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Abstract

Accurate long-term traffic forecasting remains a critical chal-
lenge in intelligent transportation systems, particularly when
predicting high-frequency traffic phenomena such as shock
waves and congestion boundaries over extended rollout hori-
zons. Neural operators have recently gained attention as
promising tools for modeling traffic flow. While effective at
learning function space mappings, they inherently produce
smooth predictions that fail to reconstruct high-frequency
features such as sharp density gradients which results in rapid
error accumulation during multi-step rollout predictions es-
sential for real-time traffic management. To address these
fundamental limitations, we introduce a unified Diffusion-
Enhanced Transformer Neural Operator (DETNO) architec-
ture. DETNO leverages a transformer neural operator with
cross-attention mechanisms, providing model expressivity
and super-resolution, coupled with a diffusion-based refine-
ment component that iteratively reconstructs high-frequency
traffic details through progressive denoising. This overcomes
the inherent smoothing limitations and rollout instability of
standard neural operators. Through comprehensive evalua-
tion on chaotic traffic datasets, our method demonstrates su-
perior performance in extended rollout predictions compared
to traditional and transformer-based neural operators, pre-
serving high-frequency components and improving stability
over long prediction horizons.

Introduction

Precise traffic forecasting is essential for effective trans-
portation system management, particularly as urbanization
accelerates and mobility needs continue to grow (Lana et al.
2018). Traffic modeling, however, faces significant chal-
lenges due to sparse data availability and the chaotic, nonlin-
ear dynamics of traffic flow that include sudden transitions,
congestion formation, and shockwave propagation, making
accurate prediction exceptionally difficult (Alghamdi et al.
2022; Smith and Demetsky 1997). Conventional traffic data
collection methods (e.g., loop detectors, cameras and probe
vehicles) offer valuable insights within their coverage ar-
eas. However, real-world data has inherent limitations for
inverse problems and optimization tasks that require con-
trolled conditions, systematic parameter variation, or coun-
terfactual analysis (Jain, Sharma, and Subramanian 2012;
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Shafik and Rakha 2025). Many critical traffic engineering
problems therefore rely on using numerical solvers to simu-
late traffic flow and generate synthetic data, providing the
reproducible environments needed for advanced analysis.
Models based on partial differential equations, such as the
Lighthill-Whitham-Richards (LWR) model (Lighthill and
Whitham 1955), capture key dynamics like shockwave prop-
agation and congestion, but require computationally inten-
sive schemes (e.g., Godunov) with strict discretization and
stability constraints. Second-order models like Aw-Rascle-
Zhang (ARZ) (Aw and Rascle 2000) handle non-equilibrium
conditions but further increase complexity, limiting their use
for real-time city-wide traffic management.

To address these computational and data sparsity chal-
lenges, machine learning (ML) models have emerged as a
promising solution. These approaches can learn complex
traffic patterns from available data while being more com-
putationally efficient than traditional numerical solvers for
real-time applications. Importantly, ML-based solutions of-
fer significant advantages for large-scale deployment, in-
cluding the ability to process multiple traffic scenarios in
parallel and adapt to varying urban infrastructure without
requiring extensive recalibration for each new deployment
site. ML-based approaches such as Graph Neural Networks
(GNNs) model traffic networks as graphs, with nodes as
road segments and edges as connectivity (Yu, Yin, and Zhu
2017; Peng et al. 2020). Advanced variants like Graph At-
tention Networks (GATs) (Zhang, James, and Liu 2019;
Kong et al. 2020; Wang et al. 2022) have demonstrated
superior performance in capturing non-linear spatial cor-
relations and temporal dynamics through attention mecha-
nisms. However, these models heavily rely on data avail-
ability and can suffer from poor generalization in new traf-
fic scenarios. Scientific ML approaches such as Physics-
Informed Neural Networks (PINNs) (Raissi, Perdikaris, and
Karniadakis 2019) have recently shown significant promise
in learning traffic flow dynamics (Shi, Mo, and Di 2021;
Usama et al. 2022). They embed traffic flow physics into
the learning process, enabling robust data-agnostic model-
ing. However, their poor domain generalization in new ini-
tial/boundary conditions and high computational cost for
enforcing physics constraints hinder deployment in real-
time, city-scale traffic management. Neural operators have
been introduced to address the generalization limitations
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Figure 1: DETNO architecture for traffic forecasting. Noisy query tokens i = [, t, pi, U] are processed by the Query en-
coder; sensor observations [x, u] (coordinates and measurements) are processed by the Branch encoder; and the diffusion
timestep 7, (Fourier-embedded) is processed by the Diffusion encoder. Their outputs form a query stream Q and two context
streams, operator stream (K;, V;) and diffusion stream (K4, V), which a transformer neural operator processes via heteroge-

neous cross-attention (followed by self-attention). At step k, the model predicts the diffusion velocity Vzred. During training,

a v-parameterization loss minimizes MSE to the target v/,*"*'; during inference, uiTEd drives a DDIM update to recover

(pzrfld , vzrfld ) in a k— k—1 denoising schedule, yielding the final predictions.

of PINNs (Lu, Jin, and Karniadakis 2019; Li et al. 2020).
Models such as DeepONets (Rap and Das 2025), which
learn mappings between function spaces, Fourier Neural
Operators (FNOs) (Thodi, Ambadipudi, and Jabari 2024),
which capture traffic dependencies in the frequency do-
main, and Variable-Input Deep Operator Networks (VI-
DON) (Prasthofer, De Ryck, and Mishra 2022), which han-
dle irregular and heterogeneous network layouts, have been
successfully applied to traffic forecasting. These methods
generalize across diverse road conditions, sensor configura-
tions, and network densities without retraining by learning
fundamental traffic flow governing laws. However, neural
operators suffer from spectral bias (Moseley, Markham, and
Nissen-Meyer 2023; Ramezankhani et al. 2025a), favoring
low-frequency components and producing overly smooth
predictions that fail to capture high-frequency phenomena
such as shockwaves, and abrupt congestion transitions crit-
ical for effective traffic management. This limitation can be
detrimental in long temporal rollouts, leading to error accu-
mulation and significance divergence from ground truth.

To mitigate the spectral bias of neural operators, two
diffusion-based families have emerged: two-stage and
single-stage strategies. The former trains a neural operator
first, and then a score-based diffusion model is conditioned
on the neural operator’s outputs to restore high-frequency
detail and improve spectral alignment (Oommen et al. 2025;
Perrone et al. 2025; Guo et al. 2025). While it is able to
match the ground-truth spectrum, its added fine-scale de-
tail can be partially hallucinated and non-physical, leading
to limited gains in pointwise errors like mean squared er-
ror (MSE) and extra inference cost from multiple denois-
ing steps. The second appoach leverages diffusion-inspired
multistep denoising within the neural operator to iteratively

reweight non-dominant (i.e., high-frequency) components
and improve long-horizon stability (Lippe et al. 2023; Ser-
rano et al. 2024). However, current realizations typically rely
on conventional backbones (e.g., UNet and FNO) operating
on fixed and regular grids, which can constrain long-range
and multi-scale spatiotemporal modeling and limit portabil-
ity across real-world heterogeneous geometries.

To address the aforementioned limitations, we intro-
duce the Diffusion-Enhanced Transformer Neural Operator
(DETNO), an end-to-end architecture that couples a trans-
former neural operator with a diffusion refiner within one
unified model. DETNO leverages a heterogeneous cross-
attention module that maintains two distinct information
streams: (i) an operator stream whose keys/values encode
input functions (e.g., sensor fields and boundary/initial con-
ditions), and (ii) a diffusion stream whose keys/values en-
code the diffusion noise level/timestep. Each query derived
from spatiotemporal coordinates is conditioned by both K/V
sets, ensuring both the input functions and diffusion sched-
ule influence the predictions in a controlled manner. The
DETNO architecture also enables super-resolution, allow-
ing to query at any arbiterory resolution in the traffic spa-
tiotemporal domain. The integrated diffusion refiner per-
forms a small number of iterative denoising steps to recon-
struct fine-grained structure, recovering high-frequency phe-
nomena with a modest computational overhead. The main
contributions of this paper are twofold: (1) we introduce a
novel diffusion-enhanced neural operator architecture that
explicitly addresses error accumulation over long temporal
rollouts in traffic forecasting; and (2) we demonstrate that
the method significantly outperforms neural operator base-
lines by effectively capturing high-frequency traffic dynam-
ics and sharp transitions that conventional approaches typi-



cally smooth out.

Methodology
Transformer Neural Operator

As illustrated in Figure 1, our transformer neural opera-
tor comprises a heterogeneous cross-attention block fol-
lowed by self-attention. The cross-attention exposes two
context streams as keys/values: an operator stream derived
from input functions and a diffusion stream derived from
the diffusion timestep; queries contain spatiotemporal co-
ordinates at which we predict traffic states. All three in-
puts are first mapped by dedicated encoders: a Query en-
coder, a Branch encoder (operator stream), and a Diffusion
encoder. Each encoder is an multi-layer perceptron (MLP)
that projects its input into a d-dimensional latent; the Dif-
fusion encoder additionally applies a Fourier embedding to
the timestep before the MLP. For each query, we compute
linear cross-attention (Hao et al. 2023) separately against
the operator and diffusion streams to produce two context
vectors that are then fused (summation and projection with
a residual) into an updated query representation; a subse-
quent self-attention layer lets queries exchange information
and enforce spatial-temporal coherence. We use a Mixture-
of-Experts (MoEs) in the transformer blocks, with a gating
network conditioned on each query’s spatiotemporal coordi-
nates to realize a soft domain decomposition that routes to-
kens to specialized experts (Hao et al. 2023; Ramezankhani
et al. 2025b).

The training data consist of two sets with different cardi-

nalities: sensors {(x*, u*)};9* and queries {(q’,y’ )};-v:"'jd,
where x* € R? are space-time coordinates (,t), u’ € R?
are traffic sensor states (p,v), g/ € R* are query tokens
[T4,tq, p,v],andy’ € R? are ground-truth states at the same
query locations. The encoders map inputs to width d as fol-
lows: the Query encoder ¢, : R* — R? applies an MLP to
yield Q € RMwa*d: the Branch encoder ¢, : R* — R?
(MLP) acts on [x,u’] to produce operator-stream keys/-
values (K;, V,;) € R¥eoXd: the Diffusion encoder maps
the diffusion timestep 7 € R through a Fourier embedding
v(7) € R and an MLP to z; € R? which is broad-
cast across queries to form (Kg, V4) € RNeworXd Linear
cross-attention is computed separately against the operator
and diffusion streams,

Ci = Attn(Qa Ki,Vi), Cd = Attl’l(Q, Kd,Vd)- (1)

The outputs are then fused and passed through linear self-
attention and a feed-forward block to produce a diffusion
velocity fields & € RNrX2 (for both traffic density and
velocity) at the query coordinates. The composition of g’
differs between training and inference: in training, its (p, v)
entries are noise-corrupted versions of y7; at inference, they
are initialized with pure noise and refined by the diffusion
process, allowing a single query format for both supervised
learning and test-time denoising.

Diffusion-Based Refinement

The diffusion refiner learns to remove injected noise
from traffic states at query locations using a velocity-

parameterization objective. During training, for a noise level
k € {0,...,K}, we draw € ~ AN (0,I) and form the cor-
rupted targets ¥, = /ary + V1 — ax €, where y is the
clean state (density, velocity) at the query locations and &
is the cumulative noise schedule (Song, Meng, and Er-
mon 2020). The noisy query tokens are generated as q =
[%q,tq, Prs Vi), With (pk, Ux) taken directly from the two
channels of y;, at the same query coordinates. Conditioned
on (X, u,qk, 7% ), the DETNO model Gy predicts the diffu-
sion velocity vy. The supervision target uses the standard
v-parameterization

V:;:v@kG—vl—@k% (2)

and the diffusion loss for a single diffusion process is

K
Ldiftusion = ZEI@@ ||ge(X»u7<~1k»7'k) - VZH% 3)
k=0

At inference, we initialize the traffic state entries with
pure noise (i.e., px and vg), q&) = [q,tq, PKc, VK], and
iteratively denoise over k = K, ...,0. At step &, the model
consumes (X, u, qx, 7 ), outputs ") and a DDIM update

produces P! and v?"“!. DDIM is preferred over DDPM
for its deterministic updates that permit larger step sizes and
fewer evaluations while preserving quality, yielding faster
denoising without changing the training loss (Song, Meng,
and Ermon 2020). It is crucial to distinguish the physical
time ¢, in the query coordinates from the denoising timestep
7 used by the diffusion stream. This timestep tells the model
how much noise is present in the current prediction, acting as
a progress indicator during the refinement process. At each
refinement step, the current diffusion timestep is computed
as 7, = scheduler_timestep(k)-292. The resulting embed-
ding v(7%) (Fourier features followed by an MLP, as defined
previously) is used to form the diffusion-stream keys/values
K4, Vg

Case Study: Long-term Traffic Forecasting

To evaluate the proposed DETNO approach for traffic pre-
diction, we establish a controlled simulation environment
that models traffic flow dynamics over a spatiotemporal
domain. The setup represents a highway segment with
fixed sensors providing sparse observations of density and
velocity at discrete spatiotemporal locations, mimicking
real-world monitoring. The goal is to predict traffic states
u(z,t) = [p(z,t),v(x,t)] " over X := [Tmin, Tmax] C R
and T C RT, with current time t. € T and windows
Apast; Aprea > 0 such that ¢, — Apag, te + Aprea € T
For data generation, traffic density evolves according to the
Lighthill-Whitham—Richards (LWR) model,

op(z,t) 0

5 T 5g @) v(p, )] =0,

(x,t) € X x T,

“4)
where p is the density field and v(p) is the fundamental dia-
gram (velocity—density relation). Synthetic trajectories used
for training and evaluation are produced with a first-order
Godunov finite-volume scheme. Implementation details are
provided in the Supplementary Information.



Results and Discussion
Experiment settings

Training Procedure and Temporal Rollout DETNO is
trained in a single-step prediction procedure. It learns a
supervised mapping from sparse sensor measurements in
a past window [t — Apag, t| to traffic states at arbi-
trary query locations within the immediate future window
[tes te + Aprea)- In this work, both Ap,e and Apeq are set to
1 minute. During training, ground-truth fields are available
over the full domain, so the network learns to reconstruct
complete traffic states from the past sensor history for one
horizon. Long-term forecasting is performed only at infer-
ence via an autoregressive rollout. The first prediction win-
dow uses the real sensor data. For each subsequent window,
we form pseudo-sensor inputs by sampling the model’s pre-
vious predictions at the fixed sensor coordinates (shifted for-
ward in time by Ap.q) and combining them with boundary-
condition data; these inputs are then fed back into the model
to predict the next window. Iterating this procedure extends
forecasts over the desired temporal horizon. In this work,
we examined the models performance for 8 rollout steps.
We generated 1300 traffic simulations by varying initial and
boundary conditions (e.g., initial vechicle density and ve-
locity, and traffic-light settings at the end of the road); 1000
samples are used for training and 300 for testing. Details
about the DETNO architecture are provided in Supplemen-
tary Information. The diffusion mechanism wraps the en-
tire transformer neural operator within a denoising frame-
work using DDIM scheduler. The wrapper manages noise
scheduling through K = 10 refinement steps with a mini-
mum noise standard deviation of 9 x 1072,

Baseline Models We compare DETNO against two pri-
mary baseline approaches. ON-Traffic (Rap and Das
2025) utilized an advanced DeepONet architecture that di-
rectly learns mappings between sensor measurements and
traffic predictions. General Neural Operator Transformer
(GNOT) (Hao et al. 2023) processes traffic data by leverag-
ing transformer blocks and MoEs to model complex spatio-
temporal traffic patterns. These baselines allow us to evalu-
ate the effectiveness of our unified transformer-diffusion ar-
chitecture against standard neural operator approaches and
assess the contribution of the diffusion refinement mecha-
nism in capturing hig-frequency features and minimizing the
error accumulation over long rollouts.

DETNO Performance Analysis on Chaotic Traffic
Data

Table 1 compares the models performance for a single step
(step 1) and rollout (step 8) predictions. To evaluate the
long rollout performance, the models’ predictions at the
8th rollout step are compared. Our proposed DETNO ap-
proach achieves optimal rollout performance, demonstrating
a 96.0% improvement in MSE and a 26.3% improvement in
MAE compared to GNOT, the second best model. ONTraf-
fic exhibits significant error accumulation, with MSE and
MAE increasing by 30.53x and 7.10x%, respectively, com-
pared to a single-step prediction (step 1). GNOT shows im-
proved stability, with 6.32x growth in MSE and 2.11x in

MAE. In contrast, our proposed DETNO method achieves
the most robust long-term performance, with only 4.39x
increase in MSE and 1.34x in MAE going from step 1
to step 8 prediction. This superior rollout stability high-
lights DETNQO’s capacity to preserve fine-scale spatiotem-
poral features over extended prediction horizons. While the
benefits of its diffusion-based refinement mechanism are
modest in the initial rollout steps, its advantage becomes
increasingly pronounced over time. As errors accumulate,
models that fail to capture high-frequency components and
sharp density gradients (such as ONTraffic and GNOT) ex-
perience rapid performance degradation. DETNO, by con-
trast, effectively reconstructs these high-frequency features,
maintaining temporal consistency and predictive accuracy
even in complex and chaotic traffic scenarios.

To further demonstrate these rollout stability advantages,
we visualized GNOT and DETNO models performance
across extended prediction horizons, as illustrated in Figure
2. The models predictions are visualized through multiple
perspectives:(1) predicted density distributions, (2) ground
truth density distributions, (3) absolute error heatmaps, (4)
spatial density profiles at ¢ = 5 minutes, and (5) fre-
quency spectrum comparisons. The absolute-error heatmaps
show that DETNO captures high-frequency structure more
faithfully, yielding smaller errors along sharp transition
regions (e.g., congestion fronts). In contrast, GNOT ex-
hibits error growth over time: as the rollout progresses,
both the magnitude and the spatial regions of its errors
increase, consistent with missing high-frequency content
early on and compounding mismatch in later steps. The
spatial density profiles echo this trend: DETNO remains
closely aligned with ground truth around highly nonlinear
segments, whereas GNOT produces visibly smoothed tran-
sitions and local biases near discontinuities. Most critically,
the frequency-spectrum comparison reveals that GNOT un-
derestimates energy at higher wavenumbers (deviating from
the ground-truth slope and amplitude), while DETNO tracks
the spectrum across scales, including the high wavenumber
regime. This alignment indicates that DETNO learns and
preserves high-frequency features, which in turn stabilizes
long-horizon rollouts and reduces error accumulation.

Impact of Diffusion-Based Refinement

Figure 3 demonstrates why DETNO sustains realistic traf-
fic dynamics over long horizons. In panel (a), the frequency
spectra averaged over 300 test rollouts show that DETNO
closely follows the ground-truth curve across scales, includ-
ing the high-wavenumber regime that encodes sharp density
fronts and rapidly varying congestion. By contrast, GNOT
and ONTraffic exhibit a premature roll-off as wavenum-
ber increases, indicating systematic underestimation of fine-
scale energy and explaining their softened transition zones.
Panel (b) reports MSE by rollout step: errors increase for all
methods with horizon length, but DETNO maintains both
the lowest magnitude and the shallowest growth rate; ON-
Traffic is worst at all steps, and GNOT lies between ONTraf-
fic and DETNO yet diverges more quickly than DETNO.
The widening gap over time is consistent with the spec-
tral finding: missing high-frequency content at early steps



Table 1: Single step and rollout performance comparison of our proposed DETNO model against ONTraffic (Rap and Das
2025) and GNOT (Hao et al. 2023) on the Godunov dataset. Mean squared error (MSE) and mean absolute error (MAE) are

used as comparison metrics.

Rollout Stage Metric ONTraffic (Rap and Das 2025) GNOT (Hao et al. 2023) DETNO (ours)
Step 1 Avg. MSE 0.009 0.003 0.002
P Avg. MAE 0.038 0.018 0.022
Step 8 Avg. MSE 0.279 0.019 0.008
P Avg. MAE 0.272 0.038 0.030
Model Size 1.40M 1.13M 1.16M
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Figure 2: Comparative analysis of GNOT and DETNO predictions on chaotic traffic scenarios. The visualization shows ground
truth density fields, predicted density distributions, absolute error maps, spatial density profiles at t=5.00, and frequency spec-
trum comparisons for two representative samples, demonstrating the refinement mechanism’s superior reconstruction of sharp

density transitions and localized traffic phenomena.

compounds under autoregressive reuse, whereas DETNO’s
fidelity at high wavenumbers slows error accumulation and
preserves coherent traffic patterns deeper into the rollout.

Ablation Studies

We conducted comprehensive ablation studies to deter-
mine the optimal hyperparameter setting for our proposed
DETNO architecture as elaborated below (Figure 4).
Hidden dimension. At 64 hidden units the network
achieves the lowest error (MSE 0.0080), whereas reducing
capacity to 32 underfits the dynamics (MSE 0.0142) and in-
creasing to 128 degrades further (MSE 0.0215). The latter
suggests over-parameterization in this data regime and less
stable expert routing, leading to poorer generalization.
Number of experts. Three experts provide the strongest
balance between specialization and data fragmentation
(MSE 0.0050). With two experts, capacity is insufficient
for learning heterogeneous traffic regimes (MSE 0.0066).

Adding more experts yields diminishing or negative returns:
four experts markedly worsen performance (MSE 0.0080),
and five experts only partially recover (MSE 0.0060). These
results are consistent with MoE load-balancing effects,
where increasing the expert count reduces per-expert sample
density and makes routing harder to optimize (Fedus, Zoph,
and Shazeer 2022).

Minimum noise (diffusion floor). A “Goldilocks” level of
corruption is required for effective denoising. The best set-
ting is 9 x 1072 (MSE 0.0050). Lower noise at 7 x 1072
or 8 x 1072 weakens the learning signal and raises error
(MSE 0.0103/0.0100), while a higher floor at 1 x 10~! over-
corrupts targets and again increases error (MSE 0.0099). The
chosen level provides enough perturbation to teach robust
corrections without losing key structure.

Refinement steps (DDIM). We observed that multi-step
refinement is essential. A single step is inadequate (MSE
0.0131), five steps capture most of the gains (MSE 0.0054),
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Figure 3: Performance comparison between DETNO,
GNOT and ONTraffic: (a) Averaged frequency spectrum
across 300 samples demonstrating superior high-frequency
preservation by DETNO, with enhanced amplitude reten-
tion across all wavenumbers indicating effective recovery
of sharp density gradients and discontinuous traffic patterns.
(b) Step-wise rollout error evolution showing DETNO’s im-
proved stability and accuracy over extended prediction hori-
zons compared to GNOT and ONTraffic.

and ten steps deliver the best overall accuracy (MSE
0.0050). The improvement from five to ten steps is modest,
reflecting gradual restoration of fine-scale structure; beyond
ten steps, additional latency is unlikely to be justified by fur-
ther gains.

Cross-attention design. Using two streams for keys/val-
ues—an operator stream for input functions and a diffusion
stream for the denoising timestep—outperforms concate-
nating the temporal embedding with input functions into a
single stream. The two-stream design proposed in DETNO
achieves the MSE of = 0.0050 versus 0.0053 for the con-
catenated variant. Separating streams helps the model dis-
entangle complementary roles (sensor-driven context vs. de-
noising progress) and conditions each query on both without
conflating sources, yielding more stable refinement and bet-
ter fidelity at prediction query points.

Based on the above ablations, we chose the following con-
figuarion for our DETNO architecture: 64 hidden units, 3
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Figure 4: Ablation results for hidden dimension, number of

experts, minimum noise, and refinement steps. Bars report
MSE for each setting; lower is better.

experts, a minimum noise of 9 x 1072, 10 refinement steps
and a two-stream cross attention. This led to a better preser-
vation of high-frequency traffic features while maintaining
stable long-horizon rollouts.

These ablation results confirm our final configuration:
dmodet = 64, 3 experts, min_noise_std = 9 X 1072, and
K = 10 refinement steps.

Conclusion

This work introduced DETNO, a diffusion-enhanced trans-
former neural operator that addresses two persistent chal-
lenges in scientific traffic forecasting: spectral bias against
high-frequency features and error accumulation in long roll-
outs. DETNO unifies operator learning and denoising in a
single stage via a heterogeneous cross-attention module that
conditions queries on two distinct streams, sensor-driven in-
put functions (operator stream) and the denoising timestep
(diffusion stream), and augments capacity with a mixture-
of-experts backbone and linear attention for scalability. A
v-parameterized diffusion objective with DDIM sampling
enables efficient, few-step refinement without changing the
training loss, while the model’s resolution-free formulation
supports super-resolution queries at arbitrary space—time co-
ordinates. In a controlled LWR—Godunov setting, DETNO
consistently outperformed neural operator baselines such as
DeepONet and GNOT across qualitative and quantitative
analyses.
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