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ABSTRACT

One of the most significant challenges in Conditional Average Treatment Effect
(CATE) estimation is the statistical discrepancy between distinct treatment groups.
To address this, we propose a model-agnostic data augmentation method for CATE
estimation. We first derive regret bounds for general data augmentation methods,
indicating that reduced group discrepancy and low imputation error enhance CATE
estimation. Inspired by this, we introduce a contrastive learning approach that
reliably imputes missing potential outcomes for a selected subset of individuals
based on a similarity measure. These reliable imputations augment the original
dataset, reducing the discrepancy between treatment groups while inducing minimal
imputation error. The augmented dataset can then be used to train standard CATE
estimation models. We provide theoretical guarantees and extensive numerical
studies, demonstrating our approach’s effectiveness in improving the accuracy and
robustness of various CATE estimation models.

1 INTRODUCTION

One of the most significant challenges for Conditional Average Treatment Effect (CATE) estimation
is the statistical discrepancy between distinct treatment groups (Goldsmith-Pinkham et al., 2022).
While Randomized Controlled Trials (RCTs) mitigate this issue (Rubin, 1974; Imbens & Rubin,
2015), they can be expensive, unethical, and unfeasible to conduct. Consequently, we are often
constrained to rely on observational studies, which are susceptible to the aforementioned issue. To
address this, we introduce a model-agnostic data augmentation method, comprising two key steps.
First, our approach identifies a subset of individuals whose counterfactual outcomes can be reliably
imputed. Subsequently, it performs imputation for the missing counterfactual outcomes of these
selected individuals, thereby augmenting the original dataset with these imputed values. See Figure 1a
for a visual illustration of the pipeline. Importantly, our method functions as a data pre-processing
module that remains agnostic to the choice of the subsequent model employed for CATE estimation.

Motivation. Our method is motivated by an observed trade-off between (i) the statistical discrepancy
across treatment groups and (ii) the error in counterfactual outcome imputation. Consider the scenario
with a binary treatment assignment. In this context, no individual can appear in both the control and
treatment groups due to the inaccessibility of counterfactual outcomes (Holland, 1986). Suppose
that, with the sole aim of reducing discrepancies across treatment groups, we randomly impute
the missing counterfactual outcomes and then integrate each individual, along with their randomly
imputed outcomes, into the original dataset. This procedure ensures that the control and treatment
groups have identical individuals, effectively eliminating all discrepancies. However, it is obvious
that any model trained on such a randomly augmented dataset would exhibit poor performance
due to the substantial errors introduced by the random imputation. This trade-off is illustrated in
Figure 1b where increasing level of data augmentation simultaneously decreases the discrepancy
across treatment groups and increases the imputation error. Motivated by this, our approach aims to
address this challenge by identifying a subset of individuals for whom the counterfactual outcomes
can be reliably imputed. We formalize this idea with a generalization bound in Section 4 which
affirms an intuitive conclusion that an augmentation method with low counterfactual outcome
imputation error can enhance CATE estimation.

Algorithm. To this end, our approach utilizes contrastive learning to identify the individuals whose
counterfactual outcomes can be reliably imputed. Specifically, it learns a representation space and
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(a) Similarity learning is used to select a subset of individuals, followed
by reliable local imputations to generate their counterfactuals. These
imputations augment the original dataset, reducing the statistical dis-
crepancy between treatment groups while minimizing imputation error.
The augmented data is then used to train off-the-shelf CATE estimation
models, improving their accuracy and robustness.

(b) Trade-off between statistical
discrepancy and imputation error
across different augmentation lev-
els (0 to 1). A full description of
the synthetic toy dataset and im-
plementation details can be found
in Appendix D.2.

Figure 1: (a) Overview of the proposed model-agnostic data augmentation method for CATE
estimation, and (b) the observed trade-off that motivated the proposed method.

a similarity measure such that within this learned representation space, close individuals identified
by the similarity measure exhibit similar potential outcomes. This smoothness property guarantees
reliable counterfactual outcome imputation through local approximation for individuals with
a sufficient number of close neighbors from the alternative treatment group. After identifying
these individuals, we impute their counterfactual outcomes by utilizing the factual outcomes of their
proximate neighbors (from the alternative treatment group). Importantly, the smoothness property,
which results from contrastive learning, ensures that the imputation can be achieved locally with
simple models that require minimal tuning. We explore two distinct methods for imputation: linear
regression and Gaussian Processes.

Theoretical and Empirical Validation. To comprehensively assess the efficacy of our data augmen-
tation technique,

• we theoretically establish that our approach asymptotically generates datasets whose
probability densities converge to those of RCTs;

• we provide non-asymptotic generalization bounds for the performance of CATE estimation
models trained with our augmented data;

• our empirical results further demonstrate the efficacy of our method, showcasing consistent
enhancements in the performance of various CATE estimation models, including TARNet,
CFR-Wass, and CFR-MMD (Shalit et al., 2017), S-Learner and T-Learner integrated with
neural networks, Bayesian Additive Regression Trees (BART) (Hill, 2011; Chipman et al.,
2010; Hill et al., 2020) with X-Learner (Künzel et al., 2019), and Causal Forests (CF)
(Athey & Imbens, 2016) with X-Learner.

2 RELATED WORKS

One of the fundamental tasks in causal inference is to estimate Average Treatment Effects (ATE)
and Conditional Average Treatment Effects (CATE) (Neyman, 1923; Rubin, 2005). Various methods
have been proposed for ATE estimation, including Covariate Adjustment (Rubin, 1978), Propensity
Scores (Rosenbaum & Rubin, 1983), Doubly Robust estimators (Funk et al., 2011), Inverse Probability
Weighting (Hirano et al., 2003), and recently Reisznet (Chernozhukov et al., 2022). While these
methods are successful for ATE estimation, they are not directly applicable to CATE estimation.

On the other hand, recent advances in machine learning have led to new approaches for CATE esti-
mation, such as decision trees (Athey & Imbens, 2016), Gaussian Processes (Alaa & Van Der Schaar,
2017), Multi-task deep learning ensemble (Jiang et al., 2023), Generative Modeling (Yoon et al.,
2018), and representation learning with deep neural networks (Shalit et al., 2017; Johansson et al.,
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2016). It is worth noting that alternative approaches for investigating causal relationships exist, such
as do-calculus, proposed by Pearl (Pearl, 2009a;b). Here, we adopt the Neyman-Rubin framework. At
its core, the CATE estimation problem can be seen as a missing data problem (Rubin, 1974; Holland,
1986; Ding & Li, 2018) due to the unavailability of the counterfactual outcomes. In this context,
we propose a new data augmentation approach for CATE estimation by imputing certain missing
counterfactuals. Data augmentation, a well-established technique in machine learning, serves to
enhance model performance by artificially expanding the size of the training dataset (Van Dyk &
Meng, 2001; Chawla et al., 2002; Han et al., 2005; Jiang et al., 2020; Chen et al., 2020a; Liu et al.,
2020; Feng et al., 2021).

A crucial aspect of our methodology is the identification of similar individuals. There are various
methods to achieve this goal, including propensity score matching (Rosenbaum & Rubin, 1983),
Mahalanobis distance matching (Imai et al., 2008), and nearest neighbor matching algorithms
(Holzmann & Meister, 2024; Lin et al., 2023). Nonetheless, these methods pose significant challenges,
particularly in scenarios with large sample sizes or high-dimensional data, where they suffer from
the curse of dimensionality. Recently, Perfect Match (Schwab et al., 2018) is proposed to leverage
importance sampling to generate replicas of individuals. It relies on propensity scores and other
feature space metrics to balance the distribution between the treatment and control groups during the
training process. In contrast, we utilize contrastive learning to construct a similarity metric within a
representation space. Our method focuses on imputing missing counterfactual outcomes for a selected
subset of individuals, without creating duplicates of the original data points. While the Perfect Match
method is a universal CATE estimator, our method is a model-agnostic data augmentation method
that serves as a data preprocessing step for other CATE estimation models.

3 PRELIMINARIES

Let T ∈ {0, 1} be a binary treatment assignment, X ∈ X ⊂ Rd be the covariates (features),
and Y ∈ Y ⊂ R be the factual (observed) outcome. For each j ∈ {0, 1}, we define Yj as the
potential outcome (Rubin, 1974), which represents the outcome that would have been observed if
only the treatment T = j was administered. The random tuple (X,T, Y ) jointly follows the factual
(observational) distribution denoted by pF(x, t, y). Let DF = {(xi, ti, yi)}ni=1 denote a dataset that
consists of n observations independently sampled from pF where n is the number of observations.

Definition 3.1 (CATE). The Conditional Average Treatment Effect (CATE) is defined as:

τ(x) = E[Y1 − Y0|X = x]. (1)

Throughout this work, we make the standard assumptions of positivity, i.e., 0 < pF(T = 1|X) < 1,
and conditional unconfoundedness, i.e., (Y1, Y0) ⊥⊥ T |X , so that CATE is identifiable (Robins,
1986; Imbens & Rubin, 2015). Let τ̂(x) = h(x, 1)− h(x, 0) denote an estimator for CATE where
h is a hypothesis h : X × {0, 1} → Y that estimates the underlying causal relationship f between
(X,T ) and Y .

Definition 3.2 (PEHE). The Expected Precision in Estimating Heterogeneous Treatment Effect
(PEHE) (Hill, 2011) is defined as:

εPEHE(h) =

∫
X
(τ̂(x)− τ(x))2pF(x)dx (2)

εPEHE is widely used as the performance metric for CATE estimation. However, directly estimating
εPEHE from observational data DF is a non-trivial task, as it requires knowledge of the counterfactual
outcomes. This challenge underscores that models for CATE estimation need to be robust to overfitting
the factual distribution. Notably, our empirical results (in Section 7) indicate that our method
mitigates the risk of overfitting for various CATE estimation models. Apart from εPEHE, we will also
consider the following loss function in our theoretical results.

Definition 3.3. For a distribution p over (X,T, Y ) and a hypothesis h, the loss function Lp(h) is
defined as:

Lp(h) =

∫
(y − h(x, t))2p(x, t, y) dx dt dy,
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4 UNDERSTANDING DATA AUGMENTATION FOR CATE ESTIMATION

We first present a generalization bound for the performance of CATE estimation models trained using
an augmented dataset. This result serves as the theoretical foundation of our proposed augmentation
method in Section 5.

Given the factual dataset DF with n samples, a data augmentation algorithm based on counterfactual
imputation has two main components:

• Component I: identifying a subset Rn ⊂ X × {0, 1}, where Rt
n ⊂ X for t ∈ {0, 1} is the

projection for the treatment and control groups on which to perform data augmentation.

• Component II: imputing the missing potential outcomes for individuals in Rn with an
algorithm f̃n : Rn → Y .

Notations. Let pAF(x, t, y) be the distribution of (X,T, Y ) in the augmented dataset. Due to space
limitation, we defer the mathematical definition of pAF(x, t, y) to Appendix C.1. Let pAF(x, t) and
pRCT(x, t) represent the marginal distributions of (X,T ) when sampled from the augmented dataset
and RCTs, respectively. To establish the generalization bound, we assume that there is a true potential
outcome function f such that Y = f(X,T )+η with η verifying that E[η] = 0. Let β ∈ (0, 1) denote
the percentage of the total data pointed selected for counterfactual imputation, i.e., β = na/n where
na is the number of points selected for imputation and n is the total number of samples in the dataset.

Theorem 4.1 (Generalization Bound). Let h be a hypothesis, its εPEHE is upper bounded as follows:

εPEHE(h) ≤ 4 ·
(
LpAF(h)︸ ︷︷ ︸

(I)

+2V
(
pRCT

(
X,T

)
, pAF

(
X,T

))︸ ︷︷ ︸
(II)

+
β

1 + β
· bA(n)︸ ︷︷ ︸

(III)

,
)

(3)

where V (g1, g2) =
1
2

∫
S |g1(s)− g2(s)|ds is the total variation distance between two densities, and

bA(n) = EX,T∼q

[
∥f(X,T )− f̃n(X,T )∥2

]
,

where q(x, 1− t) = pF(x,1−t)
α 1Rn

with α =
∫
pF(x, 1− t)1Rn

(x, 1− t)dxdt.

Remark 4.2. We note that term (I) in Theorem 4.1 is essentially the training loss of a hypothesis
h on the augmented dataset while term (II) characterizes the statistical similarity between the
individuals’ features in the augmented dataset and those generated from an RCT. Meanwhile, term
(III) characterizes the accuracy of the data augmentation method.

Hence, this theorem highlights the trade-off between the disparity across treatment groups and the
imputation error, which is empirically illustrated in Figure 1b. More importantly, it underscores
that simultaneously minimizing (i) the statistical disparity across treatment groups and (ii) the
imputation error can enhance the performance of CATE estimation models. Thus, we reach a quite
intuitive conclusion: an augmentation method with low counterfactual imputation error can help
CATE estimation. It is also essential to highlight that if the local regression module can achieve more
accurate estimation with more samples (e.g., local Gaussian Process) bA(n) will converge to 0, as
proved in Section 6.

5 CONTRASTIVE COUNTERFACTUAL AUGMENTATION

Motivated by Theorem (4.1) and as discussed in the introduction, the effectiveness of counterfactual
augmentation depends on reliable imputation. To this end, we propose to learn a representation
space along with a similarity measure such that: within this representation space, individuals classied
as similar by the similarity measure should exhibit similar potential outcomes. In other words, an
individual’s potential outcome exhibit a strong correlation with those of its nearby neighbors. This
smoothness property ensures reliable imputation through local approximation. As a result, for
the individuals who possess a sufficient number of close neighbors from the alternative treatment
group, we can reliably impute their counterfactual outcomes using the factual outcomes of their
nearby neighbors and, as established above, augmenting the original dataset with these reliable
imputations can enhance CATE estimation.
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Figure 2: t-SNE visualization of IHDP features and potential outcome Y0 in the ambient space (left)
and the latent space (right) learned by contrastive learning. Groups are defined by dividing the
potential outcome Y0 values into five equal intervals from smallest to largest, with each individual
labeled based on the value of its potential outcome.

Overview. We propose COntrastive COunterfactual Augmentation (COCOA) with two components.
The first component is a classifier gθ, trained with contrastive learning (Le-Khac et al., 2020; Jaiswal
et al., 2020) to learn a representation space and a similarity measure. For a given individual x, gθ
identifies x’s close neighbors, that is, individuals in the dataset DF who are likely to exhibit similar
outcomes when subjected to the same treatment assignment as x. The second component is a local
regressor ψ, which imputes the counterfactual outcome for x after being fitted to its close neighbors.

Specifically, for t ∈ {0, 1}, we use Dt ⊂ DF to denote the factual observations in treatment group t,
i.e, Dt = {(xi, ti, yi) ∈ DF |ti = t}. The counterfactual imputation has the following steps:

1. Neighbor Identification. For a given individual x within treatment group t whose counter-
factual outcome (that is, potential outcome under treatment 1− t) needs to be imputed, the
trained classifier gθ first identifies a set of close neighbors to x, denoted by Dx ⊂ D1−t.
In particular, Dx are individuals in treatment group 1 − t who are likely to have similar
potential outcomes to x under treatment 1− t.

2. Local Approximation. Subsequently, the non-parametric regressor ψ utilizes the factual
outcomes in Dx to estimate the counterfactual outcome of x: ŷx = ψ(x,Dx).

3. Augmentation. Finally, the imputed outcome of x is incorporated into the dataset, i.e.,
DA = DA ∪ {(x, 1− t, ŷx)} where DA is initialized as DA = DF .

Selective Imputation. As discussed in Section 1 and shown by Theorem (4.1), minimal counterfactual
imputation error plays a crucial role in the success of data augmentation. To ensure the reliability of
these imputations, we only perform imputations for individuals who possess a sufficient number
of close neighbors. Thus, we only estimate the counterfactual outcome of x if |Dx| ≥ k, where k
is a pre-determined parameter that controls estimation accuracy. In the worst case, no individuals
will meet the imputation criteria, resulting in no augmentation of the dataset. It is important to note
that unlike standard CATE models, COCOA does not generalize to unseen samples. Its goal is to
identify individuals within the dataset and impute their counterfactual outcomes, thereby augmenting
the dataset to improve CATE models’ predictions on unseen samples. The augmented dataset DA is
then used as the training dataset for CATE estimation models. See Algorithm 1 for pseudocode of
COCOA. We next discuss the classifier gθ and the regressor ψ in detail.

Contrastive Learning Module. Contrastive (representation) learning methods (Wu et al., 2018;
Bojanowski & Joulin, 2017; Dosovitskiy et al., 2014; Caron et al., 2020; He et al., 2020; Chen et al.,
2020b; Trinh et al., 2019; Misra & Maaten, 2020; Tian et al., 2020) are based on the principle that
similar individuals should be associated with closely related representations within an embedding
space. This is achieved by training models to perform an auxiliary task: predicting whether two
individuals are similar or dissimilar.

In the context of CATE estimation, we consider two individuals with similar outcomes under the
same treatment as similar individuals. As individuals who are close in the original space may not
generally verify this property, we utilize contrastive learning approaches to learn a space where this
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Algorithm 1 Contrastive Counterfactual Augmentation

Input: Factual dataset DF = {(xi, ti, yi)}ni=1; sensitivity parameter ϵ; threshold k
Output: Augmented factual dataset DA as training dataset for CATE estimation models
Initialize DA = DF

Construct datasets D+
ϵ and D−

ϵ from DF
Learn a parametric classifier gθ with contrastive learning and (D+

ϵ , D
−
ϵ ) by optimizing Equation 4.

for i = 1 to n do
Determine xi’s close neighbors Dxi = {(xj , yj)|j ∈ [n], tj = 1− ti, gθ(xi, xj) = 1}
if |Dxi | ≥ k then

Counterfactual Imputation ŷi = ψ(xi, Dxi); Add (xi, 1− ti, ŷi) to DA

end if
end for

property holds. Figure 2 illustrates this: with contrastive learning, the features of the individuals
with similar potential outcomes are more clustered in the representation space, demonstrating the
smoothness property that enables reliable local imputation.

Module Training. The degree of similarity between outcomes is measured using a particular
metric in the potential outcome space Y . In our case, we employ the Euclidean norm in R1 for
this purpose. With this perspective, given the factual (original) dataset DF = {(xi, ti, yi)}ni=1,
we construct a positive dataset D+

ϵ that includes pairs of similar individuals. Specifically, we
define D+

ϵ = {(xi, xj) : i, j ∈ [n], i ̸= j, ti = tj , ∥yi − yj∥ ≤ ϵ} where ϵ is user-defined
sensitivity parameter specifying the desired level of precision. We also create a negative dataset
D− = {(xi, xj) : i, j ∈ [n], i ̸= j, ti = tj , ∥yi − yj∥ > ϵ} containing pairs of individuals deemed
dissimilar. Let ℓ : {0, 1} × {0, 1} → R be any loss function for classification task. We learn a
parametric classifier (neural network) gθ : X × X → {0, 1} with parameter θ by optimizing the
following objective function:

min
θ

∑
(x,x′)∈D+

ϵ

ℓ(gθ(x, x
′), 1) +

∑
(x,x′)∈D−

ϵ

ℓ(gθ(x, x
′), 0) (4)

Neighbor Identification. For a given individual x in DF within treatment group t, we utilize trained
gθ to identify its close neighbors Dx ⊂ DF for counterfactual imputation. Specifically, we iterate
over all the individuals who received treatment 1− t and employ gθ to predict whether their potential
outcomes are close to the potential outcome of x under treatment 1− t. Hence, the selected neighbors
of individual x1 is defined as: Dx = {i ∈ [n] : ti = 1− t, gθ(x, xi) = 1}. Note that we only impute
the counterfactual outcome of x if |Dx| ≥ k where k is a pre-determined parameter to control the
imputation error.

Local Regression Module. After identifying the nearest neighbors Dx, we employ a local regression
module ψ to impute the counterfactual outcomes. In this work, we explore two different types of
local regression modules which are linear regression and Gaussian Process (GP). In experimental
studies, we present results with GP using a Dot Product Kernel and defer the results for other kernels
and linear regression to Appendix D.5. We opt for these straightforward function classes for local
regression due to the following principles:

• Local Approximation: Complex functions can be locally estimated with simple functions,
e.g., continuous functions and complex distributions can be approximated by a linear
function (Rudin, 1953) and Gaussian distributions (Tjøstheim et al., 2021), respectively.

⋆ Sample Efficiency: If the class of the local linear regression module can estimate the true
target function locally, then a class with less complexity will require fewer close neighbors
for good approximations.

† Practicality: A simpler class of ψ requires less hyper-parameter tuning which is even more
challenging in causal inference applications.

Gaussian Process. Gaussian Process (Seeger, 2004) offers robust solutions to regression problems.
It is fully characterized by a mean function m : X → R and a kernel K : X × X → R+

0 and
1The terms "individual" and "indices of individuals" are used interchangeably.
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it is denoted as GP(m,K). A GP is a random process ϕ(X ) indexed by a set X such that any
finite collection of these random variables follows a multivariate Gaussian distribution. Consider
a finite index set of n elements xn

.
= {xi}ni=1, then the n-dimensional random variable ϕ(xn)

∆
=[

ϕ(x1), ϕ(x2), . . . , ϕ(xn)
]

follows a Gaussian distribution:

ϕ(xn) ∼ N
(
m(xn),K(xn,xn)

)
(5)

where m(xn) =
[
m(x1), . . . ,m(xn)

]
is the mean and the K(xn,xn) is a n× n covariance matrix

whose element on the i-th row and j-th column is defined as K(xn,xn)ij
.
= K(xi, xj)

Potential Outcome Imputation. Based on the principle of Local Approximation, if an individual
x in the factual dataset received treatment t, it is assumed that the potential outcome of x under
treatment 1− t and those of its close neighbors (i.e., the individuals within Dx) follow a GP. Thus,
after constructing Dx using the method described above, the counterfactual outcome for x is imputed
as:

ŷ1−t
x = ψ(x,Dx) = E[y1−t|x, {yi}i∈Dx

]. (6)
Under the assumption of GP, ŷ1−t

x has a closed-form solution. Let σ(i) denote the i-th smallest index
in Dx and K denote the kernel (covariance function) of GP. Then

ŷ1−t
x = K⊤

x Kxxy, (7)
where

Kx = [K(x, xσ(1)), . . . ,K(x, xσ(|Dx|))], y = [yσ(1), . . . , yσ(|Dx|)]

and Kxx is a |Dx| × |Dx| matrix whose element on the i-th row and j-column is K(xσ(i), xσ(j)).
Finally, we append the tuple (x, 1− t, ŷ1−t

x ) into the factual dataset to augment the training data.

6 THEORETICAL INSIGHTS

This section explores the theoretical properties of COCOA, and aims to rigorously establish its
efficacy. While the results presented here, similar to the extensive body of results on learning theory,
are based on large-sample assumptions, they provide valuable insights into why local imputation
methods such as COCOA are effective.

Results Overview. We present two main results:

• An asymptotic result showing that the augmented dataset distribution of COCOA converges
to that of RCTs, thus effectively eliminating statistical disparity across treatment groups

• A finite-sample regret guarantee for the GP local regressor showing that the imputation
error can be provably controlled.

These two results combined with Theorem 4.1 establish that COCOA can be beneficial for CATE
estimation, which is also empirically verified later in Section 7.

Notation. We use O to denote the standard big-O notation for asymptotic behaviors and Õ to denote
the big-O notation ignoring all the log terms. || · ||2 denotes the Euclidean norm. For any two values
a, b ∈ R, we let a ∨ b = max(a, b) and a ∧ b = min(a, b). Let n1 and n0 denote the number
of individuals in the treatment and control groups, respectively. We define u = P(T = 1) as the
probability of an individual being in the treatment group, and let z = u

1−u . Moreover, let

Xt d
= (X|T = t) and γ = P(ρ(X1, X0) ≥ ϵ) ∈ (0, 1),

where ρ(·, ·) denotes the distance metric between features (e.g. the contrastive learning distance) of
the treatment and control groups, and ϵ is a pre-defined threshold.

6.1 ASYMPTOTIC BEHAVIOR OF COCOA

COCOA defines the following augmentation regions for the control and the treatment groups denoted
as R0

n and R1
n respectively: for t ∈ {0, 1}, we have that,

R1−t
n = {xj |j ∈ [n], tj = 1− t, ∃i1 < . . . < ik ∈ [n], tik = t, ρ(xik , x) ≤ ϵ}

where k denotes the number of neighbors. The asymptotic behavior of COCOA is illustrated in the
following result.

7
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Theorem 6.1 (Convergence to RCT). Let p1AF and p0AF be the distributions of the treatment and control
groups, respectively, after data augmentation. The following upper bound holds:

V (p1AF, p
0
AF) ≤

1− αn0

1 + z−1αn1

+
zαn0 (1− αn1)

1 + αn0
z

+
|1− αn0αn1 |

(1 + z−1αn1
) (1 + αn0

z)
, (8)

Moreover, as n1 and n0 converge to infinity, we have that 1− αnj
converge to 0 with order

1− αnj
= O(nkj γ

nj ).

This implies that with enough samples, the probability of not encountering data points in close
proximity to any given point x becomes very small as the exponential decay γnj for γ < 1 dominates.
Hence, positivity ensures that within the big data regime, we will encounter densely populated regions,
enabling us to approximate counterfactual distributions locally. This guarantees that the second
term in Theorem( 4.1) converges to zero, thus eliminating the statistical disparity across treatment
groups.

6.2 FINITE-SAMPLE GUARANTEE.

Next, we establish the finite-sample guarantees for the GP local regressor. By Mercer’s decomposi-
tion (Seeger, 2004), a GP is a distribution on a function class F ⊂ {f : X → R}, specified by the
GP’s kernel K : X × X → R+

0 .
Assumption 6.2. The potential outcome functions belong to this function space F , i.e.,

{f(X,T = t) : X → R | t ∈ {0, 1}} ⊂ F .

This assumption is reasonable because, with an RBF kernel, F includes all continuous functions.
Definition 6.3 (Lipschitz Constant for GP Kernel). Assume that K : X × X → R+ is the kernel of
a Gaussian Process (GP). Its Lipschitz constant LK is defined as:

LK(X ) = sup
x,x′∈X

||∇xK(x, x′)||2. (9)

Remark 6.4. For well-known kernels, such as RBF, LK is known and finite if X is a bounded space.
Moreover, LK(X ) is an increasing function of the input space X , i.e., if X ⊂ X ′, LK(X ) ≤ LK(X ′).

Data Generation Process. In this part, we assume that the data generation process is as follows,
Y = f(X,T ) + η, where η ∼ N (0, σ2) and it is independent of (X,T ). We also assume that
X ⊂ Rd and the potential outcomes function f are bounded, and f is Lf -Lipschitz continuous.
Assume there is a dataset {xi, yi}n̄t

i=1 available with n̄t samples for the imputation of potential
outcomes under treatment t.

Imputation Function. Let σn̄t
(x) = K(x, x) −K(x,xn̄t

)(K(xn̄t
,xn̄t

) + σ2 · In̄t
)−1K(xn̄t

, x)
be the posterior standard deviation of GP at x where

K(x,xn̄t) ∈ R1×n̄t = [K(x, x1), . . . ,K(x, xn̄t)],

K(xn̄t , x) ∈ Rn̄t×1 = [K(x, x1), . . . ,K(x, xn̄t)]
⊤,

K(xn̄t
,xn̄t

) ∈ Rn̄t×n̄t ,K(xn̄t
,xn̄t

)ij = K(xi, xj).

Let f̃n̄t(x, t) denote the GP-based imputation function given the dataset {xi, yi}n̄t
i=1 ⊂ Dt, i.e.,

f̃n̄t
(x, t) = K(x,xn̄t

)(K(xn̄t
,xn̄t

) + σ2 · In̄t
)−1yn̄t

where yn̄t
= [y1, . . . , yn̄t

]⊤. Note f̃n̄t
is a

random function, varying with the observed dataset. The following result addresses its error.
Theorem 6.5. For t ∈ {0, 1}, let Lt

K = LK(R1−t
n ) denote the Lipschitz constant of the kernel K

in region R1−t
n and let U t

K = supx,x′∈R1−t
n

K(x, x′) denote the "width" of region R1−t
n . Then with

probability at least 1− δ where δ ∈ (0, 1),

sup
t∈{0,1}

sup
x∈R1−t

n

|f(x, t)− f̃n̄t(x, t)| ≤
√
dÕ

√C0
K ∨ C1

K

n̄0 ∧ n̄1
+
√

sup
x∈R1

n

σn̄0(x) ∨ sup
x∈R0

n

σn̄1(x)


+O(1/(n̄0 ∧ n̄1)),

(10)
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where
Ct

K = 4Lt
K + 2U t

K/σ
2

is only related to the kernel K and unrelated to the number of sample n̄t.
Remark 6.6. Theorem( 6.5) is a sufficient condition for controlling term (III) in Theorem (4.1) due to
the fact that

EX,T∼q

[
∥f(X,T )− f̃n(X,T )∥

]
≤ sup

t∈{0,1}
sup

X∈R1−t
n

|f(X, t)− f̃n(X, t)|.

Remark 6.7. As proved in Theorem 6.1, for any number of required neighbors n̄t, the probability
of a fixed x not having more than n̄t neighbors decreases approximately exponentially to 0. As
the right-hand side Equation 10 converges to 0 as n→ +∞, this demonstrates that asymptotically
COCOA leads to unbiased learning of CATE.
Remark 6.8. COCOA carefully selects the individuals for counterfactual outcome imputation so that:

• By only selecting individuals with a sufficient amount of close neighbors, R1−t
n is reduced.

σn̄t
(x) is also decreased as the posterior of GP has less variance with more close neighbors.

Hence, supx∈R1−t
n

σn̄t
(x) is significantly reduced, leading to reduced error.

• Smaller R1−t
n decrease both Lt

K and U t
K , further decreasing the error.

Remark 6.9. The effect of the complexity of the true causal function f is captured both in Ct
K and

σn̄t(x): a simpler f implies smoother kernel thus smaller Ct
K and faster decrease of σn̄t(x).

7 EXPERIMENTAL STUDIES

While the theoretical results in Section 6 provide large-sample guarantees, here we empirically
demonstrate that COCOA works for practical scenarios where the number of samples is only moderate.
In particular, we observe that COCOA consistently improves the CATE estimation performance
across state-of-the-art CATE models. More importantly, we observe that COCOA prevents CATE
models from overfitting to the factual data during training. We believe this property is particularly
important in the setting of CATE estimation because the true performance of models cannot be
validated in practice, making robustness to overfitting an especially desirable property.

Evaluation Setup. We test our proposed methods on various benchmark datasets: the IHDP dataset
(Ramey et al., 1992; Hill, 2011), the News dataset (Johansson et al., 2016; Newman et al., 2008),
and the Twins dataset (Louizos et al., 2017). Additionally, we apply our methods to two synthetic
datasets: one with linear functions for potential outcomes and the other with non-linear functions,
we include these results in Appendix D.1. A detailed description of these datasets is provided in
Appendix B. To estimate the variance of our method, we randomly divide each of these datasets into
a train (70%) dataset and a test (30%) dataset with varying seeds. Moreover, we demonstrate the
efficacy of our methods across a variety of CATE estimation models.

Table 1:
√
εPEHE across models, with COCOA augmentation (w/ aug.) and without augmentation

(w/o aug.) on Twins, News, and IHDP datasets. Lower
√
εPEHE corresponds to better performance.

Twins News IHDP
Model w/o aug. w/ aug. w/o aug. w/ aug. w/o aug. w/ aug.
TARNet 0.59±.29 0.57±.32 5.34±.34 5.31±.17 0.92±.01 0.87±.01

CFR-Wass 0.50±.13 0.14±.10 3.51±.08 3.47±.09 0.85±.01 0.83±.01

CFR-MMD 0.19±.09 0.18±.12 5.05±.12 4.92±.10 0.87±.01 0.85±.01

T-Learner 0.11±.03 0.10±.03 4.79±.17 4.73±.18 2.03±.08 1.69±.03

S-Learner 0.90±.02 0.81±.06 3.83±.06 3.80±.06 1.85±.12 0.86±.01

BART 0.57±.08 0.56±.08 3.61±.02 3.55±.00 0.67±.00 0.67±.00

CF 0.57±.08 0.51±.11 3.58±.01 3.56±.01 0.72±.01 0.63±.01

Performance Improvements. Table 1 summarizes the experimental results verifying COCOA’s
effect on consistently improving the performance of various CATE estimation models. We observe
significant improvements for certain models over specific benchmarks (e.g., Twins with CFR-Wass,

9
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Table 2:
√
εPEHE across different similarity measures: Contrastive Learning (CL), propensity scores

(PS), and Euclidean distance (ED), using CFR-Wass across IHDP, News, and Twins datasets.

ED PS CL
IHDP 3.32±1.13 3.94±0.21 0.83±0.01

News 4.98±0.10 4.82±0.11 3.47±0.09

Twins 0.23±0.10 0.48±0.09 0.14±0.10

IHDP with CD), lead to new state-of-the-art performance. Moreover, even in cases where the
improvement is marginal, we note substantial enhancements in models’ robustness to overfitting the
factual distribution, as described in the following paragraph.

Robustness Improvements. In the context of CATE estimation, it is essential to notice the absence
of a validation dataset due to the unavailability of the counterfactual outcomes. This poses a challenge
in preventing the models from overfitting to the factual distribution. Our proposed data augmentation
technique effectively addresses this challenge, as illustrated in Figure 3, resulting in a significant
enhancement of the overall effectiveness of various CATE estimation models. Notably, counterfactual
balancing frameworks (Johansson et al., 2016; Shalit et al., 2017) significantly benefit from COCOA.
This improvement can be attributed to the fact that data augmentation in dense regions helps narrow
the discrepancy between the distributions of the control and the treatment groups. By reducing this
disparity, our approach enables better generalization and minimizes the balancing distance, leading to
more stable outcomes. We include more results in Appendix D.7.

Figure 3: Effects of COCOA on preventing overfitting. From left to right: IHDP with TARNet,
CFR-Wass, and T-learner. X-axis has the training epochs; Y-axis shows the performance measure (not
accessible in practice). The performance of the models trained without data augmentation decreases
as the epoch number increases beyond the optimal stopping epoch (blue curves), overfitting to the
factual distribution. In contrast, the error of the models trained with the augmented dataset barely
increase (red curves), demonstrating the effect of COCOA on preventing overfitting.

Ablation Studies. We conducted ablation studies to assess the impact of the embedding ball size (R)
and the number of neighbors (k) on the performance of CATE estimation models trained on the IHDP
dataset. Detailed results are in Appendix D.6. These experiments illustrate the trade-off between the
quality of imputation and the discrepancy of the treatment groups. COCOA is robust to the choice of
these hyperparameters, with a wide range of values leading to performance improvements. Table 2
compares our contrastive learning method to propensity scores and Euclidean distance as similarity
measures. Appendix D.4 includes ATE estimation results, and Appendix D.5 covers ablations on GP
and local linear regression kernels.

8 CONCLUSION

In this paper, we present a model-agnostic data augmentation method for CATE estimation. We
propose a generalization bound motivating our approach. We utilize contrastive learning and Gaussian
Processes to reliably impute some missing counterfactuals. We provide both asymptotic and finite
sample guarantees to support the proposed method. Notably, we enhance the performance and
robustness of various CATE estimation models across various datasets.

10
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A APPENDIX

B DATASET DESCRIPTIONS

IHDP The IHDP dataset is a semi-synthetic dataset that was introduced based on real covariates
available from the Infant Health and Development Program (IHDP) to study the effect of development
programs on children. The features (covariates) in this dataset come from a Randomized Control
Trial. The potential outcomes were simulated following Setting B in Hill (2011). The IHDP dataset
consists of 747 individuals (139 in the treatment group and 608 in the control group), each with 25
features. The potential outcomes are generated as follows:

Y0 ∼ N (exp(βT (X +W )), 1)

and
Y1 ∼ N (βT (X +W )− ω, 1)

whereW has the same dimension asX with all entries equal 0.5 and ω = 4. The regression coefficient
β is a vector of length 25 where each element is randomly sampled from a categorical distribution with
the support (0, 0.1, 0.2, 0.3, 0.4) and the respective probability masses µ = (0.6, 0.1, 0.1, 0.1, 0.1).

News The News Dataset is a semi-synthetic dataset designed to assess the causal effects of various
news topics on reader responses. It was first introduced in Johansson et al. (2016). The documents
were sampled from news items from the NY Times corpus (downloaded from UCI Newman et al.
(2008)). The covariates available for CATE estimation are the raw word counts for the 100 most
probable words in each topic. The treatment t ∈ {0, 1} denotes the viewing device. t = 0 means
with computer and t = 1 means with mobile. A topic model is trained on a comprehensive collection
of documents to generate z(x) ∈ Rk that represents the topic distribution of a given news item x
(Johansson et al., 2016).

Let the treatment effects be represented by zc1 (for t = 1) and zc0 (for t = 0) zc1 is defined as the
topic distribution of a randomly selected document while zc0 is the average topic representation
across all documents. The reader’s opinion of news item x on device t is influenced by the similarity
between z(x) and zct , expressed as:

y(x, t) = C ·
(
z(x)T zc0 + t · z(x)T zc1

)
+ ϵ

where C = 50 is a scaling factor and ϵ ∼ N (0, 1). The assignment of a news item x to a device
t ∈ {0, 1} is biased towards the preferred device for that item, modeled using the softmax function:

p(t = 1|x) = eκ·z(x)
T zc1

eκ·z(x)
T zc0 + eκ·z(x)

T zc1

Here, κ determines the strength of the bias and it is assigned to be 10.
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Twins The Twins dataset Louizos et al. (2017) is based on the collected birthday data of twins
born in the United States from 1989 to 1991. It is assumed that twins share significant parts of
their features. Consider the scenario where one of the twins was born heavier than the other as
the treatment assignment. The outcome is whether the baby died in infancy (i.e., the outcome is
mortality). Here, the twins are divided into two groups: the treatment and the control groups. The
treatment group consists of heavier babies from the twins. On the other hand, the control group
consists of lighter babies from the twins. The potential outcomes, Y0 and Y1, are generated through:

Y0 ∼ N (exp(βTX), 0.2)

and
Y1 ∼ N (αTX, 0.2)

Where β and α are sampled from a high dimensional standard normal distribution.

Linear dataset We synthetically generate a dataset with N = 1500 samples and d = 10 features.
The feature vectors X = (x1, x2, . . . , xd)

T ∈ Rd are drawn from a standard normal distribution.
The treatment assignment t ∈ {0, 1} is biased, with the probability of treatment being

p(t = 1|x) = 1

1 + exp(−(x1 + x2))

We generate potential outcomes using two linear functions with coefficients β0 = (0.5, , . . . , 0.5) ∈
Rd and β1 = (0.3, . . . , 0.3) ∈ Rd as follows:

Y0 = β0X +N (0, 0.01)

Y1 = β1X +N (0, 0.01)

Non-Linear dataset We construct a synthetic dataset consisting of N = 1500 instances with
d = 10 features. The feature vectors, denoted by X = (x1, x2, . . . , xd)

T ∈ Rd, are sampled from a
standard normal distribution. The treatment assignment t ∈ {0, 1} is biased, with the probability of
treatment being

p(t = 1|x) = 1

1 + exp(−(x1 + x2))

We generate potential outcomes using two linear functions with coefficients β0 = (0.5, , . . . , 0.5) ∈
Rd and β1 = (0.3, . . . , 0.3) ∈ Rd as follows:

Y0 = exp (β0X) +N (0, 0.01)

Y1 = exp((β1X) +N (0, 0.01)

C PROOFS OF THE THEORETICAL RESULTS

In this section, we include the proofs for the theoretical results presented in the main text.

C.1 DISTRIBUTION OF THE AUGMENTED DATASET

The marginal distribution of (X,T ) in the augmented dataset can be defined as follows:

pAF(x, t) =
1

1 + β
pF(x, t) +

β

1 + β
q(x, 1− t),

where β
1+β ∈ [0, 12 ] represents the ratio of the number of the select individuals for augmentation to the

total number of samples in the augmented dataset, and q = pF(x,1−t)
α 1Rn , with α as the normalizing

constant, i.e., α =
∫
pF(x, 1− t)1Rn

(x, 1− t)dxdt. In other words, q is the factual distribution of
the alternative treatment group with its probability mass normalized to the augmentation region Rn.

Hence, pAF(y|x, t) can be defined as follows: it is equal to pF(y|x, t) when (x, t) is sampled from
the factual distribution; for samples drawn from q(x, 1 − t), pAF(y|x, t) is defined as a point mass
function δ(y = f̃n(x, t)).
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C.2 PROOF OF THEOREM( 4.1)

Theorem 4.1. Let h be a hypothesis, its εPEHE is upper bounded as follows:

εPEHE(h) ≤ 4 ·
(
LpAF(h)︸ ︷︷ ︸

(I)

+2V
(
pRCT

(
X,T

)
, pAF

(
X,T

))︸ ︷︷ ︸
(II)

+
β

1 + β
· bA(n)︸ ︷︷ ︸

(III)

)

where V (g1, g2) =
1
2

∫
S |g1(s)− g2(s)|ds is the total variation distance, and

bA(n) = EX,T∼q

[
∥f(X,T )− f̃n(X,T )∥2

]
To prove the generalization bound, we first define a notion of consistency for data augmentation. And,
we demonstrate a lemma proving that the proposed consistency is equivalent to emulating RCTs.
Definition C.1 (Consistency of Factual Distribution). A factual distribution pF is consistent if for
every hypothesis h : X × {0, 1} → Y,LF(h) = LCF(h).
Definition C.2 (Consistency of Data Augmentation). A data augmentation method is said to be
consistent if the augmented data follows a factual distribution that is consistent.
Lemma C.3 (Consistency is Equivalent Randomized Controlled Trials). Suppose we have a factual
distribution pF and its corresponding counterfactual distribution pCF such that for every hypothesis
h : X × {0, 1} → Y,LF(h) = LCF(h). This implies that the data must originate from a randomized
controlled trial, i.e., pF(X|T = 1) = pF(X|T = 0).

Proof of Lemma C.3.
Suppose that for every hypothesis h : X × {0, 1} → Y,LF(h) = LCF(h).
By definition,

LF(h) =

∫
(y − h(x, t))2pF(x, t, y) dx dt dy

and
LCF(h) =

∫
(y − h(x, t))2pCF(x, t, y) dx dt dy

We can write this as

EpF

[(
Y − h(X,T )2

)]
= EpCF

[(
Y − h(X,T )2

)]
Since this holds for every function h, consider two Borel sets A and B in X × T × Y , and we let
h1(X,T ) = E [Y |X,T ]− 1A and h2(X,T ) = E [Y |X,T ]− 1B . Hence we have that,

EpF

[
(Y − h1(X,T ))

2
]
= EpF

[
(Y − E [Y |X,T ] + 1A)

2
]

= EpF

[
(Y − E [Y |X,T ])2

]
+ EpF [1A] + 2EpF [1A (Y − E [Y |X,T ])]

And we have that, EpF [1A (Y − E [Y |X,T ])] = 0 since by definition of the conditional expectation

we have that E[Y 1A] = E[E [Y |X,T ]1A]. We denote by MSE(pF) = EpF

[
(Y − E [Y |X,T ])2

]
.

Therefore we have that

EpF

[
(Y − h1(X,T ))

2
]
=MSE(pF) + EpF [1A]

Using the same argument for pCF we have the following result:

EpCF

[
(Y − h1(X,T ))

2
]
=MSE(pCF) + EpCF [1A]

Similarly, we have the following for h2:

EpF

[
(Y − h2(X,T ))

2
]
=MSE(pF) + EpF [1B ]

EpCF

[
(Y − h2(X,T ))

2
]
=MSE(pCF) + EpCF [1B ]
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Therefore we have
MSE(pF)−MSE(pCF) = EpF [1A]− EpCF [1A]

and
MSE(pF)−MSE(pCF) = EpF [1B ]− EpCF [1B ]

Therefore
EpF [1A]− EpCF [1A] = EpF [1B ]− EpCF [1B ]

Hence it follows,
EpF [1A∩B ] = EpCF [1A∩B ]

And as this holds for every Borel measurable set A and B, therefore we have that pF = pCF.

Denote by u = pF(T = 1) we have pF(X) = upF(X|T = 1) + (1− u)pF(X|T = 0). Similarly we
have that pCF(X) = (1− u)pCF(X|T = 1) + upCF(X|T = 0). Therefore, since pF = pCF,

upF(X|T = 1) + (1− u)pF(X|T = 0) = (1− u)pCF(X|T = 1) + upCF(X|T = 0)

= (1− u)pF(X|T = 1) + upF(X|T = 0)

Hence
(2u− 1) pF(X|T = 1) = (2u− 1) pF(X|T = 0)

Therefore we conclude the result that,

pF(X|T = 1) = pF(X|T = 0).

This concludes the proof.

For completeness, we also include this result.
Lemma C.4 (Consistency of Randomized Controlled Trials). The factual distribution of any ran-
domized controlled trial =verifying pF(T = 1) = pF(T = 0) is consistent, i.e., if pF(X|T = 1) =
pF(X|T = 0) and pF(T = 1) = pF(T = 0), then for all h : X × {0, 1} → Y ,

LF(h) = LCF(h)

Proof. Let u = pF (T = 1) = 1
2 , pF (T = 1) = pCF (T = 0)

LF(h)

=

∫
(y − h(x, t))2pF(x, t, y) dx, dt dy

= u

∫
(y − h(x, 1))2pF(x, y|T = 1) dx dy + (1− u)

∫
(y − h(x, 0))2pF(x, y|T = 0) dx dy

= u

∫
(y − h(x, 1))2pF(x, y|T = 0) dx dy + (1− u)

∫
(y − h(x, 0))2pF(x, y|T = 1) dx dy

= u

∫
(y − h(x, 1))2pCF(x, y|T = 1) dx dy + (1− u)

∫
(y − h(x, 0))2pCF(x, y|T = 0) dx dy

=

∫
(y − h(x, t))2pCF(x, t, y) dx dy

= LCF(h)

To prove Theorem (4.1) we also include a new definition for an “ideal" factual distribution. Subse-
quently, we will prove its consistency. The ideal factual distribution is defined as follows:

pIF =
1

2
pF +

1

2
pCF. (11)

In other words, to sample a dataset from pIF, we sample from the factual distribution pF half of the
time and from the counterfactual distribution pCF in the other half of the times. Let pICF denote the
counterfactual distribution corresponding to pIF. We next show that pIF is consistent (thus called ideal
distribution).
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Lemma C.5 (Consistency of pIF.). The error of the ideal factual distribution equals the error of its
corresponding counterfactual distribution, i.e., for every hypothesis h : X × {0, 1} → Y , we have
that LIF(h) = LICF(h).

Proof. We observe that pICF = 1
2pCF +

1
2pF. Therefore, pICF = pIF and the result follows.

Intuitively, this result is saying that the ideal counterfactual augmentation gives us a factual distribution
that perfectly balances the factual and counterfactual worlds. It follows from Lemma C.3 that
achieving this property guarantees that the dataset is identically distributed to the one generated from
a Randomized Controlled Trial. However, it is impossible to sample from pCF.

Also, we cite this Theorem that we will use in our proof:
Theorem C.6 (Theorem 1 in Ben-David et al. (2010)). Let f be the true function for a learning
task such that f(x) = E [Y |X = x] where X has a density p and let another true function g(x) =
E [Y |X = x] modeling another learning task, where X has a density q. Let h by a hypothesis
function estimating the true function f , therefore we have

EX∼q(x)[∥g(X)− h(X)∥2] ≤ EX∼p(x)[∥f(X)− h(X)∥2] + 2V (p(x), p(x))

+ EX∼p(x)[∥f(X)− g(X)∥2]

We can now prove Theorem( 4.1).

Proof. We have f : X × {0, 1} → Y to be the function underlying the true causal relationship
between (X,T ) and Y .It follows from Theorem C.6 that:

LIF(h) ≤ LAF(h) + 2V (pIF, pAF) + Ex,t∼pAF [∥f(x, t)− f̃(x, t)∥2]
where LIF is the factual loss with respect to the ideal density and LAF is the factual loss with respect
to the density of the augmented data.

By decomposition of the εPEHE we have that,

εPEHE(h) =

∫
X
(h(x, 1)− h(x, 0)− f(x, 1) + f(x, 0))

2
pIF(x)dx

=

∫
X
(h(x, 1)− h(x, 0)− f(x, 1) + f(x, 0))

2
pIF(x|T = 1)p(T = 1)dxdt

+

∫
X
(h(x, 1)− h(x, 0)− f(x, 1) + f(x, 0))

2
pIF(x|T = 0)p(T = 0)dxdt

≤ 2 · LIF(h) + 2 · LICF(h)

Therefore, it follows from Lemma C.5 that,

εPEHE(h) ≤ 4 ·
(
LAF(h) + 2V (pRCT(x, t), pAF(x, t)) + Ex,t∼pAF [∥f(x, t)− f̃n(x, t)∥2]

)
And since we have that,

Ex,t∼pAF [∥f(x, t)− f̃n(x, t)∥2]
)
=

(
1

1 + β
) · Ex,t∼pF

[||f(x, t)− f̃n(x, t)||] + · β

1 + β
Ex,t∼q[||f(x, t)− f̃n(x, t)||]

And by observing that the first term Ex,t∼pF [∥f(x, t)− f̃n(x, t)∥2] = 0, since the algorithm keeps
the samples from the factual distribution to be the same.

C.3 PROOF OF THEOREM( 6.1)

Theorem 6.1. Let p1AF and p0AF be the distributions of the treatment and control groups, respectively,
after data augmentation. The following upper bound holds:

V (p1AF, p
0
AF) ≤

1− αn0

1 + z−1αn1

+
zαn0

(1− αn1
)

1 + αn0z
+

|1− αn0
αn1

|
(1 + z−1αn1) (1 + αn0z)

,

as n1 and n0 converge to infinity, we have that αn1 and αn0 converge to 1 with 1−αnj = O(nkj γ
nj ).
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To prove Theorem( 6.1) we start by stating the following lemma and proving it.
Lemma C.7. Let a, b ∈ [0, 1], and let (p1, p2, q1, q2) be probability distributions, we have that:

V (ap1 + (1− a)p2, bq1 + (1− b)q2) ≤ a · V (p1, q1) + b · V (p2, q2) + |a− b| .

Proof. Let a, b ∈ [0, 1], and let (p1, p2, q1, q2) be probability distributions, we have that:

V (ap1 + (1− a)p2, bq1 + (1− b)q2)

=
1

2

∫
Rd

|ap1(x) + (1− a)p2(x)− bq1(x) + (1− b)q2(x)| dx

≤ 1

2

∫
Rd

|ap1(x)− bq1(x)|+ |(1− a)p2(x)− (1− b)q2(x)| dx

With triangle inequality again, we can bound

|ap1(x)− bq1(x)| ≤ a |p1(x)− q1(x)|+ |a− b| |q1(x)|
and,

|(1− a)p2(x)− (1− b)q2(x)| ≤ (1− a) |p2(x)− q2(x)|+ |a− b| |q2(x)|
and by integrating we have that,

V (ap1 + (1− a)p2, bq1 + (1− b)q2) ≤ a · V (p1, q1) + b · V (p2, q2) + |a− b| .

Proof. We start by proving the rate of convergence. We have that,

P(X0 ∈ R0
n) =

n1∑
i=k

(
n1
i

)
(1− γ)iγn1−i

= 1−
k−1∑
i=0

(
n1
i

)
(1− γ)iγn1−i

= 1−
k−1∑
i=1

n1!

(n1 − i)!i!
(1− γ)iγn1−i

≥ 1− n1!

(n1 − k + 1)!
γn1

k−1∑
i=0

1

i!

(
1− γ

γ

)i

≥ 1− nk1γ
n1

k−1∑
i=0

1

i!

(
1− γ

γ

)i

Similarly, we have,

P(X1 ∈ R1
n) =

n0∑
i=k

(
n0
i

)
(1− γ)iγn0−i

= 1−
k−1∑
i=1

n0!

(n0 − i)!i!
(1− γ)iγn0−i

≥ 1− nk0γ
n0

k−1∑
i=0

1

i!

(
1− γ

γ

)i

Therefore we have,
1− αn0

= O(nk0γ
n0),

1− αn1 = O(nk1γ
n1),
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We now state the definition of the probability densities of the control and treatment groups resulting
from the augmentation process as,

p1AF =
1

1 + βn1

p1 +
βn1

1 + βn1

p01R0

αn1

and,

p0AF =
1

1 + βn0

p0 +
βn0

1 + βn0

p11R1

αn0

with,

βn1 = αn1

(
1− u

u

)
and,

βn0
= αn0

(
u

1− u

)

V (p1AF, p
0
AF) =

1

2

∫
|p1AF − p0AF|

=
1

2

∫ ∣∣∣∣ 1

1 + βn1

p1 +
βn1

1 + βn1

p01R0

αn1

− 1

1 + βn0

p0 − βn0

1 + βn0

p11R1

αn0

∣∣∣∣
≤ 1

2

∫ ∣∣∣∣ 1

1 + βn1

p1 − βn0

1 + βn0

p11R1

αn0

∣∣∣∣+ 1

2

∫ ∣∣∣∣ βn1

1 + βn1

p01R0

αn1

− 1

1 + βn1

p0
∣∣∣∣

Hence by applying Lemma C.7 we have that,

V (p1AF, p
0
AF) ≤

1

1 + βn1

V (p1,
p11R1

αn0

) +
βn0

1 + βn0

V (p0,
p01R0

αn1

) + | 1

1 + βn1

− βn0

1 + βn0

|

We have that,

V (p1,
p11R1

αn0

) =
1

2

(∫
R1

|p1 − p1

αn0

|+
∫
Rc

1

p1

)

=
1

2

(∫
R1

p1|1− 1

αn0

|+ (1− αn0
)

)
=

1

2

(
|αn0

− 1|
αn0

∫
R1

p1 + (1− αn0)

)
=

1

2

(
|αn0

− 1|
αn0

αn0
+ (1− αn0

)

)
= (1− αn0

)

Similarly,

V (p0,
p01R0

αn1

) = (1− αn1
)

Substituting this into the bound and letting z = u
1−u we have that,

V (p1AF, p
0
AF) ≤

1− αn0

1 + βn1

+
βn0

(1− αn1
)

1 + βn0

αn1
) + | 1

1 + βn1

− βn0

1 + βn0

|

=
1− αn0

1 + z−1αn1

+
zαn0

(1− αn1
)

1 + αn0
z

+
|1− αn1

αn0
|

(1 + z−1αn1
) (1 + αn0

z)
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C.4 PROOF OF THEOREM( 6.5)

Theorem 6.5. For t ∈ {0, 1}, let Lt
K = LK(R1−t

n ) denote the Lipschitz constant of the kernel K
in region R1−t

n and let U t
K = supx,x′∈R1−t

n
K(x, x′) denote the "width" of region R1−t

n . Then with
probability at least 1− δ where δ ∈ (0, 1),

sup
t∈{0,1}

sup
x∈R1−t

n

|f(x, t)− f̃n̄t(x, t)| ≤
√
dÕ

√C0
K ∨ C1

K

n̄0 ∧ n̄1
+
√

sup
x∈R1

n

σn̄0(x) ∨ sup
x∈R0

n

σn̄1(x)


+O(1/(n̄0 ∧ n̄1)),

where
Ct

K = 4Lt
K + 2U t

K/σ
2

is only related to the kernel K and unrelated to the number of sample n̄t.

Proof. The proof for t = 0 and t = 1 is symmetric, thus fix t ∈ {0, 1}. For notational simplicity, we
use z in the proof to denote n̄t, and let

A = (K(xz,xz) + σ2 · Iz)−1 ∈ Rz×z.

and
U t
K = max

x,x′∈Rt
n

K(x, x′).

Consider τ > 0. A set S is a τ -cover for R1−t
n if ∀x ∈ R1−t

n ,∃x′ ∈ S such that ||x′ − x|| ≤ τ . Let
C(τ,R1−t

n ) be the covering number of R1−t
n with radius τ :

C(τ,R1−t
n )

.
= inf{|S| : S is τ -cover of R1−t

n }.
Since R1−t

n ⊂ Rd, we have Vaart & Wellner (2023)

C(τ,R1−t
n ) ≤

(
1 +

r

τ

)d
,

where r .
= maxx,x′∈R1−t

n
||x− x′||. Consider a minimum τ -cover Cτ for R1−t

n with (by definition
of covering number) C(τ,R) elements. We have that Srinivas et al. (2012), with probability at least
1− C(τ,R) exp(−ξ(τ)/2),

sup
x∈Cτ

|f(x, t)− f̃n(x, t)| ≤
√
ξ(τ) sup

x∈Cτ

σn(x).

Choosing ξ(τ) = 2 log(C(τ,R)/δ), we have with probability 1− δ,

sup
x∈Cτ

|f(x, t)− f̃n(x, t)| ≤
√
ξ(τ) sup

x∈Cτ

σn(x).

Moreover, by definition of Cτ , maxx∈Rt
n
minx′∈Cτ ||x− x′|| ≤ τ . Because f(x, t) is Lf -Lipschitz

continuous, we have for all x ∈ R1−t
n

min
x′∈Cτ

|f(x, t)− f(x′, t)| ≤ τLf .

With the fact that Lederer et al. (2019) f̃z(x, t) and σz(x) is Lipschitz continuous with respective
Lipschitz constant

C1 = LK

√
z||Ayn||, (12)

C2(τ) =
√
2τLK(1 + z · ||A||F · U t

K), (13)

we have with probability at least 1− δ that

sup
x∈R1−t

n

|f̃z(x, t)− f(x, t)| ≤
√
ξ(τ) sup

x∈R1−t
n

σz(x) + C2(τ)
√
ξ(τ) + (C1 + Lf )τ

To continue, we will proceed to upper bound C1:

C1 = LK

√
z||Ayz|| ≤ LK

√
z||A||F ||yz|| ≤ LK

√
z
||yz||
σ2
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due to the fact that ||A||F ≤ 1/σ2. Assume that f(x, t) ≤ F ≤ +∞, by the assumption of the data
generation process y = f(x, t) + ϵ, ϵ ∼ N (0, σ2), and triangular inequality of norm,

||yz|| ≤ ||f(xz, tz)||+ ||γz|| (14)

≤
√
zF + ||γz||, (15)

where γz is a multi-variate Gaussian random variable in Rz with mean 0 and covariance matrix
σ2 · Iz . Hence ||γz||/σ2 is a Chi-squared random variable with degrees of freedom equal to z. Then
we have with probability at least 1− δ/2,

C1 ≤ LK(zF + 2z
√
ηzσ2)/σ2,

where ηz = log(π2z2/δ). On the other hand, C2 can be upper bounded as

C2(τ) ≤
√

2τLK(1 + z · U t
K/σ

2).

Hence, by choosing τ = 1/z2, we have

(C1 + Lf )τ ∈ O(1/z),

and with probability at least 1− δ, we have

sup
X∈R

|f(X, t)− f̃n(X, t)| ≤
√

4LK + 2UK/σ2

z
d log(1 + z2r) +

√
2d log(1 + z2r) sup

x∈R1−t
n

σn(x)

+O(1/z)

Therefore, we have that with a probability at least (1− δ)2 that for both t = 0 and t = 1

sup
x∈R1−t

n

|f(x, t)− f̃n̄t
(x, t)| ≤

√Ct
K

n̄t
+
√

sup
x∈R1−t

n

σn̄t
(x)

√d log(1 + n̄2t rt
δ

)
+O(1/n̄t),

This implies that

sup
t∈{0,1}

sup
x∈R1−t

n

|f(x, t)− f̃n̄t(x, t)|

≤ sup
t∈{0,1}

{√Ct
K

n̄t
+
√

sup
x∈R1−t

n

σn̄t(x)

√d log(1 + n̄2t rt
δ

)
+O(1/n̄t)

}

≤ sup
t∈{0,1}

{√Ct
K

n̄t
+
√

sup
x∈R1−t

n

σn̄t(x)

√d log(1 + n̄2t rt
δ

)}
+O(1/n̄0 ∧ n̄1)

≤ sup
t∈{0,1}

{√C0
K ∨ C1

K

n̄0 ∧ n̄1
+
√

sup
x∈R1−t

n

σn̄t(x)

√d log(1 + n̄2t rt
δ

)}
+O(1/n̄0 ∧ n̄1)

≤
√
d

√C0
K ∨ C1

K

n̄0 ∧ n̄1
+ sup

t∈{0,1}

√
sup

x∈R1−t
n

σn̄t
(x)

√log

(
1 + (n̄0 ∨ n̄1)2rt

δ

)
+O(1/n̄0 ∧ n̄1)

By change of variable (1− δ)2 = 1− δ′, we have with probability 1− δ′ for δ′ ∈ (0, 1),

sup
t∈{0,1}

sup
x∈R1−t

n

|f(x, t)− f̃n̄t(x, t)|

≤
√
d

√C0
K ∨ C1

K

n̄0 ∧ n̄1
+ sup

t∈{0,1}

√
sup

x∈R1−t
n

σn̄t
(x)


√√√√log

(
1 + (n̄0 ∨ n̄1)2rt√

1−
√
1− δ′

)
+O(1/n̄0 ∧ n̄1)

=
√
dÕ

√C0
K ∨ C1

K

n̄0 ∧ n̄1
+
√

sup
x∈R1

n

σn̄0
(x) ∨ sup

x∈R0
n

σn̄1
(x)

+O(1/n̄0 ∧ n̄1)
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Table 3:
√
εPEHE across various CATE estimation models with and without COCOA augmentation on

Linear and Non-Linear synthetic datasets. Lower
√
εPEHE corresponds to better performance.

Linear Non-linear
Model w/o aug. w/ aug. w/o aug. w/ aug.
TARNet 0.93±.09 0.81±.02 7.41±.23 6.64±.11

CFR-Wass 0.87±.05 0.74±.05 7.32±.21 6.22±.07

CFR-MMD 0.91±.04 0.78±.06 7.35±.19 6.28±.10

T-Learner 0.90±.01 0.89±.01 7.68±.12 7.51±.07

S-Learner 0.64±.01 0.63±.01 7.22±.01 6.92±.01

BART 0.65±.00 0.30±.00 5.49±.00 4.50±.00

CF 0.63±.00 0.27±.00 5.46±.00 4.46±.00

D ADDITIONAL EMPIRICAL RESULTS

In this section, we present additional results for the completeness of the empirical study for COCOA.
Specifically, we (i) add the results for the synthetic datasets, (ii) provide details for the toy example
used to generate Figure 1b, (ii) present more visualizations illustrating the effect of contrastive
learning, (iv) study the performance of our proposed method on ATE estimation, (v) conduct ablation
studies on the local regression module, (vi) present additional results to demonstrate robustness
against overfitting, and (vii) perform ablation studies on different parameters for the contrastive
learning module.

D.1 RESULTS FOR SYNTHETIC DATA

In this section, we present the
√
εPEHE results for various CATE estimation models on synthetic

datasets, both linear and non-linear. Table 3 summarizes the performance of each model with
COCOA augmentation (w/ aug.) and without augmentation (w/o aug.). Lower

√
εPEHE indicates

better performance. The results demonstrate that COCOA augmentation consistently improves the
performance across different models and datasets.

D.2 TRADE-OFF TOY EXAMPLE

In this section, we synthetically generate a dataset for a binary treatment scenario with 1000 samples
per treatment group and d = 4 features. We sample a vector of coefficients,

β ∼ N (0, Id)

where 0 ∈ Rd is the zero vector and Id is the d× d identity matrix.

Next, we generate feature vectors X ∈ Rd for the two treatment groups:

X0 ∼ N (−1, 0.5Id)

and,
X1 ∼ N (1, 0.5Id)

where −1 ∈ Rd and 1 ∈ Rd are vectors with all elements equal to -1 and 1, respectively, and Id is
the d× d identity matrix.

The potential outcomes are generated as follows:

Y0 = (βTX0)
3 +N (0, 0.1)

and
Y1 = (βTX1)

2 +N (0, 0.1)

We implement a function to augment the datasets using a nearest-neighbor approach with a specified
radius (radius is set to 8). The augmentation involves imputing potential outcomes for individuals
from the opposite treatment group if they have at least three close neighbors within the specified
radius. We then perform linear regression to impute the outcomes. We include further empirical
results in Figure 4.
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Figure 4: Trade-off between imputation error and statistical disparity.The first plot displays the
percentage of augmentation as a function of the radius. The second and third plots show the Total
Variation (TV) distance and imputation error, respectively, for different radius values.

Figure 5: Comparison between euclidean distance and latent distance lerned by contrastive learning
for the IHDP dataset (treatment group). The first heatmap illustrates the outcome distances. The
second heatmap shows the feature distances, reflecting differences between feature vectors. The third
heatmap presents the embedding distances, demonstrating how the learned embeddings capture the
same similarities as the potential outcome.

D.3 CONTRASTIVE LEARNING MOTIVATION

In this section, we provide more motivation for the use of contrastive learning to learn a representation
space in which we identify similar individuals instead of using traditional methods (e.g., euclidean
distance the ambient space). Figures 5 and 6 illustrate this. We also include an ablation on the effect
of the embedding dimension for contrastive learning on the learned representation for the IHDP
dataset as illustrated in Figure 7.

D.4 ATE ESTIMATION PERFORMANCE

In this section, we provide additional empirical results when applying our methods to ATE estimation.
The Average Treatment Effect (ATE) is defined as:

τATE = E[Y1 − Y0].

The error of ATE estimation is defined as:

εATE = |τ̂ATE − τATE| , (16)

Our results are summarized in Tables 4, 5, and 6. We observe that our methods, while not tailored for
ATE estimation, still bring some benefits for a subset of the estimation models.

D.5 LOCAL REGRESSION MODULE

In this section, we compare the performance of using Gaussian Processes (GP)with different kernels
vs. local linear regression. We next define the local linear regression module and present the empirical
results in Table 7.
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Figure 6: Comparison between euclidean distance and latent distance lerned by contrastive learning
for the IHDP dataset (control group). The first heatmap illustrates the outcome distances. The
second heatmap shows the feature distances, reflecting differences between feature vectors. The third
heatmap presents the embedding distances, demonstrating how the learned embeddings capture the
same similarities as the potential outcome.

Figure 7: t-SNE visualizations of the IHDP dataset control group embeddings for different embedding
dimensions. The figure illustrates t-SNE plots for the control group with embedding dimensions of
2, 4, 6, and 8. The points are colored based on outcome groups, created by dividing the outcomes
into four quantiles. Each subplot shows how the embeddings distribute in a 2D space, capturing
the relationship between the learned embeddings and outcome groups. Outcome groups represent
different quantile ranges of potential outcomes: Group 0 (yellow) includes the lowest quantile,
Group 1 (cyan) includes the second lowest, Group 2 (blue) includes the second highest, and Group 3
(magenta) includes the highest quantile.
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Table 4: εATE across various CATE estimation models, with COCOA augmentation (w/ aug.) and
without augmentation (w/o aug.) in Twins, Linear, and Non-Linear datasets. Lower εATE corresponds
to the better performance.

TWINS LINEAR NON-LINEAR
MODEL W/O AUG. W/ AUG. W/O AUG. W/ AUG. W/O AUG. W/ AUG.
TARNET 0.33±.19 0.41±.29 0.10±.02 0.04±.02 0.23±.13 0.04±.02

CFR-WASS 0.47±.16 0.14±.09 0.13±.04 0.06±.01 0.19±.09 0.03±.01

CFR-MMD 0.19±.09 0.18±.12 0.12±.05 0.05±.03 0.25±.15 0.04±.01

T-LEARNER 0.02±.02 0.05±.03 0.01±.01 0.01±.01 0.05±0.02 0.05±.01

S-LEARNER 0.89±.03 0.79±.07 0.03±.01 0.05±.01 0.45±.05 0.27±.02

BART 0.28±.08 0.21±.10 0.37±.00 0.07±.01 0.80±.00 0.26±.00

CF 0.28±.06 0.14±.15 0.39±.00 0.06±.01 0.77±.00 0.32±.00

Table 5: εATE across various CATE estimation models, with COCOA augmentation (w/ aug.), without
augmentation (w/o aug.), and with Perfect Match augmentation in News and IHDP datasets. Lower
εATE corresponds to the better performance.

NEWS IHDP
MODEL W/O AUG. W/ AUG. W/O AUG. W/ AUG.
TARNET 0.97±.45 0.96±.38 0.12±.05 0.07±.03

CFR-WASS 1.00±.29 0.75±.22 0.10±.03 0.05±.02

CFR-MMD 0.89±.38 0.71±.22 0.16±.04 0.09±.04

T-LEARNER (NN) 0.49±.26 0.76±.20 0.27±.06 0.07±.03

S-LEARNER (NN) 0.40±.06 0.49±.27 1.72±.21 0.40±.02

BART 0.77±.13 0.60±.00 0.02±.01 0.02±.01

CAUSAL FORESTS 0.72±.01 0.60±.00 0.11±.01 0.03±.02

PERFECT MATCH 2.00±1.01 0.24±.20

Local Linear Regression. For a fixed individual x who received treatment t, and has a selected
neighbors Dx,t. Under the assumption that we can locally approximate the true function with a linear
function. Suppose XD is the matrix of the observed feature values in Dx,t augmented with a column
of ones for the intercept, and YD is the column vector of observed factual outcomes. The local linear
regression coefficients, β̂, are computed as:

β̂ = (XT
DXD)−1XT

DYD

Then we impute the value of x as ŷ = [1, x]T β̂.

D.6 ABLATION FOR CONTRASTIVE LEARNING PARAMETERS

In this section, we provide a comprehensive set of ablation studies for the effect of the hyper-
parameters of the contrastive learning module.

Ablation on K and R. We provide extra ablation studies on the IHDP dataset and the Non-linear
dataset to study the effect of (i) the number of neighbors (K) and (ii) the embedding radius (R) on
both εPEHE and εATE . We observe a consistently enhanced performance across different CATE
estimation models. See results in figures 10 and 11. We also provide ablation studies on the sensitivity
of the proposed Contrative Learning module to the parameter ϵ, which is used to create the training
points for the contrastive learning module by creating positive and a negative dataset, see Section 5
for more details.

Ablation on the sensitivity parameter ϵ We provide ablation on the sensitivity parameter ϵ, a
similarity classifier for the potential outcomes (see Section 5 for a detailed description). The results
for the εPEHE as a function of ϵ are presented in Figure 8. It can be observed that the error of CATE
estimation models is consistent for a wide range of ϵ, demonstrating the robustness of COCOA to the
choice of hyper-parameters.
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Table 6: εATE across different similarity measures: Contrastive Learning (CL), propensity scores (PS),
and Euclidean distance (ED), using CFR-Wass across IHDP, News, and Twins datasets.

MEASURE OF SIMILARITY ED PS CL
IHDP 3.12±1.33 3.85±.22 0.05±.02

NEWS 0.68±.20 0.54±.25 0.75±.22

TWINS 0.13±.15 0.46±.09 0.14±.09

Table 7: Comparison of εPEHE and εATE across different local regression modules: Gaussian Process
(GP) with various kernels (DotProduct, RBF, and Matern) and Linear Regression. The first three
rows present

√
εPEHE, while the subsequent three rows display εATE.

LR GP (DOTPRODUCT) GP (RBF) GP (MATERN) LINEAR REGRESSION
IHDP 0.63±.01 0.63±.00 0.65±.02 0.75±.01

NEWS 3.56±.01 3.55±.04 3.44±.05 3.53±.08

TWINS 0.51±.11 0.51±.02 0.54±.04 0.68±.08

IHDP 0.02±.01 0.01±.00 0.03±.01 0.09±.01

NEWS 0.60±.00 0.24±.12 0.05±.03 0.21±.10

TWINS 0.21±.10 0.24±.04 0.29±.04 0.38±.10

D.7 OVERFITTING TO THE FACTUAL DISTRIBUTION

In this section, we provide more empirical results on the robustness against overfitting to the factual
distribution for the Linear and Non-Linear synthetic datasets, as presented in Figure 9.

E LIMITATIONS

It is important to note that when the statistical disparity between the treatment groups is zero, the
counterfactual data augmentation method will likely not bring any benefits. Similarly, when there
is a total discrepancy between the two groups (i.e., disjoint supports), no benefits will be observed.
Moreover, as the fundamental problem of causal inference implies that CATE values are unobservable,
it is challenging to fine-tune the parameters of COCOA.

F COMPUTATIONAL RESOURCES

The experiments in this paper are not computationally expensive to conduct and were performed on
the following GPU: NVIDIA GeForce RTX 3090.
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Figure 8: εPEHE as a function of the similarity sensitivity parameter ϵ. The figure on the left presents
results for the IHDP dataset, while the one on the right is for the News dataset. Performances of two
different models (CFR-Wass and Causal Forests) are plotted for both datasets.

Figure 9: Comparison of training progression for TARNet, CFR-Wass, and T-learner models on
linear and non-linear datasets. Top row: Models trained on the linear dataset, showcasing TARNet,
CFR-Wass, and T-learner, respectively. Bottom row: The same models trained on the non-linear
dataset. This visualization demonstrates the effects of COCOA on preventing overfitting across
different data complexities and the performance of three CATE estimation models trained with
various levels of data augmentation.
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Figure 10: Ablation studies on the impact of the size of the ϵ−Ball (R) and the number of neighbors
(K) on the performance. The first row from left to right: IHDP with TARNet, BART, S-Learner,
and Causal Forests. The second row: IHDP with Causal Forests, T-Learner, BART, and TARNet.
These studies illustrate the trade-off between minimizing the discrepancy between the distribu-
tions—achieved by reducing K and increasing R—and the quality of the imputed data points, which
is achieved by decreasing R and increasing K.
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Figure 11: Ablation studies on the Non-linear dataset. Top row from left to right: Causal Forests
(PEHE), BART (PEHE), TARNet (PEHE). Bottom row from left to right: Causal Forests (ATE),
BART (ATE), TARNet (ATE). Each pair of images represents the performance of the respective
models evaluated in terms of Precision in Estimation of Heterogeneous Effect (PEHE) and the error
in Average Treatment Effect (ATE) estimation on a non-linear dataset.
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