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Abstract
This paper studies the problem of differentially
private empirical risk minimization (DP-ERM)
for binary linear classification. We obtain an effi-
cient (ε, δ)-DP algorithm with an empirical zero-
one risk bound of Õ

(
1

γ2εn + |Sout|
γn

)
where n is

the number of data points, Sout is an arbitrary
subset of data one can remove and γ is the margin
of linear separation of the remaining data points
(after Sout is removed). Here, Õ(·) hides only log-
arithmic terms. In the agnostic case, we improve
the existing results when the number of outliers is
small. Our algorithm is highly adaptive because
it does not require knowing the margin parameter
γ or outlier subset Sout. We also derive a utility
bound for the advanced private hyperparameter
tuning algorithm.

1. Introduction
We investigate differentially private empirical risk mini-
mization (DP-ERM) (Chaudhuri et al., 2011; Bassily et al.,
2014) under the setting of learning large-margin halfspaces.
In classification problems, algorithms that create decision
boundaries with larger separations between classes, a.k.a.
large margins, tend to have stronger generalization perfor-
mance (Vapnik, 1998; Panagiotakopoulos & Tsampouka,
2011). This principle has been leveraged in many classical
machine learning algorithms, such as the Perceptron (Rosen-
blatt, 1958; Novikoff, 1962), AdaBoost (Freund & Schapire,
1997), and Support Vector Machine (Vapnik, 1998; Cortes &
Vapnik, 1995). It is natural to ask whether we can design a
data-adaptive DP algorithm to benefit from a large-margin
condition. This is challenging because differential privacy
requires the algorithm’s output to be “close enough” when
two datasets differ by one data point (Dwork et al., 2006;
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McSherry & Talwar, 2007a; Dwork et al., 2014). A single
point change can cause the margin to shift drastically, from
a positive value to zero or the reverse, as demonstrated in
Figure 1. Despite the theoretical challenge, empirically, a
larger margin is believed to be the reason why pre-trained
features help private learners to work better (De et al., 2022).
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Figure 1. Margin is unstable after changing one point (marked
by the green square), thus hard to design a data-dependent DP-
mechanism using standard techniques (e.g., smoothed sensitivity
(Nissim et al., 2007) or propose-test-release (Dwork & Lei, 2009)).

To validate this hypothesis, we evaluated the margin of SVM
classifiers trained on the CIFAR-10 dataset using pre-trained
features from Vision Transformer (ViT) (Dosovitskiy et al.,
2021) and ResNet-50 (He et al., 2016). Interestingly, as
reported in Figure 2, while the margin remains at zero for the
whole dataset, if we allow removing a few “trouble makers”
(misclassified or other points near the decision boundary),
it becomes clear that ViT-based features achieve a larger
margin and increase more quickly than ResNet-50-based
features as removing more outliers.

After approximately 0.1% of points are removed, the re-
maining data become linearly separable for both ViT and
ResNet-50-based features. This phenomenon also relates
to neural collapse theory (Papyan et al., 2020; Wang et al.,
2024), which states that the last layer of a deep neural net-
work trained on K-class classification task converges to
K distinct points. The geometric margin (Eq. 1) does not
capture this phenomenon. Since the CIFAR-10 dataset is
not linearly separable, the geometric margin is zero. This
inspires us to ask:

Can we design an efficient differentially private algorithm
for agnostic learning halfspaces while adapting to linear
separable subsets with large margins?
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Table 1. Summary of the results on the population zero-one loss (with high probability). Realizable case means that the data is linearly
separable with geometric margin at least γ. In the agnostic case, γ is the data-independent confidence margin parameter in Row 2 and 3.
In Row 4, γ denotes the geometric margin of a data subset after Sout is removed. For a clean comparison, we assume ∥x∥, ∥w∥ to be
O(1), the privacy loss ε ≤ 1, and omit the dependence on factors of order polylog(n, ε, 1/δ, 1/β); L̃γ

S(·) (R̃γ
S(·)) denotes average of

empirical γ-hinge loss (empirical γ-ramp loss).

Source Realizable case Agnostic case polynomial-time?

Nguyễn et al. (2020, Thm. 6, Thm. 11)
1

nγ2ε
known γ NA ✓

Bassily et al. (2022, Thm. 3.1)
1

nγ2ε

1

nγ2ε
+ min

w∈Bd(1)

(
R̃γ

S(w) +

√(
1

n2γ2
+

1

n

)
· R̃γ

S(w)

)
✗

Bassily et al. (2022, Thm. 3.2)
1

n1/2γε1/2

1

n1/2γε1/2
+ min

w∈Bd(1)
L̃γ
S(w) ✓

Theorem 4.1
1

nγ2ε
min

Sout⊂S
γ:=margin(S\Sout)

(
|Sout|
nγ

+
1

nγ2ε

)
✓
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Figure 2. The number of removed points (in percentage of n) vs
normalized margin. Classes 1 and 9 from the CIFAR10 training
set are used. As more points are removed, the margin increases.
We include more implementation details in Appendix N.

We give an affirmative answer to this question and summa-
rize our contribution here.

1.1. Our Contribution

An efficient algorithm adapting to large margins We
propose an efficient algorithm adapting to large margin sub-
sets differential privately, without the need for any tuning
parameters nor assumptions of realizability, as stated in
Algo. 3.

Inlier-outlier analysis of gradient descent We propose
margin inlier/outlier (Definition 6.1), as a generalization of
geometric margin. We obtain data adaptive upper bounds
on both empirical and population risk, which depend on
the number of margin outliers (Theorem 4.1). This analysis

technique allows us to achieve a
√
n improvement in the

population risk bound compared to Theorem 3.2 in (Bassily
et al., 2022). Moreover, the term |Sout|/γn naturally adapts to
the problem’s complexity, allowing our results to extend to
the agnostic case, where directly applying Theorem 6 from
(Nguyễn et al., 2020) is not feasible. Finally, this analysis
technique enables us to extend to unbounded parameter
space. This avoids the assumption on the bounded domain
as stated in (Nguyễn et al., 2020; Bassily et al., 2022).

1.2. Related Work

Prior work on DP large-margin learning. To the best
of our knowledge, Nguyễn et al. (2020) is the first work to
achieve a dimension-free excess population risk for differ-
entially private learning of large-margin halfspaces. Under
the assumptions of linear separability and known geometric
margin, they are able to achieve a fast rate of Õ

(
1

nγ2ε

)
using an efficient approximate DP algorithm. However, in
practice, the linear separability of the data and the geometric
margin value are often unknown without directly accessing
the data. To address this, Bassily et al. (2022) uses the
confidence margin (Mohri et al., 2018), a data-independent
quantity, and achieves an Õ

(
1

γ
√
n
+ 1

γ2nε

)
excess empiri-

cal risk on surrogate loss in the agnostic case.

Pure-DP algorithms are also discussed in Nguyễn et al.
(2020) and Bassily et al. (2022). However, they suffer from
computational inefficiency due to the use of exponential
mechanisms on candidate sets of size O(exp(1/γ)). For
completeness, we include these results for both the agnos-
tic and realizable cases and present a comparison with our
result in Table 1.

Bun et al. (2020) and Ghazi et al. (2021) study private
learning of large-margin halfspaces with an emphasis on
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robustness. Both two works make specific assumptions
about realizability and noise oracles. Moreover, proposed
algorithms require taking the geometric margin as input, i.e.,
Bun et al. (2020, Algo. 4) and Ghazi et al. (2021, Algo. 1).

For earlier works with poly(d) dependence in population
risk, we refer the readers to Section 1.2 of Nguyễn et al.
(2020) for a comprehensive survey.

Private hyperparameter tuning. To achieve the desired
results, the margin parameter also needs to be selected. Bass-
ily et al. (2022) addresses this by privately selecting the
optimal confidence margin using the generalized exponen-
tial mechanism (Raskhodnikova & Smith, 2016). However,
their approach relies on a score function that incorporates
the minimized empirical risk over the hypothesis space,
which is generally hard to compute (Bassily et al., 2022,
Lemma F.3).

In addition to classical differentially private selection mech-
anisms such as the exponential mechanism (McSherry &
Talwar, 2007b), the report-noisy-max (Dwork et al., 2014),
and the sparse vector technique (Dwork et al., 2009; Zhu &
Wang, 2020), there have been notable advancements in pri-
vate hyperparameter tuning. This research direction began
with (Liu & Talwar, 2019) and was further refined by (Pa-
pernot & Steinke, 2022), which utilized Rényi differential
privacy, and by (Koskela & Kulkarni, 2024), which incor-
porated subsampling techniques. More recently, (Koskela
et al., 2024) further improves the practicality by provid-
ing tighter privacy accounting through the use of privacy
profiles. These advanced methods allow the final privacy
budget to grow logarithmically with the number of repeti-
tions, as opposed to the (sub)linear growth observed with
(advanced) naive composition (Dwork et al., 2014).

We examine two hyperparameter tuning methods: a simple
brute-force approach (Algo. 2) and an advanced private
tuning method (Algo. 4). Their utility and computational
efficiency are compared in Section 7.

2. Preliminary
Symbols and notations. We use boldface letters (e.g., x)
to denote vectors. Calligraphic letters are used as follows:
F represents the function class, H denotes the classifier
class, X represents the data universe, and A denotes a ran-
dom algorithm. The notation EA[·] indicates the expecta-
tion taken over the randomness of algorithms. The binary
operation · ∧ · denotes taking the minimum between the
two inputs. Throughout this paper, ⟨·, ·⟩ represents the in-
ner product, and ∥ · ∥ denotes the induced L2 norm. The
set Bd(r) := {x ∈ Rd | ∥x∥ ≤ r} is defined as the L2

ball in Rd with radius r. The sign function is denoted
by sign(·), and the indicator function is represented by
1(·). For a set A ⊂ Rd, we use |A| to denote its cardi-

nality. The L2 projection operator onto A is denoted as
ProjA(x) := argmin

v∈A
∥v − x∥. The power set of A is

denoted by 2A. The probability generating function of a
random variable K is represented by PGFK(·). Through-
out this paper, the notation O is used to suppress universal
constants, while Õ hides polylog(n, 1/β, 1/δ) factors.

Differential Privacy. We call two datasets X,X ′ ∈ Xn

neighboring datasets if they differ up to one element.

Definition 2.1 (Differential privacy (Dwork et al., 2006)).
A randomized algorithm M : Xn → Ω is (ε, δ)-DP (dif-
ferential private) for ε, δ ∈ (0, 1) if for any neighbouring
datasets X,X ′ ∈ Xn and any measurable subset O ⊆ Ω,
M satisfies:

P(M(X) ∈ O) ≤ eεP(M(X ′) ∈ O) + δ

Definition 2.2 (Gaussian Differential Privacy (GDP) (Dong
et al., 2022)). We say a mechanism M satisfies µ-GDP if
for any neighbouring dataset X,X ′ ∈ Xn,

Heε(M(X)||M(X ′)) ≤ Heε(N (0, 1)||N (µ, 1)), ∀ε ∈ R,

where N (0, 1) stands for standard normal distribution and
Heε(·||·) denotes the hockey-stick divergence between two
probability distributions (Sason & Verdu, 2016).

Remark 2.3. While (ε, δ)-DP offers a direct description of
privacy leakage, it’s messy and loose when composing mul-
tiple mechanisms together (Near & Abuah, 2021, Chapter 6).
Instead, GDP not only has a clean form for composition:
composing {Mi}ki=1 mechanisms with each mechanism

being µk-GDP yields
(√∑k

i=1 µ
2
i

)
-GDP, but offers a tight

characterization for Gaussian mechanism: Gaussian mecha-
nism with L2 sensitivity ∆ and noise parameter σ satisfies
∆/σ-GDP. Thus, throughout this paper, we use GDP and its
composition when possible, though the final result is still
stated in (ε, δ)-DP.

Geometric margin. We first define the margin of dataset
S with respect to a linear classifier hw : (x, y) 7→
sign(y⟨w,x⟩) to be:

Margin(w;S) = max

{
min

(x,y)∈S

y⟨w,x⟩
∥w∥

, 0

}
We say dataset S is linear separable if there exists some
linear classifier w with γ(w;S) > 0. The geometric margin
for dataset S is defined to be:

γ(S) := max
w∈Rd

Margin(w;S) (1)

As shown in Figure 2, a dataset may initially have a zero
margin. However, after removing certain "outliers," the re-
maining dataset can exhibit a positive margin. We formalize
this concept and introduce the definitions of margin inliers
and outliers in Definition 6.1.
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3. Settings
Loss function. We use ℓc to represent hinge loss with
confidence margin parameter c:

ℓc(w; (x, y)) = max{0, 1− y⟨w,x⟩/c}

L̃c(w;S)
(
L̂c(w;S)

)
represents the averaged (summed)

empirical hinge loss for estimator w over the dataset S.
Remark 3.1. Throughout this paper, the confidence margin
is only used as a parameter for hinge loss. It is unrelated to
the data-dependent quantities we defined, such as margin
inliers/outliers (Definition 6.1).

In our optimization algorithm, we use hinge loss. It is impor-
tant to note that varying confidence margin parameters can
result in different loss values, even with the same estimator
w and dataset S. To ensure a fair comparison, we express
utility upper bounds using zero-one loss:

ℓ0−1(w; (x, y)) = 1{y⟨w,x⟩ < 0}

For an estimator w, we denote its averaged empirical zero-
one loss on dataset S as R̃S(w) and its summed version as
R̂S(w). Furthermore, RD(w) represents the population-
level zero-one risk for the data distribution D.

Assumptions. We make the following assumptions: the
training dataset S = {(x1, y1), . . . , (xn, yn)} is sam-
pled i.i.d. from an unknown distribution D defined on
Bd(1) × {±1}. We consider the function class F =
{⟨·,w⟩ | w ∈ Rd} and the hypothesis class of classifiers
H = {x 7→ sign(f(x)) | f ∈ F}. The assumption that x
and w lie in the unit ball is made without loss of generality.
In Section 8.1, we extend our results to the more general
case where x ∈ Bd(b) and w ∈ Rd.

Problem Setup. We address the problem of agnostic
proper learning of halfspaces with differential privacy.
Given a dataset S and a privacy budget ε, δ, our goal is
to design an algorithm that takes S, ε, and δ as input and
outputs a classifier wout from the hypothesis class H, ensur-
ing a small (empirical) population zero-one risk (R̃S(wout))
RD(wout).

4. Main Result
We state our adaptive margin bound as follows:
Theorem 4.1. There exists an efficient algorithm M∗

(Algo. 3), for any input dataset S, privacy budgets ε, δ satis-
fying δ ∈ (0, 1) and ε ∈ (0, 8 log(1/δ)) such that:
(1) M∗ is (ε, δ)-DP. (2) With high probability, for any
Sout ∈ 2S with γ := γ(S \ Sout) > 0, simultaneously:

R̃S(M∗(S, ε, δ)) ≤ Õ
(

1

nγ2 min{ε, 1}
+

|Sout|
γn

)
∧ 1

RD(M∗(S, ε, δ)) ≤ Õ
(

1

nγ2 min{ε, 1}
+

|Sout|
γn

)
∧ 1

The proof builds on Theorem 6.5 and Theorem 6.7, with the
details deferred to Appendix H and Appendix I.

Let’s make a few observations. In the realizable case, M∗

naturally adapts to the margin without requiring prior knowl-
edge of its value, in contrast to the approach proposed by
Nguyễn et al. (2020, Theorem 6&11). In the agnostic set-
ting, Sout can be interpreted as outliers. When |Sout| is
sufficiently small

(
≈ o(

√
n)
)
, our results achieve a

√
n

improvement over Bassily et al. (2022, Theorem 3.2). For a
detailed comparison, see Table 1.

The algorithm M∗ in Theorem 4.1 does not need any tuning
parameters. It is highly adaptive as it can compete with the
best S∗

out ∈ 2S that minimizes the bound without having
to explicitly search for S∗

out. It also does not incur the
typical statistical costs of log(2n) of adaptivity to 2S , which
would render the bound vacuous. In addition, M∗ is also
computationally efficient. We will see in the next section
that M∗ has a modular design, and it only requires invoking
an off-the-shelf solver for the convex DP-ERM problem a
few times.

5. Algorithms
In this section, we provide details for our algorithms. The
algorithm M∗ (Algo. 3) is designed as a composition of two
components: the private hyperparameter tuning algorithm
AIter (Algo. 2) and the noisy gradient descent algorithm
with Johnson-Lindenstrauss projection AJLGD (Algo. 1).

5.1. Base Algorithm: JL-Noisy Gradient Descent

To obtain a dimension-free rate, we apply the Johnson-
Lindenstrauss (JL) projection to reduce the dimensionality
while preserving the linear separability of projected data.
The “adequate” projection dimension for maintaining sepa-
rability is determined by the data margin. Informally:

Lemma 5.1 (Informal version of Lemma B.2). Let dataset
S = {(xi, yi)}ni=1 ⊂ Rd × {±1} satisfying γ(S) > 0,
choosing k = Õ(1/γ2(S)) in the JL projection ensures
that the projected dataset ΦS := {(Φxi, yi)}ni=1 satisfies
γ(ΦS) > γ(S)

2 with high probability.

In Algo. 1, the data is first projected into a lower-
dimensional space using a JL matrix Φ ∈ Rk×d. Next,
we further clip the L2 norm of data using projection to
bound the sensitivity. After running noisy gradient de-
scent for T iterations, we can choose to output either
the last-iterate estimator wout or the averaged estimator
w̄out = 1

T−1

∑T−1
t=0 wt (described in ANGD (Algo. 5)).

These two choices correspond to utility guarantees in ex-
pectation form or high probability form, as stated in the
Theorem 6.5.

We note that using JL projection to preprocess data in pri-
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vate learning of halfspaces has been explored in previous
work such as Nguyễn et al. (2020); Bassily et al. (2022).
Compared to Nguyễn et al. (2020, Algo. 1), we do not as-
sume that the projection dimension k is calculated from the
actual data margin γ(S), which we provide more details in
Algo. 3. Compared to Bassily et al. (2022, Algo. 2), our
projection dimension is chosen to be Õ(1/γ2) instead of
Õ(nε). In addition, we use a full-batch gradient descent
algorithm rather than SCO-type methods, which avoids the
1/
√
n term in the convergence rate.

Algorithm 1: AJLGD(Φ, c, S, µ)

1 Input: Dataset S = {xi, yi}ni=1 with ∥x∥ ≤ v,
JL projection matrix Φ ∈ Rd×k,
Hinge loss parameter c, GDP budget µ

2 ΦS := {(ProjBk(2v)(Φxi), yi)}ni=1

3 w̃ = ANGD(ℓc,ΦS, µ) ▷ Algo. 5
4 Output: Φ⊤w̃

5.2. Construction of Main Algorithm M∗

Our main algorithm M∗ (Algo. 3) contains three steps:

Step 1. (Line 2 of Algo. 3) We begin by discretizing the
range of possible margin values to create a set of margin
parameters, denoted as Γ. This set is constructed as a log-
arithmic grid over the interval [0, 1]. The analysis of the
approximation error introduced by this discretization is pro-
vided in Theorem 6.4.

Step 2. (Line 4-7 of Algo. 3) For each margin parameter γ
in the set Γ, we construct corresponding projection matri-
ces Φγ . The projection dimension kγ is set to Õ(1/γ2) to
ensure margin preservation, as demonstrated in Lemma 6.2.
Importantly, the construction of each Φγ is independent
of the data, meaning it does not consume any additional
privacy budget.

Algorithm 2: AIter(M,Θ, S, µ)

1 Input: Base mechanism Mbase,
hyperparameter set Θ, dataset S,
GDP budget µ

2 Choose: Criterion function U with sensitivity ∆
3 for θ ∈ Θ do
4 mθ = Mbase(θ;S,

µ√
2|Θ|

)

5 ξ ∼ N (0, 2|Θ|∆2

µ2 )

6 uθ = U(mθ;S) + ξ

7 θout = argmin
θ∈Θ

uθ

8 Output: (mθout
, θout)

Step 3. (Line 8 of Algo. 3) We evaluate all margin configura-

tions in Γ and identify the margin parameter that minimizes
the zero-one risks. Given that the size of the margin grid is
⌈log2(n)⌉+1, we utilize a brute force approach that iterates
through all configurations, as described in Algo. 2. To mini-
mize empirical risk, we use the average empirical zero-one
loss as the scoring function. We employ a penalized scoring
function to minimize population risk, defined in Eq. 3.

The input to Algo. 3 includes only the dataset S and the
privacy parameters ε and δ. Since the margin grid Γ is con-
structed in a data-independent manner, no prior knowledge
of the data margin is required.

Algorithm 3: DP Adaptive Margin M∗(S, ε, δ)

1 Input: dataset S = {xi, yi}ni=1, Privacy budget ε, δ

2 Set: Margin grid Γ = { 1
n ,

2
n ,

4
n , ...,

2⌊log2 n⌋

n , 1},
GDP budget µ = ε

2
√

2 log(1/δ)
,

failure probability for JL projection β
3 Initialize hyperparameter set Θ = {ϕ} ▷ empty set
4 for γ ∈ Γ do
5 kγ = O

(
1
γ2 log(

|Γ|(n+2)(n+1)
β )

)
6 Φγ ∼ (Rad( 12 )/

√
kγ)

kγ×d

7 Θ = Θ ∪ {(γ,Φγ)}
8 (w̃out, γout,Φγout) = AIter(AJLGD(·),Θ, S, µ)

9 Output: (w̃out, γout,Φγout
)

For computational efficiency, Algo. 3 is constructed by
running Algo. 1 for ⌈log2(n)⌉ + 1 times, making it a
polynomial-time algorithm because Algo. 1 itself runs in
polynomial time. Additionally, as shown in Section 6.1,
our convergence analysis (Eq. 2) is compatible with any
black-box optimization method, allowing the replacement
of full-batch gradient descent with more efficient DP-ERM
methods, such as DP-SGD, to improve computational effi-
ciency further.

6. Proof Sketch
We provide privacy and utility analysis of our algorithms.
To begin with, we define the margin inliers (Sin) and the
margin outliers (Sout), which help extend the definition of
the geometric margin.

The motivation for defining Sout(γ) arises from the obser-
vation that after removing a few “outliers” denoted as Sout,
the remaining dataset γ(S \ Sout) becomes γ-separable. To
avoid the combinatorial explosion associated with selecting
Sout(γ), we take a “dual view.” Rather than directly defin-
ing the margin outliers, we first define the margin inliers,
the subsets of S that are γ-separable. The margin outliers
are then simply the complement of the margin inliers.
Definition 6.1 (Margin inliers/outliers). We define the mar-
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gin inliers / outliers of the dataset S with respect to the
margin value γ ∈ [0, 1] as follows:

Sin(γ) := {S′ ⊂ S | γ(S′) ≥ γ}
Sout(γ) := {S \ S′ | S′ ∈ Sin(γ)}

This characterization enables us to divide the dataset into
two subsets and analyze the optimization error for each
separately, as explained in the following section.

6.1. Inlier-outlier Analysis of Noisy Gradient Descent

We provide an overview of our inlier-outlier analysis proce-
dure. For a fixed γ ∈ [0, 1], we can appropriately decrease
the hinge loss parameter c so that the minimum empirical
c-hinge loss on Sin(γ) is reduced to zero:

L̂c(w;S) ≤ L̂c(w
∗;S) + EER 1

≤ L̂c(ẘin;Sin(γ))︸ ︷︷ ︸
(a) zero if c ≤ γ

+ L̂c(ẘin;Sout(γ))︸ ︷︷ ︸
(b)≤∥x∥·|Sout(γ)|/c

+EER

≤ O(|Sout(γ)|/c) + EER
(2)

It is worth noting that w can be generated by any opti-
mization algorithm, offering the flexibility to replace our
full-batch gradient descent (Algo. 5) with alternative meth-
ods.

As shown in Eq. 2, there is a trade-off between achieving
a larger margin and removing fewer data points. As the
size of Sout(γ) increases, the margin γ(S \ Sout) also in-
creases. However, removing more points makes the remain-
ing dataset less representative of the original distribution,
leading to a high error on Sout(γ). In an extreme case, for
any non-degenerate binary classification problem, at most
n − 2 points can be removed to make the remaining data
linearly separable. However, adapting to such a margin is
not meaningful. Since Eq. 2 holds for any Sin ∈ Sin(γ), we
aim to minimize |Sout(γ)|, ensuring that only the smallest
number of “outliers” are removed.

In the next two lemmas, we show that the analysis procedure
of Eq. 2 remains valid for random projection based gradient
descent. We begin by presenting a margin preservation
lemma, leveraging the data-oblivious property of Johnson-
Lindenstrauss projections (Larsen & Nelson, 2017).
Lemma 6.2 (Margin preservation after random projection).
Let S = {(xi, yi)}ni=1 ⊂ Bd(1) × {±1} and γ ∈ [0, 1].
Construct a JL projection matrix Φ ∈ Rk×d with entries
i.i.d. as 1√

k
Rad( 12 ) where k = O( log((n+1)(n+2)/β)

γ2 ). For
any Sin ∈ Sin(γ), we have2:

PΦ

(
γ(ΦSin) ≥

γ

3

)
≥ 1− β

1EER stands for Excess Empirical Risk (Definition A.11); ẘin

denotes the normalized max-margin separator for Sin(γ); w∗ =

argminw∈Rd L̂c(w;S)
2Rad( 1

2
) denotes the Rademacher distribution

The proof is included in Appendix B. Since the margin γ is
preserved for the largest margin inlier set in Sin(γ), we can
formulate the following utility lemma for Algo. 1:

Lemma 6.3. Given GDP budget µ > 0, failure probability
β ∈ (0, 1), and γ ∈ (0, 1), running AJLGD (Algo. 1) with Φ
from Lemma 6.2 and hinge loss parameter γ/3 is µ-GDP.
Further, w.p. at least 1 − 2β, the last-iterate estimator
Φ⊤w ∈ Rd satisfies:

L̃γ/3(Φ
⊤w;S) ≤ min

Sout∈Sout(γ)
Õ
(

1

γ2µn
+

|Sout|
γn

)
Lemma 6.3 indicates that Algo. 1 adapts to the smallest
margin outlier set for a given margin level. We defer the
proof to Appendix D.2.

Utility bounds for noisy gradient methods often include a√
d term (Bassily et al., 2014). In contrast, the bound pro-

vided in Lemma 6.3 is dimension-independent. Compared
to existing utility bounds for private gradient descent meth-
ods that leverage JL projections, such as Bassily et al. (2022,
Lemma 3.1) and results from Arora et al. (2022, Appendix
A.4), our Lemma 6.3 avoids a strict Õ(n−1/2) dependence.

6.2. Adapting to the Optimal Margin

Lemma 6.3 suggests that a larger γ and a smaller |Sout| lead
to a tighter upper bound on the empirical risk. However,
increasing the margin γ simultaneously causes the size of
Sout to grow. To minimize this upper bound, it is necessary
to determine the optimal γ ∈ [0, 1].

We approach this as a hyperparameter tuning task. First,
we discretize the margin range to create a set of candidate
hyperparameters. Then, we evaluate each hyperparameter
privately and select the one that minimizes the empirical
zero-one risk.

Specifically, we construct a doubling grid over [0, 1], de-
fined as {1/n, 2/n, 4/n, . . . , 2⌊log2 n⌋

/n, 1}, and then apply the
AIter(Algo. 2) using the empirical zero-one loss as the score
function. By leveraging the monotonicity of margin outliers,
the doubling grid guarantees an acceptable approximation
guarantee, as demonstrated in the following lemma:

Lemma 6.4. Given dataset S ∈ (Bd(1)×{±1})n and ε >
0, for doubling set Γ = {1/n, 2/n, 4/n, ..., 2⌊log2 n⌋

/n, 1}:

min
γ∈Γ

Sout∈Sout(γ)

(
|Sout|
nγ

+
1

nγ2ε

)
∧ 1

≤ min
Sout⊂S

γ:=γ(S\Sout)>0

O
(
|Sout|
nγ

+
1

nγ2ε

)
∧ 1

We now state the empirical risk bound for Algo. 3:

Theorem 6.5 (Empirical risk bound for M∗). Running
M∗ with R̃S satisfies (ε, δ)-DP, for δ ∈ (0, 1) and ε ∈

6
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(0, 8 log(1/δ)). In addition,
(1) For the averaged estimator w̄out ∈ Rd, we have utility
guarantee in expectation:

E[R̃S(w̄out)] ≤ min
Sout⊂S

γ:=γ(S\Sout)>0

Õ
(

1

γ2nε
+

|Sout|
γn

+
1

n2

)
∧ 1

(2) For the last-iterate estimator wout ∈ Rd, w.p. at least
1− 3/n2:

R̃S(wout) ≤ min
Sout⊂S

γ:=γ(S\Sout)>0

Õ
(

1

γ2nε
+

|Sout|
γn

+
1

n

)
∧ 1

We defer the proof details of Lemma 6.4 and Theorem 6.5
to Appendix G and Appendix H.

6.3. Proof for the Population Risk

In this section, we show a population risk bound for M∗.
We begin by presenting an upper bound on the population
risk, derived by applying the AM-GM inequality to refine
Bassily et al. (2022, Lemma A.1):
Lemma 6.6. Let S be a training set containing n data points
sampled i.i.d. from the distribution D, and let the hypothesis
class defined as Hk = {x 7→ sign(⟨x,w⟩) | x ∈ Rk}. For
any wk ∈ Hk, the following holds w.p. at least 1− β over
the randomness of sampling:

RD(wk) ≤2R̃S(wk) +
5(VC(Hk) log(2n)) + log(β/4)

n

Thus, instead of directly using the empirical zero-one loss
for selection, as in the previous section, where the goal was
to minimize empirical risk, we use the penalized zero-one
loss for selection to minimize population loss:

R̂S(wout) +
5

2
(VC(Hk) log(2n) + log(β/4)) (3)

The remainder of the proof for hyperparameter selection
follows from a union bound over private hyperparameter
selection. Finally, we provide the population risk guarantee
for Algo. 3.
Theorem 6.7. Under the same conditions on ε, δ, Γ, and
n as in Theorem 6.5, Algo. 3, using the score defined in
Eq. 6.6, satisfies (ε, δ)-DP. W.h.p. the output last-iterate
estimator wout ∈ Rd satisfies:

RD(wout) ≤ min
Sout⊂S

γ:=γ(S\Sout)>0

Õ
(

1

γ2nmin{1, ε} +
|Sout|
γn

)

When |Sout| = o(
√
n), the population risk in Theorem 6.7

is on the order of (1/
√
n), improving upon Theorem 3.2 in

Bassily et al. (2022), where the bound is Õ(1/
√
n). In the

realizable case, when data has margin γ with probability 1,
Theorem 6.7 also recovers the Õ(1/n) rate. We defer the
proof details to Appendix I.

7. Advanced Hyperparameter Tuning
In practice, practitioners often tune multiple hyperparam-
eters, with each of which follows an exponential grid. It-
erating over all parameter configurations (as in Algo. 2)
would significantly degrade the privacy guarantee. This mo-
tivates us to consider an advanced private hyperparameter
tuning approach ((Papernot & Steinke, 2022), outlined in
Algo. 4), where the final privacy budget grows only loga-
rithmically with the number of repetitions. Compared to
Algo. 2, Algo. 4 determines number of repetitions from a
specific distribution Q, implemented here as a geometric
distribution (TNB1,r, Appendix A.1).

Algorithm 4: APrivTune(M,Θ, Q, S, µ)

1 Input: Base mechanism M, hyperparameter set Θ,
run time distribution Q, dataset S,
GDP budget µ

2 Choose: Criterion function U with sensitivity ∆
3 Sample number of runs K ∼ Q
4 for t = 1, ...,K do
5 θt ∼ Uniform(Θ)
6 mt = M(θt;S,

µ√
2
)

7 ξt ∼ N (0, 2∆2

µ2 )

8 ut = U(mt;S) + ξt

9 tout = argmint∈{1,...,K} ut

10 Output: (mtout , θtout)

To incorporate Algo. 4 into our main algorithm, one can
simply replace AIter with APrivTune in line 8 of Algo. 3 (see
Appendix K.1 for the full statement). The following lemma
presents the privacy and utility guarantees, with proofs de-
ferred to Appendix K.4.

Theorem 7.1. Running Algorithm 3 with APrivTune as
the hyperparameter selector, margin hyperparameter set
Θ ⊂ [0, 1], Q = TNB1, 1

|Θ|(n2−1)
, and a GDP budget

µ = ε

6
√

2 log(|Θ|(n2−1)/δ)
ensures (ε + δ, δ)-DP, for any

δ ∈ (0, 1) and ε ∈ (δ, 24 log(|Θ|(n2−1)/δ)). For the av-
eraged estimator w̄out ∈ Rd, we achieve a utility guarantee
in expectation:

E[R̃S(w̄out)] ≤ min
γ∈Θ

Sout⊂Sout(γ)

O
(
log(|Θ|n/δ)

γ2nε
+

|Sout|
γn

+
1

n2

)

As observed, the final utility bound scales only logarithmi-
cally with the size of the hyperparameter set Θ. In contrast,
for the brute force method AIter, the utility bound grows as
|Θ|1/2 (Eqn. 17). We note that our utility bound for private
hyperparameter tuning extends beyond linear classification
(Lemma K.4). To further demonstrate the utility improve-
ment, we examine a general hyperparameter tuning problem

7
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Table 2. Results on the population zero-one loss (with high probability). Capital letters X,W denote data space and parameter space
correspondingly. γ is the data-independent confidence margin parameter in Row 1 and 2. In Row 3, γ denotes the geometric margin of a
data subset after Sout is removed. W.L.O.G., we assume the privacy loss ε ≤ 1. All results are stated in the agnostic case.

Source Constraints Result

Bassily et al. (2022, Thm. 3.1) ∥x∥ ≤ b, ∥w∥ ≤ C Õ
( 1
n
+

C2b2

γ2n
+

C2b2

γ2nε

)
+ min

w∈Bd(C)

(
R̃γ

S(w) + Õ

(√
R̃γ

S(w)

(
C2b2

nγ2
+

1

n

)))

Bassily et al. (2022, Thm. 3.2) ∥x∥ ≤ b, ∥w∥ ≤ C Õ
( 1

n1/2
+

Cb

γn1/2
+

Cb

γn1/2ε1/2

)
+ min

w∈Bd(C)
L̃γ(w;S)

Theorem L.2 ∥x∥ ≤ b min
Sout⊂S

γ:=margin(S\Sout)

Õ
(

b2

nγ2ε
+

b|Sout|
nγ

)

with K hyperparameters, each associated with a grid of size
m, yielding mK total configurations. In this setting, the
utility upper bound for AIter scales as mO(K), whereas for
APrivTune, it reduces to O(Km).

7.1. Private Hyperparameter Tuning on a Small Set

In our setting, Algo. 2 and Algo. 4 yield upper bounds with
the same dependence on |Θ|. This is because the size of
the hyperparameter set is only log(n) and is dominated by
other poly(n) factors from random projection. In terms of
runtime, AIter requires just O(log(n)) repetitions, whereas
APrivTune has an expected runtime of O(n2 log(n)) repe-
titions. Since APrivTune employs uniform random selec-
tion (line 5 in Algo. 4), it needs more repetitions to en-
counter the optimal hyperparameter θ∗. To ensure that the
probability of failing to select θ∗ remains below β, i.e.,
PQ(θ

∗ not selected) ≤ β, the expected number of repeti-
tions cannot be too small.

Lemma 7.2. Suppose Q ∼ TNB1,r and fauilure probabil-
ity is set to be β. If E[Q] = 1/r ≥ β/(1−β)(|Θ|−1), Algo. 4
ensures PQ(θ

∗ not selected) ≤ β

We defer the proof to Appendix M.2. To achieve polyno-
mial decay in the failure probability, i.e., β = O(n−α), the
expected number of repetitions E[Q] should be larger than
(|Θ| − 1)(nα − 1), which grows polynomially with n. One
might wonder whether truncated negative binomial distri-
butions with different parameters could achieve O(log(n))
repetitions while preserving the same utility guarantee of
Theorem 7.1. In Appendix M.3, we further explore this topic
and show that using truncated negative binomial distribution
may not be feasible.

8. Discussion
8.1. More General Case

We extend the risk guarantees to any bounded data space,
i.e. ∥x∥ ≤ b, showing that this generalization introduces
an additional dependency on b, scaling proportionally to
1/γ. A comparison of population risk results is presented
in Table 2. We defer proofs to Appendix L. Compared with
the results in (Bassily et al., 2022), our bound applies even
when the parameter space is unbounded. This is because of
the reference point in our inlier-outlier convergence analysis
of Algo. 1 is the normalized max-margin separator rather
than the empirical risk minimizer. (section 6.1)

8.2. Further Improvements and Future Directions

An open question is whether the dependence on γ in |Sout|
γn

can be eliminated for privately proper learning of halfspaces:

Question 8.1. Given an unknown distribution D and n
i.i.d. samples drawn from it, does there exist an efficient DP
algorithm A such that with high probability, the following
holds:

R̃D(A(S)) ≤ min
Sout⊂S

γ:=γ(S\Sout)>0

Õ
(

1

poly(n, ε, γ)
+

|Sout|
n

)

The proper agnostic learning of halfspaces in non-private
settings is NP-hard (Guruswami & Raghavendra, 2009; Feld-
man et al., 2006; Daniely, 2016). Therefore, achieving this
improvement is unlikely without making certain assump-
tions about the noise model.

One might consider the Massart halfspace model (Di-
akonikolas et al., 2019; Chen et al., 2020; Chandrasekaran
et al., 2024; Diakonikolas & Zarifis, 2024). However, since
our algorithms rely on convex ERM, directly applying our

8
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approach does not achieve a bound of |Sout|
n , as stated by

the lower bound in Diakonikolas et al. (2019, Theorem 3.1).
More recently, (Chandrasekaran et al., 2024; Diakoniko-
las & Zarifis, 2024) introduce efficient algorithms that at-
tain an excess population risk of Õ

(
n−1/2γ−2

)
. Exploring

whether similar guarantees can be extended to the differ-
entially private setting remains an interesting direction for
future research.
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A. Extended preliminary and auxiliary lemmas
A.1. Truncated Negative Binomial Distribution

Definition A.1 (Truncated Negative Binomial Distribution ((Papernot & Steinke, 2022))). Let r ∈ (0, 1), η ∈ (−1,∞), and
K ∼ TNBη,r with support on ∈ {1, 2, 3, ...}

• If η ̸= 0:

P(K = k) =
(1− r)k

r−η − 1
·
k−1∏
l=0

(
l + η

l + 1

)
, E[K] =

η(1− r)

r(1− rη)
, PGF(x) =

(1− (1− r)x)−η − 1

r−η − 1

• If η = 0:

P(K = k) =
(1− r)k

k · log(1/r)
, E[K] =

1/r − 1

log(1/r)
, PGF(x) =

log(1− (1− r)x)

log(r)

Remark A.2. When η = 1, TNB1,r corresponds to geometric distribution. When η = 0, TNB0,r corresponds to logarithmic
distribution.

Fact A.3 (Cumulative distribution function for TNB1,r). For t ≥ 1, P(TNB1,r ≤ t) = 1− (1− r)t

Lemma A.4 (Tail bound for TNB1,r). For β ∈ (0, 1), P
(
TNB1,r > ⌈ log(β)

log(1−r)⌉
)
≤ β

Proof. By Fact A.3, let (1− r)t ≤ β, we have t ≥ ⌈ log(β)
log(1−r)⌉.

A.2. Concentration Ineqialities

Lemma A.5 (Concentration of maximum of Gaussians). Let ξ1, ..., ξn
iid∼ N (0, σ2), then:

• (in expectation):

E
[
max
i∈[n]

ξi

]
≤ σ

√
2 log n

• (with high probability): For any β ∈ (0, 1), we have:

P
(
max
t∈[n]

ξt ≥ σ
√

2 log(2n) +
√
2 log(1/β)

)
≤ β

Corollary A.6 (Concentration for range of Gaussians). Let ξ1, ..., ξn
iid∼ N (0, σ2), let M := max

i∈[n]
ξi and m := min

i∈[n]
ξi then:

P
(
M −m ≥ 2σ

√
2 log(2n) + 2

√
2 log(2/β)

)
≤ β

Proof. For any t ≥ 0:

P(M −m ≥ t) ≤ P({− t

2
< m < M <

t

2
}c)

≤ P(M ≥ t

2
) + P(m ≥ − t

2
)

= 2P(M ≥ t

2
)

(4)

Set t = 2σ
√
2 log(2n) + 2

√
2 log(2/β), we have:

2P(M ≥ t

2
) = 2P(M ≥ σ

√
2 log(2n) +

√
2 log(2/β)) ≤ β

12
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Lemma A.7 (Upper bound for maximal of random number of Gaussians). Let K ∼ TNBη,r and ξ1, ..., ξK
iid∼ N (0, σ2),

we have

E
[
min
t∈[K]

ξt

]
≤ σ

√
2 log

(
η(1− r)

r(1− rη)

)
Proof.

EK,N⊗K

[
min
t∈[K]

ξt

]
=

∞∑
j=1

EN⊗j

[
min
t∈[j]

ξt

]
· P(K = j)

≤
∞∑
j=1

σ
√
2 log(j) · P(K = j) Lemma A.5

=
√
2σEK∼TNBη,r [

√
log(K)]

≤
√
2σ
(√

logEK∼TNBη,r
[K]
)

Apply Jensen’s Inequality twice

= σ

√
2 log

(
η(1− r)

r(1− rη)

)
(5)

Remark A.8. If K ∼ TNB1,r, then EK,N⊗K

[
min
t∈[K]

ξt

]
≤ σ

√
2 log(1/r)

A.3. Other lemmas

Lemma A.9 (First order condition for convexity). Let f : Rd → R be a differentiable convex function. The for any x, y ∈ D,
we have:

f(y)− f(x) ≥ ⟨g,y − x⟩

with g being sub-gradient for f at x

Lemma A.10 (L2 sensitivity for the gradient of c-hinge loss). Let x ∈ X , the L2 sensitivity of ∇wL̂c(w;S) =∑
(x,y)∈S

∇wℓc(y⟨w,x⟩) is

(a) (adding/removing): max
x∈X

∥x∥
c

(b) (replacement): 2max
x∈X

∥x∥
c

Proof of Lemma A.10. Lipschitz constant of ℓc(y⟨·,x⟩) is upper bounded by ∥x∥/c.

A.4. Other definitions

Definition A.11 (Excess Empirical Risk). Given dataset S ∈ X ∗ and loss function L : W ×X ∗ → R, the excess empitical
risk for parameter w ∈ W is defined as follow:

EER(w) = L(w;S)− min
w∈W

L(w;S) (6)

B. Proofs of Margin preservation Lemma 5.1 and Lemma 6.2
The distance and angle preservation lemma presented here is derived from the renowned Johnson-Lindenstrauss lemma
(Johnson et al., 1986):

Lemma B.1 (Lemma A.3 in Bassily et al. (2022)). Let X := {x1, ...,xn} ⊂ Rd, distortion rate e ∈ (0, 1], and Φ be k × d

random matrix with Φij
iid∼ 1√

k
Rad( 12 ), with k = O

(
log(n(n+1)/β)

e2

)
. Then w.p. at least 1− β over the randomness of Φ,

the following two statements hold simultaneously for any u,v ∈ X:

13
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(a)
√
1− e

3∥u∥ ≤ ∥Φu∥ ≤
√
1 + e

3∥u∥

(b) |⟨Φu,Φv⟩ − ⟨u,v⟩| ≤ e
3∥u∥∥v∥

B.1. Proof of Lemma 5.1

A formal version of Lemma 5.1 is provided below:
Lemma B.2 (Formal version of Lemma 5.1). Let S = {(xi, yi)}ni=1 ⊂ Rd ×{±1} with ∥x∥ ≤ b, distortion rate parameter

e ∈ (0, 1), Φ ∼ Π := ( 1√
k
Rad( 12 ))

k×d with k = O
(

log((n+1)(n+2)/β)
e2

)
. Then, for any S′ ∈ 2S with γ(S′) ≥ γ, we have

PΦ∼Π

(
γ(ΦS′) ≥ γ

2
− eb

6

)
≥ 1− β

Proof. For any S′ ⊂ 2S with γ(S′) ≥ γ, there exist some unit vector wS′ ∈ Rd s.t. γ(wS′ ;S′) ≥ γ, running JL projection
over S ∪ {wS′} and k = O

(
log((n+2)(n+1)/β)

e2

)
yields the following guarantee by Lemma B.1 (b):

∀x ∈ S′, PΦ∼Π

(
|⟨ΦwS′ ,Φx⟩ − ⟨wS′ ,x⟩| ≤ e

3
∥wS′∥∥x∥

)
≥ 1− β

This implies the following happens w.p. at least 1− β over the randomness of Φ:

min
(x,y)∈S′

y⟨ΦwS′ ,Φx⟩ ≥ min
(x,y)∈S′

y⟨wS′ ,x⟩ − eb

3
= γ − eb

3

Under the same event, with norm preservation stated in Lemma B.1 (a), we get

∥ΦwS′∥ ≤
√
1 +

e

3
· ∥wS′∥ =

√
1 +

e

3

Combing things all together, we get a lower bound for γ(ΦS′):

min
(x,y)∈S

y⟨ΦwS′ ,Φx⟩
∥ΦwS′∥

≥
γ − eb

3√
1 + e

3

≥ γ

2
− eb

6

where the last inequality is by e ∈ [0, 1]. Thus,

PΦ∼Π

(
γ(ΦS′) ≥ γ

2
− eb

6

)
≥ 1− β

B.2. Proof of Lemma 6.2

The proof of Lemma 6.2 is by directly applying Lemma B.2
Lemma B.3 (Restate of Lemma 6.2). Let S = {(xi, yi)}ni=1 ⊂ Bd(1) × {±1} and γ ∈ [0, 1]. Construct JL projection
matrix Φ ∈ Rk×d with entry i.i.d. 1√

k
Rad( 12 ) and k = O( log((n+1)(n+2)/β)

γ2 ). For any Sin ∈ Sin(γ), we have3:

PΦ

(
γ(ΦSin) ≥

γ

3

)
≥ 1− β

Proof. Recall that
Sin(γ) := {S′ ⊂ S : γ(S′) ≥ γ}

Thus, for any S∗
γ ∈ argmax

S′∈Sin(γ)

|S′|, by Lemma B.2 with distortion rate e = γ, we have:

PΦ∼Π

(
γ(ΦS∗

γ) ≥
γ

2
− γ

6

)
= PΦ∼Π

(
γ(ΦS∗

γ) ≥
γ

3

)
≥ 1− β

3Rad( 1
2
) denotes the Rademacher distribution

14
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C. Technical Lemmas for noisy gradient descent (Algo. 5)
C.1. Noisy Gradient Descent

Algorithm 5: ANGD(ℓ(·), S, µ): Noisy Gradient Descent (Bassily et al., 2014)

1 Input :Data S = {xi, yi}ni=1 ⊂ Rd × {±1}, loss function ℓ(·), GDP budget µ
2 Choose : some reference point wref ∈ Rd, initialization w0 ∈ Rd

3 Set : L̂(w;S) =
∑

(x,y)∈S ℓ(w; (xi, yi)) and L2 sensitivity of L̂ is ∆,
number of iteration T = n2µ2,
noise parameter σ = ∆

√
T

µ = n∆,

learning rate η =
√

∥wref−w0∥2

T (n2∆2+dσ2)

4 for t = 0, ..., T − 1 do
5 ξt ∼ N (0, σ2Id)
6 wt+1 = wt − η(∇wL̂(wt;S) + ξt)

7 Output :Averaged estimator: w̄ = 1
T

∑T−1
t=0 wt or Last-iterate estimator: w = wT

C.2. Convergence in expectation

Lemma C.1. Algo. 5 is µ-GDP. Furthermore, for the averaged estimator w̄:

EA

[
L̂(w̄;S)

]
− L̂(wref ;S) ≤ O

(
∥wref −w0∥∆

√
d

µ

)
(7)

Proof of Lemma C.1. The privacy guarantee comes from GDP composition. For notational convenience, denote gt :=
∇wL̂(wt;S), ĝt = gt + ξt, then wt+1 = wt − ηĝt. we have:

∥wt+1 −wref∥2 = ∥wt − ηĝt −wref∥2

= ∥wt −wref∥2 − 2η⟨ĝt,wt −wref⟩+ η2∥ĝt∥2

Taking expectation conditioned on wt, and by E[ĝt|wt] = gt, E[ĝ2t |wt] ≤ n2∆2 + dσ2 we have:

E[∥wt+1 −wref∥2] = E
(
E
[
∥wt+1 −wref∥2|wt

])
= E

(
E
[
∥wt −wref∥2|wt

]
− 2η⟨∇wL̂(wt;S),wt −wref⟩+ η2∥ĝt∥2

)
≤ E[∥wt −wref∥2]− 2η(E[L̂(wt;S)]− L̂(wref ;S)) + η2(n2∆2 + dσ2) Lemma A.9

By telescoping sum and dividing both sides by T , we get:

E
[
L̂(w̄T ;S)

]
− L̂(wref ;S) ≤ E

[
1

T

T−1∑
t=0

L̂(wt;S)

]
− L̂(wref ;S)

≤ ∥wref −w0∥2

Tη
+ η(n2∆2 + dσ2)− ∥wT −wref∥2

T

≤ ∥wref −w0∥2

Tη
+ η(n2∆2 + dσ2)

Since T = n2µ2, σ2 = n2∆2, and choosing η =
√

∥wref−w0∥2

T (n2L2+dσ2) to meet the equality condition of AM-GM, we get:

E
[
L̂(w̄T ;S)

]
− L̂(wref ;S) ≤ 2

√
∥wref −w0∥2(n2∆2 + dσ2)

T

≤ 2n∆∥wref −w0∥√
T

+
2
√
dσ∥wref −w0∥√

T

≤ 4∆
√
d∥wref −w0∥

µ
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C.3. Convergence with high probability

Lemma C.2 (Theorem 3.5 in Liu & Zhou (2024)). Running Algo. 5 with step size η =
√

∥wref−w0∥2

T (n2∆2+dσ2 log(1/β)) and output
last-iterate estimator w. With probability at least 1− β,

L̂(w;S)− L̂(wref ;S) ≤ O

(
∥wref −w0∥∆

√
d log(1/β)

µ

)
(8)

D. Margin Inlier-outlier based convergence analysis for AJLGD (Algo. 1)
In this section, we derive convergence bound for AJLGD (Algo. 1) characterized by margin inlier-outliers.

D.1. Expected guarantee

We derive the convergence guarantee for AJLGD (Algo. 1), with expectation taking over the randomness of the ERM
algorithm.

Lemma D.1 (Expected convergence bound). Suppose S = Sin ⊔ Sout ⊂ Bd(b)× {±1} with γ(Sin) ≥ γ. Run Algo. 1 with
hinge loss ℓγ/3(·), GDP budget µ, and dataset S. The averaged estimator w̄ ∈ Rk satisfies: w.p. at least 1− β over the
randomness of JL matrix Φ:

EA[L̃γ/3(w̄; ΦS)] ≤ O

(
b2 log1/2((n+ 2)(n+ 1)/β)

nγ2µ
+

|Sout|
γn

)

Proof of Lemma D.1. Denote the projected dataset ΦS := {(ProjBk(2b)(Φxi), yi)}ni=1. Since γ(Sin) ≥ γ by assumption,

apply Lemma B.2 with distortion rate e = γ/b and k = O
(

log((n+2)(n+1)/β)
e2

)
, we have γ(ΦSin) ≥ γ

3 w.p. at least

1 − β. We denote this event by E1. Let ẘin ∈ Rk to be the normalized max-margin separator for ΦSin, we have
ℓγ/3(ẘin; (Φx, y)) = 0 for any (Φx, y) ∈ ΦSin under event E1.

Now, we initialize ANGD with hinge loss function ℓγ/3, dataset ΦS, GDP budget µ, reference point wref = ẘin, initialization

point w0 = 0 and learning rate η =
√

∥wref−w0∥2

T (n2∆2+dσ2) =
√

1
T (n2∆2+dσ2) . Let w̄ be the averaged estimator outputed from

ANGD (Algo. 5). Conditioned on the event E1, which happens w.p. at least 1− β over the randomness of Φ, we have:

EA[L̂γ/3(w̄; ΦS)] ≤ L̂γ/3(ẘin; ΦS) +
4∆

√
k

µ
Lemma C.1

= L̂γ/3(ẘin; ΦSin) + L̂γ/3(ẘin; ΦSout) +
4∆

√
k

µ

= 0 + L̂γ/3(ẘin; ΦSout) +
4∆

√
k

µ
under event E1

Under the same event, we analyze the worst-case guarantee on the margin outlier set ΦSout:

L̂γ/3(ẘin; ΦSout) ≤ |Sout|
(
1 +

3

γ
∥ẘin∥ max

x∈Sout

∥Φx∥
)

≤ |Sout|
(
1 +

3b

γ

√
1 +

γ

3b

)
Lemma B.1 norm preservation

≤ 23b|Sout|
5γ

Given that the projection dimension is k = O
(

b2 log((n+2)(n+1)/β)
γ2

)
and the L2 sensitivity of ℓγ/3 is ∆ ≤ 12b

γ
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(Lemma A.10), we have, with probability at least 1− β over Φ, the following bound for the averaged loss:

EA[L̂γ/3(w̄; ΦS)] ≤ O

(
b2 log1/2((n+ 2)(n+ 1)/β)

nγ2µ
+

b|Sout|
nγ

)

Using the above expected convergence Lemma D.1 and margin preservation Lemma 6.2 we have the following corollary:

Corollary D.2. Given γ ∈ [0, b], running Algo. 1 with hinge loss ℓγ/3(·), GDP budget µ, and dataset S. The averaged
estimator w̄ ∈ Rk satisfies: w.p. at least 1− β over the randomness of JL matrix Φ:

EA[L̃γ/3(w̄; ΦS)] ≤ min
Sout∈Sout(γ)

O

(
b2 log1/2((n+ 2)(n+ 1)/β)

nγ2µ
+

b|Sout|
γn

)

D.2. High Probability Guarantee, Lemma 6.3

Using Lemma C.2, we can also establish the high-probability version of Lemma D.1.

Lemma D.3 (High probability convergence bound, Lemma 6.3). Under the same algorithmic conditions as Corollary D.2,
with probability at least 1− 2β, the last-iterate estimator w from Algo. 1 satisfies:

L̃γ/3(w; ΦS) ≤ min
Sout∈Sout(γ)

O

(
b2 log1/2(1/β) log1/2((n+ 1)(n+ 2)/β)

nγ2µ
+

b|Sout|
γn

)

Proof. Let the projected dataset be denoted as ΦS := {(ProjBk(2b)(Φxi), yi)}ni=1. Given the assumption that γ(Sin) ≥ γ,

we apply Lemma B.2 with a distortion rate e = γ/b and k = O
(

log((n+2)(n+1)/β)
e2

)
. This ensures that γ(ΦSin) ≥ γ

3 with

probability at least 1− β. We denote this event as E1. Let ẘin ∈ Rk be the normalized max-margin separator for ΦSin.
Under event E1, we have ℓγ/3(ẘin; (Φx, y)) = 0 for any (Φx, y) ∈ ΦSin.

We now initialize ANGD with the loss function ℓ = ℓγ/3, dataset ΦS, GDP budget µ, reference point wref = ẘin,

initialization point w0 = 0, and learning rate η =
√

∥wref−w0∥2

T (n2∆2+dσ2 log(1/β)) =
√

1
T (n2∆2+dσ2 log(1/β)) . Let w denote the

last-iterate estimator obtained from ANGD (Algo. 5). Conditioned on the margin-preserving event and the successful
execution of ANGD, which occurs with probability at least 1− 2β, we have:

L̂γ/3(w; ΦS) ≤ O

(
L̂γ/3(ẘin; ΦSin) + L̂γ/3(ẘin; ΦSout) +

∆
√

k log(1/β)

µ

)
Lemma C.2

= O

(
L̂γ/3(ẘin; ΦSout) +

∆
√
k log(1/β)

µ

)
under margin preservation event E1

≤ O

(
b|Sout|

γ
+

b
√

log(1/β)

µγ
·
b
√

log((n+ 1)(n+ 2)/β)

γ

)

= O

(
b|Sout|

γ
+

b2
√
log(1/β) log((n+ 1)(n+ 2)/β)

µγ2

)

Finally, dividing both sides by n and applying margin preservation Lemma 6.2 we obtain, with probability at least 1− 2β:

L̃γ/3(w; ΦS) ≤ min
Sout∈Sout(γ)

O

(
b2 log1/2(1/β) log1/2((n+ 1)(n+ 2)/β)

nµγ2
+

b|Sout|
γn

)
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E. Privacy Analysis for AIter (Algo. 2)
E.1. Technical lemmas

We first present a conversion lemma from Gaussian DP to approximate DP:

Lemma E.1 (GDP to approximate DP conversion). Suppose mechanism M satisfies µ-GDP, then M is also (ε, δ)-DP with

ε ≤ µ2

2
+ µ

√
2 log(1/δ)

Proof. By the definition of Gaussian Differential Privacy, we know that M is dominated by the Gaussian mechanism with a
sensitivity of 1 and a noise parameter σ = 1/µ, i.e.

Heε(M(X)||M(X ′)) ≤ Heε(N (0, 1)||N (µ, 1)) = Heε(N (0, 1/µ2)||N (1, 1/µ2))

The rest of the proof follows the same procedure as in the proof of Lemma 5.5 in (Koskela et al., 2024), with ε set to be
µ2

2 + µ
√

2 log(1/δ).

Under a high privacy regime, we have a cleaner upper bound for ε:

Corollary E.2. Under the same condition as Lemma E.1, for any fixed δ > 0 if further assume µ ≤ 2
√

2 log(1/δ), then M
satisfies

(
2µ
√
2 log(1/δ), δ

)
-DP.

E.2. Privacy analysis for AIter

It’s equivalent to analyzing the privacy guarantee for compositions between GDP mechanisms:

Lemma E.3 (Privacy for AIter (Algo. 2)). Given any δ > 0 and ε ≤ 8 log(1/δ), let {Mi}mi=1 being a sequence of
mechanisms with Mi satisfing ε

2
√

2m log(1/δ)
-GDP. The composed mechanism M := Mm ◦ . . . ◦M1 satisfies (ε, δ)-DP

Proof. By adaptive composition of Gaussian DP, we have: M satisfies ε

2
√

2 log(1/δ)
-GDP. Thus, applying Corollary E.2, we

have M satisfies (ε, δ)-DP

F. Utility analysis for AIter(Algo. 2)
In this section, we consider a generalized version of AIter. Namely, we have noisy observations {Uθ + ξθ}θ∈Θ, and
θout = argmin

θ∈Θ
{Uθ + ξθ}, where ξθ

iid∼ N(0, σ2). We are interested in bounding the deviation between Uθout and min
θ∈Θ

Uθ .

F.1. Expected guarantee

Lemma F.1 (Expected guarantee). For possibly random {Uθ}θ∈Θ, we have:

Eξ[Uθout ] ≤ min
θ∈Θ

Uθ + 2σ
√

2 log(|Θ|)

where the expectation is taken over the randomness of Gaussian noise

Proof.
min
θ∈Θ

{Uθ + ξθ} = Uθout + ξθout definition of θout

≥ Uθout +min
θ∈Θ

ξθ

which implies:
Uθout ≤ min

θ∈Θ
{Uθ + ξθ} −min

θ∈Θ
ξθ (9)

On the other hand:
min
θ∈Θ

{Uθ + ξθ} ≤ min
θ∈Θ

Uθ +max
θ∈Θ

ξθ
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Putting things together, we have:
Uθout

≤ min
θ∈Θ

Uθ +max
θ∈Θ

ξθ −min
θ∈Θ

ξθ

Finally, by taking expectation w.r.t. Gaussian noises, we have:

E[Uθout
] ≤ min

θ∈Θ
Uθ + E[max

θ∈Θ
ξθ]− E[min

θ∈Θ
ξθ]

By ξ is symmetric, we have:
E[min

θ∈Θ
ξθ] = −E[max

θ∈Θ
−ξθ] = −E[max

θ∈Θ
ξθ]

Thus,
E[Uθout

] ≤ min
θ∈Θ

Uθ + 2E[max
θ∈Θ

ξθ]

≤ min
θ∈Θ

Uθ + 2σ
√

2 log(|Θ|)

where the last inequality is by Lemma A.5.

F.2. High probability guarantee

Lemma F.2 (High probability guarantee). For possibly random {Uθ}θ∈Θ, w.p. at least 1 − β over the randomness of
Gaussians:

Uθout
≤ min

θ∈Θ
Uθ + 2σ

√
2 log(2|Θ|) + 2

√
2 log(2/β)

where the expectation is taken over the randomness of Gaussian noise

Proof. Similarly, as the proof in the previous Lemma, we have:

Uθout ≤ min
θ∈Θ

Uθ +max
θ∈Θ

ξθ −min
θ∈Θ

ξθ

The remaining proof is by applying Lemma A.6.

G. Proof of Lemma 6.4
Lemma G.1. Given dataset S ∈ (Bd(1) × {±1})n, for any γ ∈ [1/n, 1], there exist γ̃ from doubling set Γ =
{1/n, 2/n, 4/n, ..., 1}, such that:

min
Sout∈Sout(γ̃)

(
|Sout|
nγ̃

+
1

nγ̃2ε

)
≤ min

Sout∈Sout(γ)
4

(
|Sout|
nγ

+
1

nγ2ε

)
(10)

Proof. For any Sout ∈ Sout(γ) with γ ≥ 1
n , by the property of the doubling set Γ from 1/n to 1, there always exists γ̃ ∈ Γ

such that γ/2 ≤ γ̃ ≤ γ. Also, for any Sout ∈ Sout(γ), observe that:

|Sout| ≥ min
S̃∈Sout(γ)

|S̃| ≥ min
S̃∈Sout(γ̃)

|S̃|

The two facts together imply that:

min
Sout∈Sout(γ̃)

(
|Sout|
nγ̃

+
1

nγ̃2ε

)
≤ min

Sout∈Sout(γ̃)

(
2|Sout|
nγ

+
4

nγ2ε

)
≤ min

Sout∈Sout(γ)
4

(
|Sout|
nγ

+
1

nγ2ε

) (11)

Taking minimum on both sides implies:

min
γ̃∈Γ

Sout∈Sout(γ̃)

(
|Sout|
nγ̃

+
1

nγ̃2ε

)
≤ min

γ∈[1/n,1]
Sout∈Sout(γ)

4

(
|Sout|
nγ

+
1

nγ2ε

)
(12)

19



Adapting to Linear Separable Subsets with Large-Margin in Differentially Private Learning

G.1. Proof of Lemma 6.4

Proof of Lemma 6.4. W.L.O.G., we assme ε ≤ n. γ < 1/n implies 1
nγ2ε > 1. Together with Lemma G.1, we have:

min
γ∈Γ

Sout∈Sout(γ)

(
|Sout|
nγ

+
1

nγ2ε

)
∧ 1 ≤ min

γ∈(0,1]
Sout∈Sout(γ)

O
(
|Sout|
nγ

+
1

nγ2ε

)
∧ 1

= min
Sout⊂S

γ:=γ(S\Sout)>0

O
(
|Sout|
nγ

+
1

nγ2ε

)
∧ 1

(13)

We note that Lemma 6.4 remains valid even when the data are not confined to the unit ball:

Corollary G.2. Given dataset S ∈ (Bd(b)× {±1})n, and doubling set Γ = {b/n, 2b/n, 4b/n, ..., b}, we have:

min
γ∈Γ

Sout∈Sout(γ)

(
|Sout|
nγ

+
1

nγ2ε

)
∧ 1 ≤ min

Sout⊂S
γ:=γ(S\Sout)>0

O
(
|Sout|
nγ

+
1

nγ2ε

)
∧ 1 (14)

H. Proof of Theorem 6.5, empirical risk bound for Algo. 3
Theorem H.1 (Theorem 6.5 restated). Running M∗ with R̃S satisfies (ε, δ)-DP, for δ ∈ (0, 1) and ε ∈ (0, 8 log(1/δ)). In
addition,
(1) For the averaged estimator w̄out ∈ Rd, we have utility guarantee in expectation:

E[R̃S(w̄out)] ≤ min
Sout⊂S

γ:=γ(S\Sout)>0

Õ
(

1

γ2nε
+

|Sout|
γn

+
1

n2

)
∧ 1

(2) For the last-iterate estimator wout ∈ Rd, w.p. at least 1− 3/n2:

R̃S(wout) ≤ min
Sout⊂S

γ:=γ(S\Sout)>0

Õ
(

1

γ2nε
+

|Sout|
γn

+
1

n

)
∧ 1

The privacy analysis is the composition of GDP mechanisms, which directly follows Lemma E.3.

H.1. Proof of Theorem 6.5, in expectation version

We first introduce the following utility lemma:

Lemma H.2 (Expected ERM). Under the condition of Theorem 6.5, let w̄out ∈ Rd be the average estimator output from
Algo. 3, we have:

EA[R̃S(w̄out)] = min
γ∈Γ

min
Sout∈Sout(γ)

Õ
(

b2

nγ2ε
+

b|Sout|
γn

+
1

nε
+

1

n2

)

Proof. Since AIter (Algo. 2) allocates privacy budget evenly, let’s denote µ to be the GDP budget for each call of
AJLGD(Algo. 1).

By Lemma D.2, the following convergence guarantee holds, w.p. at least 1− β over the randomness of JL projection, for
running AJLGD with margin loss ℓγ/3:

EA[L̃γ/3(w̄γ ; ΦγS)] ≤ min
Sout∈Sout(γ)

O

(
b2 log1/2((n+ 2)(n+ 1)/β)

nγ2µ
+

b|Sout|
γn

)
(15)
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Since the additive Gaussian noise has distribution N (0, 1/µ2), by Lemma F.1 the expected guarantee of AIter is:

EA[R̃S(w̄out)] ≤ min
γ∈Γ

EA[R̃S(Φ
⊤
γ w̄γ)] +

2
√

2 log(|Γ|)
nµ

≤ min
γ∈Γ

EA[L̃γ/3(w̄γ ; ΦγS)] +
2
√
2 log(|Γ|)
nµ

≤ min
γ∈Γ

min
Sout∈Sout(γ)

O

(
b2 log1/2((n+ 2)(n+ 1)/β)

nγ2µ
+

b|Sout|
γn

)
+

2
√
2 log(|Γ|)
nµ

where the second inequality is by hinge loss upper bounds zero-one loss, and the third inequality is by Eq. 15. Thus, w.p.
1− |Γ|β over the randomness of JL projection, we have:

EA[R̃S(w̄out)] ≤ min
γ∈Γ

min
Sout∈Sout(γ)

O

(
b2 log1/2((n+ 2)(n+ 1)/β)

nγ2µ
+

b|Sout|
γn

)
︸ ︷︷ ︸

(a)

+
2
√
2 log(|Γ|)
nµ︸ ︷︷ ︸
(b)

Plug in |Γ| = ⌈log2(n)⌉+ 1, µ = ε

4
√

|Γ| log(1/δ)
, and scale β by 1/|Γ|, we have:

(a) =

(
b2 log1/2((n+ 2)(n+ 1)/β)

nγ2µ
+

b|Sout|
γn

)

=

(
4b2|Γ|1/2 log1/2(|Γ|(n+ 2)(n+ 1)/β) log1/2(1/δ)

nγ2ε
+

b|Sout|
γn

)

≤

(
8b2 log

1/2
2 (n) log1/2(4(n+ 2)(n+ 1) log2(n)/β) log

1/2(1/δ)

nγ2ε
+

b|Sout|
γn

) (16)

where the last inequality holds when n ≥ 2, we have |Γ| = ⌈log2(n)⌉+ 1 ≤ 4 log2(n)

(b) =
2
√
2 log(|Γ|)
nµ

=
8
√
2|Γ|1/2 log1/2(1/δ) log1/2(|Γ|)

nε

≤ 16
√
2 log

1/2
2 (n) log1/2(1/δ) log1/2(4 log2(n))

nε

(17)

Setting β = 1/n2 and noticing that zero-one loss is upper bounded by 1, we have:

EA[R̃S(Φ
⊤
outw̄out)] ≤ min

γ∈Γ
min

Sout∈Sout(γ)
O

(
8b2 log

1/2
2 (n) log1/2(4n2(n+ 2)(n+ 1) log2(n)) log

1/2(1/δ)

nγ2ε
+

b|Sout|
γn

)

+
16
√
2 log

1/2
2 (n) log1/2(1/δ) log1/2(4 log2(n))

nε
+

1

n2

= min
γ∈Γ

min
Sout∈Sout(γ)

Õ
(

b2

nγ2ε
+

b|Sout|
γn

+
1

nε
+

1

n2

)

Now, we start the proof of Theorem 6.5, in expectation version:
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Proof. By Lemma H.2, we have:

EA[R̃S(w̄out)] ≤ min
γ∈Γ

min
Sout∈Sout(γ)

Õ
(

1

nγ2ε
+

|Sout|
γn

+
1

nε
+

1

n2

)
Since R̃S(w̄out) is upper bounded by 1, we have

EA[R̃S(w̄out)] ≤ min
γ∈Γ

min
Sout∈Sout(γ)

Õ
(

1

nγ2ε
+

|Sout|
γn

+
1

n2

)
∧ 1

= min
Sout⊂S

γ:=γ(S\Sout)>0

Õ
(

1

γ2nε
+

|Sout|
γn

+
1

n2

)
∧ 1

where the first inequality is by γ < 1 and the second line is by Lemma 6.4

H.2. Proof of Theorem 6.5, high probability version

Lemma H.3 (High probability ERM). Under the condition of Theorem 6.5, let wout ∈ Rd be the last-iterate estimator
output from Algo. 3, we have w.p. at least 1− 3/n2:

R̃S(wout) ≤ min
γ∈Γ

min
Sout∈Sout(γ)

Õ
(

b2

nγ2ε
+

b|Sout|
γn

+
1

nε
+

1

n

)
Proof. By Lemma D.3, for a single call of AJLGD that optimizing ℓγ/3, w.p. at least 1− 2β/|Γ|, the last-iterate estimator
wγ satisfies:

L̃γ/3(wγ ; ΦS) ≤ min
Sout∈Sout(γ)

O

(
b2 log1/2(|Γ|/β) log1/2(|Γ|(n+ 1)(n+ 2)/β)

nγ2µ
+

b|Sout|
γn

)

Similarly as the proof for Lemma F.1 and notice that additive gaussian noise has distribution N (0, 1/µ2), and by union
bound over |Γ| calls of AJLGD we have w.p. 1− 3β:

R̃S(wout) ≤ min
γ∈Γ

R̃S(Φ
⊤
γ wγ) +

2
√
2 log(2|Γ|)
nµ

+
2
√

2 log(2/β)

n

≤ min
γ∈Γ

L̃γ/3(Φ
⊤
γ wγ ;S) +

2
√
2 log(2|Γ|)
nµ

+
2
√

2 log(2/β)

n

≤ min
γ∈Γ

min
Sout∈Sout(γ)

O

(
b2 log1/2(|Γ|/β) log1/2(|Γ|(n+ 1)(n+ 2)/β)

nγ2µ
+

b|Sout|
γn

)
︸ ︷︷ ︸

(a)

+
2
√
2 log(2|Γ|)
nµ︸ ︷︷ ︸
(b)

+
2
√
2 log(2/β)

n︸ ︷︷ ︸
(c)

Notice that |Γ| = ⌈log2(n)⌉+ 1 ≤ 4 log2(n), µ = ε

4
√

|Γ| log(1/δ)
, we have:

(a) =
b2 log1/2(|Γ|/β) log1/2(|Γ|(n+ 1)(n+ 2)/β)

nγ2µ
+

b|Sout|
γn

≤ 8b2 log1/2(4 log2(n)/β) log
1/2(4(n+ 1)(n+ 2) log2(n)/β) log

1/2
2 (n) log1/2(1/δ)

nγ2µ
+

b|Sout|
γn

(b) =
2
√
2 log(2|Γ|)
nµ

≤ 16
√
2 log1/2(8 log2(n)) log

1/2
2 (n) log1/2(1/δ)

nε
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Putting everything together and set β = 1/n2, we have:

R̃S(wout)

≤ min
γ∈Γ

min
Sout∈Sout(γ)

O

(
b2 log1/2(4 log2(n)/β) log

1/2(4(n+ 1)(n+ 2) log2(n)/β) log
1/2
2 (n) log1/2(1/δ)

nγ2µ
+

b|Sout|
γn

)

+
16
√
2 log1/2(8 log2(n)) log

1/2
2 (n) log1/2(1/δ)

nε

+
2
√
2 log(2/β)

n

= min
γ∈Γ

min
Sout∈Sout(γ)

Õ
(

b2

nγ2ε
+

b|Sout|
γn

+
1

nε
+

1

n

)

Now, we start the proof of Theorem 6.5, high probability version:

Proof. By Lemma H.3, w.p. at least 1− 3/n2:

R̃S(wout) ≤ min
γ∈Γ

min
Sout∈Sout(γ)

Õ
(

1

nγ2ε
+

|Sout|
γn

+
1

nε
+

1

n

)
Since R̃S(w̄out) is upper bounded by 1, γ < 1, and applying Lemma 6.4, we have

R̃S(wout) ≤ min
Sout⊂S

γ:=γ(S\Sout)>0

Õ
(

1

γ2nε
+

|Sout|
γn

+
1

n

)
∧ 1

I. Proofs for population error bound, Theorem 6.7
Theorem I.1 (Restate of theorem 6.7). Under the same conditions for ε, δ, Γ, and n as in Theorem 6.5, Algo. 3 using score
defined in Eq. 6.6 satisfies (ε, δ)-DP. W.p. 1− 4/n2, the output last-iterate estimator wout ∈ Rd satisfies:

RD(wout) ≤ min
Sout⊂S

γ:=γ(S\Sout)>0

Õ
(

1

γ2nmin{1, ε}
+

|Sout|
γn

)

I.1. Proof of Lemma 6.6

We first state the relative deviation bound:
Lemma I.2 (Lemma A.1 in Bassily et al. (2022)). S ∼ D⊗n. For any hypothesis set H of functions mapping from X to R,
with probability at least 1− β over the randomness of samples, the following inequality holds for all h ∈ H:

RD(h) ≤ R̃S(h) + 2

√
R̃S(h)

VC(H) log(2n) + log(4/β)

n
+ 4

VC(H) log(2n) + log(4/β)

n

Using this Lemma, we can prove Lemma 6.6:

Proof of Lemma 6.6. By AM-GM inequality,

2

√
R̃S(h)

VC(H) log(2n) + log(4/β)

n
≤ R̃S(h) +

VC(H) log(2n) + log(4/β)

n

Thus by Lemma I.2:

RD(h) ≤ 2R̃S(h) + 5
VC(H) log(2n) + log(4/β)

n
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I.2. Proof of Theorem 6.7

Proof. For any γ ∈ Γ, since kγ = O
(

log(|Γ|(n+2)(n+1)/β)
γ2

)
. Denote score(γ) := R̃S(wkγ ) +

5(VC(Hkγ ) log(2n))+log(β/4)

n .
For privacy analysis, we notice that under the replacement neighboring relationship, ∆(score(γ)) = 1. With the same
privacy parameter setting as in Theorem 6.5, we have the algorithm follows (ε, δ)-DP.

Now we begin utility analysis. In the beginning, we state the uniform convergence theorem for projected data:

For function class Hkγ
:= {x 7→ sign(⟨x,w⟩) | x ∈ Rkγ}, by uniform convergence, we notice that w.p. 1− β over the

randomness of sampling from D, for any wγ ∈ Rkγ :

RΦD(wγ) ≤ 2R̃ΦS(wγ) +
5

n
(VC(Hkγ ) log(2n) + log(4/β))

By Lemma F.2 and uniform convergence, w.p. at least 1− 2β:

RD(wout) ≤ min
γ∈Γ

2R̃S(Φ
⊤
γ wγ) +

5

n
(VC(Hγ) log(2n) + log(4|Γ|/β))︸ ︷︷ ︸

(a)

+
2
√
2 log(2|Γ|)
µn︸ ︷︷ ︸
(b)

+
2
√
2 log(2/β)

n︸ ︷︷ ︸
(c)

(18)

Since β = 1/n2, Notice that kγ = O
(

log( |Γ|(n+2)(n+1)
β ))

γ2

)
, |Γ| ≤ 4 log2(n) when n > 2, we have VC(Hk) ≤

O
(

log(4n2(n+2)(n+1) log2(n))
γ2

)
.

Also, 1
µ =

4
√

|Γ| log(1/δ)
ε =

8
√

log2(n) log(1/δ)

ε , we have:

(a) =
5

n
(VC(Hγ) log(2n) + log(4|Γ|/β))

≤ 5 log(4n2(n+ 2)(n+ 1) log2(n)) log(2n)

nγ2
+

5 log(16n2 log2(n))

n
= Õ

(
1

nγ2
+

1

n

)
(b) =

2
√

2 log(2|Γ|)
µn

≤ 16
√
2 log

1/2
2 (n) log1/2(1/δ) log1/2(8 log2(n))

nε
= Õ

(
1

nε

)
(c) =

2
√
2 log(2/β)

n
=

4 log1/2(2n)

n
= Õ

(
1

n

)
Thus,

RD(wout) ≤ min
γ∈Γ

Õ
(
R̃S(Φ

⊤
γ wγ) +

1

nγ2

)
+ Õ

(
1

n
+

1

nε

)
(19)

By zero-one loss is upper bounded by hinge loss and applying Lemma 6.3:

R̃S(Φ
⊤
γ wγ) ≤ L̃γ/3(Φ

⊤
γ wγ ;S) ≤ min

Sout∈Sout(γ)
Õ
(

1

nγ2ε
+

|Sout|
γn

)
(20)

Putting everything together:

RD(wout) ≤ min
γ∈Γ

Sout∈Sout(γ)

Õ
(

1

nγ2
(1 + ε−1) +

|Sout|
nγ

)
+ Õ

(
1

n
+

1

nε

)

≤ min
γ∈Γ

Sout∈Sout(γ)

Õ
(

1

nγ2
(1 + ε−1) +

|Sout|
nγ

)

≤ min
γ∈Γ

Sout∈Sout(γ)

Õ
(

1

nγ2 min{1, ε}
+

|Sout|
nγ

) (21)
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where the second inequality holds by γ ≤ 1. Finally, by argument similar to Theorem 6.4 and the fact that RD(wout) ≤ 1,
we have:

RD(wout) ≤ min
Sout⊂S

γ(S\Sout)>0

Õ
(

1

nγ2
(1 + ε−1) +

|Sout|
nγ

)
∧ 1 (22)

which holds w.p. at least 1− 4/n2.

J. Proof of Theorem 4.1
Proof of Theorem 4.1. The privacy guarantee and the empirical risk bound are derived in Theorem 6.5; The population risk
bound follows by Theorem 6.7.

K. Proof of Theorem 7.1
K.1. Alternative algorithm using advanced private hyperparameter tuning

Algorithm 6: M′(S, ε, δ)

1 Input: dataset S = {xi, yi}ni=1, Privacy budget ε, δ

2 Set: Margin grid Γ = { 1
n ,

2
n ,

4
n , ...,

2⌊log2 n⌋

n , 1}, Run time distribution Q = TNB1, 1
|Γ|(n2−1)

,

GDP budget µ = ε

6
√

2 log(|Γ|(n2−1)/δ)
,

3 Initilize hyperparameter set Θ = ϕ
4 for γ ∈ Γ do
5 kγ = O

(
1
γ2 log(

|Γ|(n+2)(n+1)
β )

)
6 Φγ ∼ (Rad( 12 )/

√
kγ)

kγ×d

7 Θ = Θ ∪ {(γ,Φγ)}
8 (w̃out, γout,Φγout) = APrivTune(AJLGD(·),Θ, Q, S, µ) Algo. 4
9 Output: (w̃out, γout,Φγout

)

K.2. Privacy guarantee for APrivTune (Algo. 4)

Lemma K.1 (Corollary 5.5 in (Koskela et al., 2024)). Let run time distribution Q ∼ TNB1,r, suppose base mechanism is
µ-GDP. Then for fixed δ > 0, the private selection algorithm A is (ε, δ)-DP for:

ε =
3

2
µ2 + 3µ

√
2 log

(
1

r · δ

)
+ δ (23)

where A is defined in Theorem 2 of Papernot & Steinke (2022))

In the high privacy regime, we can relax the parameter ε in the above lemma, obtaining a simplified expression for ε that
depends linearly on µ. This leads to more straightforward privacy accounting for Algo. 4.

Corollary K.2. Conditioned on Lemma K.1, if the GDP budget of base mechanism µ ≤ 2
√
2 log

(
1
rδ

)
, then private

selection mechanism A is also
(
6µ
√

2 log
(

1
r·δ
)
+ δ, δ

)
-DP.

Proof. By Lemma K.1 and the upper bound on µ, we have:

ε =
3

2
µ2 + 3µ

√
2 log

(
1

r · δ

)
+ δ ≤ 6µ

√
2 log

(
1

r · δ

)
+ δ
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Now, we begin to prove the GDP guarantee for APrivTune (Algo. 4):

Theorem K.3. APrivTune (Algo. 4) with run time distribution Q = TNB1,r and input GDP µ = ε

6
√

2 log(1/(rδ))
satisfies

(ε+ δ, δ)-DP, for any ε ≤ 24 log( 1
rδ ).

Proof of Lemma K.3. For any θ ∈ Θ, we view the instantiated “base” mechanism, denoted by Aθ, as the adaptive composi-
tion of two mechanisms:

(1) M(θ;S, µ√
2
) with GDP budget µ√

2
;

(2) Gaussian mechanism with σ = ∆2

(µ/
√
2)2

, with ∆ being the L2 sensitivity of score function U .
By GDP composition, Aθ is µ-GDP. The remaining proof follows Corollary K.2.

K.3. Utility guarantee for APrivTune (Algo. 4)

Lemma K.4 (Utility of APrivTune (Algo. 4), in expectation). Let U1, ..., U|Θ| be possibly random score corresponding to

parameters in Θ, K ∼ TNBη,r, observe {Uit + ξit}t∈[K]
4, with ξit

iid∼ N (0, σ2), let Uout = min
t∈[K]

(Uit + ξit) (break tie

arbitrarily) and tout be corresponding index, then w.p. at least 1− PGFK(1− 1/|Θ|):

E[Uout] ≤ min
θ∈Θ

E[Uθ] + σ

√
2 log

(
η(1− r)

r(1− rη)

)
Proof. First, we notice that:

min
t∈[K]

{Uit + ξit} = Uout + ξtout definition of w̃out

≥ Uout + min
t∈[K]

ξit tout belongs to [K]

which implies:
Uout ≤ min

t∈[K]
{Uit + ξit} − min

t∈[K]
ξit

= min
t∈[K]

{Uit + ξit}+ max
t∈[K]

ξit ξ
d
= −ξ

(24)

On the other hand:
min
t∈[K]

{Uit + ξit} ≤ min
t∈[K]

{Uit}+ max
t∈[K]

{ξit}

Denote Y := {index(θ∗) ∈ {ij}j∈[K]} , where θ∗ ∈ argmin
θ∈Θ

E[L(wθ)]. Conditioned on Y , we have:

E[ min
t∈[K]

{Uit + ξit}|Y ] ≤ E[ min
t∈[K]

{Uit}|Y ] + E[max
t∈[K]

{ξit}|Y ]

≤ min
θ∈Θ

E[L(wθ)] + E[max
t∈[K]

ξt]

The last inequality is by (1) using Jensen’s inequality and then by the fact θ∗ ∈ I under event Y ; (2) ξt and event Y are
independent. Putting things together, we have:

E[Uout|Y ] ≤ E[ min
t∈[K]

{Uit + ξit}|Y ] + E[max
t∈[K]

ξit |Y ]

≤ min
θ∈Θ

E[L(wθ)] + 2E[max
t∈[K]

ξt]

≤ min
θ∈Θ

E[L(wθ)] + σ

√
2 log

(
η(1− r)

r(1− rη)

)
Lemma A.7

The remaining step is by noticing that P(Y ) ≥ 1− PGFK(1− 1/|Θ|).
4{ij}j∈[K] is a multi-set of {1, 2, ..., |Θ|}
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K.4. Proof of Theorem 7.1

We first prove a utility lemma for non-private hyperparameter selection over γ ∈ Γ:

Lemma K.5 (union bound for non-private grid search). µ > 0, For every γ ∈ Γ, set projection dimension kγ =

O
(

1
γ2 log

(
|Γ|(n+2)(n+1)

β

))
and JL projection matrix Φγ ∈ Rd×kγ , running AJLGD(Φγ , ℓγ/3, S, µ) to get averaged

estimator Φ⊤
γ w̄γ . Then the following holds w.p. at least 1− β:

min
γ∈Γ

EA[L̃γ/3(w̄γ ; ΦγS)] ≤ min
γ∈Γ

Sout∈Sout(γ)

O

(
log1/2(|Γ|(n+ 2)(n+ 1)/β)

γ2nµ
+

|Sout|
γn

)
∧ 1 (25)

proof of Lemma K.5. By Lemm 6.3, for any fixed γ, we have the following holds w.p. at least 1−β/|Γ| over the randomness
of Φγ :

EA[L̃γ/3(w̄γ ; ΦγS)] ≤ min
Sout∈Sout(γ)

O

(
log1/2(|Γ|(n+ 2)(n+ 1)/β)

γ2nµ
+

|Sout|
γn

)

The remaining proof is by taking union bound over Γ and taking minimum over γ on both sides of the inequality above.

Lemma K.6. Let Γ be any finite subset of [0, 1], β = n−2, Q = TNB1, 1
|Γ|(n2−1)

, µ = ε

6
√

2 log(|Γ|(n2−1)/δ)
.

M∗ (Algo. 6) invokes with S, Q, Γ and µ is (ε + δ, δ)-DP for any ε ≤ 24 log(|Γ|(n2 − 1)/δ). In addition, the output
averaged estimator w̄out ∈ Rd satisfies: w.p. at least 1− 2β,

E[R̃S(w̄out)] ≤ min
γ∈Γ

Sout∈Sout(γ)

O

(
log1/2(|Γ|(n+ 2)(n+ 1)/β) log1/2(|Γ|(n2 − 1)/δ)

γ2εn
+

|Sout|
nγ

)
+

12 log(n2|Γ|/δ)
nε

Proof of Theorem K.6. By Theorem K.3, the M∗ is (ε+ δ, δ)-DP.

Denote event Y := {γ∗ being selected}, we get P(Y ) ≥ 1− β. Under event Y :

E[R̂S(w̄out)] ≤ min
γ∈Γ

E[L̂γ/3(w̄γ ; ΦγS)] +

√
2

µ

√
log (|Γ|(n2 − 1)) Lemma K.4

= min
γ∈Γ

E[L̂γ/3(w̄γ ; ΦγS)] +
12 log1/2(|Γ|(n2 − 1)) log1/2(|Γ|(n2 − 1)/δ)

ε

≤ min
γ∈Γ

E[L̂γ/3(w̄γ ; ΦγS)] +
12 log(n2|Γ|/δ)

ε

≤ min
γ∈Γ

Sout∈Sout(γ)

O

(
log1/2(|Γ|(n+ 2)(n+ 1)/β)

µγ2
+

|Sout|
γ

)
+

12 log(n2|Γ|/δ)
ε

Lemma K.5

≤ min
γ∈Γ

Sout∈Sout(γ)

O

(
log1/2(|Γ|(n+ 2)(n+ 1)/β) log1/2(|Γ|(n2 − 1)/δ)

γ2ε
+

|Sout|
γ

)
+

12 log(n2|Γ|/δ)
ε

Thus, at least 1− 2β:

E[R̃S(w̄out)] ≤ min
γ∈Γ

Sout∈Sout(γ)

O

(
log1/2(|Γ|(n+ 2)(n+ 1)/β) log1/2(|Γ|(n2 − 1)/δ)

γ2εn
+

|Sout|
nγ

)
+

12 log(n2|Γ|/δ)
nε

(26)
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Proof of Theorem 7.1. By Lemma K.6 and |Γ| ≤ 4 log2(n) when n > 2, we have

E[R̃S(w̄out)] ≤ min
γ∈Γ

Sout∈Sout(γ)

Õ
(

1

γ2nε
+

|Sout|
γn

)
+

12 log(n2 log2(n)/δ)

nε
+ 2β

= min
γ∈Γ

Sout∈Sout(γ)

Õ
(

1

γ2nε
+

|Sout|
γn

)
+

12 log(n2 log2(n)/δ)

nε
+

2

n2

= min
γ∈Γ

Sout∈Sout(γ)

Õ
(

1

γ2nε
+

|Sout|
γn

)
+ Õ

(
1

nε
+

1

n2

)

= min
γ∈Γ

Sout∈Sout(γ)

Õ
(

1

γ2nε
+

|Sout|
γn

+
1

n2

)
(27)

By the fact that R̃S(w̄out) ≤ 1, we have:

E[R̃S(w̄out)] ≤ min
γ∈Γ

Sout∈Sout(γ)

Õ
(

1

γ2nε
+

|Sout|
γn

+
1

n2

)
∧ 1 (28)

Finally, apply Theorem 6.4,

E[R̃S(w̄out)] ≤ min
Sout⊂S

γ(S\Sout)>0

Õ
(

1

γ2nε
+

|Sout|
γn

+
1

n2

)
∧ 1 (29)

L. Beyond unit norm assumption on data
For the ERM result, note that the dependence on b arises solely through the sensitivity and projection dimension, as described
in Lemma 6.3, Lemma D.1, and Lemma D.3. Combined with the adaptivity result established in Corollary G.2, we obtain:
Theorem L.1 (Empirical risk bound for M∗). Running M∗ with R̃S satisfies (ε, δ)-DP, and:
(1) For the averaged estimator w̄out ∈ Rd, we have utility guarantee in expectation:

EA(R̃S(w̄out)) ≤ min
Sout⊂S

γ(S\Sout)>0

Õ
(

b2

γ2nε
+

b|Sout|
γn

+
1

ε
+

1

n2

)
∧ 1

(2) For the last-iterate estimator wout ∈ Rd, w.p. 1− 3/n2:

R̃S(wout) ≤ min
Sout⊂S

γ(S\Sout)>0

Õ
(

b2

γ2nε
+

b|Sout|
γn

+
1

nε
+

1

n

)
∧ 1

For the population risk, the additional dependence on b2 arising from the VC dimension can be absorbed into the ERM
bound. Consequently, we have:
Theorem L.2. Running M∗ with R̃S satisfies (ε, δ)-DP, and w.p. 1− 4/n2 over that last-iterate estimator wout ∈ Rd:

RD(wout) ≤ min
Sout⊂S

γ(S\Sout)>0

Õ
(

b2

nγ2
(1 + ε−1) +

b|Sout|
nγ

+
1

nε
+

1

n

)
∧ 1 (30)

M. Derivations for general distribution
M.1. Settings

Without loss of generality, we assume that Θ contains a single item of interest, denoted as θ∗. We upper bound the probability
that θ∗ is not selected, P(θ∗ is not selected) = PGF(1− 1/|Θ|), by β, and then determine the corresponding distribution
parameters. For notational convenience, let t := 1/|Θ|.
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M.2. Upper bound on parameter r for Truncated Negative Binomial distribution with η > 0

Lemma M.1. Suppose Q ∼ TNBη,r and P(θ∗ is not selected) ≤ β, then r ≤ β1/η

|Θ|+β1/η−|Θ|β1/η

We first do the relaxation:

PGFTNB(η,r)(1− t) =
(1− (1− r)(1− t))−η − 1

r−η − 1

≤ (r + t− rt)−η

r−η

Then we let:
(r + t− rt)−η

r−η
≤ β

⇒ r ≤ β1/η(r + t− rt)

⇒ r ≤ tβ1/η

1− β1/η + tβ1/η

⇒ r ≤ β1/η

|Θ|+ β1/η − |Θ|β1/η

(31)

Proof of Lemma 7.2. For η = 1, we can do direct calculations as follows:

PGFTNB1,r
(1− t) =

1
1−(1−r)(1−1/|Θ|) − 1

1/r − 1

=
r(1− 1/|Θ|)

1− (1− r)(1− 1/|Θ|)
≤ β

which yields:
r(1− β)(1− 1/|Θ|) ≤ β/|Θ|

⇒ r ≤ 1

|Θ| − 1
· β

1− β

M.3. Deferred discussion

In this section, we set the failure probability as β = n−α for some α > 0 and the hyperparameter set size as |Θ| = log(n).
From Lemma M.1, we obtain 1

r ≥ β−1/η|Γ|+ (1− |Γ|) = (nα/η − 1) log(n) + 1, which implies that the expected number
of repetitions should be at least Õ(nα/η).

N. Removal-Margin experiment
N.1. Setting of the experiment

We train linear SVM classifiers on the CIFAR-10 dataset preprocessed by three methods: (1) pre-trained ViT features, (2)
extracted features from pre-trained ViT, and (3) no preprocessing.

We iteratively eliminate "outliers," defined as data points with the smallest normalized margin value 5(Defn. N.1). After
each removal, we refit the SVM and recompute the updated margin.

To account for variations in data scale across different classes, we plot the normalized margin, defined as follows:
Definition N.1 (Normalized Margin). Given dataset S and a linear classifier hw : (x, y) 7→ sign(y⟨w,x⟩), we define
normalized margin w.r.t. w to be:

Margin(w;S) = max

{
min

(x,y)∈S

y⟨w,x⟩
∥x∥∥w∥

, 0

}
(32)

5before setting negative values to zero
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N.2. Results

While the margin remains at zero for the entire dataset, removing a few outliers reveals a clear trend: ViT-based features
(green line) achieve a larger margin and grow more rapidly than ResNet-50-based features (red line) as more outliers are
removed. Even after removing 1% of the outliers, the dataset remains non-linearly separable, as indicated by the blue lines.
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Figure 3. The number of removed points (in percentage of n) vs normalized margin. The classes from the CIFAR10 training set are
labeled in each subtitle. As more points are removed, the margin increases.
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