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Improving Contact-Rich Robotic Simulation with
Generalized Rigid-Body Dynamics Algorithms
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Abstract—We propose a novel approach for generalizing rigid-
body dynamics algorithms to handle complex sub-mechanisms
that are popular in robotic systems. The approach is based
on the unification of local constraint embedding and spatial
vector algebra, which allows for the development of compact
and computationally efficient algorithms for simulating contact-
rich robots. We derive the approach intuitively using the Gauss
Principle of Least Constraint. Overall, our approach provides
a valuable foundation for simulating and controlling complex
robotic systems with traditionally difficult-to-simulate designs
such as geared motors, differential drives, and four-bar mecha-
nisms.

I. INTRODUCTION

In recent years, the field of humanoid robot design has been
dominated by a trend of complex limb designs that aim to
expand the robot’s range of motion, minimize the inertia of
the limbs, and smoothly handle impacts with the environment.
Designs with sub-mechanisms such as coupled belt drives [1],
differential drives [2], [3], and four bar linkages [4] have
emerged as popular options to meet these design criteria.
Unfortunately, the dynamics algorithms used to simulate these
robotic systems have not kept pace with these recent hardware
advancements. Fast, accurate algorithms are crucially impor-
tant for both model-based controllers as well as “model-free”
reinforcement learning, which in practice greatly depends on
the quality of the underlying simulator. While the Articulated-
Body Algorithm (ABA) [5] has traditionally served the role
as that fast, accurate algorithm for simulating robotic systems,
it is not suitable for systems with sub-mechanisms like those
mentioned above.

In the late 2000s, the concept of Local Constraint Embed-
ding (LCE) was introduced [6], which enabled the develop-
ment of a forward dynamics algorithm that retained many of
the favorable properties of the ABA, while being general to
systems with complex sub-mechanisms. However, this work
has been largely neglected by the robotics community. Two
contributing factors are likely (i) it did not use the ubiqitu-
ous Spatial Vector Algebra (SVA) conventions popularized
by Featherstone [7] and (ii) its matrix factorizaton-based
derivation of the ABA-like algorithms is unintuitive to most
roboticists. To that end, we propose an alternative develop-
ment of constraint embedding-based dynamics algorithms that
features:

• A unification of the concepts of LCE and SVA,
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• Compact, computationally efficient algorithms needed for
simulating contact-rich robotic systems,

• An intuitive derivation based on the “Gauss Principle of
Least Constraint” [8].

II. RELATED WORK

The ABA has formed the bedrock of modern dynamic
simulators for robotic systems for many years [9]–[11]. The
concept dates back to the 1970’s [12], but it was not popu-
larized until a decade later when Featherstone developed the
algorithm using SVA [5]. In subsequent years, efforts were
made to generalize the algorithm to systems with closed-
loop constraints. Recognizing the importance of including the
complete effects of gear ratios and the gyroscopic effects of
the spinning motors, researchers working with high gear ratio
manipulators developed minimally modified versions of the al-
gorithm to handle this particular class of sub-mechanism [13],
[14]. This work has regained relevance in recent years as
proprioceptive actuation has emerged as a popular paradigm
for robots designed to make frequent contact with their en-
vironments [15]. Featherstone later generalized the ABA for
a larger class of sub-mechanisms by introducing the Divide-
and-Conquer concept [16], [17]. In the meantime, efficient
non-recursive algorithms were developed that could handle
arbitrary closure constraints. These algorithms use techniques
such as sparse matrix factorization [18] or Lagrange multiplier
elimination [19] to efficiently solve the large systems of linear
equations arising from the equations of motion and closure
constraints.

It wasn’t until the introduction of LCE that an algorithm
was developed that both maintained the efficient recursive
structure while being able to handle arbitrary closure con-
straints [6], [20]. However, until recently, the concept has
been largely ignored by roboticsts. The recent efforts have
focused on applications related to parallel kinematic actua-
tors [21], with an emphasis on how hybrid numerical and
analytical approaches to dealing with the constraints can
lead to improved computational efficiency and accuracy [22],
[23]. We instead turn our attention to improving dynamics
simulators for more general legged robots and manipulators.
Specifically, we rederive an intuitive, generalized version of
the ABA, and we discuss the straightforward extension of our
work to another state-of-the-art algorithm for computing the
Operational-Space Inertia Matrix (OSIM) [24]. Thus, we lay
the foundation for a new dynamics engine that combines a
generalized ABA for dynamics simulation of unconstrained
mechanisms, with a generalized OSIM algorithm for contact
simulation. Specifically, the OSIM algorithm will form the



2

Fig. 1. Comparison of the RB-CG and the C-CG used to represent a system
model with closed-loop constraints.

backbone of an efficient time-stepping solver for the contact
complementarity problem [25].

III. MODELING

A popular approach to modeling rigid-body systems is to
describe the system in terms of its component parts via a
system model [18]. A system model consists solely of bodies
and joints, and can be expressed in the form of a Rigid-Body
Connectivity Graph (RB-CG). RB-CGs have the following
properties [18]: nodes represent bodies, arcs represent joints,
exactly one node represents a fixed base, and the graph is
connected and undirected. Conventional recursive algorithms
for rigid-body dynamics are only compatible with kinematic
trees, i.e., systems whose RB-CGs have the property that there
exists exactly one path between any two nodes in the graph.
In other words, the recursive algorithms are only compatible
for systems with no closure constraints.

LCE can be used to convert arbitrary RB-CGs to kinematic
trees where each node of the tree is a collection of rigid
bodies and each arc is a collection of joints [6], as is shown
in Fig. 1. Nodes containing more than one rigid body have a
closure constraint associated with them that describes how the
motions of each contained body are coupled. We assume that
all constraints are expressed in explicit form [26]

q = γ (y) , q̇ = Gẏ, q̈ = Gÿ + g (1)

where q are the spanning tree coordinates and y are the
independent coordinates.

In this paper, we refer to these collections of bodies as “body
clusters” or simply “clusters”, and we refer to the collections
of joints that connect pairs of body clusters as “cluster joints.”
Furthermore, we refer to a connectivity graph comprised of
clusters and cluster joints as a Cluster Connectivity Graph (C-
CG). All C-CGs are kinematic trees. For the most part, C-
CGs can be treated the same as RB-CGs. They both follow
the widely popular “regular numbering” convention, wherein
each node must have a higher number than its parents and arc
i connects between node i and its parent [18]. However, in
the case of C-CGs, both the individual rigid bodies as well as
the clusters are separately numbered. For clarity, we will use
indices i and j to exclusively refer to rigid bodies, and we
will use indices k and l to exclusively refer to clusters. We
use Ck to refer to the kth cluster in the C-CG.

IV. SPATIAL VECTOR ALGEBRA FOR CLUSTERS

The difference between body clusters and conventional rigid
bodies is the dimension of the spatial vectors that describe
their motion and force interactions. We define Mn and Fn as
vector subspaces for spatial motion vectors and spatial force
vectors, respectively. Spatial motion and force vectors for any
individual rigid body are elements of the subspaces M6 and
F6, while the spatial motion and force vectors for a cluster
are elements of the subspaces M6nb and F6nb , where nb is
the number of bodies contained by the cluster. Thus, we can
consider the SVA quantities used to describe the motion and
force interactions of rigid-body clusters as the concatenation
of the SVA quantities of the cluster’s constituent bodies.

To that end, we define the following cluster concatenation
operators: stack

(
{zi}i∈Ck

)
creates a single vector containing

the vector quantities z corresponding to every rigid body in
cluster k, while block

(
{Zi}i∈Ck

)
creates a block diagonal

matrix of the matrix quantities Z corresponding to every rigid
body in cluster k. Table I distinguishes the notation we use to
represent SVA quantities for individual bodies versus clusters.

TABLE I
SVA NOTATION FOR RIGID BODIES VS. CLUSTERS

SVA Quantity Rigid Body Cluster
Joint Coords. q, y q, y

Spatial Vectors v, a, f v, a, f
Spatial Matrices X, I X, I

An important nuance of SVA for clusters is the motion
subspace matrix S. This matrix corresponds to the constraint
imposed by the cluster joint and indicates the allowable rela-
tive motion between two clusters. Thus, the spatial velocities
between any cluster l and its parent cluster k satisfy

vl − vk = Slẏl. (2)

The nuance comes from the fact that the motion of a body in
cluster l might depend on the motion of another body in the
same cluster, as is the case for bodies 2, 3, and 7 in Fig. 1.
As such, the motion subspace matrix for a cluster l is

Sl = XI(l)block
(
{Si}i∈Cl

)
Gl, (3)

where XI(l) is the intra-cluster transformation matrix that
captures the relationship between bodies in the same cluster.

V. FORWARD DYNAMICS

The original ABA for computing forward dynamics consists
of three passes: a forward pass for first order kinematics, a
backward pass for updating the articulated-body inertias of
each body in the tree, and a forward pass for propagating
the accelerations outward from the base. In this section,
we use the extension of SVA from Sec. IV and the Gauss
Principle of Least Constraint (GPLC) to derive the Cluster-
Based Articulated-Body Algorithm (C-ABA) for systems with
closed-loop constraints. We focus on ABA since subsequent
algorithms, such as the OSIM algorithm, rely on the ABA.
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Fig. 2. Comparison of a cluster (left) to an articulated cluster (right).

A. Forward Kinematics

Analagous to the original ABA, we show that the spatial
velocities for every body in a cluster can be expressed in terms
of the spatial velocities of bodies in the parent cluster and
the position and velocity of the cluster joint. This relationship
can be derived by applying the concatenation operator to the
velocities of all of the bodies in an arbitrary cluster k

vk = stack
({

iXΛ(i)vΛ(i)

}
i∈Ck

)
+

stack

 ∑
j∈ξ(i)

iXjSjq̇j


i∈Ck


= kXΛ(k)vΛ(k) +XI(k)block

(
{S}i∈Cl

)
k
q̇k

= kXΛ(k)vΛ(k) + Skẏk,

(4)

where Λ(i) gives the nearest supporting body of i in the parent
cluster and ξ(i) gives all of the supporting bodies of body i
that are in its same cluster. Successive iterations of (4) with k
ranging from 1 to Nc, where Nc is the number of clusters in
the tree, constitute the first forward pass of the C-ABA.

B. Articulated Cluster Inertia

A body’s articulated-body inertia describes the inertia that
rigid body appears to have when it is part of a rigid-body
system [5]. The concept extends straightforwardly to clusters
of bodies, wherein attaching a cluster l to cluster k via a cluster
joint yields the articulated-cluster equation of motion

fk = IAk ak + pAk , (5)

where IAk and pAk are the articulated-cluster inertia and bias
force of the multi-cluster system, respectively. Articulated-
cluster inertias have the same properties as articulated-body
inertias: they are symmetric and positive-definite, they map
from M6nb to F6nb , they can be transformed between coordi-
nate frames via lX∗

kIk
kXl.

C. Calculating Articulated-Cluster Inertia via the Gauss Prin-
ciple of Least Constraint

The backward pass of the ABA depends on a recursive
relationship between the articulated-body quantities of child
and parent bodies, and the second forward pass depends on a

recursive relationship between the joint and spatial accelera-
tions of the child and parent bodies. There are multiple ways
to derive these recursive relationships, such as the assembly
method [5] and the matrix-factorization method [27]. However,
arguably the most physically intuitive derivation, especially for
roboticists, is based on the GPLC.

Consider an arbitrary cluster of bodies Ck that is being
attached to cluster Cl via a cluster joint. Applying the GPLC
to the interaction between the bodies in these clusters involves
evaluating their respective equations of motion in the following
context: (i) neglecting the constraint forces at all of the joints,
(ii) applying joint torques τ j at the actuated joints in the child
cluster, and (iii) applying a test spatial force fi to each of the
bodies in the parent cluster.

The free-body diagram in Fig. 2 illustrates that the parent
cluster follows the spatial equation of motion

IAk a
uc
k = stack

(
{fi}i∈Ck

)
−

stack

 ∑
j∈Cl∩µ(i)

Ψa
jτ j


i∈Ck

− pAk

= fk − kX∗
lΨ

a
l τl − pAk

(6)

where µ(i) gives the children of body i and Ψa
j is the active

force subspace matrix of the jth joint. Similarly, the child
cluster follows

IAl a
uc
l = stack

(
{Ψa

i τ i}i∈Cl

)
− pAl

= Ψa
l τl − pl.

(7)

The final step in preparing to apply the GPLC is to relate
the accelerations of the child cluster to the acceleration of
the parent cluster and the generalized coordinates of the child
cluster’s joints. This relationship can be derived via a similar
process as (4) and is given by

al =
lXkak + Slq̈l + Ṡlq̇l. (8)

The GPLC states that the motions of the bodies in these
two clusters satisfies

min
ak,al,q̈l

1

2
(auck − ak)

⊤IAk (a
uc
k − ak)

+
1

2
(aucl − al)

⊤IAl (a
uc
l − al)

s.t al =
lXkak + Slq̈l + cl.

(9)

Using the substitutions from (6)-(8) and the first order opti-
mality conditions for q̈l, we can derive the following recursive
relationship with ak,

q̈l = D−1
l

(
ul − U⊤

l

(
lXkak + cl

))
, (10)

where

Uk = IAk Sk, Dk = S⊤k Uk, uk = τk − S⊤k p
A
k . (11)

This relationship is used in the second forward pass of the
C-ABA to propagate the accelerations of the clusters from the
base to the tips of the C-CG.

Lastly, we derive the recursive relationship for the backward
pass by considering the spatial equation of motion for the two-
cluster system created by joining clusters k and l,

fAk = IAk ak + pAk + kX∗
l

(
IAl al + pAl

)
. (12)



4

Substituting al and q̈l into (12) using (8) and (10) yields

fAk =
(
IAk + kX∗

l

(
IAl − UlD

−1
l Ul

)
lXk

)
ak

+ pAk + kX∗
l

(
pAl + IAl cl + UlD

−1
l ul

)
.

(13)

Noticing that (13) has the same form as (5), we have arrived
at the recursive relationship for the articulated-cluster inertia
and bias force, which are analogous to the original ABA
relationships

IAk = Ik +
∑

l∈µ(Ck)

Ial , pAk = pk +
∑

l∈µ(Ck)

pal (14)

where

Ial = IAl − UlD
−1
l U⊤

l ,

pal = pAl + Ial cl + UlD
−1
l

(
τl − S⊤l p

A
l

)
.

(15)

These relationships constitute underpin the backward pass of
the C-ABA.

VI. EXTENSIONS

For the sake of brevity, we cannot include detailed a deriva-
tion of how the proposed approach enables the Cluster-Based
Extended-Force-Propagator Algorithm (C-EFPA), which is an
extension of the reduced-order recursive algorithm for comput-
ing OSIM [24]. Instead, we outline the derivation qualitatively.
The derivation is closely related to the derivation of the C-
ABA, with the distinction that the C-EFPA isolates the effects
of end-effector forces that are needed in operational-space
dynamics. The main feature of the EFPA is its use of extended
force propagators to provide transformations of spatial forces
from end-effector k to rigid body i as if the joints of the robot
are free to mode. This is contrary to a standard spatial force
transforms, which assume all joints are locked. Deriving the C-
EFPA relies on showing that analogous force propagators exist
for clusters of bodies. Thus, the key step in the deriving the C-
EFPA is demonstrating that there exists a recursive relationship
that can be used to efficiently compute the extended force
propagator matrices between clusters of bodies, rather than
between individual bodies.

The development of such an algorithm has significant
ramifications for contact-rich dynamic simulation. Numerous
contemporary dynamics engines for robotic systems utilize
rigid contact models. These dynamics engines employ diverse
solution methods to address the inherent complementarity
problem for these models [28], [29], but they all share the
common requirement of needing to compute the OSIM when
solving for contact impulses. Therefore, achieving fast and
accurate computations of the OSIM for robots with complex
sub-mechanisms holds the potential to greatly enhance the
overall efficiency of these contact dynamics solvers for a
whole new class of robots.

VII. RESULTS

We present preliminary results demonstrating the compu-
tational efficiency of the C-ABA compared to two state-
of-the-art algorithms for computing forward dynamics. The
algorithms are applied to two robots. Robot A is a serial chain
of links that are each actuated with a geared motor. Each link

Fig. 3. Comparison of the average computation time for various forward
dynamics algorithms for systems with closed-loop constraints.

and its corresponding rotor form a cluster that is constrained
by [

q1

q2

]
= γA(y1) =

[
y1

αy1

]
(16)

with α ∈ R as a random gear ratio. Robot B is likewise a
serial chain of links, but for this robot every pair of links in
the chain is actuated by a pair of geared motors. The distal
link in the pair is coupled to the motions of both rotors, such
that each cluster is constrained by

q1

q2

q3

q4

 = γB

([
y1

y2

])
=


y1

β1,1y1

β2,1y1 + β2,2y2

y2

 (17)

with β ∈ R as random gear ratios. This coupled belt drive,
while more complicated to simulate, enables lower inertia
limbs since it allows the rotors to be placed closer to the
base [1]. The results in Fig. 3 prove that the C-ABA scales
linearly with the number of degrees of freedom with the robot.
The improvement relative to state-of-the-art is larger for Robot
A because the constraints are “more local”, so the C-ABA
more closely resembles the standard ABA.

VIII. CONCLUSIONS

In this paper, we presented novel approach for generalizing
rigid-body dynamics algorithms to handle closure constraints
in complex robotic systems. We first introduced the C-CG and
detailed how SVA can be extended to describe the motion and
force inertactions of rigid-body clusters. Next, the C-ABA was
developed using the GPLC to derive recursive relationships
for the articulated-cluster inertias of all of the clusters in
the C-CG. We qualitatively described how the approach can
extend to other algorithms relevant to contact-rich dynamic
simulation. Finally, we presented preliminary results showing
the efficiency of our proposed algorithm. Next steps include
formal derivations of extended algorithms such as the C-
EFPA and developing an open-source dynamics engine that
implements these algorithms.
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