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ABSTRACT

We introduce the Brain Language Model (BrainLM), a foundation model for
brain activity dynamics trained on 6,700 hours of fMRI recordings. Utiliz-
ing self-supervised masked-prediction training, BrainLM demonstrates profi-
ciency in both fine-tuning and zero-shot inference tasks. Fine-tuning allows
for the accurate prediction of clinical variables like age, anxiety, and PTSD as
well as forecasting of future brain states. Critically, the model generalizes well
to entirely new external cohorts not seen during training. In zero-shot inference
mode, BrainLM can identify intrinsic functional networks directly from raw
fMRI data without any network-based supervision during training. The model
also generates interpretable latent representations that reveal relationships be-
tween brain activity patterns and cognitive states. Overall, BrainLM offers a
versatile and interpretable framework for elucidating the complex spatiotem-
poral dynamics of human brain activity. It serves as a powerful "lens" through
which massive repositories of fMRI data can be analyzed in new ways, enabling
more effective interpretation and utilization at scale. The work demonstrates
the potential of foundation models to advance computational neuroscience re-
search.

1 INTRODUCTION

Understanding how cognition and behavior arise from brain activity stands as one of the fun-
damental challenges in neuroscience research today. Functional magnetic resonance imaging
(fMRI) has emerged as a critical tool for pursuing this goal by providing a noninvasive window
into the working brain. fMRI measures blood oxygen level fluctuations that reflect regional neural
activity. However, analyzing the massive, high-dimensional recordings produced by fMRI poses
major challenges. The blood-oxygen-level dependent (BOLD) signals represent an indirect mea-
sure of brain function and can be difficult to interpret. Furthermore, fMRI data exhibits complex
spatiotemporal dynamics, with critical dependencies across both space and time. Most existing
analysis approaches fail to fully model these complex nonlinear interactions within and across
recordings (Seewoo et al., 2021).

Prior fMRI analysis techniques have relied heavily on machine learning models designed for spe-
cific narrow tasks (Takagi & Nishimoto, 2023; Mozafari et al., 2020; Ozcelik et al., 2022), hindering
their generalizability. Traditional models also struggle to integrate information across the wealth
of unlabeled fMRI data available. Hence, there is an ongoing need for flexible modeling frame-
works that can truly capitalize on the scale and complexity of fMRI repositories.
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Figure 1: Overview of the BrainLM framework. The model was pretrained on 77,298 fMRI sam-
ples, summing to 6,700 hours of fMRI recordings. BrainLM is pretrained via spatiotemporal
masking and reconstruction. After pretraining, BrainLM supports diverse capabilities through
fine-tuning and zero-shot inference. Fine-tuning tasks demonstrate the prediction of future
brain states and clinical variables from recordings. Zero-shot applications include inferring func-
tional brain networks from attention weights. This highlights BrainLM’s versatility as a founda-
tion model for fMRI analysis.

Foundation models represent a new paradigm in artificial intelligence, shifting from narrow,
task-specific training to more general and adaptable models (Brown et al., 2020). Inspired by
breakthroughs in natural language processing, the foundation model approach trains versatile
models on broad data at scale, enabling a wide range of downstream capabilities via transfer
learning. Unlike previous AI systems designed for singular functions, foundation models ex-
hibit general computational abilities that make them suitable for myriad real-world applications.
Large language models like GPT have demonstrated the potential of this framework across di-
verse domains including healthcare, education, robotics, and more (Bommasani et al., 2021;
Wiggins & Tejani, 2022; Orr et al., 2022; Mai et al., 2023). Foundation models offer new oppor-
tunities to rethink challenges in neuroscience and medical imaging analysis.

Here, we introduce BrainLM, the first foundation model for fMRI recordings. BrainLM leverages a
Transformer-based architecture to capture the spatiotemporal dynamics inherent in large-scale
brain activity data. Pretraining on a massive corpus of raw fMRI recordings enables unsuper-
vised representation learning without task-specific constraints (see Figure 1). After pretraining,
BrainLM supports diverse downstream applications via fine-tuning and zero-shot inference. We
demonstrate BrainLM’s capabilities on key tasks including prediction of future brain states, de-
coding cognitive variables, and discovery of functional networks. Together, these results high-
light BrainLM’s proficiency in both zero-shot and fine-tuning tasks. This work highlights the
potential of applying large language models to advance neuroscience research. BrainLM is a
foundation model for the community to build upon, providing more powerful computational
tools to elucidate the intricate workings of the human brain.

2 RELATED WORK

Prior work has explored various machine-learning techniques for analyzing fMRI recordings.
Earlier approaches focused on decoding cognitive states from activity patterns. Methods like
SVM and neural networks were trained in a supervised fashion to classify fMRI data into stimu-
lus categories or regress against variables of interest (Horikawa & Kamitani, 2017; Hoefle et al.,
2018; Beliy et al., 2019). However, these models learn representations tailored to specific tasks
and struggle to generalize.

Recent work has aimed to obtain more transferable fMRI encodings without task-specific con-
straints. Techniques include training autoencoders to reconstruct recordings, learning to map
recordings to a lower-dimensional space (Takagi & Nishimoto, 2023; Mozafari et al., 2020; Ozce-
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lik et al., 2022). However, most methods operate on small datasets, limiting their ability to learn
robust generalizable representations. Our work is most closely related to recent efforts to apply
masked autoencoders for unsupervised pretraining on fMRI data (Chen et al., 2023a;b) or other
neural recording modalities (Zappala et al., 2022; Fonseca et al., 2023; Ye & Pandarinath, 2021;
Kostas et al., 2021). However, these prior papers have focused on using the autoencoder pretrain-
ing only for visual cortex, and were trained on 1-2 orders of magnitude fewer data compared to
BrainLM. Furthermore, all other fMRI models have only focused on applying the MAE framework
for specific applications such as stimuli reconstruction. In contrast, BrainLM is a foundational
model of all brain regions and has been trained on substantially more data which allows it to
learn more powerful encodings of spatiotemporal fMRI patterns.

In addition, other work has focused on finding representational similarities between large lan-
guage models and brain recordings (Caucheteux et al., 2022; Pasquiou et al., 2022). Work along
this line has found high correlation between LLMs and specific brain areas such as language
processing regions. However, this work does not focus on learning foundation models of brain
dynamics nor finetuning their models for downstream biological tasks. These two are key differ-
ences between their approach and ours.

3 METHODS

3.1 DATASETS AND PREPROCESSING

We leveraged two large-scale publicly available datasets - the UK Biobank (UKB) (Miller et al.,
2016) and the Human Connectome Project (HCP) (Elam et al., 2021). The UKB comprises a robust
collection of 76,296 task-based and resting-state functional MRI (fMRI) recordings, accompanied
by medical records, from a demographic spanning ages 40 to 69. Recordings were acquired on
a Siemens 3T scanner at 0.735s temporal resolution. The HCP contains 1,002 high-quality fMRI
recordings from healthy adults scanned at 0.72s resolution.

Our model was trained on 80% of the UKB dataset (61,038 recordings) and evaluated on the
held-out 20% and the full HCP dataset. All recordings underwent standard preprocessing in-
cluding motion correction, normalization, temporal filtering, and ICA denoising to prepare the
data (Salimi-Khorshidi et al., 2014; Abdallah, 2021). To extract parcel-wise time series, we par-
cellated the brain into 424 regions using the AAL-424 atlas (Nemati et al., 2020). This yielded
424-dimensional scan sequences sampled at ª1 Hz. Robust scaling was applied by subtracting
the median and dividing by the interquartile range computed across subjects for each parcel.
In total, our training dataset comprised 6,700 hours of preprocessed fMRI activity patterns from
77,298 recordings across the two repositories. This large-scale corpus enabled unsupervised pre-
training of BrainLM to learn robust functional representations.

3.2 MODEL ARCHITECTURE & TRAINING PROCEDURE

Our model is based on a Transformer masked autoencoder structure, drawing inspiration from
natural language processing designs like BERT (Devlin et al., 2018) and Vision Transformer
(Dosovitskiy et al., 2020; He et al., 2022). At its core, the model is a series of multi-headed self-
attention layers that process visible (unmasked) as well as masked patches. The goal is to predict
the original signal of the masked patches (refer to Figure 2). Detailed implementation specifics
are elaborated upon in the supplementary materials.

During training, we selected random subsequences spanning 200 timesteps from each fMRI
recording. These parcel time series were then dissected into blocks of 20 timesteps, leading to
10 non-overlapping segments per subsequence. These segments were transformed into 512-
dimensional vectors, and a masking operation was performed at rates of 20%, 75%, or 90%. To
facilitate model scaling to hundreds of millions of parameters, we design an alternative mask-
ing scheme directly inspired by patch-based image encoding in Computer Vision. We select a
random subsequence of 200 timesteps from each fMRI recording, and treat the selected record-
ing window of 424 parcels and 200 timesteps as a 2-dimensional image, where the 424 parcels
are ordered by their Y-coordinate in 3D space. This scheme preserves locality of brain regions
and allows for multi-parcel encoding of the fMRI recording which reduces the total amount of
tokens. Note that parcels tend to be correlated in space, therefore, predicting masked parcels
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Figure 2: BrainLM architecture and training procedure. A) The fMRI recordings are compressed
into 424 dimensions (parcels) (See Methods 3.1). The recordings are randomly trimmed to 200
time points. For each parcel, the temporal signal is split into patches of 20 time points each (blue
dashed boxes). The resulting 4240 patches are converted into tokens via a learnable linear pro-
jection. B) From the total number of tokens (blue), a subset is masked (red), either randomly or
at future timepoints. We then add the learnable spatial and temporal embeddings to each token.
These visible tokens (blue) are then processed by a series of Transformer blocks (Encoder). The
input to the Decoder is the full set of tokens, consisting of encoded visible tokens (green) and
masked tokens (red). The Decoder also consists of Transformer blocks and ultimately projects
the tokens back to data space. Finally, we compute the reconstruction loss between the predic-
tion (purple) and the original input data (blue).

within a physical region makes the task significantly more difficult compared to the single-parcel
encoding. Only the segments that remained unmasked were processed by a Transformer en-
coder, which consists of 4 self-attention layers and 4 heads. This was followed by a 2-layer Trans-
former decoder that processed both the masked and unmasked vectors. The training regimen
involved batches of 512 samples, optimized via the Adam algorithm across a span of 100 epochs.
The optimization goal was to minimize the mean squared error between the original and the re-
constructed signals (visualized in Figure 2). This pretrained model was subsequently leveraged
for several tasks including zero-shot brain network inference, fine-tuning for clinical variable
prediction, and prognostication of future time states.

3.3 CLINICAL VARIABLE PREDICTION

To adapt BrainLM for predicting clinical variables from fMRI recordings, we augmented the pre-
trained encoder with a 3-layer MLP head. This was then trained to regress targets such as age,
neuroticism, PTSD, and anxiety disorder scores. We used Z-score normalization for age. Neu-
roticism scores were adjusted through min-max scaling, aligning the distribution within the [0,1]
range. For both Post Traumatic Stress Disorder (PCL-5) and General Anxiety Disorder (GAD-7)
scores, we first applied a log transformation to moderate their exponential distribution. This was
followed by min-max scaling.

We conducted regression on clinical variables using data that BrainLM had not encountered
during fine-tuning. For this, we reserved a subset of samples from the UKB test set for both
fine-tuning and training SVM regressors. Our evaluation compared the performance of BrainLM
with baseline models, using both raw input data and pretrained embeddings. To mitigate over-
fitting during the fine-tuning process, we introduced a 10% dropout to the activations of both
the BrainLM encoder and its MLP head. We also evaluated the pretrained models on zeroshot
regression using this same sample subset.
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Figure 3: BrainLM reconstruction performance on held-out data. The model predictions (red)
closely fit the ground truth recordings (black) of unseen data sampled from the cohort that the
model was trained on (A, UKB) as well as data sampled from an external never-before-seen co-
hort (B, HCP). This demonstrates BrainLM’s ability to generalize across subjects and datasets.

4 RESULTS

4.1 MODEL GENERALIZATION

To evaluate BrainLM’s ability to generalize to new fMRI data, we tested its performance on held-
out recordings from both the UKB test set as well as the independent HCP dataset.

On the UKB test data, BrainLM achieved an average R
2 score of 0.464 on the prediction of masked

patches, indicating strong generalization on unseen recordings from the same distribution. Crit-
ically, BrainLM also generalized well to the HCP dataset, achieving a R

2 score of 0.278. Despite
differences in cohort and acquisition details, BrainLM could effectively model brain dynamics
in this entirely new distribution. Figure 3 shows sample reconstructions on both UKB and HCP
recordings. We found that the model generalization scales with data size and model size, show-
ing strong model scaling (see Figure 4). Overall, these results demonstrate BrainLM’s ability to
learn robust representations of fMRI recordings that generalize across datasets. This highlights
the advantages of large-scale pretraining for learning widely applicable models of brain activity.
We will make all pretrained models available via Hugging Face.

4.2 PREDICTION OF CLINICAL VARIABLES

One of the primary advantages of foundation models lies in their capability to fine-tune for spe-
cific downstream tasks, capitalizing on pretrained representations. An examination of the latent
space reveals that our pretrained BrainLM model adeptly encodes information crucial to the clin-
ical variables tied to fMRI recordings, as showcased in Table 14 and Figure 5. To delve deeper into
BrainLM’s clinical predictive capacity, we adapted the model to regress metadata variables from
the UKB dataset. This involved enhancing the pretrained encoder with an MLP head and fine-
tuning it to forecast variables such as age, neuroticism, PTSD, and anxiety disorder scores. For
this fine-tuning stage, we utilized a subset of the UKB samples that had been set aside and were
untouched during the training process. We then compared BrainLM’s performance against other
prevalent methodologies used in predicting clinical variables, referencing studies like Drysdale
et al. (2017); Iidaka (2015). For a benchmark, we factored in the results from an SVM trained
on raw data to predict these clinical outcomes. Impressively, across all the measured variables,
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Figure 4: Reconstruction performance on masked fMRI recording patches at varying amounts of
training data and model parameter sizes. Increasing model size and data scale consistently yields
better performance at self-supervised reconstruction of signal information.

Figure 5: BrainLM learns a latent space encoding clinically relevant information from fMRI
recordings. For each fMRI, the CLS token is extracted as a summary representation. The col-
lection of CLS tokens is then embedded into a 2D space using UMAP. The resulting embedding
demonstrates organization based on gender (left) and age (right) of the subjects.

BrainLM consistently outperformed other methods, registering a notably lower mean squared
error than the competing approaches, as detailed in Table 1. Additional gains from fine-tuning
further demonstrate the benefits of initializing with a meaningfully pretrained model before tun-
ing to a specific prediction task. We further explored the quality of the models’ recording embed-
dings by assessing their zeroshot metadata regression performance. As seen in Supp. Table 17,
performance scales with model size, indicating that larger models learn more clinically signifi-
cant information during pretraining.

Overall, these results validate BrainLM’s ability to uncover predictive signals within complex fMRI
recordings. By leveraging large-scale pretraining and transfer learning, BrainLM offers a powerful
framework for fMRI-based assessment of cognitive health and neural disorders. Ongoing work
is exploring clinical prediction across a broader range of psychiatric, neurological, and neurode-
generative conditions.

4.3 PREDICTION OF FUTURE BRAIN STATES

To evaluate whether BrainLM can capture spatiotemporal dynamics, we assessed its perfor-
mance in extrapolating to future brain states. A subset of the UKB data was used to fine-tune the
model to predict parcel activities at future time points. During fine-tuning, BrainLM was given
180 time-step sequences and trained to forecast the subsequent 20 time steps. We compared
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Table 1: Results for the regression of the clinical variables. LSTM, GCN (Kipf & Welling, 2016) and
BrainLM were trained with fMRI recordings as input. SVR and MLP used the correlation matrix
of parcels as input into the model (see Drysdale et al. (2017) and Iidaka (2015) for more details).
The values show the MSE (mean ± std).

Age PTSD (PCL-5) Anxiety (GAD-7) Neuroticism

Raw data 2.0 ± 0.2219 0.034 ± 0.0027 0.172 ± 0.0066 0.160 ± 0.0137
SVR 0.659 ± 0.036 0.022 ± 0.004 0.090 ± 0.010 0.087 ± 0.008
MLP 0.693 ± 0.001 0.021 ± 0.0003 0.081 ± 0.001 0.079 ± 0.0005
LSTM 0.596 ± 0.040 0.019 ± 0.001 0.083 ± 0.0022 0.076 ± 0.002
GCN 0.862 ± 0.09 0.021 ± 0.002 0.083 ± 0.02 0.077 ± 0.006
BrainLM 13M 0.464 ± 0.0252 0.018 ± 0.0008 0.074 ± 0.0053 0.072 ± 0.0049
BrainLM 111M 0.503 ± 0.0207 0.015 ± 0.0003 0.073 ± 0.0031 0.069 ± 0.0038

Figure 6: BrainLM outperforms other models in extrapolating future brain states. Models were
trained to predict parcel activity 20 timesteps beyond observed context data. The plot shows the
mean squared error per timestep on held-out UKB and HCP recordings. BrainLM demonstrates
significantly lower error in forecasting near-future brain states. This highlights how pretraining
enables BrainLM to effectively learn spatiotemporal fMRI dynamics. The time points for which
BrainLM has significantly (p < 0.05) lower error than the other methods are identified with "*".

against baseline models including LSTMs (Hochreiter & Schmidhuber, 1997), NODE (Chen et al.,
2018; Rubanova et al., 2019), and a non-pretrained version of BrainLM.

As depicted in Figure 6, the fine-tuned BrainLM model significantly surpassed other methodolo-
gies when predicting future activity, demonstrating superior performance on both the UKB and
HCP test sets. The version of BrainLM without pretraining exhibited a noticeable dip in perfor-
mance, underscoring the value of pretraining for such tasks. The optimized BrainLM consistently
and significantly recorded the least error across all predicted timesteps for the UKB data. For HCP
this was significant for the initial 8 timesteps, as detailed in Figure 6. This highlights BrainLM’s
robust capability to intuitively grasp the dynamics of fMRI.

4.4 INTERPRETABILITY VIA ATTENTION ANALYSIS

A key feature of BrainLM is its interpretability. Through the visualization of self-attention
weights, we can glean deeper insights into the model’s internal representations. We calculated
the average attention the BrainLM’s CLS token allocated to each parcel during the encoding of
fMRI recordings. As highlighted in Figure 7, task recordings demonstrated a pronounced focus
on the visual cortex compared to the resting state. This aligns seamlessly with the visual stimuli
introduced during tasks. Furthermore, we observed distinctions in attention patterns when
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Table 2: Quantitative evaluation of extrapolation performance. Models were tasked with fore-
casting parcel activity 20 timesteps beyond observed data from the UKB dataset. We compare
BrainLM to NODE (Chen et al., 2018), LatentODE (Rubanova et al., 2019) and LSTM. BrainLM
shows the best performance across all metrics: higher (R

2) and Pearson correlation coefficients
(R), and lower mean squared error (MSE) between predicted and true future states. † MSEs for
the larger BrainLM models are not comparable to other models given different normalization of
recordings.

UKB HCP

R
2

R MSE R
2

R MSE

BrainLM 650M (fine-tuned) 0.098 0.313 0.019† 0.061 0.253 0.018†
BrainLM 111M (fine-tuned) 0.095 0.309 0.020† 0.056 0.244 0.018†
BrainLM 13M (fine-tuned) 0.086 0.280 0.648 0.028 0.185 0.568
Transformer 13M (w/o pre-training) 0.012 0.112 0.695 0.007 0.090 0.583
LSTM -0.001 0.151 0.704 -0.020 0.049 0.598
Neural ODE -0.577 0.001 1.083 -0.469 2.010e-4 0.857
Latent ODE 0.001 0.023 0.703 -0.003 -2.026e-4 0.588

Figure 7: BrainLM attention maps reveal functional contrasts. A) Differences in parcel attention
weights between task (left) and rest (right), and low and high depression scores (PHQ9). Task vs.
resting state differences highlight changes in the visual cortex. Comparing the severity of depres-
sion, the difference highlights subcortical areas. B) Attention can localize parcels to 7 functional
networks without supervision. This demonstrates BrainLM’s ability to learn meaningful repre-
sentations in an unsupervised manner.

comparing mild to severe depression, as indicated by the PHQ-9 scores. Notably, there was a
pronounced emphasis on the frontal and limbic regions for severe depression cases in contrast
to milder ones. Such attention distribution patterns resonate with an established understanding
of functional shifts associated with depression, as referenced in (Pizzagalli & Roberts, 2022;
Johnston-Wilson et al., 2000; Lai et al., 2000). In sum, the attention maps acquired underscore
BrainLM’s adeptness at detecting clinically pertinent variations within functional networks.
By illuminating the regions prioritized during the encoding process, the attention analysis
enriches our interpretative capabilities, offering valuable neuroscientific insights. For a more
comprehensive view of other clinical variables, refer to the supplementary Figure 8.

4.5 FUNCTIONAL NETWORK PREDICTION

We evaluated BrainLM’s ability to segment parcels into intrinsic functional brain networks di-
rectly from fMRI activity patterns, without any network-based supervision. We organized parcels
into 7 functional categories as delineated in previous cortical parcellation research. These groups
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Table 3: Comparing methods for functional region identification. Parcels from 1000 UKB record-
ings were categorized into 7 regions without supervision. A kNN classifier on BrainLM’s self-
attention maps achieved the highest accuracy, outperforming alternatives using raw data and
other representation learning techniques.

Accuracy (%)

BrainLM (attention weights) 58.8
Raw Data 39.2
Variational Autoencoder (Kingma & Welling, 2013) 49.4
GCN (Kipf & Welling, 2016) 25.9

encompassed visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal,
and default mode networks. For a held-out collection of 1,000 UKB recordings, we benchmarked
various methodologies for classifying parcels into these 7 networks:

1) k-NN classifier using raw parcel time series data. 2) k-NN classifier leveraging parcel embed-
dings extracted from a variational autoencoder (VAE). This VAE, equipped with 3 encoding and
3 decoding layers, was trained to replicate time series while maintaining the same masking ra-
tio and loss metrics as BrainLM. 3) k-NN classifier built on parcel embeddings from a 4-layer
Graph Convolutional Network (GCN). This GCN was fine-tuned using a self-supervised masking-
centric goal, aiming to master parcel representations with a 75% masking ratio. 4) k-NN classifier
grounded on BrainLM’s self-attention weights between each parcel token and its counterparts.
For the classification process, we trained classifiers on 80% of the parcels for each recording, set-
ting aside the rest 20% for evaluation. Notably, BrainLM’s attention-driven approach distinctly
surpassed the other methods, obtaining a parcel classification accuracy of 58.8% (refer to Table
3). In contrast, the k-NN classifier based on the GCN lagged, achieving only 25.9%.

These findings underscore BrainLM’s strength in discerning functional brain topography purely
from its pretraining phase. The self-attention maps provide meaningful insights about the net-
work’s identity, despite never encountering explicit labels during the training process.

5 DISCUSSION

This work presents BrainLM, the first foundation model for functional MRI analysis. By lever-
aging self-supervised pretraining on 6,700 hours of brain activity recordings, BrainLM demon-
strates versatile capabilities for modeling, predicting, and interpreting human brain dynamics.

A key innovation lies in BrainLM’s generalizable representations of fMRI recordings. The model
achieves high accuracy in reconstructing masked brain activity sequences, even generalizing to
held-out distributions. Furthermore, the model improves with an increased number of param-
eters showing that our approach scales with data and parameter size. This highlights the ben-
efits of large-scale pretraining for learning robust encodings of spatiotemporal neural patterns.
BrainLM also provides a powerful framework for biomarker discovery. By fine-tuning, brain dy-
namics can be decoded to predict clinical variables and psychiatric disorders better than base-
line models. This could enable non-invasive assessment of cognitive health using resting-state
fMRI alone. Finally, without any network-based supervision, BrainLM identifies intrinsic func-
tional connectivity maps directly from pretraining, clustering parcels into known systems. This
demonstrates how self-supervised objectives can extract organizational principles fundamental
to the brain.

There remain exciting areas for future work. Multi-modal training could integrate fMRI with ad-
ditional recording modalities, such as EEG and MEG, or different brain-wise information such
as structural, functional, and genomic data. Probing a wider range of cognitive states and com-
bined regularization may yield more generalizable representations. In future work, we could
assess zero-shot classification on expanded functional atlases beyond the 7 networks used here.
Overall, BrainLM provides a springboard for accelerated research at the intersection of neuro-
science and AI. We hope that this work spurs further development of foundation models that can
help elucidate the intricate workings of the human brain.
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