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Abstract
This paper introduces a finite smoothing algo-
rithm (FSA), a novel approach to tackle com-
putational challenges in applying support vec-
tor machines (SVM) and quantile regression to
high-dimensional data. The critical issue with
these methods is the non-smooth nature of their
loss functions, which traditionally limits the use
of highly efficient coordinate descent techniques
in high-dimensional settings. FSA innovatively
addresses this issue by transforming these loss
functions into their smooth counterparts, thereby
facilitating more efficient computation. A distinc-
tive feature of FSA is its theoretical foundation:
FSA can yield exact solutions, not just approxima-
tions, despite the smoothing approach. Our simu-
lation and benchmark tests demonstrate that FSA
significantly outpaces its competitors in speed,
often by orders of magnitude, while improving
or at least maintaining precision. We have im-
plemented FSA in two open-source R packages:
hdsvm for high-dimensional SVM and hdqr for
high-dimensional quantile regression.

1. Introduction
In the digital epoch, where data reign as the new gold,
technological advancements have driven a surge in high-
dimensional data, transforming numerous fields such as
genetic and genomic research, functional magnetic reso-
nance imaging, clinical trials, and financial market analysis.
This burgeoning influx of data has notably fueled the rise of
deep learning and artificial intelligence, positioning these
methods at the forefront of complex problem-solving. How-
ever, their success is typically contingent on the availability
of abundant data, a condition that may contrast with the data
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scarcity encountered in critical areas like medical and psy-
chological research (Alberto et al., 2023). In these domains,
ethical and logistical constraints often limit data collection,
resulting in datasets with high dimensionality but few ob-
servations. In these scenarios, conventional methods like
support vector machines (SVM) remain vital due to their ro-
bust predictive power with limited data resources. Since its
inception, (Cortes & Vapnik, 1995; Vapnik, 1999a;b), SVM
has gained considerable popularity for its elegant geometric
interpretation and predictive power, at times even overshad-
owing neural networks. However, its utility is challenged
in the realm of high-dimensional data due to its demanding
computational requirements. The struggle of SVM under-
scores an urgent need to enhance its computing efficiency
for high-dimensional data analysis.

Furthermore, fields like finance and medicine, where high-
dimensional data abound, often place a premium on model
interpretability. SVM is prized for its nice geometric inter-
pretation, but a truly effective method for high-dimensional
analysis should also excel in selecting important features
while discarding irrelevant ones, echoing the scientific hy-
pothesis that only a few important features significantly
influence outcomes. The standard SVM without feature
selection can suffer from poor classification performance
due to noise accumulation (Fan & Fan, 2008). In response,
sparse penalized SVMs (Bradley & Mangasarian, 1998;
Zhu et al., 2003; Wang et al., 2006; Zhang et al., 2016)
were proposed by rephrasing the SVM problem as an ℓ2
penalized hinge loss (see Hastie et al. (2009), for example)
and then replacing the ℓ2 penalty with sparse penalties like
the lasso (Tibshirani, 1996) and elastic net (Zou & Hastie,
2005). This innovation automates feature selection and thus
enhances prediction accuracy and interpretability. Further
advancements have been attempted with non-convex penal-
ties like SCAD (Fan & Li, 2001) and MCP (Zhang, 2010),
renowned for their oracle properties, to further improve pre-
diction accuracy and feature selection. Some recent works
acknowledged the generalization error of SVM in high di-
mensions (Hsu et al., 2021; Ardeshir et al., 2021; Muthuku-
mar et al., 2021) and utilized SVM to interpret transformers
in deep learning (Tarzanagh et al., 2023). However, in-
tegrating these sparse penalties introduces an additional
computational layer to an already intensive SVM process,
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making the development of more efficient algorithms for
high-dimensional SVM an imperative pursuit.

Efficient algorithms for solving high-dimensional, sparse pe-
nalized methods have long been pivotal in machine learning,
statistics, and optimization. The lasso algorithm, initially
solved through quadratic programming, was later refined by
least angle regression (LARS) (Efron et al., 2004), which
exploited its piecewise linearity and expanded its scope to
the standard SVM (Hastie et al., 2004) and elastic-net penal-
ized SVM (Wang et al., 2006). However, the true potential
of the lasso was not fully recognized until the advent of
glmnet (Friedman et al., 2010), a highly acclaimed algo-
rithm for its implementation of coordinate descent alongside
innovative tricks like the warm start and active set. Coordi-
nate descent is a well-established algorithm in optimization
(Wright, 2015; Wu & Lange, 2008; Nesterov, 2012; Tseng &
Yun, 2009), and some recent developments are exemplified
in Karimireddy et al. (2019); Bertrand & Massias (2021);
Nutini et al. (2022). However, the application of coordi-
nate descent to SVM poses specific challenges; in principle,
it may fail when the objective is non-differentiable (Luo
& Tseng, 1992; Tseng, 2001), as seen in the SVM hinge
loss. Such limitations have motivated a spectrum of coordi-
nate descent methods solving SVM through the dual space
(Hsieh et al., 2008), or smoothing the SVM loss functions
and yielding least squares SVM (Chang et al., 2008), Huber-
ized SVM (Wang et al., 2008), and density convoluted SVM
(Wang et al., 2022), for example. Yet, efficiently comput-
ing the exact solution of SVM tailed on high-dimensional
settings remains an open question in the field.

Quantile regression (Koenker & Bassett, 1978; Koenker,
2005; Bassett et al., 2017), like SVM, faces similar chal-
lenges, mainly due to its non-differentiable check loss func-
tion. Known for its robustness and capacity to compre-
hensively profile response-feature relationships, quantile
regression has found many successful applications in high-
dimensional data analysis. Notably, it has been recently
integrated into conformal prediction (Shafer & Vovk, 2008;
Lei et al., 2018; Tibshirani et al., 2019; Angelopoulos &
Bates, 2021), a modern tool for quantifying uncertainties
in artificial intelligence systems. The traditional approach
to solving quantile regression involves linear programming,
but this method falls short in high-dimensional contexts. Var-
ious algorithms have been developed for high-dimensional
quantile regression; examples include Chen (2007); Peng &
Wang (2015); Yi & Huang (2017); Lv et al. (2017); Tan et al.
(2022); He et al. (2023). The state-of-the-art solver for high-
dimensional quantile regression is FHDQR (Gu et al., 2018),
combining the ADMM algorithm (Boyd et al., 2011) with
coordinate descent and significantly outperforming popular
solvers like quantreg (Koenker et al., 2018) and hqreg
(Yi & Huang, 2017).

This work presents a unified algorithm for computing the
exact solutions of high-dimensional SVM and quantile re-
gression. Our finite smooth algorithm (FSA) harnesses
the power of coordinate descent for high-dimensional com-
putation while overcoming the challenges posed by non-
differentiable losses. To achieve this, we propose a smooth
approximation for both SVM and quantile regression, and
we prove that their exact solutions can be efficiently com-
puted by solving this smooth version and imposing simple
linear constraints at non-differentiable points. The smooth
versions are solved by a generalized coordinate descent
(GCD) algorithm (Yang & Zou, 2013b), which melds stan-
dard coordinate descent with the majorization-minimization
principle (Hunter & Lange, 2004). In addition, we have
expanded the capability of our algorithm to encompass non-
convex penalties, such as SCAD and MCP, by incorporating
a local linear algorithm (Zou & Li, 2008). Our numeri-
cal experiments demonstrate the efficiency and accuracy
of FSA in solving high-dimensional SVM and quantile re-
gression challenges. Notably, with the lowest objective
values, our algorithm significantly outpaces current state-
of-the-art solvers, including ReHline (Dai & Qiu, 2023),
a newly published algorithm for both SVM and quantile
regression, typically by order of magnitude. We have im-
plemented our FSA in two R packages, hdsvm and hdqr,
for high-dimensional SVM and quantile regression, respec-
tively. Both packages are published on the Comprehensive
R Archive Network (CRAN) 1.

The remainder of this paper is structured as follows: FSA
is introduced in Section 2, the GCD algorithm for solving
smoothed problems is detailed in Section 3, the efficacy and
efficiency of FSA are discussed in Section 4 and Section 5,
with technical proofs presented in the appendix.

2. Finite Smoothing Algorithm
In this section, we introduce our unified FSA framework.
We begin with high-dimensional SVM, and we then adapt
the algorithm to quantile regression.

2.1. Motivation

We first briefly review SVM. Suppose training data consist
of n data points, denoted as {(xi, yi)}ni=1, where each xi ∈
Rp, and yi ∈ {−1, 1} for binary classification. Under the
high-dimensional setting, we consider p ≫ n, i.e., the
dimension p is much higher than the sample size n.

The linear SVM performs the classification by seeking a
hyperplane {x : β0 + x⊤β = 0} that maximizes the mar-

1The R package hdsvm is available at https://cran.
rstudio.com/web/packages/hdsvm/index.html
and the R package hdqr is at https://cran.rstudio.
com/web/packages/hdqr/index.html
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gin between the two classes and predicts the class label as
sgn(β0 + x⊤

newβ) for a new data point xnew. SVM can be
rephrased as the following loss-plus-penalty form,

min
β0∈R,β∈Rp

1

n

n∑
i=1

[
1− yi

(
β0 + x⊤

i β
)]

+
+

λ2

2
∥β∥22, (1)

where (1− u)+ = max{1− u, 0} is the non-differentiable
SVM hinge loss.

To apply SVM in high dimensions, we consider a general
version of the sparse penalized SVM as follows,

(β̂0, β̂) = argmin
β0∈R,β∈Rp

G(β0,β), (2)

where

G(β0,β) ≡
1

n

n∑
i=1

[
1− yi

(
β0 + x⊤

i β
)]

+
+ Pω,λ1,λ2

(β),

Pω,λ1,λ2
(β) ≡ λ1∥ω ◦ β∥1 +

λ2

2
∥β∥22.

The term Pω,λ1,λ2
(β) is the adaptive elastic-net penalty

(Zou & Zhang, 2009), which reduces to the standard SVM
when λ1 = 0. The weighted ℓ1 penalty aids in feature
selection, and an appropriate selection of the weight ω leads
to the oracle property with nice theory (Zou, 2006). In
practice, the tuning parameters λ1 and λ2 are often chosen
using cross-validation or information criteria.

The main difficulty of solving problem (2) is due to the
non-smooth nature of the hinge loss. Common strategies
for solving the standard SVM, i.e., problem (1), include
resorting to subgradient (Shalev-Shwartz et al., 2007) and
transforming the problem into its dual space (Hastie et al.,
2009). To achieve better computational efficiency, we con-
sider directly smoothing the non-differentiable objective.

We present a δ-smoothed hinge loss (Wang & Zou, 2022):

Lδ(u) =


1− u u ≤ 1− δ,
1
4δ [u− (1 + δ)]2 1− δ < u < 1 + δ,

0 u ≥ 1 + δ.

One can show that the above function approaches the hinge
loss when δ is small: 0 ≤ Lδ(u) − (1 − u)+ ≤ δ/4
for all u. We can thus obtain a smoothed SVM solu-
tion by solving a smooth version of problem (2), i.e.,
minβ0∈R,β∈Rp Gδ(β0,β), where

Gδ(β0,β) ≡
1

n

n∑
i=1

Lδ

(
yi(β0 + x⊤

i β)
)
+ Pω,λ1,λ2

(β).

The following proposition quantifies the quality of the
smoothed SVM.

Proposition 2.1. For any δ > 0, it holds that

min
β0∈R,β∈Rp

Gδ(β0,β) ≤ G(β̂0, β̂) + δ/4.

Although the aforementioned method yields an approximate
SVM solution, some distinctive SVM features, for example,
the emergence of support vectors, arise from the non-smooth
nature of the loss function and may not be preserved in the
smoothing approach. Hence, the focus is on advancing this
smoothing approach to obtain the exact SVM solution.

2.2. Exact Finite Smoothing Principle

To obtain the exact SVM solution from the smoothing
approach, we define a set, S⋆, which collects the non-
differentiable data points in problem (2),

S⋆ =
{
i :

∣∣∣1− yi(β̂0 + x⊤
i β̂)

∣∣∣ = 0
}
,

where β̂0 and β̂ are the exact SVM solution in problem (2).
It is important to note that if S⋆ were known, the exact
solution could be attained by adding a linear constraint.

Lemma 2.2. If S⋆ is known, define

(β̂δ
0 , β̂

δ
) = argmin

β0∈R,β∈Rp

Gδ(β0,β),

subject to 1 = yi(β0 + x⊤
i β), i ∈ S⋆,

then (β̂0, β̂) = (β̂δ
0 , β̂

δ
) holds.

Lemma 2.2 offers a method to derive the exact SVM solu-
tion through solving a smoothed problem, but its practical
application is limited due to the unknown nature of set S⋆

prior to obtaining (β̂0, β̂). In response, we introduce a
modified version of Lemma 2.2. This adaptation highlights
that determining a subset, Ŝδ, of S⋆ is adequate for accu-
rately obtaining the exact SVM solution. We define some
quantities: let δ0 = mini/∈S⋆{|1 − yi(β̂0 + x⊤

i β̂)|} > 0,
Cδ0/2 = {(β0,β) : ∥β01n + x⊤β − β̂01n − x⊤β̂∥∞ ⩾

δ0/2}, η = inf(β0,β)∈Cδ0/2
{G(β0,β) − G(β̂0, β̂)}, and

δ♯ = min{δ0/2, 4η}. We present the following theorem.

Theorem 2.3. For any δ ∈ (0, δ♯), there exists a set Ŝδ ⊆
S⋆ such that if we solve

(β̂δ
0 , β̂

δ
) = argmin

β0∈R,β∈Rp

Gδ(β0,β),

subject to 1 = yi(β0 + x⊤
i β), i ∈ Ŝδ,

(3)

and define S̃δ = {i : − δ ≤ 1 − yi(β̂
δ
0 + x⊤

i β̂
δ
) ≤ δ}

accordingly, then we have S̃δ = Ŝδ. Further, we have

(β̂0, β̂) = (β̂δ
0 , β̂

δ
) for any δ ∈ (0, δ♯).
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Algorithm 1 hdsvm
Input: xi, yi.
Initialize: δ ← 1.
repeat

repeat
Initialize S̃ = ∅.
Solve problem (4) using GCD in Section 3.
Update S̃ by equation (5).

until the set S̃ converges (in finite iterates).
Update δ ← δ/4.

until the KKT condition of problem (2) is satisfied.

Theorem 2.3 relaxes the unrealistic condition in Lemma 2.2
by questing for a practically achievable set Ŝδ instead of
S⋆. Theorem 2.4 further outlines a method for the explicit
construction of Ŝδ . When Theorem 2.4 is employed to any
initial subset S̃ within S⋆, S̃δ is yielded, augmenting S̃ and
progressively approximating S⋆. Due to the finite sample
size, through successive iterations, Ŝδ can be eventually
constructed within a finite number of iterates.

Theorem 2.4. For any set S̃ ⊆ S⋆ and δ ∈ (0, δ♯), define

(β̃δ
0 , β̃

δ
) = argmin

β0∈R,β∈Rp

Gδ(β0,β),

subject to 1 = yi(β0 + x⊤
i β), i ∈ S̃,

(4)

and let

S̃δ = {i : − δ ≤ 1− yi(β̃
δ
0 + x⊤

i β̃
δ
) ≤ δ}, (5)

then the following holds: S̃ ⊆ S̃δ ⊆ S⋆.

In practice, δ♯ is also unknown. To address this challenge,
we have developed a procedure that involves executing the
previously mentioned steps repeatedly, each time with a
sequentially reduced δ value. The algorithm concludes once
we find a solution that satisfies the Karush–Kuhn–Tucker
(KKT) condition of the exact SVM, i.e., problem (1). In
practice, we start this sequence with δ = 1 and then decrease
it in each iteration to a quarter of its former value, that is,
δ ← δ/4. The algorithm is summarized in Algorithm 1.

2.3. Quantile Regression

The FSA framework can be naturally adapted to high-
dimensional quantile regression, solving (β̂qr

0 , β̂
qr
) from

min
β0,β

n∑
i=1

ρτ (yi−β0−x⊤
i β)+λ1∥ω◦β∥1+

λ2

2
∥β∥22, (6)

where τ ∈ (0, 1) is a given quantile level and ρτ (t) =
t(τ − I(t < 0)), for t ∈ R, is the quantile loss, or namely,
the check loss. To address the non-smooth nature of the

check loss function, we introduce a δ-smoothed check loss:

Hδ,τ (t) =


(τ − 1)t if t < −δ,
t2

4δ + t(τ − 1
2 ) +

δ
4 if − δ ≤ t ≤ δ,

τt if t > δ.

Similar to SVM, one can show the exact solution of prob-
lem (6) can be obtained from the following constrained
optimization problem:

min
β0,β

1

n

n∑
i=1

Hδ,τ (yi − β0 − x⊤
i β) + λ1∥ω ◦ β∥1 +

λ2

2
∥β∥22,

subject to yi = β0 + x⊤
i β, ∀i ∈ E⋆,

where E⋆ =
{
i :

∣∣∣yi − β̂qr
0 − x⊤

i β̂
qr
∣∣∣ = 0

}
.

(7)

3. Generalized Coordinate Descent Algorithm
In this section, we develop an efficient algorithm designed
to compute the solution path for problem (4). To solve
problem (4), we employ the augmented Lagrangian method:

min
β0∈R,β∈Rp,θ∈R|S̃|

Lσ(β0,β,θ),

where σ is a constant, θ ∈ R|S̃| is the Lagrangian multiplier,
|S̃| denote the number of elements in the set S̃, and

Lσ(β0,β,θ)

≡ 1

n

n∑
i=1

Lδ(yi
(
β0 + x⊤

i β
)
) + λ1∥ω ◦ β∥1 +

λ2

2
∥β∥22

+
∑
i∈S̃

θi(1− yi(β0 + x⊤
i β))

+
σ

2

∑
i∈S̃

(1− yi(β0 + x⊤
i β))

2.

(8)
In a coordinate-wise manner, suppose β1, β2, . . . , βj−1 have
been updated and we now update βj . Let (β̃0, β̃) be the
current solution and ri = yi(β̃0 + x⊤

i β̃). To update βj , we
define the coordinate-wise update function:

F (βj |β̃0, β̃) ≡
1

n

n∑
i=1

Lδ(ri + yixij(βj − β̃j)) + λ1ωj |βj |

+
λ2

2
β2
j −

∑
i∈S̃

θiyixijβj + σ
∑
i∈S̃

∑
t ̸=j

β̃txitxijβj

− σ
∑
i∈S̃

yixijβj +
σ

2

∑
i∈S̃

(xijβj)
2 + σ

∑
i∈S̃

xijβj β̃0.

Then the standard coordinate descent algorithm suggests
cyclically minimizing F (βj | β̃0, β̃) in terms of βj , but this
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problem does not have a closed-form solution. To handle
this, we consider a generalized coordinate descent (GCD)
algorithm (Yang & Zou, 2013a) based on the majorization-
minimization principle (Hunter & Lange, 2000).

Specifically, we define a majorization function

Q
(
βj |β̃0, β̃

)
=

1

n

n∑
i=1

Lδ (ri) +
1

n

n∑
i=1

L′
δ (ri) yixij

(
βj − β̃j

)
+

1

4δ

(
βj − β̃j

)2

+ λ1ωj |βj |+
λ2

2
β2
j −

∑
i∈S̃

θiyixijβj

− σ
∑
i∈S̃

yixijβj + σ
∑
i∈S̃

∑
t̸=j

β̃txitxijβj

+
σ

2

∑
i∈S̃

(xijβj)
2 + σ

∑
i∈S̃

xijβj β̃0.

It holds that F (βj |β̃0, β̃) ≤ Q(βj |β̃0, β̃) for all βj and the
equality holds only when βj = β̃j . This is because the
derivative of Lδ(·) is Lipschitz continuous.

We can efficiently minimize Q(βj |β̃0, β̃) by a simple soft-
thresholding operator:

βnew
j = argmin

βj

Q(βj | β̃0, β̃)

= S

(
1

2δ
β̃j +

∑
i∈S̃

xij(θiyi + σ(yi −
∑
t̸=j

xitβ̃t − β̃0))

− 1

n

n∑
i=1

L′
δ(ri)yixij , λ1ωj

)
/(

1

2δ
+ λ2 + σ

∑
i∈S̃

x2
ij),

(9)

where S(z, t) = (|z| − t)+ sgn(z). We set β̃j = β̃new
j and

proceed to the next coordinate.

After updating all βj , j = 1, 2, . . . , p, with c = σ|S̃|+ 1
2δ ,

we update the intercept βnew
0 as follows:

β̃0 −
1

c

(
1

n

n∑
i=1

L′
δ (ri) yi +

∑
i∈S̃

σ(yi − x⊤
i β̃ − β̃0) + θiyi

)
.

(10)

We then update the Lagrangian multiplier as

θnewi = θi − σ
(
1− yi(x

⊤
i β̃ + β̃0)

)
,

for each i ∈ S̃. The above steps are repeated until the
convergence. The GCD algorithm for SVM is summarized
in Algorithm 2 in the appendix.

Consequently, we have built the GCD algorithm on the aug-
mented Lagrangian method to solve problem (4). We then
present the following theorem to show the linear conver-
gence of the algorithm. Similar techniques have been used

Algorithm 2 The GCD algorithm for high-dimensional
SVM

1. Initialize (β̃0, β̃).

2. Cyclic coordinate descent, for j = 1, 2, . . . , p:

(a) Compute ri = yi(β̃0 + x⊤
i β̃).

(b) Compute β̃new
j using the update formula (9).

(c) Set β̃j = β̃new
j .

3. Update the intercept term:

(a) Compute ri = yi(β̃0 + x⊤
i β̃).

(b) Compute β̃new
0 using the update formula (10).

(c) Set β̃0 = β̃new
0 .

4. Update θ, for all i ∈ S̃:

(a) Update θ̃new
i = θ̃i − σ

(
1− yi(β̃0 + x⊤

i β̃)
)

.

(b) Set θ̃i = θ̃new
i .

5. Repeat steps 2-4 until convergence of (β̃0, β̃).

in the literature, for example, Boyd et al. (2011); Gu et al.
(2018); He & Yuan (2012).

Theorem 3.1. Algorithm 2 ensures the linear convergence
of the objective Gδ(β̃0, β̃) to the optimal value of prob-
lem (4).

Since FSA is guaranteed to converge in finite iterates, the
whole procedure for solving high-dimensional SVM in Al-
gorithm 1 converges linearly.

A similar GCD algorithm can also be developed for quantile
regression. The details of the GCD algorithm are given in
Algorithm 3 in the appendix.

Implementation In our implementation, to enhance the
computational efficiency for the entire procedure, including
the use of cross-validation to select the tuning parameters,
we employ the warm-start and active-set strategies to com-
pute the solution path as λ1 varies.

In particular, we compute the solution path (β̂
[k]
0 ), (β̂

[k]
)

for a sequence of decreasing λ1 values, λ
[1]
1 > λ

[2]
1 >

. . . > λ
[K]
1 . If λ[k]

1 > 1
n maxj |

∑n
i=1 L

′
δ(β̂0)yixij)/wj |,

the KKT condition implies that all βj = 0; otherwise, we
employ the warm-start strategy to use the solution at λ[k−1]

1

as the initial value for computing the solution at λ[k]
1 .

We also use the active-set idea to compute the solution at
each λ1. The active set contains those variables whose
current coefficients are nonzero. After a complete cycle
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through all the variables, we only apply coordinate descent
on the active set until the convergence. We then run another
complete cycle to see if the active set changes; otherwise,
the algorithm stops.

In addition, the safe rule (Ghaoui et al., 2010; Wang & Yang,
2022) or the strong rule (Tibshirani et al., 2012) can be used
to further accelerate our algorithm. We take the strong rule

as an example: with the optimizer (β̃[k]
0 , β̃

[k]
) determined in

λ
[k]
1 , the strong rule is applied to guess whether β[k+1] = 0

in subsequent λ[k+1]
1 . Specifically, if some j satisfies that∣∣∣∣∣ 1n

n∑
i=1

L′
δ

(
yi

(
β̃
[k]
0 + x⊤

i β̃
[k]
))

yixij

∣∣∣∣∣ ≥ 2λ
[k+1]
1 −λ[k]

1 ,

then β
[k+1]
j = 0, and its computation can be saved in the

subsequent coordinate descent step. In practice, it is com-
mon to verify the KKT condition to confirm that all the
variables are correctly eliminated by the strong rule.

Non-convex penalties We now demonstrate the capacity
of our algorithm to handle non-convex penalties such as
SCAD (Fan & Li, 2001) and MCP (Zhang, 2010). The
non-convex penalties can be imposed on SVM in place
of the weighted ℓ1 penalty in problem (2). To the high-
dimensional SVM with non-convex penalties, we apply the
local linear algorithm (LLA) (Zou & Li, 2008). Specifically,

with some initial solution (β̂
(k)
0 , β̂

(k)
) and p′λ being the

derivative of the penalty, we solve problem (2) with the

weight ωj = p′λ(|β̂
(k)
j |) to obtain (β̂

(k+1)
0 , β̂

(k+1)
), which

is used as the initial solution for the next iterate. Therefore,
the GCD algorithm can be naturally extended to handle
non-convex penalties.

We have implemented our algorithm for solving high-
dimensional SVM in an R package hdsvm and the algo-
rithm for quantile regression in an R package hdqr.

4. Simulation
In this section, we demonstrate the quality and efficiency of
FSA for both high-dimensional SVM and quantile regres-
sion using extensive simulation data.

4.1. SVM

We first showcase the performance of high-dimensional
SVM. In this section, the response variables are binary, and
the dimension p is 3000 or 10000. In each example, training
data contain 200 data points, 100 of which are from the
positive class and the other 100 from the negative class.

Simulation data are generated following Wang et al. (2006).
The positive class has a normal distribution with mean µ+

Table 1. High-dimensional SVM: comparison of the objective val-
ues of problem (2) and run time (in seconds) for simulation data.
All the quantities are averaged over 20 independent runs.

EXAMPLE HDSVM REHLINE CVXR DRSVM

ρ = 0.2
p = 3000 OBJ 0.74 0.74 0.74 0.82

TIME 0.04 88.94 211.01 454.93

p = 10000 OBJ 0.78 0.79 0.81 0.86
TIME 0.12 1389.28 1425.43 1260.61

ρ = 0.7
p = 3000 OBJ 0.78 0.79 0.79 0.89

TIME 0.03 49.01 127.18 350.53

p = 10000 OBJ 0.82 0.83 0.85 0.90
TIME 0.10 1004.19 1588.42 1665.29

ρ = 0.9
p = 3000 OBJ 0.80 0.81 0.81 0.94

TIME 0.03 78.48 222.35 419.07

p = 10000 OBJ 0.83 0.84 0.86 0.93
TIME 0.10 966.58 1387.79 1869.43

and covariance Σ, where µ+ = 0.7 for the first five features
and 0 in others,

Σ =

(
Σ⋆

5×5 05×(p−5)

0(p−5)×5 I(p−5)×(p−5)

)
,

and the (i, j)th element of Σ⋆ equals ρ|i−j|, ρ ∈
{0.2, 0.7, 0.9}. The negative class has the same distribu-
tion except for a different mean µ− = −µ+.

In each example, we fit hdsvm algorithm with the tun-
ing parameters selected by cross-validation. With the cho-
sen tuning parameters, we fit DrSVM (Wang et al., 2006),
ReHline (Dai & Qiu, 2023), and CVXR (Fu et al., 2020),
and compare the objective value of problem (2) and run
time. As shown in Table 1, our hdsvm is about four to five
orders of magnitude faster than all the other solvers, and the
objective values are consistently the lowest.

Using the examples where p = 10, 000, we further illustrate
the effectiveness of our algorithm in addressing non-convex
penalties. In each case, we applied a high-dimensional SVM
with both SCAD and MCP penalties across 20 independent
replicates. The algorithm was assessed by evaluating the
test error across 2, 000 independently generated data points,
quantifying the number of accurately identified features
(true positives), and determining the number of erroneously
selected features (false positives), in addition to measur-
ing the run time. As shown in Table 2, both SCAD and
MCP exhibit a slight improvement in test error compared
to the elastic net. Notably, all three approaches consistently
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Table 2. Comparison of test error (denoted by ERR), the number
of correctly selected features (denoted by C), incorrectly selected
features (denoted by IC), and run time between SVM with elastic-
net and MCP penalties. All the quantities are averaged over 20
independent runs and the standard errors are given in parenthenses.

EXAMPLE HDSVM MCP SCAD

ρ = 0.2 ERR 0.11(0.02) 0.10(0.01) 0.11(0.02)
C 5(0) 5(0) 5(0)
IC 7(12) 1(1) 5(10)
TIME 0.12 0.20 0.23

ρ = 0.7 ERR 0.21(0.03) 0.20(0.01) 0.21(0.03)
C 5(0) 5(0) 5(0)
IC 10(15) 1(2) 5(10)
TIME 0.10 0.21 0.27

ρ = 0.9 ERR 0.25(0.03) 0.24(0.02) 0.25(0.03)
C 5(0) 5(0) 5(0)
IC 13(20) 3(8) 5(11)
TIME 0.10 0.22 0.26

Table 3. High-dimensional quantile regression: comparison of the
objective values of problem (6) and run time (in seconds) for the
simulation data with n = 200, p = 3, 000. All the quantities are
averaged over 20 independent runs.

τ HDQR FHDQR REHLINE CVXR

0.1 OBJ 0.64 0.66 0.78 0.65
TIME 0.03 1.43 96.98 421.91

0.3 OBJ 1.24 1.25 1.41 1.25
TIME 0.04 1.50 102.67 381.61

0.5 OBJ 0.87 0.87 0.91 0.88
TIME 0.38 2.02 55.81 180.48

0.7 OBJ 1.28 1.29 1.45 1.29
TIME 0.03 0.84 102.06 344.29

0.9 OBJ 0.64 0.66 0.81 0.65
TIME 0.02 2.28 137.32 496.06

identified the five key features, with SCAD and MCP intro-
ducing significantly fewer irrelevant features. Moreover, the
integration of non-convex penalties through our algorithm
does not significantly increase computational overhead; the
runtime is merely about double that of the elastic net.

4.2. Quantile Regression

We compare our hdqr algorithms with FHDQR, ReHline,
and CVXR in R. We considered five different quantile levels:
τ = 0.1, 0.3, 0.5, 0.7, and 0.9. We considered a popular
simulation model from Friedman et al. (2010). We generated
Gaussian data with n = 200 observations and p = 3, 000, or
10, 000 features, where each pair of features has an identical

Table 4. High-dimensional quantile regression: comparison of the
objective values of problem (6) and run time (in seconds) for the
simulation data with n = 200, p = 10, 000. All the quantities are
averaged over 20 independent runs.

τ HDQR FHDQR REHLINE CVXR

0.1 OBJ 0.65 0.69 1.10 0.76
TIME 0.08 3.99 949.23 953.62

0.3 OBJ 1.25 1.28 1.86 1.44
TIME 0.08 2.91 1273.19 1295.89

0.5 OBJ 0.80 0.81 1.06 0.88
TIME 1.40 6.42 479.97 566.37

0.7 OBJ 1.27 1.29 1.82 1.42
TIME 0.10 5.75 1336.40 1351.86

0.9 OBJ 0.63 0.66 1.10 0.72
TIME 0.08 5.55 1144.30 1537.25

correlation ρ = 0.1. The response values were generated by
y =

∑ρ
j=1 xjβj + k · z, where βj = (−1)j exp(−2(j −

1)/20), z ∼ N(0, 1), and k is chosen so that the signal-to-
noise ratio is 3.0.

Tables 3 and 4 showcase the average computation time and
objective values of problem (6) at the optimal tuning pa-
rameters chosen by cross-validation. Our algorithm, hdqr,
consistently outperforms the other solvers in speed across
all examples. The computational speed of ReHline and
CVXR tends to decrease significantly as the parameter p
increases. It is noteworthy that hdqr achieves the lowest
objective values, which are significantly smaller than the
other three solvers.

4.3. Path Solution and Scalability

We compare the run time for computing the solution path
across the entire range of hyperparameters. Specifically, for
every solver, we computed the solution path with 50 differ-
ent pairs of (λ1, λ2), where λ2 = 100, 10, 1, 0.1, 0.01 and
λ1 is chosen from 10 values that are uniformly distributed
on the log scale between 10 and 0.001. The results for high-
dimensional SVM and quantile regression are detailed in
Tables 5, 6, and 7, highlighting our algorithms’ significant
advantages.

We repeated the numerical studies in previous sections, ex-
cept for different combinations of (n, p). We first fixed
p = 3, 000 and varied n = 200, 400, 600, 800, and 1000.
We further investigated the scalability for both n and p. With
a fixed ratio p/n = 15, varied n = 200, 400, 600, 800, and
1000. Tables 8 and 9 show the computation times for fitting
high-dimensional SVM and quantile regression models, re-
spectively, demonstrating our algorithm’s linear scalability
with increasing samples and dimensions.
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Table 5. High-dimensional SVM: comparison of the objective val-
ues of problem (2) and run time (in seconds) for simulation data.
All the quantities are averaged over 20 independent runs.

EXAMPLE HDSVM REHLINE CVXR DRSVM

ρ = 0.2
p = 3000 6.81 770.48 7463.17 10343.14
p = 10000 25.21 13767.63 41543.43 51973.17

ρ = 0.7
p = 3000 7.99 783.52 7390.09 12662.12
p = 10000 26.81 16918.78 53069.30 71533.04

ρ = 0.9
p = 3000 8.01 780.88 7747.43 11514.14
p = 10000 44.57 28513.21 88306.99 119057.20

Table 6. High-dimensional quantile regression: comparison of
computation times (in seconds) for problem (6) using simulation
data (n = 200, p = 3000) across different settings of the hy-
perparameters (λ1, λ2). The presented values represent averages
computed over 20 independent runs.

n = 200 HDQR FHDQR REHLINE CVXR

τ = 0.1 7.42 22.54 1646.84 6862.58

τ = 0.3 5.92 17.80 1931.15 7860.69

τ = 0.5 5.65 17.02 2015.02 10118.75

τ = 0.7 5.83 17.35 1990.67 9547.73

τ = 0.9 7.01 23.01 1935.57 7525.73

5. Benchmark Data Applications
In this section, we first evaluate the performance of hdsvm
on five benchmark high-dimensional data (Mai & Zou, 2015;
Sorace & Zhan, 2003; Graham et al., 2010; Alon et al., 1999;
Golub et al., 1999), with the dimension varying between
2, 000 and 22, 283. Table 10 exhibits the objective value of
problem (2) and run time. We see that our hdsvm consis-
tently delivers better performance than the other solvers in
terms of both computational efficiency and precision.

We then evaluate the performance of hdqr using a data
set reported in Scheetz et al. (2006). This benchmark data
set encompasses gene expression levels across over 31, 000
probes in 120 twelve-week-old laboratory rats, aimed at ex-
ploring gene regulation in mammalian eyes and contributing
to the understanding of genetic variations impacting human
eyesight. With penalized quantile regression, we focus on
18, 976 probes identified for sufficient variability following
the criteria of Scheetz et al. (2006) and Huang et al. (2008).
Notably, the probe 1389163\_at, linked to the TRIM32

Table 7. High-dimensional quantile regression: comparison of
computation times (in seconds) for problem (6) using the microar-
ray data (n = 120, p = 3000) across different settings of the
hyperparameters (λ1, λ2). The presented values represent aver-
ages computed over 20 independent runs.

n = 120 HDQR FHDQR REHLINE CVXR

τ = 0.1 0.74 11.59 4147.52 3349.96

τ = 0.3 0.76 5.46 4480.60 4474.42

τ = 0.5 0.68 2.67 4722.68 4353.30

τ = 0.7 0.63 1.81 4389.44 3225.64

τ = 0.9 0.81 3.21 4509.93 3590.54

Table 8. High-dimensional SVM: comparison of the objective val-
ues of problem (2) and run time (in seconds) for simulation data
with different experimental sizes. All the quantities are averaged
over 20 independent runs.

p = 3000
n 200 400 600 800 1000

ρ = 0.2 7.47 15.76 25.19 34.77 47.13

ρ = 0.7 9.75 25.80 29.76 38.11 49.98

ρ = 0.9 8.94 18.89 29.55 40.75 49.74

p/n = 15
n 200 400 600 800 1000

ρ = 0.2 7.47 28.03 55.29 87.83 125.67

ρ = 0.7 9.75 31.32 57.68 97.87 138.59

ρ = 0.9 8.94 32.27 61.50 122.29 162.01

gene and associated with Bardet–Biedl Syndrome (Chiang
et al., 2006), is of particular interest. Our analysis examines
the dependency of TRIM32 expression on the other 18,975
genes. After standardizing these gene expressions, we se-
lect the top p probes based on variance, considering two
scenarios: p = 3, 000 and p = 10, 000.

In our study, we compare the objective values and com-
putation time using the solvers hdqr, FHDQR, ReHline,
and CVXR, all applied to high-dimensional quantile regres-
sion at quantile levels τ = 0.1, 0.3, 0.5, 0.7, and 0.9. As
detailed in Tables 11 and 12, hdqr and FHDQR clearly out-
perform the other two solvers in terms of computational
speed, with hdqr emerging as the fastest. As the dimen-
sion grows, the efficiency advantage of hdqr becomes more
marked. Specifically, hdqr is ten times faster than FHDQR
and at least 3, 000 times faster than ReHline and CVXR.
Notably, at p = 10, 000 and τ = 0.1, the difference in com-
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Table 9. High-dimensional QR: comparison of run time (in sec-
onds) of problem (6) for simulation data with different experimen-
tal sizes. All the quantities are averaged over 20 independent runs.

p = 3000
n 200 400 600 800 1000

τ = 0.1 9.71 18.56 25.26 33.40 35.28

τ = 0.3 8.01 15.49 22.13 29.95 34.41

τ = 0.5 5.89 9.20 18.44 18.27 25.99

τ = 0.7 6.01 9.88 16.19 21.37 25.74

τ = 0.9 6.90 13.81 19.12 24.56 29.61

p/n = 15
n 200 400 600 800 1000

τ = 0.1 9.71 31.31 60.27 109.91 174.18

τ = 0.3 8.01 25.93 48.85 83.38 118.38

τ = 0.5 5.89 16.66 37.02 50.58 69.92

τ = 0.7 6.01 23.43 39.88 57.64 94.21

τ = 0.9 6.90 28.30 68.05 77.62 126.17

Table 10. High-dimensional SVM: comparison of the objective
values of problem (2) and run time (in seconds) for five benchmark
high-dimension data from the UCI machine learning repository.
All the quantities are averaged over 20 independent runs.

DATA HDSVM REHLINE CVXR DRSVM

BREAST
n = 42 OBJ 0.45 0.56 0.48 0.50
p = 22283 TIME 0.27 3979.62 234.55 59.71

COLON
n = 62 OBJ 0.48 0.51 0.48 0.52
p = 2000 TIME 0.07 13.88 13.33 8.11

LEUK
n = 72 OBJ 0.17 0.20 0.22 0.22
p = 7128 TIME 0.69 96.13 39.27 40.54

MALARIA
n = 71 OBJ 0.01 0.01 0.01 0.06
p = 22283 TIME 24.53 275.00 85.70 112.50

OVARIAN
n = 253 OBJ 0.03 0.04 0.03 0.14
p = 15154 TIME 2.88 1880.38 214.06 1230.38

putation time between hdqr and FHDQR diminishes, while
FHDQR’s objective value is large. ReHline’s objective
values are notably lower than those of the other solvers.

Table 11. High-dimensional quantile regression: comparison of
the objective values of problem (6) and run time (in seconds) for
the microarray data (n = 120, p = 3, 000) in Scheetz et al. (2006).
All the quantities are averaged over 20 independent runs.

τ HDQR FHDQR REHLINE CVXR

0.1 OBJ 0.02 0.02 0.06 0.02
TIME 0.02 1.21 127.77 121.98

0.3 OBJ 0.03 0.03 0.07 0.04
TIME 0.03 0.46 130.71 141.29

0.5 OBJ 0.03 0.03 0.07 0.04
TIME 0.02 0.22 80.69 146.22

0.7 OBJ 0.03 0.03 0.07 0.03
TIME 0.02 0.30 110.43 82.51

0.9 OBJ 0.02 0.02 0.06 0.02
TIME 0.02 0.25 107.96 146.33

Table 12. High-dimensional quantile regression: comparison of the
objective values of problem (6) and run time (in seconds) for the
microarray data (n = 120, p = 10, 000) in Scheetz et al. (2006).
All the quantities are averaged over 20 independent runs.

τ HDQR FHDQR REHLINE CVXR

0.1 OBJ 0.02 0.80 0.06 0.03
TIME 0.05 0.22 1012.93 398.49

0.3 OBJ 0.03 0.03 0.07 0.04
TIME 0.06 1.80 1274.54 353.56

0.5 OBJ 0.03 0.03 0.07 0.05
TIME 0.08 1.55 1387.64 431.03

0.7 OBJ 0.03 0.03 0.07 0.04
TIME 0.07 1.07 1205.02 529.31

0.9 OBJ 0.02 0.02 0.06 0.03
TIME 0.03 1.13 1195.17 590.80

6. Conclusion and Discussion
In this work, we have developed a finite smoothing algo-
rithm to compute the exact solution of high-dimensional
support vector machines and quantile regression. Extensive
numerical studies demonstrate our algorithm can be orders
of magnitude faster than the existing solvers, even with bet-
ter precision. We have implemented our algorithms in two
R packages, hdsvm and hdqr, available on CRAN.

While our focus has been on unconstrained problems, our
FSA framework can readily accommodate linear constraints.
This suggests the potential of our algorithm in more com-
plex scenarios such as SVMs with fairness constraints (Za-
far et al., 2017) or compositional data analysis (Greenacre,
2021). We leave full investigations to future studies.
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A. Technical Proofs
A.1. Proof of Proposition 2.1

Proof. We have

Gδ(β0,β) =
1

n

n∑
i=1

Lδ

(
yi(β0 + x⊤

i β)
)
+ Pω,λ1,λ2

(β),

where Pω,λ1,λ2
(β) ≡ λ1∥ω ◦ β∥1 + λ2

2 ∥β∥
2
2. By the definition of Lδ , for any t ∈ R, 0 ≤ Lδ(t)− L(t) ≤ δ/4. It follows

that
0 ≤ Gδ(β0,β)−G(β0,β) ≤ δ/4, ∀β ∈ Rp, β0 ∈ R, (11)

Specifically, we have
min

β0∈R,β∈Rp
Gδ(β0,β) ≤ G(β̂0, β̂) + δ/4.

A.2. Proof of Theorem 2.3

Proof. The Lagrangian of problem (3) is:

L(β, β0, ξi, ηj) =
1

n

n∑
i=1

Lδ

(
yi(β0 + x⊤

i β)
)
+ Pω,λ1,λ2

(β) +
∑
i∈Ŝδ

ξi(yi(β0 + x⊤
i β)− 1), (12)

where ξi’s are the Lagrangian multipliers. Note that (β̂δ
0 , β̂

δ
) is the minimizer of constrained problem (3), thus we have

1
n

∑
i yiL

′
δ

(
yi(β̂

δ
0 + x⊤

i β̂
δ
)
)
xi + λ2β̂

δ
+

∑
i∈Ŝδ

yiξixi + λ1∂|β̂
δ
| ∋ 0,

1
n

∑
i yiL

′
δ

(
yi(β̂

δ
0 + x⊤

i β̂
δ
)
)
+

∑
i∈Ŝδ

ξiyi = 0,

1 = yi(β̂
δ
0 + x⊤

i β̂
δ
), i ∈ Ŝδ.

(13)

In particular, there exist a sequence {η1, · · · , ηp} such that for the first display of (13), we have

0 =
1

n

∑
i

yiL
′
δ(yi(β̂

δ
0 + x⊤

i β̂
δ
))xi + λ2β̂

δ
+

∑
i∈Ŝδ

yiξixi + λ1

∑
j

ηj . (14)

In this proof, denote Lh(t) = (1 − t)+. According to the definition of Lδ(t) and Lh(t), {L′
δ(yi(β̂

δ
0 + x⊤

i β̂
δ
))} =

∂Lh(yi(β̂
δ
0 + x⊤

i β̂
δ
)) when i /∈ Ŝδ. For i ∈ Ŝδ, {L′

δ(yi(β̂
δ
0 + x⊤

i β̂
δ
))} = − 1

2 ∈ ∂Lh(yi(β̂
δ
0 + x⊤

i β̂
δ
)). It then follows

from (14) that

0 =
1

n

∑
i∈Ŝδ

yiL
′
δ(yi(β̂

δ
0 + x⊤

i β̂
δ
))xi +

1

n

∑
i/∈Ŝδ

yiL
′
δ(yi(β̂

δ
0 + x⊤

i β̂
δ
))xi + λ2β̂

δ
+

∑
i∈Ŝδ

yiξixi + λ1

∑
j

ηj

∈ 1

n

∑
i∈Ŝδ

yi∂Lh(yi(β̂
δ
0 + x⊤

i β̂
δ
))xi +

1

n

∑
i/∈Ŝδ

yi∂Lh(yi(β̂
δ
0 + x⊤

i β̂
δ
))xi + λ2β̂

δ
+

∑
i∈Ŝδ

yiξixi + λ1

∑
j

ηj

=
1

n

∑
i

yi∂Lh(yi(β̂
δ
0 + x⊤

i β̂
δ
))xi + λ2β̂

δ
+

∑
i∈Ŝδ

yiξixi + λ1

∑
j

ηj

Similarly, we have 0 ∈ 1
n

∑
i yi∂Lh(yi(β̂

δ
0 + x⊤

i β̂
δ
)) +

∑
i∈Ŝδ

ξiyi, indicating that (β̂δ
0 , β̂

δ
) satisfies the KKT condition of

the following constrained problem

min
1

n

n∑
i=1

Lh

(
yi(β0 + x⊤

i β)
)
+ Pω,λ1,λ2

(β)

subject to 1 = yi(β0 + x⊤
i β), i ∈ Ŝδ,

(15)
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thus (β̂δ
0 , β̂

δ
) is the minimizer of problem (15). Moreover, it can be easily seen that (β̂δ

0 , β̂
δ
) is a feasible point of

problem (15), this implies that

G(β̂δ
0 , β̂

δ
) ⩽ G(β̂0, β̂) ⩽ G(β̂δ

0 , β̂
δ
).

Thus we have (β̂0, β̂) = (β̂δ
0 , β̂

δ
).

A.3. Proof of Theorem 2.4

Proof. From Proposition 2.1, we know,

0 ⩽ Gδ(β0,β)−G(β0,β) <
δ

4
,∀β ∈ Rp, β0 ∈ R. (16)

Thus δ < δ♯ < 4η gives 0 ⩽ Gδ(β0,β) − G(β0,β) < η. Since (β̂0, β̂) is a feasible point of problem (4), using the

optimality of (β̃δ
0 , β̃

δ
), we have Gδ(β̃δ

0 , β̃
δ
) ≤ Gδ(β̂0, β̂). It then follows that

G(β̃δ
0 , β̃

δ
)−G(β̂0, β̂) = [G(β̃δ

0 , β̃
δ
)−Gδ(β̃δ

0 , β̃
δ
)] + [Gδ(β̃δ

0 , β̃
δ
)−Gδ(β̂0, β̂)] + [Gδ(β̂0, β̂)−G(β̂0, β̂)] < η,

indicating that (β̃δ
0 , β̃

δ
) /∈ Cδ0/2 by the definition of Cδ0/2, therefore

∣∣∣β̃δ
0 + x⊤

i β̃
δ
− β̂0 − x⊤

i β̂
∣∣∣ < δ0/2 for all i. Further-

more, for any i ∈ S̃δ ,∣∣∣1− yi(x
⊤
i β̂ + β̂0)

∣∣∣ ⩽ ∣∣∣1− yi(x
⊤
i β̃

δ
+ β̃δ

0)
∣∣∣+ ∣∣∣yi(x⊤

i β̃
δ
+ β̃δ

0)− yi(x
⊤
i β̂ + β̂0)

∣∣∣
=

∣∣∣1− yi(x
⊤
i β̃

δ
+ β̃δ

0)
∣∣∣+ |yi| ∣∣∣(x⊤

i β̃
δ
+ β̃δ

0)− (x⊤
i β̂ + β̂0)

∣∣∣
< δ + δ0/2 < δ0,

which implies that i ∈ S⋆. We conclude that S̃ ⊆ S̃δ ⊆ S⋆.

B. Iteration Complexity Analysis of the GCD Algorithm or High-Dimensional SVM
Note that the intercept term β0 can be absorbed into the formulation by setting xi1 = 1 for i = 1, · · · , n and w1 = 0. We
let G(β) = 1

n

∑n
i=1 Lδ

(
yix

⊤
i β

)
+ Pω,λ1,λ2(β) rewrite problem (3) as the following constrained convex optimization

problem.

min
β∈Rp+1

G(β), subject to 1|S̃| = ysx
⊤
s β, (17)

where ys :=
{
yi; i ∈ S̃

}
and xs :=

{
xi; i ∈ S̃

}
. Denote β∗ is the optimal solution of (17).

The augmented Lagrangian function of problem (17) is

Lσ(β,θ) =G(β)+ < θ,1− ysx
⊤
s β > +

σ

2

∥∥ysx
⊤
s β − 1

∥∥2
2
.

Let rk = ysx
⊤
s β

k − 1. By definition, βk+1 minimizes Lσ

(
β,θk

)
that implies

0 ∈ ∂G(β)− ysx
⊤
s

(
θk − σrk+1

)
.

Since θk+1 = θk − σrk+1, we can obtain that 0 ∈ ∂G(β) − ysx
⊤
s θ

k+1. That implies that βk+1 minimizes G(β) −(
θk+1

)⊤
ysxsβ. Then it follows that

G(βk+1)−
(
θk+1

)⊤
ysxsβ

k+1 ⩽ G(β∗)−
(
θk+1

)⊤
ysxsβ

∗. (18)

15



Finite Smoothing Algorithm for High-Dimensional SVM and Quantile Regression

By the optimality of β∗ in problem (17), we have 0 ∈ ∂G(β∗) − ysx
⊤
s θ

∗ and 1 = yix
⊤
i β,∀i ∈ S. It means that β∗

minimizes G(β)− ysx
⊤
s θ

∗.

Then we have
G(βk+1)− (θ∗)

⊤
ysxsβ

k+1 ⩾ G(β∗)− (θ∗)
⊤
ysxsβ

∗. (19)

Combining equations (18) and (19), and after multiplying the combined outcome by 2, results in,

2
(
θk+1 − θ∗

)⊤
ysxs

(
βk+1 − β∗

)
⩾ 0.

Appling θk+1 = θk − σrk+1 and rk+1 = ysxsβ
k+1 − 1 = ysxsβ

k+1 − ysxsβ
∗, we have

2
(
θ∗ − θk

)⊤
rk+1 + σ

∥∥rk+1
∥∥2
2
+ σ

∥∥rk+1
∥∥2
2
≤ 0.

Given rk+1 = 1
σ

(
θk − θk+1

)
, it can be rewritten as

2

σ

(
θk − θ∗

)⊤ (
θk+1 − θk

)
+

1

σ

∥∥∥θk+1 − θk
∥∥∥2
2
+ σ

∥∥rk+1
∥∥2
2
≤ 0.

Furthermore, θk+1 − θk =
(
θk+1 − θ∗

)
−
(
θk − θ∗

)
gives us

1

σ

∥∥∥θk+1 − θ∗
∥∥∥2
2
≤ 1

σ

∥∥∥θk − θ∗
∥∥∥2
2
− σ

∥∥rk+1
∥∥2
2
. (20)

This shows that 1/σ
∥∥∥θk − θ∗

∥∥∥2
2

is a non-increasing sequence.

Because 1/σ
∥∥∥θk − θ∗

∥∥∥2
2
≤ 1/σ

∥∥θ0 − θ∗∥∥2
2
, it follows that θk are bounded. Iterating the above inequality gives that

σ

∞∑
k=0

∥∥rk+1
∥∥2
2
≤ 1/σ

∥∥θ0 − θ∗∥∥2
2
,

which implies that rk → 0 as k →∞.

Meanwhile the inequality (18) can be rewritten as

G(βk+1)−G(β∗) ⩽
(
θk+1

)⊤
ysxsβ

k+1 −
(
θk+1

)⊤
ysxsβ

∗ =
(
θk+1

)⊤
rk+1. (21)

Since θk is bounded and rk+1 goes to zero, the right side in (21) goes to zero. Similarly, the inequality (19) can be
rewritten as

G(βk+1)−G(β∗) ⩾ (θ∗)
⊤
ysxsβ

k+1 − (θ∗)
⊤
ysxsβ

∗ = (θ∗)
⊤
rk+1, (22)

the right side also goes to zero as k →∞. Therefore limk→∞ G(βk+1)−G(β∗) = 0. By definition, it means objective
convergence.

Applying rk+1 = 1/σ
(
θk − θk+1

)
, we rewrite the inequality (20) as

∥∥∥θk+1 − θ∗
∥∥∥2
2
≤

∥∥∥θk − θ∗
∥∥∥2
2
−
∥∥∥θk − θk+1

∥∥∥2
2
. (23)
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It follows that
∞∑
k=0

∥∥∥θk − θk+1
∥∥∥2
2
≤

∥∥θ0 − θ∗∥∥2
2
. (24)

Recall that we proved βk+1 minimizes G(β)−
(
θk+1

)⊤
ysxsβ, then we obtain

G
(
βk+1

)
−
(
θk+1

)⊤
ysxsβ

k+1 ⩽ G
(
βk+2

)
−

(
θk+1

)⊤
ysxsβ

k+2. (25)

Similarly we have

G
(
βk+2

)
−
(
θk+2

)⊤
ysxsβ

k+2 ≤ G
(
βk+1

)
−

(
θk+2

)⊤
ysxsβ

k+1. (26)

Adding up (25) and (26) gives

(
θk+1 − θk+2

)⊤
ys

(
xsβ

k+1 − xsβ
k+2

)
⩾ 0.

Applying rk+1 = ysxsβ
k+1 − 1, we have

(
θk+1 − θk+2

)⊤ (
rk+1 − rk+2

)
⩾ 0.

Then rk+1 = 1
σ

(
θk − θk+1

)
gives

1

σ

(
θk+1 − θk+2

)⊤ [(
θk − θk+1

)
−

(
θk+1 − θk+2

)]
⩾ 0.

Since ∥a∥22 − ∥b∥22 = 2a⊤(a− b)− ∥a− b∥22 holds for any two vectors a and b, where a and b have the same dimension.

Setting a = θk − θk+1 and b = θk+1 − θk+2, we howe

1

σ

∥∥∥θk − θk+1
∥∥∥2
2
− 1

σ

∥∥∥θk+1 − θk+2
∥∥∥2
2

=
2

σ

(
θk − θk+1

)⊤ [(
θk − θk+1

)
−
(
θk+1 − θk+2

)]
− 1

σ

∥∥∥(θk − θk+1
)
−

(
θk+1 − θk+2

)∥∥∥2
2

⩾
2

σ

(
θk − θk+1

)⊤ [(
θk − θk+1

)
−
(
θk+1 − θk+2

)]
− 2

σ

(
θk+1 − θk+2

)⊤ [(
θk − θk+1

)
−
(
θk+1 − θk+2

)]
− 1

σ

∥∥∥(θk − θk+1
)
−
(
θk+1 − θk+2

)∥∥∥2
2

=
2

σ

∥∥∥(θk − θk+1
)
−
(
θk+1 − θk+2

)∥∥∥2
2
− 1

σ

∥∥∥(θk − θk+1
)
−

(
θk+1 − θk+2

)∥∥∥2
2

=
1

σ

∥∥∥(θk − θk+1
)
−
(
θk+1 − θk+2

)∥∥∥2
2
⩾ 0.

It implies that
{∥∥∥θk − θk+1

∥∥∥2
2

}
is monotonically non -increasing.

Furthermore, we have
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(k + 1)
∥∥∥θk − θk+1

∥∥∥2
2
≤

k∑
t=0

∥∥θt − θt+1
∥∥2
2

(27)

Therefore, applying inequality (24) and (27) gives

∥∥∥θk − θk+1
∥∥∥2
2
≤ 1

k + 1

∥∥θ0 − θ∗∥∥2
2
.

then we have
∥∥∥θk − θk+1

∥∥∥2
2
= O(1/k) as k →∞.

C. Algorithm for Quantile Regression
In this section, we demonstrate how the smoothed quantile regression model is capable of yielding the exact solution to the
original quantile regression model.

Define Qδ(β0,β) =
1
n

∑n
i=1 Hδ,τ (yi − β0 − x⊤

i β) + λ1∥ω ◦ β∥1 + λ2

2 ∥β∥
2
2. Lemma C.1 tells us if E⋆ were known, the

exact solution could be attained by solving a constrained convex optimization problem, where

E⋆ =
{
i :

∣∣∣yi − (β̂qr
0 + x⊤

i β̂
qr
)
∣∣∣ = 0

}
,

and (β̂qr
0 , β̂

qr
) is the exact quantile regression solution in problem (6).

Lemma C.1. If E⋆ is known, define

(β̂δ
0 , β̂

δ
) = argmin

β0∈R,β∈Rp

Qδ(β0,β),

subject to yi = β0 + x⊤
i β, i ∈ E⋆,

then (β̂qr
0 , β̂

qr
) = (β̂δ

0 , β̂
δ
) holds.

Proof. The proof of Lemma C.1 bears similarity to that of Theorem C.2, and therefore, for brevity, it is not reiterated
here.

In practice, E⋆ remains unknown, prompting us to propose a relaxed version of Lemma C.1. This adaptation demonstrates
that a subset of E⋆ is sufficient to accurately derive the exact solution of the quantile regression problem. Specifically,
let γ0 = mini/∈E⋆{|yi − (β̂qr

0 + x⊤
i β̂

qr
)|} > 0, Cγ0/2 = {(β0,β) : ∥β01n + x⊤β − β̂qr

0 1n − x⊤β̂
qr
∥∞ ⩾ γ0/2},

ρ = inf(β0,β)∈Cγ0/2
{Q(β0,β)−Q(β̂qr

0 , β̂
qr
)}, and δ∗ = min{γ0/2, 4ρ} and present the following theorem.

Theorem C.2. For any δ ∈ (0, δ∗), we can find a set Êδ ⊆ E⋆ such that Ẽδ = Êδ , where

(β̂δ
0 , β̂

δ
) = argmin

β0∈R,β∈Rp

Qδ(β0,β),

subject to yi = β0 + x⊤
i β, i ∈ Êδ,

(28)

and Ẽδ = {i : − δ ≤ yi − (β̂δ
0 + x⊤

i β̂
δ
) ≤ δ}. then (β̂qr

0 , β̂
qr
) = (β̂δ

0 , β̂
δ
) holds for any δ ∈ (0, δ∗).

Proof. By the definition of Hδ,τ , for any t ∈ R, 0 ≤ Hδ,τ (t)− ρτ (t) ≤ δ/4. It follows that

0 ≤ Qδ(β0,β)−Q(β0,β) ≤ δ/4, ∀β ∈ Rp, β0 ∈ R. (29)

Specifically, we have
min

β0∈R,β∈Rp
Qδ(β0,β) ≤ Q(β̂qr

0 , β̂
qr
) + δ/4.
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The Lagrangian of problem (28) is:

L(β, β0, ξi, ηj) =
1

n

n∑
i=1

Hδ,τ

(
yi − β0 − x⊤

i β
)
+ Pω,λ1,λ2(β) +

∑
i∈Êδ

ξi(β0 + x⊤
i β − yi),

where ξi’s are the Lagrangian multipliers. Since (β̂δ
0 , β̂

δ
) is the optimal solution of problem (28), we have


− 1

n

∑
i H

′
δ,τ

(
yi − β̂δ

0 − x⊤
i β̂

δ
)
xi + λ1∂|β̂

δ
|+ λ2β̂

δ
+

∑
i∈Êδ

ξixi ∋ 0,

− 1
n

∑
i H

′
δ,τ

(
yi − β̂δ

0 − x⊤
i β̂

δ
)
+

∑
i∈Êδ

ξi = 0

yi = β̂δ
0 + x⊤

i β̂
δ
, i ∈ Êδ.

(30)

In particular, there exist a sequence {η1, · · · , ηp} such that

− 1

n

∑
i

H ′
δ,τ

(
yi − β̂δ

0 − x⊤
i β̂

δ
)
xi + λ1

∑
j

ηj + λ2β̂
δ
+

∑
i∈Êδ

ξixi = 0 (31)

By the definition of ρτ (t) and Hδ,τ (t), {H ′
δ,τ (yi − β̂δ

0 − x⊤
i β̂

δ
)} = ∂ρτ (yi − β̂δ

0 − x⊤
i β̂

δ
) when i /∈ Êδ and {H ′

δ,τ (yi −

β̂δ
0 − x⊤

i β̂
δ
)} = τ − 1

2 ∈ ∂ρτ (yi − β̂δ
0 + x⊤

i β̂
δ
) when i ∈ Êδ . Therefore, it follows from (31)

0 ∈ − 1

n

∑
i

∂ρτ

(
yi − β̂δ

0 − x⊤
i β̂

δ
)
xi + λ1

∑
j

ηj + λ2β̂
δ
+

∑
i∈Êδ

ξixi

Similarly, we know 0 ∈ − 1
n

∑
i ∂ρτ

(
yi − β̂δ

0 − x⊤
i β̂

δ
)
+

∑
i∈Êδ

ξi. It follows that (β̂δ
0 , β̂

δ
) satisfies the KKT condition of

the constrained problem

min
1

n

n∑
i=1

ρτ
(
yi − β0 − x⊤

i β
)
+ Pω,λ1,λ2

(β)

subject to yi = β0 + x⊤
i β, i ∈ Êδ,

(32)

thus it is the minimizer of problem (32). Moreover, (β̂δ
0 , β̂

δ
) satisfies these equality constraints by Êδ ∈ E⋆, this implies

that Q(β̂δ
0 , β̂

δ
) ⩽ Q(β̂qr

0 , β̂
qr
) ⩽ G(β̂δ

0 , β̂
δ
). Thus we have (β̂qr

0 , β̂
qr
) = (β̂δ

0 , β̂
δ
).

Through the iterative application of Theorem C.3, the set Êδ is progressively realized within a finite number of steps.

Theorem C.3. For any set Ẽ ⊆ E⋆ and any δ ∈ (0, δ∗), define

(β̃δ
0 , β̃

δ
) = argmin

β0∈R,β∈Rp

Qδ(β0,β),

subject to yi = β0 + x⊤
i β, i ∈ Ẽ,

(33)

and let Ẽδ = {i : − δ ≤ yi − (β̃δ
0 + x⊤

i β̃
δ
) ≤ δ}, then the following holds: Ẽ ⊆ Ẽδ ⊆ E⋆.

Proof. Applying (29), we have

0 ⩽ Qδ(β0,β)−Q(β0,β) <
δ

4
<

δ∗

4
< ρ.

Note that (β̂qr
0 , β̂

qr
) is a feasible point of problem (33) by Ẽ ⊆ E⋆ and (β̃δ

0 , β̃
δ
) is the optimal solution of problem (33),

we have Qδ(β̃δ
0 , β̃

δ
) ≤ Qδ(β̂qr

0 , β̂
qr
). It then follows from (29) that

Q(β̃δ
0 , β̃

δ
)−Q(β̂qr

0 , β̂
qr
) = [Q(β̃δ

0 , β̃
δ
)−Qδ(β̃δ

0 , β̃
δ
)]+[Qδ(β̃δ

0 , β̃
δ
)−Qδ(β̂qr

0 , β̂
qr
)]+[Qδ(β̂qr

0 , β̂
qr
)−Q(β̂qr

0 , β̂
qr
)] < ρ.
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Algorithm 3 The GCD algorithm for quantile regression

1. Initialize (β̃0, β̃).

2. Cyclic coordinate descent, for j = 1, 2, . . . , p:

(a) Compute ri = yi − β̃0 − x⊤
i β̃.

(b) Compute

β̃new
j =

1

( 1
2δ + λ2 + σ

∑
i∈D0

x2
ij)

S

(
1

2δ
β̃j+

∑
i∈D0

xij(θi+σ(yi−β̃0−
∑
t ̸=j

xitβ̃t))−
1

n

n∑
i=1

H ′
δ,τ (ri)xij , λ1ωj

)
.

(c) Set β̃j = β̃new
j .

3. Update the intercept term:

(a) Compute ri = yi − β̃0 − x⊤
i β̃.

(b) Compute

β̃new
0 = β̃0 +

1

σ|D0|+ 1
2δ

(
1

n

n∑
i=1

H ′
δ,τ (ri) +

∑
i∈D0

θi + σ
∑
i∈D0

(yi − β̃0 − x⊤
i β̃)

)
.

(c) Set β̃0 = β̃new
0 .

4. Update θ, for all i ∈ Ẽ:

(a) Update θ̃new
i = θ̃i − σ

(
yi − β̃0 − x⊤

i β̃
)

.

(b) Set θ̃i = θ̃new
i .

5. Repeat steps 2-4 until the convergence of (β̃0, β̃).

By the definition of Cγ0/2, we know that (β̃δ
0 , β̃

δ
) /∈ Cγ0/2, therefore

∣∣∣β̃δ
0 + x⊤

i β̃
δ
− β̂qr

0 − x⊤
i β̂

qr
∣∣∣ < δ0/2 for all i.

Furthermore, for any i ∈ Ẽδ ,

|yi − x⊤
i β̂

qr
− β̂qr

0 | ⩽
∣∣∣yi − x⊤

i β̃
δ
− β̃δ

0

∣∣∣+ ∣∣∣(x⊤
i β̃

δ
+ β̃δ

0)− (x⊤
i β̂

qr
+ β̂qr

0 )
∣∣∣ < δ + γ0/2 < γ0,

by the definition of γ0, we know that i ∈ E⋆. We conclude that Ẽ ⊆ Ẽδ ⊆ E⋆.

The GCD algorithm, tailored for high-dimensional quantile regression, is comprehensively detailed in Algorithm 3.
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