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ABSTRACT

Multiplex graphs, which represent complex real-world relationships, have recently
garnered significant research interest. However, contemporary methods exhibit vari-
ations in implementations and settings, lacking a unified benchmark for fair compar-
ison. Additionally, existing multiplex graph datasets suffer from small-scale issues
and a lack of representative features. Furthermore, current evaluation metrics are re-
stricted to node classification and clustering tasks, lacking evaluations on edge-level
tasks. These obstacles impede the further development of the multiplex graph learn-
ing community. To address these issues, we first conducted a fair comparison based
on existing settings, finding that current methods are approaching performance satu-
ration on existing datasets with minimal differences; and simple end-to-end models
sometimes achieve better results. Subsequently, we proposed a unified multiplex
graph benchmark called MGB. MGB includes ten baseline models with unified im-
plementations, formalizes seven existing datasets, introduces four new datasets with
text attributes, and proposes two novel edge-level evaluation tasks. Experiments on
MGB revealed that the performance of existing methods significantly diminishes
on new challenging datasets and tasks. Additional results suggest that models
with global attention and stronger expressive power in end-to-end solutions hold
promise for future work. The data, code, and documentations are publicly available
at https://anonymous.4open.science/r/multiplex-F150.

1 INTRODUCTION

In recent years, the field of graph learning has witnessed rapid development (Kipf & Welling, 2016;
Veličković et al., 2017). Multiplex graphs (Zhang et al., 2018), which incorporate diverse relationships
between nodes, offer a more realistic representation of multiple structural connections between nodes
in the real world, attracting considerable research interest. An example of a multiplex graph is an
e-commerce network (Ni et al., 2019), where different products have multiple types of relationships,
including co-purchased, co-viewed, and complementary connections. Different connection types play
distinct roles in specific contexts. It’s noteworthy that in real-world applications, multiplex graphs
also come with rich textual attributes, such as product descriptions in e-commerce networks and paper
abstracts in citation networks. Data with such structural multiplicity and attributive richness holds
great potential in applications like knowledge graph construction (Zhao et al., 2022), recommendation
systems (Zhang et al., 2020), and anomaly detection (Guo et al., 2024), among others.

Despite the rapid development of multiplex graph learning, three key issues persist in the field: (i)
Inconsistent Comparisons: Different methods adopt unique data processing, model implementation,
and experimental settings, hampering our ability to comprehensively understand them and making
fair comparisons challenging. (ii) Insufficient Datasets: Common multiplex graph datasets often
have a limited scale, containing only a few thousand nodes. Furthermore, despite containing rich
raw textual information, the original data is typically encoded into vectors using shallow embedding
methods, which restricts expressiveness and generalization. Consequently, existing multiplex graph
works primarily focus on representation learning, especially self-supervised representation learning,
employing complicated data augmentation and contrastive paradigms to learn features, which is time-
consuming and resource-intensive. (iii) Limited Evaluation Metrics: Existing methods incorrectly
train and evaluate the inherently multi-labeled IMDB (Wang et al., 2019b) dataset using a single-label
strategy. Additionally, these methods primarily evaluate models on node-level tasks, neglecting
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edge-level tasks with multiplex relationships. This limitation restricts our understanding of the
models’ ability to learn structural information beyond node attributes.
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Figure 1: Comparison of dataset scales. The node
size corresponds to the number of classes of each
dataset.

To address the challenge of inconsistent com-
parisons, we first reproduced ten classic meth-
ods within a unified framework, evaluating these
methods based on a consistent set of hyperparam-
eters and dataset processing pipelines. Building
upon this, we constructed the Multiplex Graph
Benchmark (MGB) to further address the chal-
lenges of insufficient datasets and limited evalu-
ation metrics. Currently, MGB includes 10 state-
of-the-art methods (with unified interfaces for
model implementation and training), 11 multi-
plex datasets (comprising 7 commonly used and
4 newly curated datasets with raw text attributes),
and 4 evaluation tasks (including node classifica-
tion and clustering, edge prediction and classifi-
cation). Figure 1 shows a comparison of the scale
of datasets in MGB with other common datasets.

By comparing methods under existing setting and
MGB setting (refer to Table 1, 4 respectively), we
observed several key phenomena: Firstly, existing
methods have almost approached performance saturation on five previous small-scale datasets,
making it challenging to compare and evaluate different approaches. Secondly, end-to-end methods,
even though implemented using simple GNNs, achieve remarkable performance compared to self-
supervised methods. Thirdly, existing methods exhibit poor performance on four new datasets. These
new datasets are more sparse, rich in feature space, and label space, making them more challenging
and requiring models with larger capacity and expressivity. Lastly, we explored a possible research
direction through a simple Graph Transformer model, suggesting that end-to-end models that better
capture global relationships and understand deep features could be more effective.

In conclusion, our contributions can be summarized as follows:

• Reproducible and Fair Comparison: We are the first, to our best knowledge, to conduct a
fair comparison in the multiplex graph field by standardizing the implementation of different
methods, setting hyperparameters uniformly, and using datasets with the same versions and
configurations. Our experimental results highlight the limitations of current small-scale
datasets and simple tasks in the field of multiplex graph learning.

• New Challenging Benchmark: Building on the aforementioned fair comparison, we
introduce MGB, a unified benchmark for multiplex graphs, including scalable baseline
implementations, larger and more challenging datasets with text attributes, and novel edge-
level tasks to propel multiplex graph research forward.

• Empirical Findings: By comparing baseline methods on MGB, we find that existing
methods perform significantly worse on the MGB datasets, with a notable increase in the
performance gap between models. We also highlight opportunities and possible directions
for future work, suggesting the need for deeper and more robust models.

2 PRELIMINARIES

2.1 TASK FORMULATION

Multiplex Graphs A multiplex graph is a network consisting of G = {G1,G2, ...,GR}, where
Gr = {V, Er,Ar,X} is the r-th subgraph of the multiplex graph corresponding to the r-th meta-path
(also known as relationship or view), and R denotes the number of subgraphs. For each Gr, V and
Er denote the node set and edge set, respectively; Ar ∈ R|V|×|V|, and X ∈ R|V|×d represent the
adjacency matrix and feature matrix. It is important to note that all Gr share the same node set V and
feature matrix X but have different edge sets Er and adjacency matrices Ar.
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Multiplexity vs. Heterogeneity Multiplex graphs and heterogeneous graphs (Lv et al., 2021;
Zhang et al., 2019) are two distinct subsets of multi-relational graphs (Hamilton). Heterogeneous
graphs feature diverse types of nodes and edges, with edges typically constrained based on node
types, often connecting nodes of specific types. Conversely, multiplex graph focuses on multiple
interactions between the same pairs of nodes (Melton & Krishnan, 2023; Yu et al., 2022). In essence,
heterogeneous graphs emphasize connections between specific node types, while multiplex graphs
prioritize interactions across different relation types. Therefore, the research methods and focuses of
these two areas differ to some extent.

2.2 METHODS ON MULTIPLEX GRAPH

The majority of research in the field of multiplex graph learning focuses on representation learning,
which involves learning node embeddings by integrating information from multiple meta-paths. In
this paper, we roughly classify existing work into two categories based on the training objectives.

(i) End-to-end methods take raw node features and graph structure information as model inputs, and
the output node embeddings are directly used for specific downstream tasks such as node classification.
HAN (Wang et al., 2019b) aggregates multiple node embeddings using hierarchical attention at
different levels and trains the model using cross-entropy loss with ground-truth labels. Traditional
Graph Neural Networks (e.g., GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017)) can also be
trained by directly using average-readout on multiple node embeddings. (ii) Self-supervised methods
do not rely on ground-truth labels. Instead, they mostly utilize contrastive learning (Chen et al., 2020;
Grill et al., 2020; He et al., 2020) to help the model learn general representations. MNE (Zhang et al.,
2018) and DMG (Mo et al., 2023b) learn a common embedding and a private embedding for each
subgraph, then combine them using attention mechanism. DMGI (Park et al., 2020), HDMI (Jing
et al., 2021), and SSDCM (Mitra et al., 2021) leverage contrastive learning by maximizing mutual
information between node embeddings and graph readouts. HeCo (Wang et al., 2021), CKD (Wang
et al., 2022a), and MGDCR (Mo et al., 2023a) contrast between different subgraphs and within
individual subgraph. Other works also focus on learning scalable embeddings (Liu et al., 2020),
dealing with incomplete data (Wang et al., 2022b), and so on. A common issue among the self-
supervised methods is the requirement for complicated contrastive paradigms and resource-consuming
negative sampling.

In addition, multiplex graph learning also demonstrates the ability to effectively characterize complex
relationships in real-world applications. For example, CS-MLGCN (Behrouz & Hashemi, 2022)
explores the application of multiplex graphs in community search. ANOMULY (Behrouz & Seltzer,
2022) combines multiplex graphs with dynamic graphs for anomaly detection tasks on time-series
multiplex graph data, including scenarios such as blockchain security and brain disease prediction.
ADMire (Behrouz & Seltzer, 2023) also utilizes multiplex graphs to model brain networks and detect
anomalies in the human brain.

Appendix B provides more detailed information about each mentioned work. However, due to
the different settings and implementations of each method, achieving a unified fair comparison is
challenging, impeding further development in multiplex graph learning.

2.3 EXISTING DATASETS AND EVALUATIONS

Datasets We consider seven commonly used multiplex graph datasets, including two citation
networks: ACM (Wang et al., 2019b) and DBLP (Gao et al., 2009), two movie review networks:
IMDB 1 and Freebase (Yang et al., 2020), one commercial network: Amazon (Ni et al., 2019), and
two anomaly detection networks: Amazon-fraud and Yelp-fraud (Dou et al., 2020). These datasets
vary in size, with node numbers ranging from 3k to 5k (except for the two anomaly detection datasets).
Each dataset contains 2 or 3 multiplex meta-paths. Due to the existence of multiple versions (Fu
et al., 2020; Lv et al., 2021; Wang et al., 2019a) of these datasets, we adopt the most widely used
versions to ensure fair comparison, namely ACM, IMDB, and DBLP from HAN (Wang et al., 2019b),
Amazon from DMGI (Park et al., 2020), and Freebase from HeCo (Wang et al., 2021). It is worth
noting that the authors of (Park et al., 2020; Wang et al., 2019b; 2021) are not the original collectors

1https://www.kaggle.com/datasets/karrrimba/movie-metadatacsv
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and annotators of the raw datasets, and the credit for raw data collection can be found in the Appendix
A. The detailed statistics of each dataset are provided in Table 3.

Existing multiplex graph datasets are small in scale, and their annotators have provided oversimplified
embeddings (e.g., bag-of-words or one-hot encoding) as initial node features. These limitations may
introduce potential issues, which will be discussed in the fair comparison in the next section.

Evaluations Existing studies utilize two node-level tasks to evaluate multiplex graph methods: node
classification and node clustering. For the node classification task, Macro-F1 and Micro-F1 metrics
are utilized to evaluate models on validation and test sets. For the node clustering task, common
metrics including Accuracy, F1 score, Normalized Mutual Information (NMI), and Adjusted Rand
Index (ARI) are used to assess performance. Moreover, DMGI (Park et al., 2020) and HDMI (Jing
et al., 2021) introduce top-K similarity search (Sim@K) as an additional metric for evaluating
clustering performance. First, they compute the cosine similarity between each pair of nodes. Then,
for each node, calculate the proportion of nodes with the same label among its top-K similar nodes.
Typically, K is set to 5.

3 FAIR COMPARISON UNDER EXISTING SETTING

Table 1: Fair comparison results under existing settings, where higher value is better. Colored are
the best first, second, and third results. E2E denotes end-to-end methods, SS denotes self-supervised
methods. *As HeCo (Wang et al., 2021) is fundamentally a heterogeneous graph method requiring
different types of nodes, we only reproduced its results on DBLP and Freebase.

(a) Node classification results reported in Macro-F1 and Micro-F1.

Methods ACM IMDB DBLP Amazon Freebase
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

E2E
GCN 81.83±1.3 82.35±1.1 57.02±0.2 58.41±0.2 90.60±0.2 91.47±0.1 63.01±0.3 63.42±0.2 52.66±2.4 54.92±2.7
GAT 67.58±19.5 72.63±13.7 55.44±0.6 57.60±0.8 87.60±1.9 88.65±2.1 52.95±0.7 54.51±0.6 52.12±1.6 53.26±2.0
HAN 83.81±0.6 83.75±0.6 54.89±0.6 57.25±0.5 87.81±3.0 88.92±3.1 59.30±1.2 60.08±1.0 50.93±0.8 51.88±0.9

SS

MNE 73.74±0.8 74.80±0.7 45.69±1.0 46.21±1.0 71.43±0.3 72.50±0.3 69.50±0.8 69.95±0.7 32.64±0.8 33.94±0.9
DMGI 86.08±0.8 86.08±0.8 46.91±3.2 48.22±3.6 87.18±0.9 88.34±0.8 66.52±1.7 67.25±1.8 37.24±0.8 38.40±1.1
HDMI 89.58±0.6 89.56±0.6 50.33±1.8 50.93±1.9 92.53±0.3 93.39±0.2 62.77±2.9 63.43±2.9 50.86±1.7 52.60±2.0
HeCo∗ NA NA NA NA 88.01±0.8 88.93±0.7 NA NA 37.95±2.2 39.10±2.4
CKD 87.90±0.9 87.91±0.9 49.26±2.4 51.10±2.1 89.14±0.3 90.26±0.4 61.06±1.6 62.24±1.6 47.00±1.9 49.76±1.6

MGDCR 80.74±5.2 80.82±5.0 50.69±5.7 52.20±5.5 87.62±8.7 88.43±8.5 63.56±2.7 64.14±2.5 41.36±7.2 43.46±6.9
DMG 88.56±1.3 88.56±1.3 52.34±2.4 55.07±2.0 91.65±0.1 92.59±0.1 43.38±3.9 44.36±3.8 48.18±3.1 49.94±3.5

(b) Node clustering results reported in Accuracy and Normalized Mutual Information (NMI).

Methods ACM IMDB DBLP Amazon Freebase
Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI

E2E
GCN 86.78±0.3 62.34±0.5 58.42±0.2 14.14±0.2 90.79±0.2 71.70±0.3 53.12±0.3 20.26±0.2 59.54±0.5 15.46±0.1
GAT 86.66±0.1 61.83±0.2 57.72±0.5 12.97±0.3 89.94±0.3 69.96±0.4 50.98±0.6 14.84±0.3 60.13±1.0 15.45±0.2
HAN 84.23±0.7 58.53±0.9 56.57±0.4 12.60±0.3 87.33±1.3 64.35±2.7 59.58±0.8 20.50±0.5 61.64±0.9 17.71±0.6

SS

MNE 51.70±2.1 16.07±2.8 39.71±0.2 2.36±0.2 36.75±0.6 8.95±0.6 35.71±1.3 5.30±1.9 38.65±0.5 0.21±0.0
DMGI 85.25±1.3 60.42±1.8 48.53±2.9 8.22±2.1 82.07±3.1 58.42±5.0 58.03±3.2 27.93±2.9 35.46±0.3 0.18±0.0
HDMI 90.77±0.5 71.82±0.9 53.26±2.8 10.19±2.5 89.04±1.0 71.58±1.2 52.72±3.4 22.53±3.8 54.40±1.7 17.33±0.9
HeCo∗ NA NA NA NA 68.61±5.8 42.63±4.5 NA NA 47.23±2.1 2.53±0.7
CKD 86.05±3.8 61.91±6.1 52.04±1.7 9.64±1.4 87.02±1.1 66.20±0.9 36.34±0.6 6.05±0.5 49.12±2.4 9.52±3.8

MGDCR 71.67±9.8 53.50±3.6 43.89±5.5 4.08±2.9 80.23±24.7 61.37±30.3 38.02±3.9 10.22±4.3 47.94±7.1 6.58±6.8
DMG 76.27±2.8 56.52±2.3 53.89±1.4 12.83±1.2 87.53±2.8 69.98±3.2 35.49±2.5 6.47±3.6 50.00±3.2 10.40±3.5

The lack of fair comparisons has hindered our ability to reasonably assess the differences between
methods and guide future developments. Therefore, we provide a fair comparison based on the
common methods, datasets, and evaluation metrics mentioned in Section 2. Specifically, for all
compared methods, we consistently set the training epochs to 200, the learning rate within the range
of [1e-4, 1e-3, 1e-2], and the weight decay to 1e-4. If a method uses a GNN model, we implement
it with a 2-layer GCN encoder and a hidden size in the range of [64, 128]. We report the mean and
standard deviations of five runs with random seeds [0, 1, 2, 3, 4]. For our implementations, we use
the default configurations from the original papers if provided; otherwise, we employ grid search
for hyperparameter tuning. More hyperparameter details about each baseline method are provided
in Appendix C.1. Due to space limit, we leave the results and analysis on two anomaly detection
datasets (Amazon-fraud and Yelp-fraud (Dou et al., 2020)) in Appendix E.1. The main results are
summarized in Table 1, yielding several noteworthy observations:
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Observation 1. Inconsistency with originally reported performance. Taking CKD (Wang et al.,
2022a) as an example, its originally reported Macro-F1 and Micro-F1 scores on the ACM dataset
ranges between 91.9 and 92.9. However, DMG (Mo et al., 2023b) reports CKD’s results as 90.5,
while DMG itself scores 91.0. Neither paper includes implementations of the other methods in their
code, making it difficult to judge the relative merits of these methods based solely on the original
data. In Table 1a and 1b, we observe that CKD’s classification performance on ACM dataset is
indeed slightly lower than DMG, but CKD surpasses DMG in clustering performance. Additionally,
HDMI (Jing et al., 2021) used an IMDB version with 3,550 nodes in its original paper, which is
inconsistent with the versions used by all other methods. Its node classification performance in the
original paper often exceeds 60%. However, the results in Table 1 allow us to fairly compare HDMI’s
performance against a consistent benchmark.

Observation 2. Minor difference in performance among methods on existing datasets for
node classification task. As shown in Table 1a, the performance values for each method are
closely clustered, making it challenging to discern methodological differences. For example, on
the DBLP (Wang et al., 2019b) dataset, all methods except MNE (Zhang et al., 2018) fall within
the performance range of 87-92, showing very low differentiation. Similarly, on the IMDB dataset,
classification results are clustered within the 45-55 range. We speculate that this phenomenon
may stem from the modest scale of existing datasets and the limited classification space, rendering
the task relatively simple. Consequently, current methods have nearly reached the performance
ceiling on these datasets. Additionally, the evaluation metrics are overly simplistic, relying solely on
node classification and clustering tasks, which makes it difficult to comprehensively distinguish the
performance of different models.

Observation 3. End-to-end methods achieve comparable or superior results to other self-
supervised methods. Surprisingly, end-to-end methods (i.e., GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017), HAN (Wang et al., 2019b)) exhibit competitive performance de-
spite their simple implementation without intricate aggregation designs for various meta-paths.
Notably, for node classification in Table 1a, end-to-end methods surpass self-supervised methods by
a significant margin on the IMDB and Freebase datasets. For node clustering in Table 1b, end-to-end
methods also significantly outperform self-supervised methods on the IMDB, DBLP, and Freebase
datasets. This observation aligns with the findings reported in Li et al. (2023) and Lv et al. (2021),
prompting us to reconsider whether a straightforward end-to-end model may be more suitable given
the relatively modest dataset size in the current multiplex graph domain.

4 MGB: A UNIFIED MULTIPLEX GRAPH BENCHMARK

Based on the results and analysis in Section 3, we summarize some issues existing in the field of
multiplex graph learning, which motivate the proposal of MGB.

Issues with current datasets First, existing datasets are often small and simplified, lacking
the complexity needed to reflect real-world scenarios. For instance, widely used versions of the
ACM, IMDB, and DBLP datasets (Wang et al., 2019b) contain only 3,000 to 5,000 nodes, and their
classification tasks are limited to mostly three-class problems. This scale is relatively small given the
rapid development of current graph datasets. Another limitation is the absence of high-quality
features in current datasets. The original data contains a wealth of textual information, but previous
datasets often discard this information or process it using shallow embedding methods, such as
bag-of-words. In some cases, like Freebase (Yang et al., 2020), no features are provided at all. This
lack of high-quality features constrains models’ abilities to capture complex relationships in the
data. These issues are reflected in Observation 2 of Section 3, where various methods approach
performance ceilings on existing datasets, reducing their discriminative ability.

Issues with current evaluations There are errors in existing classification tasks. Specifically,
existing evaluations on the IMDB dataset involve only single-label classifications, whereas the
categorizations in the IMDB dataset are actually multi-labeled. For example, the movie ”Rush Hour
3” belongs to Action, Comedy, and Thriller categories simultaneously. In such cases, the label space
may overlap, making single-label classification unreasonable. Moreover, existing methods only
evaluate models at the node level, lacking evaluation for edge tasks. In multiplex graphs, different
meta-paths represent different types of edges, inherently providing conditions for edge classification

5
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and prediction tasks. However, previous works have not evaluated edge tasks, missing an opportunity
to assess models’ performance on a crucial aspect of multiplex graph analysis.

4.1 BASELINES IMPLEMENTATION

As reiterated in Section 3, we have implemented ten well-recognized multiplex graph learning
methods within a unified training and evaluation framework using PyTorch and PyG (Fey & Lenssen,
2019). Among these ten methods, three (GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017),
HAN (Wang et al., 2019b)) are trained end-to-end, while the remaining seven (MNE (Zhang et al.,
2018), DMGI (Park et al., 2020), HDMI (Jing et al., 2021), HeCo (Wang et al., 2021), CKD (Wang
et al., 2022a), MGDCR (Mo et al., 2023a), DMG (Mo et al., 2023b)) are trained in a self-supervised
fashion to learn node embeddings. For these self-supervised methods, a task-specific classifier is
subsequently trained on labeled data to evaluate downstream tasks.

A brief introduction to each method is provided in Appendix B. For all reproduced methods, we offer
scalable implementations and maintain consistent interfaces to ensure fair comparisons. We will
continue to update and include more baseline methods in the future.

4.2 DATASETS CONSTRUCTION

Data Preparation We constructed four new datasets for multiplex graph tasks by gathering the raw
tabular files of commonly used datasets, including ACM (Wang et al., 2019b), IMDB, DBLP (Gao
et al., 2009), and Amazon2 (Ni et al., 2019). The raw data underwent cleaning and denoising
processes. We then expanded the dataset scales, increased category spaces, and augmented the text
features based on dataset characteristics. The data was divided into training, validation, and testing
sets with ratios of 0.2, 0.1, and 0.7, respectively.

Table 2: Examples of textual attributes of the proposed datasets in MGB.

Dataset Text Content Example

ACM-MGB title, abstract, au-
thors, venue

Title & Abstract: Influence and correlation in social networks. In many online
social systems, social ties between users play an important role...; Authors:
Mohammad Mahdian, Ravi Kumar, Aris Anagnostopoulos; Venue: Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining

IMDB-MGB title, director, key-
words, plots

Title: Avatar; Director: James Cameron; Keywords: avatar — future — marine —
native — paraplegic; Plot: A paraplegic Marine dispatched to the moon Pandora
on a unique mission becomes torn between following his orders and protecting
the world he feels is his home.

DBLP-MGB title, authors, ab-
stract

Title: Action Recognition with Trajectory-pooled Deep convolutional Descrip-
tors; Authors: Limin Wang, Xiaoou Tang; Abstract: Visual features are of vital
importance for action understanding...

Amazon-MGB title, brand, descrip-
tion

Title: OXO Tot Silicone Drying Mat, White; Brand: OXO; Description: Slim
+ flexible = The ultimate Drying Mat. Efficiently dry baby bottles, sippy cups,
breast pump parts, and more with the OXO Tot Silicone Drying Mat. The Drying
Mat’s rib design maximizes aeration and elevates items, keeping them clean.

Adding Textual Features The recent surge in large language model (LLM) (Achiam et al., 2023;
Anil et al., 2023; Touvron et al., 2023) has significantly enhanced machines’ natural language
understanding and processing abilities. This development influenced graph learning, giving rise to
textual-attributed graphs (He et al., 2023; Yan et al., 2023), merging graphs with LLM and presenting
new research opportunities and challenges (Liu et al., 2023; Wang et al., 2024). Consequently, in
constructing our new multiplex graph datasets, we introduced rich textual information to support
possible future research. For instance, in IMDB-MGB, we extracted textual features of movie titles,
directors, actors, and keywords from the original CSV data. Additionally, we scraped movie plots
from public websites, forming more comprehensive textual features in the new dataset. We also
employed pre-trained language models such as Sentence-BERT (Reimers & Gurevych, 2019) to
obtain more expressive features than bag-of-words model. Table 2 shows the detailed information on
text features for each dataset.

2https://cseweb.ucsd.edu/˜jmcauley/datasets.html#amazon reviews
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Expanding Dataset Scales To accommodate the increasing scale of graph data and models, we
expanded the datasets by increasing the number of nodes based on the raw data and adding more
meta-paths for multiplex graphs. Specifically, our proposed Amazon-MGB dataset includes seven
categories, with 5000 nodes per category, totaling 35,000 nodes, making it one of the largest datasets
in the current multiplex graph domain. Additionally, our ACM-MGB and DBLP-MGB datasets have
been scaled up to 2.7× to 3.3× their original sizes. See Figure 1 for a comparison of dataset scales.

Table 3: Statistics of datasets included in MGB. We use suffix ‘-MGB’ to denote the newly curated
datasets with textual attributes. ‘BoW’ denotes features encoded using a bag-of-words model, ‘one-
hot’ denotes features encoded as one-hot embedding of node counts, and ‘BERT’ denotes features
extracted from raw text using Sentence-BERT (Reimers & Gurevych, 2019).

Datasets Nodes Edges Scale Relationships Train/val/test Features Classes Has Text

ACM 3,025 2,210,761 Small Paper-Subject-Paper(PSP) 600/300/2125 1,870 (BoW) 3 %29,281 Paper-Author-Paper (PAP)

IMDB 4,780 98,110 Small Movie-Actor-Movie (MAM) 300/300/2687 1,232 (BoW) 3 %21,018 Movie-Director-Movie (MDM)

DBLP 4,057
11,113

Small
Author-Paper-Author (APA)

800/400/2857 334 (BoW) 4 %5,000,495 Author-Paper-Conf-Paper-Author (APCPA)
6,776,335 Author-Paper-Term-Paper-Author (APTPA)

Amazon 7,621
266,237

Small
Also-view (IVI)

80/200/7341 2,000 (BoW) 4 %1,104,257 Also-bought (IBI)
16,305 Bought-together (IOI)

Freebase 3,492
254,702

Small
Movie-Actor-Movie (MAM)

60/1000/1000 3492 (one-hot) 3 %8,404 Movie-Director-Movie (MDM)
10,706 Movie-Writer-Movie (MWM)

Amazon-fraud 11,994
175,608

Medium
User-Product-User (UPU)

2388/1194/8362 25 (handcraft) 2 %3,566,479 User-Star rate-User (USU)
1,036,737 User-Text-User (UVU)

Yelp-fraud 45,954
49,315

Large
Review-User-Review (RUR)

9191/4595/32168 32 (handcraft) 2 %573,616 Review-Time-Review (RTR)
3,402,743 Review-Star rate-Review (RSR)

ACM-MGB 10,041
14,916,901

Medium
Paper-Subject-Paper(PSP)

2007/1002/7032 768 (BERT) 5 !151,014 Paper-Author-Paper (PAP)
100,820,841 Paper-Term-Paper (PTP)

IMDB-MGB 4,573 93,039 Small Movie-Actor-Movie (MAM) 912/454/3207 768 (BERT) 5
!19,327 Movie-Director-Movie (MDM) (multi-label)

DBLP-MGB 11,081
266,557

Medium
Paper-Author-Paper (PAP)

2215/1107/7759 768 (BERT) 3 !17,589 Paper-Paper (PP)
110,079,981 Paper-Author-Term-Author-Paper (PATAP)

Amazon-MGB 35,000
36,855

Large
Also-view (IVI)

7000/3500/24500 768 (BERT) 7 !102,276 Also-bought (IBI)
3,950 Bought-together (IOI)

Plug-and-Play Implementations All updated datasets, along with existing commonly-used
datasets, were organized into a standardized format using PyTorch (Paszke et al., 2019). Dataset
statistics are provided in Table 3, and preprocessing methods, such as graph normalization, are offered
in a plug-and-play fashion. We release all data, code, and documentations publicly available, allowing
researchers to customize datasets according to their specific needs (see links in Appendix A) .

4.3 EVALUATION METRICS

Node Classification & Clustering For node-level tasks, we adopted node classification and clus-
tering tasks, following previous works. Specifically for the IMDB-MGB dataset, we corrected the
original single-label three-class classification task to a multi-label five-class classification task by
adding categories ‘Thriller’ and ‘Romance’. This enhancement increases the credibility and difficulty
of the node classification task. For evaluation metrics, we used Macro-F1 and Micro-F1 for node
classification, and Accuracy and Normalized Mutual Information (NMI) for node clustering.

Edge Prediction & Classification To address the previous neglect of edge-level tasks in existing
works, we proposed two metrics to evaluate model performance on edge tasks. Firstly, we employed
the edge prediction task, which involves determining whether a given edge exists in the graph,
constructed with random negative sampling to generate negative samples. This approach helps the
model learn to distinguish between true edges and randomly sampled negative edges. For each
positive edge, we sample five corresponding negative edges. To assess performance on this task, we
utilized the area under the ROC curve (AUC-ROC) and the Precision-Recall curve (AUC-PR).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Innovatively, we introduced a novel edge classification task based on multiple meta-paths within
multiplex graphs. This task requires the model to accurately classify existing edges in the test set,
associating them with specific meta-paths. Taking ACM-MGB as an example, given an existing edge,
the model needs to determine whether it belongs to one of the meta-paths ‘PSP, PAP, PTP’. We used
F1 score as the classification metric to evaluate performance on this task, providing insights into the
model’s ability to classify edges based on their meta-path associations.

5 FAIR COMPARISON UNDER MGB

Based on the proposed MGB, we conducted a more comprehensive comparison of existing methods.
The main results are presented in Table 4. Since our proposed IMDB-MGB dataset is multi-labeled,
we did not report the clustering task designed for single-labeled datasets. Additional results on
edge-level tasks and two binary classification anomaly detection datasets (Dou et al., 2020) can be
found in Appendix E. These experiments yielded several new observations:

Table 4: Fair comparison results under our proposed Multiplex Graph Benchmark (MGB), where
higher value is better. Colored are the top first, second, and third results. E2E denotes end-to-end
methods, SS denotes self-supervised methods. OOM indicates out-of-memory error.

(a) Node classification results on proposed MGB datasets with textual attributes.

Methods ACM-MGB IMDB-MGB DBLP-MGB Amazon-MGB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

E2E
GCN 58.21±0.9 56.31±1.3 50.72±1.5 55.03±0.6 95.04±1.4 96.68±0.7 87.51±6.1 88.00±5.6
GAT 28.30±7.5 34.54±8.1 38.51±9.8 39.70±10.3 57.09±6.6 64.24±9.7 OOM
HAN 37.08±10.1 41.56±8.0 34.64±8.0 36.26±8.4 68.53±10.4 76.44±10.0 OOM

SS

MNE 47.52±0.8 48.01±0.6 38.64±0.6 42.34±0.6 43.76±0.4 55.89±0.9 OOM
DMGI 48.66±4.3 56.52±0.7 28.47±0.3 36.59±0.3 28.19±1.2 64.67±0.5 13.02±0.2 14.38±0.1
HDMI 56.32±1.6 54.72±1.3 36.33±4.0 43.47±4.0 81.82±3.4 87.68±2.0 76.83±2.1 76.86±2.0
CKD 60.05±0.3 58.09±0.6 39.61±0.2 47.41±0.6 88.41±0.8 91.42±0.6 86.89±0.9 86.88±0.9

MGDCR 57.25±1.0 55.90±0.8 35.36±0.7 44.03±0.4 66.20±8.5 78.78±4.5 79.31±0.7 79.36±0.7
DMG 48.55±4.6 51.32±3.6 17.91±0.9 40.03±0.6 36.00±1.8 66.68±0.6 28.75±5.1 31.02±4.0

(b) Node clustering results on proposed MGB datasets with textual attributes.

Methods ACM-MGB DBLP-MGB Amazon-MGB
Accuracy NMI Accuracy NMI Accuracy NMI

E2E
GCN 37.73±1.9 5.42±4.0 64.64±0.1 0.42±0.2 14.33±0.0 0.09±0.0
GAT 44.41±4.0 20.66±7.3 63.63±1.6 2.60±1.7 OOM
HAN 41.61±5.2 15.40±9.1 64.89±0.6 1.74±2.2 OOM

SS

MNE 35.47±0.0 0.12±0.0 64.52±0.0 0.10±0.0 OOM
DMGI 48.76±3.7 25.56±2.2 63.40±0.9 0.31±0.2 14.40±0.1 0.17±0.1
HDMI 38.68±2.7 8.10±7.3 64.58±0.1 0.29±0.2 14.37±0.0 0.11±0.0
CKD 46.52±2.5 27.81±6.2 64.50±0.0 0.07±0.0 14.30±0.0 0.05±0.0

MGDCR 38.25±5.0 6.00±7.8 64.45±0.0 0.06±0.0 14.41±0.0 0.16±0.1
DMG 37.33±1.8 4.63±4.8 64.57±0.0 0.25±0.1 14.37±0.0 0.15±0.0

(c) Edge prediction & classification results on proposed MGB datasets with textual attributes.

Methods ACM-MGB IMDB-MGB DBLP-MGB Amazon-MGB
AUC-ROC AUC-PR F1 AUC-ROC AUC-PR F1 AUC-ROC AUC-PR F1 AUC-ROC AUC-PR F1

GCN 77.91±0.2 40.48±0.7 57.84±0.3 58.89±1.0 22.71±2.8 51.58±5.9 47.71±7.1 16.61±3.1 36.05±3.0 54.78±3.3 18.68±1.9 41.40±4.4
GAT 66.74±5.9 24.91±5.2 53.35±5.3 54.60±2.7 30.73±16.4 48.52±1.0 61.30±5.9 24.62±3.3 36.35±3.6 OOM
HAN 68.20±4.8 33.26±8.9 55.76±7.4 55.90±2.4 20.50±3.1 53.03±3.2 63.17±3.6 27.19±2.9 38.98±3.7 OOM

MNE 63.53±1.3 24.16±1.4 51.42±6.5 52.12±0.8 17.94±0.2 52.12±0.8 55.38±1.2 20.83±0.6 37.23±1.2 OOM
DMGI 77.60±1.6 48.10±4.3 61.77±0.8 54.55±0.9 19.96±1.3 53.71±0.3 54.52±0.2 19.20±0.2 39.77±0.9 52.36±0.4 19.01±0.4 34.49±0.6
HDMI 79.98±1.3 44.87±2.0 68.75±0.3 56.75±2.2 21.20±1.4 51.82±2.5 64.60±4.3 27.47±2.8 43.18±1.6 54.83±1.9 19.80±1.7 36.80±2.3
CKD 80.24±0.2 46.69±1.1 64.00±1.4 64.55±1.2 27.07±0.9 58.28±0.4 67.62±0.8 29.14±0.7 45.84±1.0 56.38±1.5 20.14±1.3 41.05±1.5
MGDCR 79.02±1.1 43.66±1.2 67.72±0.4 63.94±0.6 27.58±0.8 60.07±1.0 80.66±2.6 43.22±4.1 49.04±1.3 59.52±0.7 23.30±0.5 43.08±1.2
DMG 75.25±3.6 35.52±4.5 55.94±1.4 53.07±2.0 18.88±1.0 50.09±1.4 56.18±5.2 20.01±2.5 32.67±3.4 52.91±2.0 18.19±1.3 35.64±2.6

Observation 4. Lower performance on new challenging MGB datasets. As shown in Table 4,
the performance of various methods on node classification, clustering, and edge tasks consistently
decreases on the newly proposed MGB datasets, indicating significant room for improvement for
existing methods. For instance, on the original ACM dataset (Wang et al., 2019b), baseline methods
reportedly achieved node classification performance of over 80%. However, on our ACM-MGB
dataset, which features a larger number of nodes, meta-paths, label space, and richer textual features,
the best result was only 60.05/58.09 achieved by CKD (Wang et al., 2022a). Additionally, compared to

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the issue of closely clustered performances of various methods on previous datasets, the performance
gaps on the MGB datasets have largely increased. For instance, methods like DMGI (Park et al.,
2020) and DMG (Mo et al., 2023b) even exhibit underfitting on the node classification tasks. The
increased complexity of the proposed datasets makes them more challenging for the models, which
offers ample opportunities for future research.

Table 5: Ablation study on the difficulty of MGB datasets, where results are reported in Macro-F1
score of node classification.

Description GCN HDMI MGDCR std(σ)

Amazon-MGB (full text embedding, 3 meta-paths, 7 classes) 87.51 76.83 79.31 5.59
partial text+BoW embedding, 3 meta-paths, 7 classes 64.08 53.95 52.82 6.20
full text embedding, 1 meta-path (only IBI), 7 classes 87.97 80.64 79.75 4.51
full text embedding, 3 meta-paths, 4 classes 91.55 83.36 84.69 4.40

To further validate the improved difficulty of our proposed MGB datasets, we conducted an ablation
study on the Amazon-MGB dataset. The results are shown in the Table 5. First, we reduced the
quality of the feature embeddings by using only product titles as raw text and a simple bag-of-words
model for encoding. When comparing this with the standard Amazon-MGB dataset, which uses
product titles, brands, and descriptions as input and employs a BERT encoder, we found that the
richer text-based embeddings do indeed improve model performance significantly. Next, we reduced
the difficulty of the dataset by lowering the number of meta-paths and label classes. We observed that
by simplifying the dataset, the performance of various methods improved, but the differentiation (σ)
between methods also decreased. This demonstrates that overall, our new MGB datasets have led to a
decrease in the performance of existing methods, but they also provide a better distinction between
the actual performance gaps of the models.

Table 6: Results for node clustering and edge-level
tasks of a Graph Transformer.

Dataset Acc NMI AUC-PR F1

IMDB-MGB NA NA 33.25±0.5 60.09±3.1
DBLP-MGB 95.66±2.3 83.91±2.4 43.35±0.8 49.87±0.7
Amazon-MGB 89.64±1.7 82.40±0.9 42.01±0.7 49.64±0.4

Observation 5. Rethinking possible designs
for future multiplex graph models. Table
4b illustrates that all methods produce nearly
random outcomes for clustering results on the
DBLP-MGB and Amazon-MGB datasets. This
phenomenon may stem from the relatively shal-
low depth of existing methods and the increased
sparsity and complexity of new datasets, which
leads to an inability to learn effective clustering
features. To validate this hypothesis, we tested a simple end-to-end Graph Transformer model (see
detailed implementation in Appendix D and complete results on Graph Transformer in Appendix
E.4). As shown in Table 6, its node clustering performance significantly improved. This suggests that
the random results obtained by other methods are due to inadequate learning rather than errors in the
datasets or experimental settings. Further t-SNE (van der Maaten & Hinton, 2008) plots in Appendix
E.3 also indicate the insufficiency of existing methods in learning distinguishable representations on
the MGB datasets.

Similarly, Table 4c reveals unsatisfactory results for the newly proposed edge-level tasks, given
that the models were not explicitly optimized for such objectives. Nonetheless, certain methods,
such as MGDCR (Mo et al., 2023a) and CKD (Wang et al., 2022a), showcase relatively acceptable
performances on the ACM-MGB and DBLP-MGB datasets. Furthermore, as illustrated in Table
6, more advanced models like the Graph Transformer with global attention exhibit considerable
enhancements compared to existing methods. Thus, in conjunction with Observation 3, this obser-
vation underscores the potential for designing multiplex graph models better suited to large-scale
datasets with intricate textual features, particularly models supporting global attention and larger-scale
end-to-end architectures.

6 CONCLUSIONS

Limitations and Future Directions A primary limitation of MGB is its current scale. Constrained by
the size of the original data and available computational resources, the largest dataset, Amazon-MGB,
contains 35,000 nodes. In contrast, existing large-scale graph benchmark OGB (Hu et al., 2020)
support millions of nodes, presenting more challenging scenarios. Additionally, balancing the number
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and weights of edges for different relationships (Mo et al., 2023b) requires further investigation. In
the future, we plan to expand MGB by incorporating more large-scale datasets and state-of-the-art
models.

Conclusion In this paper, we identified and addressed significant issues in existing methods, datasets,
and evaluation metrics in the field of multiplex graph learning. Initially, we conducted a fair
comparison under the current settings. Preliminary experimental results highlighted inconsistencies
in previous method comparisons, near-saturation of performance on existing low-differentiation
datasets, and the potential advantages of end-to-end methods in the current setting. To further address
the inadequacies of existing datasets and evaluation metrics, we proposed MGB, a comprehensive
multiplex graph benchmark that currently includes 10 unified baseline implementations, 11 diverse
datasets, and 4 comprehensive evaluation tasks. Further experiments on MGB revealed the limitations
of existing models when faced with more challenging data and tasks, prompting us to rethink the
design of future multiplex graph models. Specifically, models with global attention and stronger
expressive power in end-to-end solutions show promise.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Ali Behrouz and Farnoosh Hashemi. Cs-mlgcn: Multiplex graph convolutional networks for commu-
nity search in multiplex networks. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 3828–3832, 2022.

Ali Behrouz and Margo Seltzer. Anomaly detection in multiplex dynamic networks: from blockchain
security to brain disease prediction. arXiv preprint arXiv:2211.08378, 2022.

Ali Behrouz and Margo Seltzer. Anomaly detection in human brain via inductive learning on temporal
multiplex networks. In Machine Learning for Healthcare Conference, pp. 50–75. PMLR, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S. Yu. Enhancing graph neural
network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, CIKM ’20, pp. 315–324,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450368599. doi:
10.1145/3340531.3411903. URL https://doi.org/10.1145/3340531.3411903.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In WWW, 2020.

Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei Han. Graph-based consensus
maximization among multiple supervised and unsupervised models. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta (eds.), Advances in Neural
Information Processing Systems, volume 22. Curran Associates, Inc., 2009. URL
https://proceedings.neurips.cc/paper_files/paper/2009/file/
d7a728a67d909e714c0774e22cb806f2-Paper.pdf.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A DATASET DOCUMENTATION AND INTENDED USE

A.1 DATASET LICENSES AND DOWNLOAD LINKS

We provide the dataset licenses and downloadable links below. In this paper, we use the most
acclaimed versions of the ACM, IMDB, and DBLP datasets from the paper ”Heterogeneous Graph
Attention Network”(Wang et al., 2019b), the Amazon dataset from ”Unsupervised Attributed Mul-
tiplex Network Embedding”(Park et al., 2020), and the Freebase dataset from ”Self-Supervised
Heterogeneous Graph Neural Network with Co-Contrastive Learning” (Wang et al., 2021). We also
credit the original data collectors and annotators.

• ACM: Unknown License. The data were collected and processed by (Wang et al., 2019b),
and can be downloaded from here.

• IMDB: CC0 v1.0 License. The raw data is an open-source dataset from Kaggle 3. HAN
(Wang et al., 2019b) processed it into a version containing 4,780 nodes, which can be found
here.

• DBLP: Unknown License. The raw data were collected by (Gao et al., 2009) and is available
at 4. HAN (Wang et al., 2019b) provided a version containing 4,057 nodes, which can be
found here.

• Amazon: MIT License. The authors of (Ni et al., 2019) retrieved reviews and metadata
from Amazon5. The widely used version from (Park et al., 2020) includes a 4-category
subset from the raw data, which can be downloaded here.

• Freebase: CC BY License. The raw data were collected by (Yang et al., 2020). We use the
most commonly used version from (Wang et al., 2021), available here.

• Amazon-Fraud, Yelp-Fraud: Apache License 2.0. The collectors are (Dou et al., 2020),
and the datasets can be found here.

• ACM-MGB, IMDB-MGB, DBLP-MGB, Amazon-MGB: MIT License. We provide the
raw data and the processed data of our proposed MGB dataset from here.

As authors, we confirm the data licenses as indicated above and we bear all responsibility in case of
violation of rights.

To ensure a unified and reproducible fair comparison, we have uploaded all datasets at
https://drive.google.com/file/d/1LsJPsfr5tB2zK8ELlATxomJn687ToohX/
view?usp=drive_link. Simply place the datasets in the ./data folder under the MGB code
directory for automatic execution.

3https://www.kaggle.com/datasets/karrrimba/movie-metadatacsv
4http://web.cs.ucla.edu/˜yzsun/data/
5https://cseweb.ucsd.edu/˜jmcauley/datasets/amazon/links.html
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A.2 MAINTENANCE PLAN

To provide up-to-date, robust, and reliable multiplex graph datasets for academic purposes,
we will update and supplement the datasets based on the latest advancements in the field
and community feedback. We will continuously maintain the git repository at https:
//anonymous.4open.science/r/multiplex-F150, including more baseline meth-
ods and datasets. We also provide a website https://mg-benchmark.github.io/
Multiplex-graph-Benchmark/, which includes documented tutorials and running examples.
In the future, we plan to add a Leaderboard feature to facilitate open competition and comparison.

B RELATED WORKS

In this section, we briefly introduce the multiplex graph baseline methods reproduced in this paper.

Graph Neural Networks (GNNs), including GCN (Kipf & Welling, 2016) and GAT (Veličković
et al., 2017), encode each relationship in multiplex graphs separately and use an average readout to
obtain the final embeddings.

Heterogeneous Graph Attention Network (HAN) (Wang et al., 2019b) proposes hierarchical
attention mechanisms at both the node and relationship levels, trained end-to-end. Node-level attention
learns the importance between a node and its meta-path-based neighbors, while relationship-level
attention learns the importance of different meta-paths.

Multiplex Network Embedding (MNE) (Zhang et al., 2018) assigns each node a common and
private embedding, allowing multiple relationships to be learned jointly using the Skip-gram algorithm
(Mikolov et al., 2013).

Deep Multiplex Graph Infomax (DMGI) (Park et al., 2020) learns embeddings for multiplex
graphs by maximizing the mutual information between local graph patches and the global graph
representation. DMGI introduces a consensus regularization framework to minimize disagreements
among relation-type-specific node embeddings and employs a universal discriminator to differentiate
true sample pairs, regardless of relation types.

High-order Deep Multiplex Infomax (HDMI) (Jing et al., 2021) is similar to DMGI but also
considers joint supervision signals, incorporating both extrinsic and intrinsic mutual information
through high-order mutual information.

Heterogeneous Graph with Co-contrastive Learning (HeCo) (Wang et al., 2021) employs a cross-
view contrastive mechanism. Specifically, it proposes two views of a heterogeneous information
network to learn node embeddings, capturing both local and high-order structures. Additionally,
HeCo introduces cross-view contrastive learning and a view mask mechanism to extract positive and
negative embeddings from the two views.

Collaborative Knowledge Distillation (CKD) (Wang et al., 2022a) models the knowledge in each
meta-path with two granularities: regional and global knowledge. It learns meta-path-based embed-
dings by collaboratively distilling knowledge from intra-meta-path and inter-meta-path perspectives
simultaneously.

Multiplex Graph Representation Learning via Dual Correlation Reduction (MGDCR) (Mo
et al., 2023a) addresses the problem of noisy information by investigating intra- and inter-graph
decorrelation losses. MGDCR also designs a simple pretext task to eliminate the need for negative
sampling in contrastive learning.

Disentangled Multiplex Graph Representation Learning (DMG) (Mo et al., 2023b) disentangles
common and private information in multiplex graphs and designs a contrastive constraint to preserve
complementarity while removing noise from private information.

C DETAILS OF MGB

We implement the proposed benchmark and models set using the PyTorch (Paszke et al., 2019) and
PyTorch-Geometric (Fey & Lenssen, 2019) frameworks. The experiments are conducted on Nvidia
GeForce 2080Ti (11GB VRAM) and 3090Ti (24GB VRAM) GPUs.
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C.1 HYPERPARAMETERS FOR BASELINES

In this section, we present detailed hyperparameters for each baseline method. Initially, we provide
general hyperparameters applicable to all baselines across all datasets. Unless explicitly specified by
the original authors, these hyperparameters will be fine-tuned using a grid search. Note that for each
method, not all hyperparameters are utilized.

• Training hyperparameters
– random seeds: [0, 1, 2, 3, 4]
– train epochs: 200
– train learning rate: [0.0001, 0.001, 0.01]
– weight decay: 1e-4
– early stop patience: 20
– test epochs: 100
– test learning rate: 0.1
– batch size: [64, 128]

• GNN encoder
– hidden dimension: [32, 64, 128, 256, 512]
– layers: [1, 2, 3, 4]
– dropout: 0.1
– isBias: True
– activation: ‘relu’

• MLP encoder
– hidden dimension: [64, 128, 256]
– layers: [1, 2, 3]
– dropout: 0.1
– isBias: True

We then specify hyperparameters for each baseline method. We attempt to use the original settings
defined by the authors; however, for some experiments, reproducing results using the original
parameters is not feasible. Therefore, the provided parameter options for grid search might be
different from their original papers.

• GCN & GAT
– refer to parameters of GNN encoder above

• HAN
– refer to parameters of GNN encoder above
– nheads: [1,2,4]

• MNE
– p: [1, 2]
– q: [0.5, 1]
– walk length: [10, 20]
– context size: [5, 10]
– walks per node: [10, 100]
– num negative samples: 1

• DMGI
– reg coef: [0.001, 0.01, 0.1]
– sup coef: [0.1, 0.2]
– margin: [0.1, 0.3]
– nheads: [1, 2, 4]

• HDMI
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– coef layers: [[1, 2, 0.001]]
– coef fusion: [[0.01, 0.1, 0.001]]

• HeCo

– tau: [0.5, 0.7, 0.9]
– lam: 0.5
– feat drop: [0.1, 0.3, 0.5]
– attn drop: [0.1, 0.3, 0.5]

• CKD

– negative cnt: 5
– topk: [10, 20, 30]
– sample times: 1
– neigh por: 0.6
– global weight: [0.05, 0.1, 0.15]

• MGDCR

– lambda intra: 0.01
– lambda inter: 0.0001
– w intra: [0.1, 1]
– w inter: 1

• DMG

– c dim: 8
– p dim: 2
– phi hidden size: 256
– phi num layers: 2
– alpha: [0.02, 0.06, 0.1]
– beta: [0.05, 0.8, 1]
– lambda: [0.05, 0.5, 3]
– tau: [0.5, 0.7]
– neighbor num: 300
– sample neighbor: [30, 50]
– sample num: 50
– inner epochs: 10

D A SIMPLE GRAPH-TRANSFORMER IMPLEMENTATION

In Section 5, we mentioned that we implemented a simple end-to-end graph transformer model,
which achieved significant performance improvements on the MGB datasets. In this section, we will
introduce the implementation details of this model. The code will also be open-sourced along with
the implementations of other baseline methods.

D.1 MULTIPLEX GRAPH POSITIONAL ENCODING

We interpret multiplex graph positional encoding from two perspectives. One perspective involves
the node’s position within the entire graph, known as the absolute position. This assigns a unique
identification to each node, representing its global location in the overall graph. Another perspective
involves the node’s relative position concerning its neighbors and substructure, referred to as relative
position. This type of position information is valuable for capturing nodes’ local relationships.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Laplacian-PE as absolute positional encoding From the global perspective, we introduce eigen-
vectors of the graph Laplacian as the absolute positional encoding. Specifically, the eigenvectors are
computed by the factorization of the graph Laplacian matrix:

Lr = I−D− 1
2ArD

− 1
2 = UT

r ΛrUr, (1)
where Lr and Ar represent the graph Laplacian and adjacency matrix of multiplex graph Gr, respec-
tively. D is the graph degree matrix, I is the identity matrix, and Λr and Ur are the eigenvalues and
eigenvectors of the r-th meta-path, respectively.

With the eigenvectors Ur, we select k-smallest values and the Laplacian PE of node v is defined as:

uv|r = [Uv1,r,Uv2,r, ...,Uvk,r] ∈ Rk. (2)

The input node embeddings are the concatenation of the feature matrix and the Laplacian PE:
Hr = Xr ∥ Ur[ : , : k]. (3)

For multiplex graphs with multiple meta-paths (i.e., multiple adjacency matrices), we pre-compute
each meta-path’s Laplacian PE and combine it with the feature matrix. Consequently, each meta-
path’s feature matrix contains both meta-path-specific attributive and structural information.

RandomWalk-PE as relative positional encoding From the local perspective, nodes’ relative
positions or distances from each other also play a vital role. To model such relationships, we leverage
random walk as the relative positional encoding of node pairs, acting as a soft inductive bias. The
p-steps random walk matrix Φr of r-th meta-path is defined:

Φr = (I− βLr)
p, (4)

where β controls the amount of diffusion value between [0.25, 0.50], and p is the number of steps in
the random walk. The entry Φr[i, j] indicates the possibility of node i reaching node j after a p-step
random walk, representing the proximity relation in the graph.

D.2 GRAPH SERIALIZATION

Inputting graph data into a transformer encoder poses challenges due to the computational constraints
of self-attention. Transformers have a sequence length limit, whereas graph data often comprises
thousands of nodes, making serialization of the entire graph impractical.

To address this issue, we propose an efficient and dynamic graph serialization strategy utilizing the
properties of multiplex graphs. Specifically, for a node v, we sample its first-order neighbors Nv|r
under each Gr. If |Nv|r| exceeds the predefined maximum sequence length L, we randomly sample
from it. This way, for node v under different multiplex graph meta-paths, its corresponding ego-graph
sequences Sv|r =

{
v, u1, . . . , ui, . . . |ui ∈ Nv|r

}
are generated, with v always as the first node in the

sequence. This approach allows us to dynamically and efficiently sample and serialize large graphs.

D.3 TRANSFORMER ENCODER

For r-th meta-path of the multiplex graph, we inject the relative PE Φr into the multi-head self-
attention mechanism to bias the attention score with node relative relations:

Self-attn(Hr) = softmax(
QrK

T
r√

d
+Φr)Vr, (5)

Qr = HrWQ, Kr = HrWK, Vr = HrWV, (6)
where W is learnable linear projection, and d is the dimension of Qr. Normally there will be
multi-head attention so that each head can comprehend different aspects of information. We will
omit that for simplicity of presentation. In this way, the self-attention of graph transformer encoder
considers both the distance of node’s feature space and relative positions.

After that, the hidden embeddings are passed into a series of skip-connection, normalization, and
feed-forward networks (FFN), which combined together as a transformer encoder:

Ĥr = Norm(Hr + Self-attn(Hr)), (7)

Zr = Norm(Ĥr + FFN(Ĥr)). (8)
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Multiple layers of such transformer encoder can be stacked to get deeper representation, which is also
omitted for simplicity. For multiplex graphs, we initialize different parameter sets for each meta-path.
And we average the output of the last encoder layer Zr of each meta-path Gr as the final embedding:

Z =
1

R

R∑
r=1

Zr. (9)

Then the aggregated node embeddings are passed into a task-related network for downstream tasks.

E ADDITIONAL EXPERIMENTS

E.1 RESULTS ON AMAZON-FRAUD AND YELP-FRAUD DATASETS

Table 7: The results of compared baseline methods on two fraud datasets.

(a) Results on Amazon-Fraud.

Methods
Amazon-Fraud

Node Classification Node Clustering Edge
Macro-F1 Micro-F1 Accuracy NMI AUC-ROC AUC-PR F1

GCN 77.56±0.4 95.65±0.0 80.48±0.5 2.29±0.0 84.18±0.3 59.95±0.6 52.02±0.1
GAT 48.02±0.4 91.36±3.5 83.04±6.8 15.23±6.5 69.08±5.5 29.26±7.2 45.38±2.8
HAN 57.04±11.1 93.76±1.0 88.25±8.8 20.71±12.3 68.84±5.3 27.61±4.8 48.34±4.3

MNE 90.87±0.1 97.90±0.0 63.27±0.0 1.47±0.0 77.06±0.4 48.26±1.6 50.26±0.3
DMGI 81.44±0.6 96.01±0.2 72.72±1.4 3.66±2.5 84.44±1.0 63.54±1.2 63.76±1.4
HDMI 80.46±1.0 95.93±0.2 69.73±0.8 2.91±0.1 84.73±0.3 64.84±0.4 65.78±0.4
CKD 87.12±0.1 97.02±0.0 58.44±3.1 4.36±2.5 79.79±0.5 53.77±0.6 56.03±0.3
MGDCR 76.11±0.9 95.28±0.1 91.78±1.3 23.58±1.7 83.44±0.1 61.00±0.2 60.46±0.7
DMG 76.53±2.0 95.41±0.3 75.16±7.5 4.32±2.5 85.71±0.1 65.47±0.2 63.25±0.9

(b) Results on Yelp-Fraud.

Methods
Yelp-Fraud

Node Classification Node Clustering Edge
Macro-F1 Micro-F1 Accuracy NMI AUC-ROC AUC-PR F1

GCN 46.08±0.0 85.47±0.0 60.95±12.4 0.03±0.0 50.22±2.0 16.97±0.7 33.31±2.1
GAT out-of-memory
HAN out-of-memory

MNE 47.62±1.2 85.54±0.1 55.85±2.0 0.02±0.0 56.03±0.4 19.32±0.3 39.28±0.3
DMGI 53.56±1.1 85.86±0.1 52.87±0.9 0.02±0.0 60.87±0.7 22.36±0.7 41.24±0.8
HDMI 46.08±0.0 85.47±0.0 58.02±5.1 0.03±0.0 61.86±0.7 23.35±0.6 43.08±0.8
CKD 46.09±0.0 85.46±0.0 66.85±8.3 0.02±0.0 59.78±0.8 22.29±0.7 40.09±1.7
MGDCR 46.08±0.0 85.47±0.0 52.01±2.2 0.04±0.0 57.96±0.5 21.06±1.0 40.30±0.5
DMG 46.95±0.4 85.45±0.1 55.35±1.6 0.35±0.2 55.42±1.1 19.38±0.9 39.33±1.1

The results of all methods on the two anomaly detection datasets (Dou et al., 2020) are listed in Table
7.

E.2 EDGE-LEVEL TASKS ON EXISTING DATASETS

In Table 8, we present the edge prediction and classification results on previously existing datasets. It
can be observed that for edge-level tasks, self-supervised methods generally outperform end-to-end
methods, contrasting with Observation 3 in Section 3. The primary reason is that the end-to-end
methods we tested were trained on node tasks and were not specifically retrained for edge tasks.
Consequently, these methods did not adapt well to the new tasks. In contrast, self-supervised
methods learn more general representations, which better generalize across various downstream tasks.
Therefore, the choice of model should consider the specific downstream tasks and the associated
training costs. Self-supervised methods may require more resources but offer better generalization,
while end-to-end methods might be more efficient for specific tasks if appropriately retrained.
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Table 8: Edge prediction & classification results on existing datasets.

(a) Results on ACM, IMDB, and DBLP datasets.

Methods ACM IMDB DBLP
AUC-ROC AUC-PR F1 AUC-ROC AUC-PR F1 AUC-ROC AUC-PR F1

GCN 56.84±4.4 24.21±3.3 58.09±0.2 54.14±0.1 19.17±0.2 51.74±0.4 59.16±0.7 22.30±0.2 40.18±0.2
GAT 57.03±1.2 20.40±1.8 58.48±0.2 57.98±2.1 24.69±1.4 52.28±0.7 55.06±0.9 20.44±0.7 38.05±1.2
HAN 57.66±1.4 22.15±2.0 57.59±0.2 54.29±1.2 21.56±1.3 52.95±1.4 54.35±0.4 18.76±0.5 37.24±1.2

MNE 67.76±0.4 32.44±0.3 67.97±0.3 62.48±0.1 25.92±0.1 57.50±0.2 56.95±0.1 18.89±0.1 39.72±0.1
DMGI 79.27±2.9 61.13±7.9 73.44±0.9 62.68±2.7 27.22±3.0 58.04±1.9 60.61±1.0 22.09±0.6 43.20±0.6
HDMI 60.53±1.5 29.46±1.5 68.02±0.8 73.07±0.2 40.17±0.3 67.38±0.9 65.94±0.3 25.34±0.2 43.71±0.4
HeCo NA NA NA NA NA NA 68.82±0.4 27.06±0.2 45.88±0.4
CKD 66.22±3.8 36.83±10.1 65.81±1.5 68.53±2.7 32.46±3.6 59.11±1.7 62.23±1.5 22.74±1.3 39.37±0.3
MGDCR 55.09±2.5 22.03±2.1 64.52±0.5 69.10±0.5 36.24±2.0 61.45±1.2 69.15±0.2 27.27±0.3 45.84±0.3
DMG 67.63±5.9 31.21±8.2 68.80±1.1 65.97±1.3 25.40±3.2 56.72±1.5 70.48±0.0 28.04±0.1 44.63±0.2

(b) Results on Amazon and Freebase datasets.

Methods Amazon Freebase
AUC-ROC AUC-PR F1 AUC-ROC AUC-PR F1

GCN 59.86±0.6 19.12±0.3 37.90±1.0 70.24±0.2 52.68±0.1 40.32±0.0
GAT 72.86±3.7 32.84±5.9 44.74±3.6 70.10±0.1 51.49±0.1 40.33±0.1
HAN 55.93±1.4 20.25±0.9 35.19±0.5 69.30±0.4 39.45±0.4 40.29±0.1

MNE 69.44±0.3 32.88±0.3 49.23±0.1 74.77±0.0 41.64±0.0 42.03±0.1
DMGI 63.45±1.0 28.01±1.5 43.70±0.8 67.61±4.1 34.75±7.1 43.03±2.1
HDMI 82.85±0.8 53.00±2.1 56.94±1.0 73.32±0.3 52.29±0.4 51.56±0.6
HeCo NA NA NA 74.36±1.4 42.51±2.6 49.36±0.9
CKD 79.06±2.3 39.59±4.0 44.39±1.8 69.01±1.9 40.29±3.1 43.73±1.8
MGDCR 70.00±0.0 39.12±0.0 53.21±0.1 70.82±2.7 33.57±7.4 41.11±0.7
DMG 76.16±2.6 30.87±3.4 49.95±1.0 71.95±2.6 49.46±3.8 47.53±0.8

Additionally, differences between methods are more pronounced with the AUC-PR metric compared
to AUC-ROC. For example, MGDCR (Mo et al., 2023a) and DMG (Mo et al., 2023b) have similar
AUC-ROC scores on the Freebase dataset, but their AUC-PR scores differ by about 16%. This is
because AUC-PR is generally a more suitable performance metric for imbalanced datasets, as it
focuses on the model’s ability to predict the minority class (positive examples). AUC-ROC, on
the other hand, may mask the model’s deficiencies in predicting positive examples due to the large
number of negative examples in the dataset. In our setup, with a 5:1 ratio of negative to positive
edges, AUC-PR more accurately reflects model differences.

E.3 NODE CLUSTERING VISUALIZATION

Figure 2: HDMI Figure 3: CKD Figure 4: DMG Figure 5: Transformer

To provide a clearer understanding of the phenomenon observed in Table 4b, where existing methods
exhibit near-random clustering performance on MGB datasets, we visualized the t-SNE plots for
the HDMI (Jing et al., 2021), CKD (Wang et al., 2022a), DMG (Mo et al., 2023b), and Graph
Transformer methods on the Amazon-MGB dataset. The plots in Figure 2-5 reveal the distinctiveness
of the features learned by different models: The Graph Transformer model achieves large inter-class
distances and small intra-class distances, indicating well-separated and cohesive clusters. CKD
performs slightly worse, with smaller inter-class distances. HDMI shows confusion between different
classes. DMG suffers from underfitting, failing to learn distinguishable features. The clustering
performance observed in these visualizations also correlates with the node classification performance
reported in Table 4a, suggesting that better clustering results tend to correspond with higher node
classification metric.
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E.4 ADDITIONAL RESULTS ON GRAPH TRANSFORMER

In this subsection, we provide complete results of the Graph Transformer model over all tasks on all
datasets mentioned in our paper. It is worth noting that the Graph Transformer was introduced in
Observation 5 to validate our hypothesis that model depth and capacity can enhance performance.
It was not formally proposed by other researchers previously, and our implementation is a very
preliminary product without special design for multiplex relationships. Therefore, it was not included
as a baseline in our main body comparisons. The main results and ablation study are listed in Table 9
and Table 10.

Table 9: Main results for Graph Transformer across different datasets.

Dataset Macro-F1 Micro-F1 Accuracy NMI AUC-ROC AUC-PR F1

ACM 87.18 87.19 87.63 63.83 64.17 40.98 63.07
IMDB 52.00 53.87 51.36 8.59 68.67 37.43 57.68
DBLP 89.95 90.97 88.27 69.27 72.51 34.96 47.82
Amazon 64.78 65.24 52.55 15.25 80.64 39.75 49.80
Freebase 50.55 52.60 51.88 10.81 79.18 36.89 46.03
ACM-MGB 63.12±1.3 61.15±1.6 58.46±2.6 43.50±1.0 82.58±0.6 54.01±0.6 69.49±1.2
IMDB-MGB 37.10±1.2 58.95±1.1 NA NA 61.74±0.4 33.25±0.5 60.09±3.1
DBLP-MGB 96.02±0.1 97.24±0.1 95.66±2.3 83.91±2.4 72.96±0.7 43.35±0.8 49.87±0.7
Amazon-MGB 92.28±0.3 93.33±0.3 89.64±1.7 82.40±0.9 65.82±0.3 42.01±0.7 49.64±0.4

Table 10: Ablation study for Graph Transformer on ACM-MGB.

Macro-F1 Micro-F1 Accuracy NMI

Graph Transformer 63.12±1.3 61.15±1.6 58.46±2.6 43.50±1.0
w/o absolute positional encoding 61.80±1.9 60.10±2.1 55.75±1.6 42.27±1.9
w/o relative positional encoding 58.97±2.1 57.79±1.8 57.09±2.1 42.40±2.2
single-head QKV, single encoder layer 58.48±1.3 56.56±1.5 55.05±2.2 39.25±0.7

E.5 RUNNING TIME ANALYSIS

We conducted the experiments on running efficiency (time required to train one epoch, in milliseconds)
for a thorough analysis. The results are shown in Table 11. Notably, the CKD method, which involves
sub-graph sampling for each meta-path, is the most time-consuming, even slower than the Graph
Transformer. We will consider code-level optimizations to improve CKD’s speed in the future. It’s
important to note that our tests were conducted on an NVIDIA GeForce RTX 3090 paired with an
Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz. The hardware setup may influence the results, and
occasional load from other tasks running on the machine can also affect training speed. Therefore,
these results should be only considered as preliminary comparisons.

Table 11: Training time per epoch in milliseconds.

ACM-MGB IMDB-MGB DBLP-MGB Amazon-MGB

GCN 2.33-14.21 4.34-8.42 9.63-24.46 87.10-287.46
GAT 35.32-40.69 28.34-33.16 133.23-261.47 OOM
HAN 123.47-138.07 23.33-30.49 167.93-556.01 OOM
MNE 475.12-869.91 185.41-571.92 327.64-1478.81 OOM
DMGI 3.80-19.15 5.98-46.62 17.85-64.23 102.65-358.44
HDMI 9.64-66.51 7.38-44.50 38.70-59.28 171.73-349.32
CKD 1879.45-6710.01 1010.37-3720.99 2105.74-3577.79 18581.42-43175.20
MGDCR 1.34-18.19 4.86-15.88 17.72-21.90 64.25-140.05
DMG 416.24-810.14 162.63-476.75 352.91-564.65 2501.44-5977.83
Graph Transformer 374.64-1619.01 223.56-276.41 856.91-2205.48 7109.85-22591.39

F SOCIAL IMPACT

Positive Impact By providing a unified platform for comparing different methods, our work
promotes rigorous and reproducible research, enabling fair and meaningful comparisons. This fosters
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innovation and collaboration among researchers, leading to the development of more robust and
expressive models. Enhanced models can be applied to various domains, such as social networks,
bioinformatics, and recommendation systems, ultimately benefiting society by improving applications
like fraud detection, personalized recommendations, and drug discovery.

Negative Impact The focus on standardized benchmarks could potentially narrow the scope of
research, as researchers might prioritize optimizing their models for these specific datasets rather
than exploring broader or more diverse applications. Additionally, the increased computational
resources required for large-scale benchmarks could exacerbate environmental concerns associated
with high-energy consumption.
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