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Abstract

We consider the problem of online prediction using linear smoothers that are functions of
a nominal covariance model with unknown parameters. The model parameters are often
learned using cross-validation or maximum-likelihood techniques. But when training data
arrives in a streaming fashion, the implementation of such techniques can only be done in
an approximate manner. Even if this limitation could be overcome, there appears to be no
clear-cut results on the statistical properties of the resulting predictor.
Here we consider a covariance-fitting method to learn the model parameters, which was
initially developed for spectral estimation. We first show that the use of this approach
results in a computationally efficient online learning method in which the resulting predictor
can be updated sequentially. We then prove that, with high probability, its out-of-sample
error approaches the optimal level at a root-n rate, where n is the number of data samples.
This is so even if the nominal covariance model is misspecified. Moreover, we show that the
resulting predictor enjoys two robustness properties. First, it corresponds to a predictor that
minimizes the out-of-sample error with respect to the least favourable distribution within
a given Wasserstein distance from the empirical distribution. Second, it is robust against
errors in the covariate training data. We illustrate the performance of the proposed method
in a numerical experiment.

1 Introduction

We consider scenarios in which we observe a stream of randomly distributed data

Dn = {(x1, y1), . . . , (xn, yn)} n = 1, 2, 3, . . .
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Given covariate xn+1 in a space X , our goal is to predict the outcome yn+1 in R. A large class of predictors
(also known as linear smoothers) can be described as a weighted combination of observed outcomes:

ŷ(x;λ) =
n∑
i=1

wi(x;λ)yi, (1)

where x denotes any test point and the weights {wi(x;λ)} are parameterized by λ. The sensitivity of such a
predictor function to noise in the training data is often characterized by how close the in-sample prediction
ŷ(xi;λ) is to yi and quantified by the sum of in-sample weights,

0 < dfn ,
n∑
i=1

wi(xi;λ), (2)

also known as the ‘effective’ degrees of freedom (Ruppert et al., 2003; Wasserman, 2006; Hastie et al., 2009).
These degrees of freedom are often tuned to avoid overfitting to the irreducible noise in the training data
with the aim of achieving good out-of-sample performance. This includes learning the parameters λ from
Dn via distribution-free cross-validation or distribution-based maximum likelihood methods, which however
can typically be implemented only approximately in the online scenario.

In this paper, we consider an alternative method using a covariance-based criterion first proposed in the
context of spectral estimation (Stoica et al., 2010a;b). We show that this method

• enables sequential computation of a predictor with learned parameters,

• approaches an optimal out-of-sample performance at a root-n rate,

• enjoys two types of robustness properties.

For illustration of the online learning method, we include a numerical experiment.

Notation: ‖Z‖W =
√
tr{Z>WZ} is a weighted Frobenious norm of matrix Z using a positive definite weight

matrix W. The element-wise Hadamard product between z and z′ is denoted z� z′.

2 Problem formulation

The linear smoother predictor (1) can be written compactly as

ŷ(x;λ) = w>(x;λ)y, where w>(x;λ) = [w(x1;λ), . . . , w(xn;λ)] and y = [y1, . . . , yn]>. (3)

We will investigate a class of model-based weights for which (3) can be computed sequentially from the
stream Dn. Specifically, suppose y is modeled as a zero-mean stochastic process with a nominal covariance
function parameterized as

Cov[y, y′|x,x′;λ] = λ0δ(x,x′) +
d∑
k=1

λkφk(x)φk(x′), (4)

where x and x′ are two arbitrary covariates, δ(x,x′) is the Kronecker delta function and {φk(x)} are real-
valued features of x. Here λ is the unknown set of d + 1 nonnegative model covariance parameters. When
x belongs to a vector space, then periodic Fourier-type features provide a convenient choice due to their
excellent covariance approximating properties (Ruppert et al., 2003; Rahimi & Recht, 2007; Stein, 2012;
Hensman et al., 2017; Solin & Särkkä, 2020). Using the notation above, a set of optimal weights can be
written as

w(x;λ) = C−1
λ ΦΛφ(x), (5)

(Bishop, 2006; Rasmussen & Williams, 2006; Stein, 2012) where

φ(x) =

φ1(x)
...

φd(x)

 , Φ =

φ
>(x1)
...

φ>(xn)


2
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contain the features and
Cλ = ΦΛΦ> + λ0In � 0 (6)

is a nominal covariance matrix where Λ = diag(λ1, . . . , λd). The predictor function above includes a variety
of penalized regression methods (see the references cited above). The degrees of freedom of (3) are controlled
by λ and we have that

0 < dfn(λ) = tr
{
ΦΛΦ>C−1

λ

}
= tr

{
ΦΛΦ>(ΦΛΦ> + λ0In)−1} ≤ min(n, d) (7)

(Stoica & Stanasila, 1982; Ruppert et al., 2003).

Let λn denote the parameters that are fitted to the data stream Dn in some way. The concern of this paper
is two-fold: (i) sequential computation of ŷ(x;λn) and (ii) performance guarantees that hold even when the
model class is not well-specified. That is, the nominal covariance model (4) using {φk(x)} may not match
the unknown covariance structure of the data. Nevertheless, we aim to derive meaningful guarantees that
remain valid also in this misspecified case.

Cross-validation or maximum likelihood methods are two popular approaches to fitting λn. However, these
methods have challenges in the online learning setting. First, computing λn for the covariance model above
is a non-convex problem that can be riddled with multiple local minima. Second, for each additional training
data point (xn+1, yn+1), the parameters λn+1 will have to be refitted and therefore ŷ(x;λn) recomputed from
scratch or approximated (see below). Third, to the best of our knowledge, finite out-of-sample prediction
performance guarantees for ŷ(x;λn) neither exist for cross-validation nor maximum likelihood λn.

We will consider an alternative covariance-based fitting criterion for λ, used in another context, viz. spectral
estimation (Stoica et al., 2010a;b). The main contribution is to derive performance guarantees of a sequen-
tially computable predictor, thereby establishing predictive properties of the covariance-fitting methodology.
Similar results do not appear to be available in the previous literature.

3 Other approaches to online model-based prediction

We identify two main lines of work that enable online or fast implementations of model-based linear
smoothers, which include Gaussian process regression and kriging methods: The first line considers spectral
model approximations (e.g., (Rahimi & Recht, 2007; Hensman et al., 2017; Solin & Särkkä, 2020)) which
is covered by the class of covariance models in (4). These methods also enable efficient online computation
of ŷ(x;λ), but for a fixed set of model parameters λ. The second line considers sparse variational approx-
imations (e.g., (Titsias, 2009; Bui et al., 2017; Stanton et al., 2021)). These methods can recompute the
predictor ŷ(x;λ) efficiently when new data arrives, but again for fixed λ.

Fitting λn and computing ŷ(x;λn) in a sequential manner requires recomputing past covariance quantities
and is computationally prohibitive. For the covariance model above, it means recomputing (5) and the
inverse of (6) at each new sample. Work on this problem appears to be scarce. Stanton et al. (2021) consider
seeking maximum likelihood estimates λn by a type of gradient-based search that projects past quantities
onto a lower-dimensional space. However, neither a convergence analysis towards the sought maximum
likelihood estimate nor any resulting predictive properties are provided. By contrast, Cai & Yuan (2012)
provide an asymptotic performance guarantee of a linear smoother with a learned regularization parameter,
but their approach is restricted to the offline setting.

Our focus below is on deriving finite-sample performance guarantees for a sequentially computable predictor.

4 Learning via covariance fitting

The parameters λ can be learned by fitting the model covariance matrix Cλ in (5) to the empirical covariance
matrix yy>. Specifically, we will use the following fitting criterion, known as Spice (Stoica et al., 2010a;b),

λn = arg min
λ≥0

∥∥yy> −Cλ
∥∥2

C−1
λ

, (8)
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where λn is a function of the datastream Dn. Since this criterion is convex in λ, we can be sure that a global
minimizer can be determined.

4.1 Sequential computation

The covariance-fitting criterion in (8) can be connected to an alternative convex problem and this connection
can be utilized to perform parameter estimation online, as shown in (Zachariah & Stoica, 2015). We first
leverage this connection to compute ŷ(x;λn) in a sequential manner, and subsequently we derive a series of
predictive performance guarantees of the proposed method.

Theorem 1 The predictor function ŷ(x;λn+1) can be updated from ŷ(x;λn) in a constant runtime O
(
d2).

The total memory requirement of the method is also on the order of O
(
d2).

Proof 1 We first note that the predictor (3) has an equivalent form

ŷ(x;λ) = φ>(x) ΛΦ>C−1
λ y︸ ︷︷ ︸

θ̂(λ)

(9)

For later use, we also note that (9) is invariant to a uniform rescaling of λ, since

θ̂(λ) ≡ θ̂(αλ), ∀α > 0 (10)

The covariance-fitting criterion in (8) can be expanded into∥∥yy> −Cλ
∥∥2

C−1
λ

= y>C−1
λ y · ‖y‖2 + tr{Cλ}+K, (11)

where K is a constant. Thus λn is also a minimizer of

V (λ) = y>C−1
λ y + ‖y‖−2 · tr{Cλ}

Next, we follow Zachariah & Stoica (2015, Appendix A) and consider the following augmented convex crite-
rion,

V ′(θ,λ) = 1
λ0
‖y−Φθ‖2

2 + θ>Λ−1θ + tr{Cλ}, (12)

and show that its minimizers produce the predictor ŷ(x;λn) = φ>(x)θ̂(λn).

The first argument of (12) is minimized by

θ̂(λ) =
(
λ−1

0 Φ>Φ + Λ−1)−1 Φ>λ−1
0 y = ΛΦ>C−1

λ y,

where the second equality follows from using the matrix inversion lemma. Inserting the minimizer it back
into (12), we have a concentrated cost function:

V ′(θ̂(λ),λ) = y>C−1
λ y + tr{Cλ}

Let us now consider the minimizing λ. By rescaling the parameters by α = ‖y‖−1 > 0, we have that

α · V ′(θ̂(αλ), αλ) = α ·
(
y>(αCλ)−1y + ·tr{αCλ}

)
= V (λ)

where α = ‖y‖−1 > 0. It follows that αλn is a minimizer of (12), since

V ′(θ̂(αλn), αλn) = 1
α
V (λn) ≤ 1

α
V (λ) = V ′(θ̂(αλ), αλ) ∀λ ≥ 0.

4
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This scaled minimizer can be related to the predictor with fitted parameters: ŷ(x;λn) = φ>(x)θ̂(λn) ≡
φ>(x)θ̂(αλn) using (10).

We now change the order of the minimization of V ′(θ,λ) to arrive at an alternative way of computation.
The minimizing parameters are

λk(θ) =
{‖y−Φθ‖2√

n
, k = 0

|θi|√
nψk

, k = 1, . . . , d
(13)

where ψk =
√

1
n

∑n
i=1 φ

2
k(xi). Inserting (13) into (12) yields the following equivalent convex cost function

arg min
θ

√
1
n
‖y−Φθ‖2

2 + 1√
n
‖ψ � θ‖1, (14)

where ψ = [ψ1 · · · ψd]>. Let θn denote the minimizer of (14), then ŷ(x;λn) ≡ φ>(x)θn.

Eq. (14) is a weighted square-root LASSO problem (Belloni et al., 2011) that can be solved in a runtime on
the order of O(d2) using variables

An =
n∑
i=1

φ(xi)φ>(xi), bn =
n∑
i=1

φ>(xi)yi, cn =
n∑
i=1

y2
i , (15)

of fixed dimension that are updated recursively. Thus the memory requirement is dominated by the storing
of the d× d-matrix An.

The pseudocode for the method is provided in the appendix.

4.2 Out-of-sample performance

We now turn to evaluating the out-of-sample performance of the predictor learned from the data stream Dn.
Specifically, we consider the mean-squared error

Mse = E
[(
yn+1 − ŷ(xn+1;λn)

)2
]
, (16)

for the subsequent sample (xn+1, yn+1) in the stream. The expectation is conditional on Dn, thus the Mse
will depend on the particular realization of the stream since the learned predictor is a function of all past
samples.

To provide a performance reference, we note that all predictors of the form (3) with (5) belong to the
following class of predictor functions

F ,

{
f(x) =

d∑
k=1

φk(x)θk : θ ∈ Rd
}
, (17)

i.e., a linear combination of all features {φk(x)} in the nominal model (4). We can now benchmark ŷ(x;λn)
against the minimal achievable error among all predictors in F , even when the nominal covariance model
(4) is misspecified. Specifically, we provide the following finite out-of-sample performance guarantee for the
learned predictor.

Theorem 2 Assume the outcome y and features are φ(x) bounded, and that the features are such that∑n
i=1 |φk(xi)|2 > 0. If the data pairs (xi, yi) in the stream are drawn i.i.d., then the out-of-sample error of

ŷ(x;λn) is given by

E
[(
yn+1 − ŷ(xn+1;λn)

)2
]
≤ min

ŷ∈F
E
[(
yn+1 − ŷ(xn+1)

)2
]

+ K

√
1
n

ln 2(d+ 1)2

ε
+ bn (18)

with probability of at least 1 − ε, where K is a constant and bn is bounded as O(n−3/4). That is, with high
probability, the out-of-sample error approaches the minimum achievable error at a root-n rate. Note that the
number of features d increases only the second term at a logarithmic rate.

5
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Proof 2 For notational simplicity, let (x, y) denote the random (n+ 1)th sample. Let ŷ be any predictor in
F and express its out-of-sample mean-square error as:

R(ŷ) ≡ E
[(
y − φ>(x)θ

)2
]

= E


[
θ
−1

]> [
φ(x)
y

]
︸ ︷︷ ︸

z

[
φ(x)
y

]> [
θ
−1

]
︸ ︷︷ ︸
θ̃

 = θ̃>Σθ̃, (19)

where Σ = E[zz>]. Similarly, the in-sample error can be expressed as Rn(ŷ) = θ̃>Σ̂θ̃, where Σ̂ = n−1(z1z>1 +
· · ·+ znz>n ). The gap between in- and out-of-sample errors can be bounded as:

|Rn(ŷ)−R(ŷ)| = |θ̃>(Σ̂−Σ)θ̃|

≤
d+1∑
i=1

d+1∑
j=1
|θ̃i‖θ̃j | |Σ̂ij −Σij |

≤ (‖θ‖1 + 1)2 ·max
i,j
|Σ̂ij −Σij |︸ ︷︷ ︸
σ̃

(20)

Next, we bound σ̃ (see also Greenshtein & Ritov (2004)). Since y and φ(x) are bounded random variables,
we have that |zizj | ≤ B for some B and using Hoeffding’s inequality

Pr
{
|Σ̂ij −Σij | ≥ σ

}
≤ 2 exp

(
−nσ

2

2B2

)
(21)

Combining this result with the union bound over all (d+ 1)2 variables in σ̃, we have that

Pr {σ̃ ≥ σ} ≤ (d+ 1)2 · 2 exp
(
−nσ

2

2B2

)
, ε (22)

Consequently, we can replace σ̃ by

σ = B

√
2
n

√
ln 2(d+ 1)2

ε
(23)

in (20) so that
|Rn(ŷ)−R(ŷ)| ≤ (‖θ‖1 + 1)2σ,

holds for any predictor in F with a probability of at least 1− ε. Thus if θ is bounded, ‖θ‖1 ≤ P for some P ,
then

R(ŷ)− (P + 1)2σ ≤ Rn(ŷ) ≤ R(ŷ) + (P + 1)2σ (24)

holds with a probability of at least 1− ε.

Let us now study two specific predictor functions in F : An optimal predictor that minimizes the out-of-
sample error y?(x) = φ>(x)θ?, where θ? = E[φ(x)φ>(x)]† E[φ(x)y] is a bounded vector. The learned
predictor y?(x;λn) = φ>(x)θn, where θn is a minimizer of (14). This vector is also bounded because the
minimizer of (14) coincides with that of

arg min
θ:‖ψ�θ‖1≤γ

‖y−Φθ‖2

for some value of 0 ≤ γ < ∞. Thus both ‖θ?‖1 and ‖θn‖1 are bounded by some P and (24) applies to the
optimal and learned predictors, denoted by y? and ŷn for brevity.

Since θn minimizes the criterion in (14), it follows that√
Rn(ŷn) + n−1/2‖ψ � θn‖1 ≤

√
Rn(y?) + n−1/2‖ψ � θ?‖1, ∀n

6
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After rearranging, we have√
Rn(ŷn)−

√
Rn(y?) ≤ n−1/2(‖ψ � θ?‖1 − ‖ψ � θn‖1)

≤ n−1/2‖ψ � θ?‖1

≤ n−1/2βP,

(25)

where β = ‖ψ‖∞. Multiplying both sides of the equality by the positive quantity (
√
Rn(ŷn) +

√
Rn(y?)), we

have

Rn(ŷn)−Rn(y?) ≤ (
√
Rn(ŷn) +

√
Rn(y?))n−1/2βP

≤ (2
√
Rn(y?) + n−1/2βP )n−1/2βP,

(26)

where the second inequality follows from using (25). Finally, by definition R(y?) ≤ R(ŷn) and we have that

R(ŷn) ≤ Rn(ŷn) + (P + 1)2σ

≤ Rn(y?) + (P + 1)2σ + (2
√
Rn(y?) + n−1/2βP )n−1/2βP

≤ R(y?) + 2(P + 1)2σ + (2
√
R(y?) + (P + 1)2σ + n−1/2βP )n−1/2βP

= R(y?) + 2(P + 1)2B
√

2 ·
√

1
n

ln 2(d+ 1)2

ε
+O(n−3/4),

(27)

with a probability of at least 1− ε, where (24) was used in the first and third inequality and (26) was used in
the second inequality.

4.3 Distributional robustness

In the previous section, we showed that the out-of-sample error of ŷ(x;λn) approaches the minimum achiev-
able Mse at a root-n rate. We will now see that this predictor also provides robustness against distributional
uncertainty for finite n.

The feature vector φ(x) : X → Rd for any predictor in F leads to a distribution of the random variables
(φ, y) which we denote p(φ, y). The out-of-sample Mse can then be written

E
[(
yn+1 − ŷ(xn+1)

)2
]
≡ Ep

[
(yn+1 − φ>n+1θ)2

]
, (28)

Using n i.i.d. samples (φi, yi), we can define a predictor in F that minimizes the Mse under the least
favourable distribution among all plausible distributions that are consistent with the data. Such a predictor
is called ‘distributionally robust’, see, e.g., Duchi & Namkoong (2018). To formalize a set of plausible
distributions, we first define the empirical distribution

pn(φ, y) = 1
n

n∑
i=1

δ(φ− φi, y − yi) (29)

Then we consider a set of distributions
{p : D(pn, p) ≤ εn}, (30)

where D(pn, p) is some divergence measure. A distributionally robust predictor minimizes the Mse under
the least-favourable distribution in the set (30), viz.

max
p : D(pn,p)≤εn

Ep
[
(yn+1 − φ>n+1θ)2] (31)

Several different divergence measures D(pn, p) have been considered in the literature, including Kullback-
Leibler divergence, chi-square divergence, and so on. One popular divergence measure is the Wasserstein
distance (Blanchet et al., 2019), which is defined as

D(pn, p) = inf
π

Eπ
[
c(φ, y, φ′, y′)

]
, (32)

7
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where c(φ, y, φ′, y′) is a nonnegative cost function and π is a joint distribution over (φ, y, φ′, y′) whose
marginals equal pn(φ, y) and p(φ′, y′), respectively. Thus D(pn, p) can be interpreted as measuring the
expected cost of moving probability mass from one distribution to the other.

Theorem 3 Suppose the observed features are standardized so that 1
n

∑n
i=1 φ

2
k(xi) = 1. Then ŷ(x;λn)

corresponds to a predictor that minimizes the out-of-sample Mse under the least favourable distribution in
the set {p : D(pn, p) ≤ n−2}, defined by a Wasserstein distance (32) with a cost function

c(φ, y, φ′, y′) =
{
‖φ− φ′‖2

∞ y = y′,

∞ otherwise.
(33)

Thus the predictor is robust against distributional uncertainties in the features φ, which may be high-
dimensional. Note that the size of the distribution set shrinks with n.

Proof 3 When the features are standardized, then ψ = 1 and (14) becomes

arg min
θ

√
1
n
‖y−Φθ‖2

2 + 1√
n
‖θ‖1. (34)

Using Theorem 1 in (Blanchet et al., 2019), (34) corresponds to a predictor that minimizes (31) with diver-
gence bound εn = n−2.

4.4 In-sample robustness

When learning ŷ(x;λn) it is possible that the observed covariates themselves are subject to errors so that
the dataset is:

D̃n = {(x̃1, y1), . . . , (x̃n, yn)}
Then the true feature vector φi = φ(xi) can be viewed as a perturbed version of the observed vector
φ̃i = φ(x̃i), where the perturbation δi = φi − φ̃i is unknown. This problem (aka. errors-in-variables) leads
to yet another interpretation of the predictor ŷ(x;λn).

Theorem 4 Consider the bounded set of possible in-sample perturbations:

Sn =
{
δ1, . . . , δn : Epn

[
δ2
k

]
≤ n−1 Epn

[
φ̃2
k

]
, ∀k = 1, . . . , d

}
Then ŷ(x;λn) corresponds to a predictor that minimizes the in-sample root-Mse under the least-favourable
perturbations in Sn:

max
{δi}∈Sn

√
Epn

[
(y − (φ̃+ δ)>θ)2

]
, (35)

where ŷ = (φ̃+ δ)>θ ∈ F .

Proof 4 The problem in (35) can be written as:

max
{δi}∈S

1√
n
‖y− (Φ̃ + ∆)θ‖2, where ∆ =

δ
>
1
...
δ>n

 (36)

Let [∆]k denote the kth column of the matrix ∆. We can then upper bound the error as

max
{δi}∈S

1√
n

∥∥∥∥∥y− Φ̃θ −
d∑
k=1

[∆]kθk

∥∥∥∥∥
2

≤ max
{δi}∈S

1√
n
‖y− Φ̃θ‖2 + 1√

n

d∑
k=1
‖[∆]kθk‖2,

≤ 1√
n
‖y− Φ̃θ‖2 + max

{δi}∈S

1√
n

d∑
k=1
‖[∆]k‖2|θk|,

≤ 1√
n
‖y− Φ̃θ‖2 + 1√

n

d∑
k=1

√
Epn

[φ̃2
k]|θk|.

(37)

8
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where the bound is attainable when

[∆]k =
√

Epn
[φ̃2
k] y− Φ̃θ
||y− Φ̃θ||2

.

But the bound is of the same form as the cost function in (14). Thus solving problem (14) implies the mini-
mization of (36). Theorem 1 in Xu et al. (2009) established a connection between a square-root maximization
problem in the form of (36) and the penalized form on the right-hand side of (37).

5 Numerical Experiment

In the previous sections we have showed several computational and theoretical properties of the predictor
function ŷ(x;λn) which we shall call the Spice-predictor. In this section we present a numerical experiment
for sake of illustration.

5.1 Setup

We observe a stream of n samples generated by the following (unknown) process

x ∼ Uniform([0, 10]2),
y|x ∼ GP(0, k(x,x′) + σ2δ(x,x′)),

(38)

where
k(x,x′) = σ2

(
1 +
√

3
l
‖x− x′‖2

)
exp

(
−
√

3
l
‖x− x′‖2

)
.

with noise variance σ = 2 and scale l = 7. In other words, x is a two-dimensional covariate drawn from a
uniform distribution and y is drawn from a Gaussian process (GP) with zero mean and a Matérn covariance
function. A realization of the process above and n training data points are shown in Figures 1a and 1e.

We consider a class F with d = 100 periodic feaatures {φk(x)} using the Laplacian eigenfunction basis (Solin
& Särkkä, 2020). Note that this corresponds to a misspecified covariance model (4). We are interested in
the online learning of predictors in F , and use the least-squares (Ls) and ridge regression methods as
baseline references. Both methods can be implemented in an online fashion, but the latter requires fixing a
regularization parameter. Here we simply set this parameter to 0.1 based on visual inspection.

5.2 Out-of-sample performance

For illustration, consider the predictions produced by the Ls, ridge regression and Spice methods, see
Figure 1. As expected, the Ls provides poor results at these sample sizes. Ridge regression with a fixed
regularization parameter and Spice with adaptively learned parameters appear to perform similarly here.
To evaluate their out-of-sample errors, we compare the Mse against that of the oracle predictor based on
the (oracle) Gaussian process repression (Gpr) predictor in (38). Table 1 shows that the out-of-sample error
of Spice is lower than that of Ls and ridge regression, and that the chosen class F is capable of predicting
the GP in (38) well.

Following the discussion of effective degrees of freedom dfn in Ruppert et al. (2003), we also provide a
comparison between Ls, Spice and the oracle Gpr predictors in Figure 2. While Ls attains the maximum
dfn at n = 100, Spice moderates its growth rate in a data-adaptive and online manner. The degrees of
freedom of the oracle predictor increases gracefully and remains below its maximum value, even when n
increases beyond d.

5.3 Run-time

We report the runtimes of Ridge (since Ls is virtually identical) and Spice, and consider a well-specified
Gpr predictor with covariance parameters learned using the maximum likelihood method as reference. As
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Figure 1: Contour plots. First column shows a realization of y in (38) along with sampling patterns {xi}ni=1 ∈
X for n = 100 and n = 250 (top and bottom rows, respectively). Second, third and fourth columns show the
contour plots of the Spice-predictor, ridge regression and the Ls-predictor, respectively. All three predictors
belong to F .

Mse/Mse*
n Ls Ridge Spice
50 4.38× 104 1.71 1.11
100 21.12 1.47 1.09
250 1.47 1.19 1.06
500 1.11 1.06 1.02

Table 1: Mean-square error (Mse) for Ls and Spice methods, normalized by Mse* of an oracle predictor
which is given the unknown covariance function in (38). For a given set of training data Dn, we compute
the averaged squared error over 250 test points. The mean of this error is the Mse and was approximated
using 100 different realizations of Dn.

50 100 150 200
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20

40
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Figure 2: Plot of degrees of freedom dfn against number of data points n for Ls, Spice and oracle GP
predictors.

can be seen in Table 2, the computational complexity of Gpr is considerably higher than that of the online
alternatives. Ridge has a lower run-time than Spice but both perform as O(n). A visualization of the
trends for 0 < n ≤ 500 is given in Figure 3.
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Run times (ms)
n Gpr Ridge Spice
50 59 0.15 6.0
100 113.8 0.16 11.6
250 231.3 0.20 29.2
500 1507.2 0.22 58.6

Table 2: Run times for oracle Gpr, ridge and Spice. Note that the run times are computed for a single
realization.
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Figure 3: Plot of run time of a single run for learning parameters and prediction against versus of data
points n for ridge, Spice and oracle GP predictors.

5.4 Robustness

In Theorems 3 and 4 established two different types of robustness results with respect to the features φ(x).
We therefore study the predictive performance when the training and test distributions over (φ, y) diverge.

Specifically, the covariates in the training data are drawn as x̃|x ∼ N (x, σ2
xI), where x follows (38). This

results in a distribution shift over the features (aka. errors-in-variables). Figure 4 evaluates the test Mse
when data drawn from (38). We see that the out-of-sample error for Ridge and Spice increases consistently
with σx, while Ls produces very poor and inconsistent results. Spice is notably more robust against this
distributional shift and these results corroborated the derived robustness properties.

6 Conclusion

We considered the problem of learning model-based linear smoothers online. If the model parameters were
fixed, the resulting predictor – which includes Gaussian process regression and kriging methods – can readily
be computed sequentially. Since the model parameters unknown, however, they must be learned from data,
using, e.g., maximum likelihood or cross-validation methods. But implementing them when the data arrives
as a stream requires either recomputing the predictor which is computationally prohibitive or resorting to
approximations. In either case, these approaches do not offer clear-cut results on the statistical properties
of the resulting predictor.

We applied a covariance-fitting method to learn the model parameters, which was initially developed for
spectral estimation. We first used its computational properties to show that the resulting predictor can be
computed sequentially. We then derived finite out-of-sample performance guarantees of the resulting predic-
tor and showed that its error approaches the minimum achievable level at root-n rate. Finally, we established
connections to the distributional robustness literature by showing that the predictor is robust against distri-
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Figure 4: Out-of-sample error when the distribution of training data diverges from that of the test data. Mse
(normalized by minimal Mse*) versus perturbation noise level σx on training data (n = 100). Evaluation
based on 500 Monte Carlo runs.

butional uncertainties and errors in the covariate training data. The performance, computational complexity
and robustness of the proposed method were illustrated in a numerical experiment.
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A Appendix: Sequential computation

Here we provide a pseudocode for computing ŷ(x;λn) ≡ φ>(x)θn sequentially. This is accomplished via a
cyclic minimization of the convex problem (14).

First, define the kth column as ck = [Φ]k and ỹk = y −
∑
j 6=k cjθj . Then the cost function in (14) can be

equivalently expressed as
V (θk) = (‖ỹk − ckθk‖2

2)1/2 + ψk|θk|+ Ck, (39)

and minimized cyclically, one coordinate k = 1, 2, . . . , d at a time. It was shown in (Zachariah & Stoica,
2015) that the minimizer of (39) is given by

θ̂k =
{
skrk, if

√
n− 1γk >

√
αkβk − γ2

k

0, else
(40)

where
αk = ‖ỹk‖2

2, βk = ‖ck‖2
2, γk = |c>k ỹk| (41)

and
sk = sign(c>k ỹk), rk = γk

βk
− 1
βk

(
αkβk − γ2

k

n− 1

)
(42)
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The key observation here is that the variables (41) are all expressible using the recursively computable
quantities in (15) (along with a prior parameter iterate θ′ which is initialized at 0).

To arrive at this conclusion, define the following global variables

z = y−Φθ′, g0 = ‖z‖2
2, g = Φ>z (43)

which can be expressed using (15). Then we have that ỹk ≡ z + ckθ′k, so that we can express (41) in terms
of the global variables:

αk = g0 +Ankkθ
2
k + 2gkθ′k, βk = Ankk, γk = |gk +Ankkθ

′
k|, sk = sign(gk +Ankkθ

′
k) (44)

Finally we can express the cyclic minimization approach in recursive form as outlined in Algorithm 1,
initializing θ′ = 0 at n = 1. Additional computational considerations are developed in Sec. III of (Zachariah
& Stoica, 2015). Link to implementation is provided here: https://github.com/Muhammad-Osama.

Algorithm 1 : Spice-predictor
1: Input: (xn, yn) and x (and initial θ′)
2: Update recursive variables An,bn and cn in (15)
3: Set global variables g0 = cn + θ′>Anθ′ − 2θ′>bn and g = bn −Anθ′

4: repeat
5: k = 1, . . . , d
6: Compute αk, βk, γk and sk in (44)
7: Compute θ̂k in (40)
8: Update global variables g0 := g0 +Ankk(θ′k − θ̂k)2 + 2(θ′k − θ̂k)gk and g := g + [An]k(θ′k − θ̂k)
9: Update θ′k := θ̂k

10: until number of iterations equals L
11: Output: ŷ(x) = φ>(x)θ̂
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