/8.

Mode K Frame List IoU mIoU

First-Time 3 [0, 1, 2] 49.39 39.32
Look-Back 3 [0, 1, 2, 1, 0] 49.52 40.09
First-Time 5 [0, ..., 4] 50.13 40.03
Look-Back 5 [0, ..., 3, 4, 3, ..., 0] 50.64 40.98
First-Time 8 [0, ..., 7] 50.94 40.86
Look-Back 8 [0, ..., 6, 7, 6, ..., 0] 51.14 41.17

41.04

mIoU
IoU

41.67
42.43

42.53
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Figure 5. Performance with
different stopping ratios.
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Figure 6. Ablation study of the
confidence refinement.

4.3. Main Results
Local Occupancy Prediction. We evaluated our local re-
finement module on the Occ-ScanNet dataset [56]. As
shown in Table 1, the results indicate that our local refine-
ment module outperforms ISO [56]. We also implemented
several state-of-the-art driving scene methods [11, 13, 46]
on this benchmark and our local refinement module outper-
forms them by a large margin. This is because they mainly
focus on the coarse layout (e.g., positions of objects) while
indoor scenes require modeling of the fine-grained structure
(e.g., shapes of objects).

Embodied Occupancy Prediction. We assessed the oc-
cupancy prediction for the entire scene after processing 30
frames, and the ground truth for calculating IoU and mIoU
is the union of the frustums. We spliced the local occupancy
obtained from our local module to serve as the main base-
line (referred to as SplicingOcc), as our local module has
achieved the best local performance to date. It can be ob-
served in Table 2 that our EmbodiedOcc exhibits superior
prediction of the scene, which is achieved through the inte-
gration of different views. We also compared our Embod-
iedOcc with the driving scene methods mentioned before
(we obtained their embodied results by voting from differ-
ent local predictions). Their poor results are due to ignoring
the continuity of the observations without a global memory.

4.4. Experimental Analysis
Effect of Continuous Online Updating. We expect Em-
bodiedOcc to have better performance when encounter-
ing parts that have been explored before, and thus, we
designed a Look-Back evaluation on the EmbodiedOcc-
ScanNet dataset. Specifically, after processing K frames,

Table 4. Analysis of the model design.

Method Gaussian Structure Memory Local Prediction Embodied Prediction
IoU mIoU IoU mIoU

EmbodiedOcc-Voxel × ✓ ✓ 47.50 38.12 37.53 26.99
EmbodiedOcc w/o memory ✓ ✓ × 53.55 45.15 49.01 40.74

EmbodiedOcc ✓ ✓ ✓ 53.55 45.15 51.52 42.53

Table 5. Analysis of the depth-aware branch.

Branch Type Depth Estimation Module
Local Prediction Embodied Prediction
IoU mIoU IoU mIoU

Depth-aware branch DepthAnything-V2 53.93 46.20 50.78 41.45
No-depth branch / 48.15 40.07 37.52 30.73

Naive-depth branch DepthAnything-V2 50.32 42.73 / /
Depth-aware branch IndoorDepth 51.24 43.87 46.42 37.78

Table 6. Analysis of the Gaussian parameters.
Gaussian Number Gaussian Scale Gaussian Interval(m) Local Prediction Embodied Prediction

(In local box) Min(m) Max(m) (In global scene) IoU mIoU IoU mIoU

16200 0.01 0.08 (0.16, 0.16, 0.16) 53.93 46.20 50.78 41.45
8100 0.01 0.08 (0.20, 0.20, 0.20) 50.47 42.82 46.24 37.99

16200 0.01 0.20 (0.16, 0.16, 0.16) 51.57 43.74 48.09 38.40

Table 7. Runtime decomposition.

Scene level (ms) Scene init. 6.626 Occ head 39.635

Frame level (ms)
Load memory 0.973 Depth aware 1.816
Img backbone 61.478 GS Encoder 14.761
Depthanything 34.687 Update memory 0.474

we direct the model to reprocess the last K− 1 frames. By
comparing this Look-Back result with the First-Time pre-
diction, we verified that our EmbodiedOcc has met our ex-
pectations as shown in Table 3.

Effect of the Stopping Mechanism. We use Figure 5
to show the effectiveness of our stopping mechanism. The
ground truth used here for calculating IoU and mIoU is the
union occupancy of the 30 frustums in a global scene. We
observed that using a larger threshold results in more obser-
vations and better performance.

Analysis of the Confidence Refinement. During each
update, local Gaussians are refined through three refinement
layers. For Gaussians that have been updated before, we
froze the first two layers and updated them in the last re-
finement layer when training our EmbodiedOcc. Figure 6
on the Occ-ScanNet-mini2 and the EmbodiedOcc-ScanNet-
mini datasets shows the impact of different confidence val-
ues (determines the coefficient of each ∆G). We observe
that moderate updates to those previously processed Gaus-
sians yield the best embodied occupancy prediction.

Analysis of the Model Design. The essence of our
EmbodiedOcc is the explicit Gaussian memory. We adopt
object-centric Gaussians instead of grid-based voxels since
Gaussians are more flexible for local-global interaction. We
implemented a voxel version of our EmbodiedOcc and eval-
uated it on our benchmark. As shown in Table 4, the sat-
isfactory local yet poor embodied performance of Embod-
iedOcc in the voxel version verified our conclusion. Re-
sults in Table 4 were evaluated on the Occ-ScanNet and
EmbodiedOcc-ScanNet datasets.

Analysis of the Depth-Aware Branch. We analyze
the effect of our depth-aware branch in Table 5 using the
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Figure 7. Visualization of the embodied occupancy prediction. We visualize the update of Gaussian memory and corresponding global
occupancy. As the Gaussians transition from random to ordered, the occupancy of the current scene becomes more accurate and complete.
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Figure 8. Visualization of local occupancy prediction.
Occ-ScanNet-mini2 and the EmbodiedOcc-ScanNet-mini
datasets. We find that depth information will significantly
benefit the local and embodied occupancy prediction. As
shown in the second row, without the assistance of depth
information, the performance of embodied occupancy pre-
diction drops sharply. This indicates that the update of
Gaussians within the current frustum may corrupt previ-
ous predictions without the guidance of depth information.
The results in the third row suggest that the depth-aware
branch we employ is more reasonable compared to the naive
method of directly initializing a portion of Gaussians with
the pseudo point cloud recovered from the predicted depth
map, the latter also poses difficulties for the initialization
of global Gaussians so we do not provide the embodied re-
sults. Besides, we replaced DepthAnything-V2 with Indo-
orDepth [6] in the last row to prove that our depth-aware
branch does not rely on a specific depth prediction network.

Analysis of the Gaussian Parameters. We analyze the
effect of different Gaussian parameters in Table 6 using the
Occ-ScanNet-mini2 and the EmbodiedOcc-ScanNet-mini

datasets. We see that decreasing the number or increasing
the scale of the Gaussians can lead to a decrease in per-
formance during local and embodied occupancy prediction.
This is closely related to the physical properties of Gaus-
sians. Gaussians initialized too sparse may lead to holes in
occupancy prediction, while Gaussians with too large scale
will overlap and influence each other which is also detri-
mental to the correct prediction of occupancy.

Runtime Analysis. We present in Table 7 a runtime
analysis on scene 0687-00 from the EmbodiedOcc-ScanNet
dataset. The runtime decomposition details show that our
method is efficient while the main bottleneck is the image
and depth backbones, suggesting that the overall runtime of
our EmbodiedOcc can be further reduced.

Visualizations. Figure 7 and 8 visualize the global and
local predictions, respectively. Our model demonstrates
reasonable local perception ability and further achieves
good online prediction with the Gaussian memory. Due to
space limitations, we will use a more diverse set of samples
to further show the visual effect of our EmbodiedOcc in the
supplementary material.

5. Conclusion
In this paper, we have presented an embodied 3D occupancy
prediction task and proposed a Gaussian-based Embod-
iedOcc framework accordingly. Our EmbodiedOcc main-
tains an explicit Gaussian memory of the current scene and
updates this memory during the exploration of this scene.
Both quantitative and visualization results have shown that
our EmbodiedOcc outperforms existing methods in terms of
local occupancy prediction and accomplishes the embodied
occupancy prediction task with high accuracy and strong
expandability. We believe that our EmbodiedOcc paves the
way for enabling active agents to conduct accurate and flex-
ible embodied occupancy prediction.
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