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Abstract

Data augmentation, which supplements a dataset with transformed copies of each datum
according to a known symmetry group, provides a model-agnostic approach to enforcing in-
variances, in contrast to methods that encode symmetries directly into the model. Although
data augmentation has proven effective in theory and practice, full group-sized augmenta-
tion is often computationally infeasible, prompting the question: Can partial augmentation
still achieve the same performance as full augmentation in terms of generalization bounds
and sample complexity? In this paper, we develop a theoretical framework based on Fourier
analysis, showing that partial data augmentation can achieve the full statistical benefits
of full data augmentation. To our knowledge, this is the first proof of the efficacy of par-
tial augmentation, highlighting an underexplored aspect of why augmentation remains a
powerful and widely applicable strategy, even when performed only partially.
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1. Introduction

One of the most widely used model-agnostic techniques in machine learning and artificial
intelligence for leveraging task structure is data augmentation. In data augmentation,
the dataset is supplemented with transformed copies of each datum according to a known
structure inherent in the underlying task. For instance, in learning with invariances, data
augmentation leverages the group of symmetries associated with the task to improve model
performance, including generalization to unseen data.

Due to its simplicity and model-agnostic nature, data augmentation for learning under
invariances is widely used in practice. Its applications span a broad range of domains,
including physics, materials science, drug discovery, molecular machine learning, computer
vision and image processing, among many others.

However, despite its flexibility and wide applicability, this approach becomes challenging
to apply in full when the symmetry groups are prohibitively large, a situation that frequently
arises in practice. For instance, the permutation group and the sign-flip group are both
exponentially large in the data dimension, making full data augmentation computationally
infeasible. In such cases, one can still use partial data augmentation, as is often done in
practice via heuristic methods, where only a subset of group elements is used. Yet, the
theoretical understanding of the quality of partial data augmentation in downstream tasks
remains underexplored.

In this paper, we initiate a rigorous study of this problem by asking the following ques-
tion: Can partial augmentation with substantially smaller subsets of the group still achieve
statistical performance comparable to that of full group augmentation? As an instance of
this general question, in this extended abstract, we focus on the classical problem of density
estimation. Somewhat surprisingly, we prove that even very small subsets of the group suf-
fice to recover the statistical benefits of full data augmentation. Our proof builds on tools
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from Fourier analysis on groups together with standard facts from group and representation
theory.

In short, this extended abstract makes the following contributions:

• We investigate the problem of efficient data augmentation for learning over symmetric
data (with respect to a given group of invariances), and demonstrate that small subsets
of group elements are sufficient to attain the full statistical benefits of augmentation.

• We introduce techniques from Fourier analysis on groups to analyze data augmenta-
tion, providing tools and perspectives that may be of independent interest.

Note. A detailed review of related work is provided in the appendices.

2. Problem Formulation and Main Results

We consider the classical setting of density estimation, where we are given n i.i.d. samples
xi, i ∈ [n], from an unknown distribution with density f⋆(x) over a domain X ⊆ Rd. For
simplicity, we assume X = Sd−1 := {x ∈ Rd : ∥x∥2 = 1}, but the results extend to other
domains under mild conditions. Moreover, we assume f⋆ ∈ L2(Sd−1).

An estimator takes the observed samples and returns f̂ ∈ F , where F denotes the set of
admissible estimators. The quality of this estimation is measured by the excess population
risk (sometimes referred to as the generalization error), defined as

R(f̂) := E
[
∥f⋆ − f̂∥2L2(Sd−1)

]
− min

f∈F
∥f⋆ − f∥2L2(Sd−1), (1)

where the expectation is taken over the randomness of the data.

In this paper, for simplicity, we focus on low-degree estimators, where F = Fk denotes
the space of multivariable polynomials of total degree at most k, for some k ∈ N. The
parameter k controls the model capacity. Moreover, we are particularly interested in the
case where the unknown distribution f⋆ is invariant under the action of a given group G on
the domain: f⋆(gx) = f⋆(x),∀g ∈ G, where the equality is understood in the L2 sense.

Generic algorithm under data augmentation. Assume we are given the optimal1

(i.e., minimax) density estimator, i.e., the optimal algorithm that maps any dataset to an
estimated distribution, and we want to combine it with data augmentation.

We begin by selecting a subset of the group S ⊆ G and augmenting the dataset ac-
cordingly. The augmented dataset is {sxi : s ∈ S, i ∈ [n]}. Full augmentation corresponds
to S = G, while partial augmentation uses substantially smaller subsets. Since data aug-
mentation is model-agnostic, we do not modify the optimal algorithm and apply it to the
augmented dataset. We denote the output as f̂S .

Intuitively, larger sets S provide greater statistical benefits (i.e., lower risk). However, for
many groups commonly arising in applications (e.g., permutations, sign-flips), performing
full augmentation with S = G is computationally infeasible, since the size of G is typically
exponential in the dimension. This motivates the following question:

1. Details about the optimal algorithms are provided in the proof sketch. Minimax optimality here should
be interpreted with respect to generic distributions, without restriction to invariant distributions.
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Can partial data augmentation with small subsets S ⊆ G achieve statistical benefits
(i.e., low risk) comparable to those of full augmentation?

The main result of this paper is summarized in the following theorem.

Theorem 1 There exists a subset S ⊆ G of size |S| = O(nk log d) such that

c1R(f̂G) ≤ R(f̂S) ≤ c2R(f̂G), (2)

for some universal positive constants c1, c2. Moreover, such a subset S can be efficiently
constructed via i.i.d. sampling from the group G.

The above result is significant, as it shows that only logarithmic-sized subsets S (with
respect to the data dimension d) suffice to achieve the full benefits of data augmentation.
For comparison, consider the case of permutation invariances where |G| = d!. The theorem
implies that one can obtain the same statistical gain with only |S| = O(log d), which
constitutes a double-exponential improvement over the baseline, assuming n, k = O(1).
Even if n = poly(d), the improvement remains exponential over the baseline. Please check
Remark 4 for further explanation.

Partial augmentation with only logarithmic-sized subsets |S| = On,k(log d) achieves
the full statistical benefits of data augmentation. For large groups |G| = exp(Ω(d)),
this yields a double-exponential improvement in the dependence on dimension.

Proof sketch. We now outline the key ideas underlying the proof of our main result.
First, let us introduce the following algorithm.

Optimal algorithm. For this classical problem (without invariances, in the minimax
setting), the optimal algorithm is given by the following spectral estimator:

f̂(x) =

k∑
ℓ=0

dℓ∑
j=1

f̂ℓ,j ϕℓ,j(x), f̂ℓ,j =
1

n

n∑
i=1

ϕℓ,j(xi), (3)

where ϕℓ,j denotes the spherical harmonic of degree ℓ indexed by j ∈ [dℓ], and dℓ is the
dimension of the space of spherical harmonics of degree ℓ. For additional background on
spherical harmonics, see the appendices.

Consider the spectral algorithm applied to a dataset augmented with a subset S ⊆ G.
We introduce the following notation: let f⋆ ∈ Rr denote the vector obtained by concate-
nating all spectral coefficients f⋆

ℓ,j for ℓ ≤ k, where r ∈ N is the appropriate dimension.

Similarly, define f̂S ∈ Rr for the estimator obtained from the augmented dataset, and let
f̂ ∈ Rr denote the naive estimator without augmentation. Using standard spectral analysis,
one can show that

R(f̂S) = ∥f̂S − f⋆∥22 = ∥DS f̂ − f⋆∥22, DS :=
1

|S|
∑
s∈S

ρ(s) ∈ Rr×r, (4)
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where ρ denotes the linear representation of G induced on the space of polynomials of degree
at most k on the unit sphere. For a trivial set S (with no augmentation), we have DS = Ir.
At the other extreme, if S = G, then

∃P ∈ U(r) : DG = P

[
Irinv 0

0 0

]
P † ∈ Rr×r,

where rinv is the dimension of the space of G-invariant polynomials of degree at most k.
More generally, for any subset S ⊆ G, one can show that the following representation exists:

DS = P

[
Irinv 0

0 D̃S

]
P †. (5)

From this decomposition, a straightforward calculation yields

R(f̂S) ≲
rinv
n

+ ∥D̃S∥2op, (6)

and this upper bound is tight in the case S = G, where ∥D̃S∥op = 0. If instead S is chosen
uniformly at random, standard concentration bounds imply that with high probability,

∥D̃S∥2op = O
(

log(r)

|S|

)
.

Since r = O(dk), this yields

R(f̂S) ≲
rinv
n

+
k log(d)

|S|
. (7)

Therefore, it suffices to take |S| = O(nk log d) to achieve the desired risk bound. This
completes the proof of Theorem 1.

Remark 2 A more refined analysis incorporating rinv yields sharper bounds on |S|. How-
ever, in this paper we report the conservative bound assuming rinv = Ω(1) in order to keep
the presentation streamlined. See Remark 4 for further discussion.

Remark 3 A key ingredient in our analysis is the concentration of the matrix DS around
zero. Note that DS is given by the direct sum of averages over S of the irreducible compo-
nents in the decomposition of ρ, which from the Fourier-analytic perspective corresponds to
the Fourier transform of 1

|S|
∑

s∈S δs, where δs is the Dirac delta at s. Our result relies on

the existence of functions on G with small support (i.e., small |S|) and simultaneously small
Fourier coefficients. This connects naturally to uncertainty principles in Fourier analysis
on groups, and to the best of our knowledge, this is the first work to highlight such a link in
the context of data augmentation.

Note. The framework extends beyond the present setting to Sobolev spaces, RKHSs,
and nonparametric regression. With appropriate tools, it also extends to neural networks
(e.g., two-layer networks under the neural tangent kernel). We leave a detailed study of
these directions to future work.
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Appendix A. Related Work

The field of geometric machine learning has found applications across a wide range of do-
mains, including quantum, atomistic, and continuum systems, among others (Zhang et al.,
2025; Batzner et al., 2022; Bronstein et al., 2017; Smidt, 2021; Batzner et al., 2023). On
the theoretical side, the sample complexity benefits of exploiting symmetries have been
studied for kernel methods through group averaging (Tahmasebi and Jegelka, 2023) and for
canonicalization (Tahmasebi and Jegelka, 2025). Approximation guarantees for equivariant
learning have also been established (Petrache and Trivedi, 2023). By contrast, the theoreti-
cal understanding of data augmentation remains relatively limited. Note that canonicaliza-
tion (Kaba et al., 2023; Ma et al., 2024) and frame averaging (Puny et al., 2022) represent
two alternative approaches for introducing symmetries directly into learning algorithms,
rather than through augmentation.

Several works have studied the role of data augmentation from different perspectives:
its effect on training dynamics in neural networks (Shen et al., 2022), its interpretation
as a form of regularization (Lin et al., 2024; Yang et al., 2023), and its group-theoretic
foundations (Chen et al., 2020). Closely related to our setting, Dao et al. (2019) developed
a kernel-based theory of augmentation, while further analyses are given in (Patil and Du,
2023; Mei et al., 2021).

Beyond passive augmentation, several recent works have explored generative, active, and
adaptive augmentation strategies (Zheng et al., 2023; Dong et al., 2023; Chen et al., 2024),
though these aspects are not addressed in the present paper. For surveys, see Shorten
and Khoshgoftaar (2019) for image augmentation in deep learning, Ma et al. (2025) for
reinforcement learning, and Li et al. (2022); Pellicer et al. (2023) for natural language
tasks. Additional studies examine applications in image classification (Miko lajczyk and
Grochowski, 2018), graph learning (Zhao et al., 2022), and other domains (Mumuni and
Mumuni, 2022). Finally, it is worth noting that augmentation can also have drawbacks, as
highlighted in Kirichenko et al. (2023).

Appendix B. Background

B.1. Spherical Harmonics

Let us briefly review the theory of spherical harmonics. The space L2(Sd−1) admits a decom-
position into an orthogonal direct sum of the spaces of homogeneous harmonic polynomials:

L2(Sd−1) = V0 ⊕ V1 ⊕ V2 ⊕ · · · , (8)

where Vℓ denotes the space of all polynomials p(x) of total degree ℓ = 0, 1, . . . satisfying
∆p(x) = 0 for all x ∈ Rd. Let dℓ = dim(Vℓ) =

(
d+ℓ−1

ℓ

)
−

(
d+ℓ−3
ℓ−2

)
, and denote by {ϕℓ,j}dℓj=1
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an orthonormal basis of harmonic polynomials for Vℓ. Then, any function f ∈ L2(Sd−1) can
then be expressed as a convergent expansion in spherical harmonics:

f =
∞∑
ℓ=0

dℓ∑
j=1

fℓ,j ϕℓ,j . (9)

Truncating the expansion to ℓ ≤ k yields the best approximation of f by polynomials of
degree at most k.

B.2. Spectral Estimators

By the orthonormality of spherical harmonics, we can write

f =
∞∑
ℓ=0

dℓ∑
j=1

fℓ,j ϕℓ,j =⇒ fℓ,j =

∫
Sd−1

f(x)ϕℓ,j(x) dx = Ex∼µ

[
ϕℓ,j(x)

]
, (10)

where the expectation is taken over random points on the unit sphere distributed according
to f(x).

This observation implies that, given data, one can approximate the coefficients fℓ,j by
empirical averages of ϕℓ,j(xi), i ∈ [n], and thereby construct an estimator of the density
function. Such spectral estimators are known to achieve minimax optimal rates in the
classical density estimation problem.

B.3. Miscellaneous Facts about Representation Theory

For an orthogonal group representation D(g) ∈ Rr×r, one can show that

Eg[D(g)] = P

[
Irinv 0

0 0

]
P † (11)

for some unitary matrix P ∈ U(r).

To see this, note that if D(g) is irreducible, then the average is either the zero matrix
or the identity matrix, depending on whether D(g) is trivial or not. In the general case,
complete reducibility implies that D(g) decomposes into irreducible components, from which
the result follows.

Appendix C. Proof of Theorem 1

Proof We provide a complementary explanation to the proof sketch presented in the main
body of the paper. By complete reducibility, we may assume without loss of generality that
D(g) is an irreducible non-trivial representation. In this case, we have Eg[D(g)] = 0. Our
goal is to measure how close

1

|S|
∑
g∈S

D(g)
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is to zero in operator norm, for a random subset S ⊂ G. Note that classical concentration
results, such as the Hanson–Wright inequality, imply that with probability at least 1 − δ,∥∥∥ 1

|S|
∑
g∈S

D(g)
∥∥∥
op

≤ Oδ

(
log(r)

|S|

)
,

where r is the dimension of the representation. Thus, it remains to relate this operator
norm bound to the generalization gap. Note that

R(f̂S) = ∥f̂S − f⋆∥22 (12)

= ∥DS f̂ − f⋆∥22 (13)

≲ ∥DS f̂ −DGf̂∥22 + ∥DGf̂ − f⋆∥22. (14)

The second term is bounded, via a variance calculation, by rinv
n . For the first term, we have

∥DS f̂ −DGf̂∥22 ≲ ∥D̃S∥2op, (15)

which establishes the claim.

Remark 4 Consider the case of permutation invariances. For polynomial regression under
such invariances, it is known that rinv = exp(Θ(

√
k)), which is independent of the ambient

dimension d. Consequently, although the group size is |G| = d!, a subset of size |S| =
Ok(log d) suffices to achieve the full benefits of data augmentation.

In particular, to guarantee a generalization gap of ϵ, full augmentation requires at least
n = Ok

(
1
ϵ

)
samples, while partial augmentation attains the same gap with only |S| =

Ok

(
log(d)

ϵ

)
, representing a double-exponential improvement in the size of the augmentation

scheme compared to the baseline.
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