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ABSTRACT

Weak-to-strong generalization, where weakly supervised strong models outperform
their weaker teachers, offers a promising approach to aligning superhuman models
with human values. To deepen the understanding of this approach, we provide
theoretical insights into its capabilities and limitations. First, in the classification
setting, we establish upper and lower generalization error bounds for the strong
model, identifying the primary limitations as stemming from the weak model’s
generalization error and the optimization objective itself. Additionally, we derive
lower and upper bounds on the calibration error of the strong model. These theoret-
ical bounds reveal two critical insights: (1) the weak model should demonstrate
strong generalization performance and maintain well-calibrated predictions, and
(2) the strong model’s training process must strike a careful balance, as excessive
optimization could undermine its generalization by over-relying on the weak su-
pervision. Finally, in the regression setting, we extend the work of Charikar et al.
(2024) to a loss function based on KL divergence, offering guarantees that the
strong student can outperform its weak teacher by at least the magnitude of their
disagreement. The theory is validated through sufficient experiments.

1 INTRODUCTION

Recently, human supervision (Ouyang et al., 2022; Bai et al., 2022a) plays a crucial role in building
both effective and safe artificial intelligence systems (Achiam et al., 2023; Touvron et al., 2023).
However, as future superhuman models exhibit increasingly complex behaviors, reliable human
oversight becomes increasingly challenging (OpenAI, 2024).

To tackle this issue, the Weak-To-Strong Generalization (WTSG) paradigm (Burns et al., 2023) is
proposed. It finds that, strong pre-trained language models, when fine-tuned using labels produced by
weaker models, consistently achieve better performance than their weak supervisors. This intriguing
phenomenon has not only driven the development of diverse alignment algorithms (Zhu et al.,
2025; Liu & Alahi, 2024), but also inspired efforts (Pawelczyk et al., 2024; Yang et al., 2024;
Guo et al., 2024) to extend the concept to other tasks. However, despite its empirical success, the
theoretical foundations of WTSG remain underdeveloped. Although several elegant theoretical
frameworks (Lang et al., 2024; Somerstep et al., 2024; Wu & Sahai, 2025; Charikar et al., 2024) are
proposed, a universal framework is still lacking to address fundamental questions, such as: What is the
optimal generalization performance a strong model can achieve after WTSG? Besides generalization,
what other factors are influenced by WTSG?

To answer these questions, we provide a comprehensive theoretical analysis of WTSG, shedding
lights on its capabilities and limitations. Firstly, in classification tasks, by assuming that the output of
the softmax module lies in the interval (0, 1], our analysis of lower and upper generalization bounds
under KL divergence loss reveals that the strong model’s performance is fundamentally determined
by two key factors: (1) the disagreement between strong and weak models, which serves as the
minimization objective in WTSG, and (2) the weak model’s performance. These findings suggest
that (1) achieving the minimal optimization objective in WTSG limits the strong model’s ability to
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significantly outperform its weak supervisor, and (2) selecting a stronger weak model can enhance the
performance of the strong model. Secondly, we investigate how strong model’s calibration (Guo et al.,
2017; Kumar et al., 2019)—the property that a model’s predicted confidence aligns with its actual
accuracy—is affected in the WTSG framework. Our theoretical bounds reveal that the calibration of
the strong model depends on both the calibration of the weak model and the disagreement between
the two models. They highlight the importance of avoiding a poorly-calibrated weak model and an
overfitted strong model. The above theory is validated using GPT-2 series (Radford et al., 2019) and
Pythia series (Biderman et al., 2023).

In addition to classification setting, we also consider the regression problem. In particular, we build
on the work of Charikar et al. (2024) by extending their analysis of squared loss to output distribution
divergence, a measure of the difference between two models’ output distributions. In this setting,
the model outputs are normalized to form valid probability distributions over all input data, and the
output distribution divergence between two models is defined as the KL divergence of their respective
output distributions. We recover the findings from Charikar et al. (2024) and show that the strong
model’s generalization error is provably smaller than the weak model’s, with the gap no less than the
WTSG minimization objective—namely, the strong model’s error on the weak labels. We conduct
synthetic experiments to support our theoretical insights.

2 RELATED WORK

In this section, we introduce AI alignment and WTSG. Additional related work including teacher-
student learning paradigm, weakly-supervised learning, calibration and information-theoretic analysis
is provided in Appendix A.

2.1 AI ALIGNMENT

AI alignment (Ji et al., 2023; Shen et al., 2023) aims to ensure AI systems act in accordance
with human values. A popular approach to achieve this goal is fine-tuning models on human-
annotated data, such as Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022; Bai et al., 2022a) and Direct Preference Optimization (DPO) (Rafailov et al., 2024). However,
this alignment paradigm faces significant challenges: human oversight becomes insufficient as
AI surpasses human capabilities (Kim et al., 2024), and obtaining scalable, high-quality human
feedback remains difficult (Casper et al., 2023). These challenges highlight the critical need to align
superhuman AI systems (OpenAI, 2024). In contrast to these approaches, our work explores WTSG,
which does not rely on extensive human supervision and instead leverages weaker guidance to achieve
the alignment goal.

2.2 WEAK-TO-STRONG GENERALIZATION

To explore the effect of weak models to supervise strong models, Burns et al. (2023) first find that
strong models supervised by weak models can exhibit better performance on corresponding tasks
than their weak supervisors, indicating the possibility of stimulating greater power from super models
under weak supervisions. There are also algorithms (Zhu et al., 2025; Agrawal et al., 2024; Sang
et al., 2024; Guo & Yang, 2024) and empirical analysis (Yang et al., 2025; Ye et al., 2024) for
it. However, to the best of our knowledge, only a limited number of theoretical studies have been
conducted on this topic. Lang et al. (2024) analyzes it by introducing theoretical bounds that account
for pseudolabel correction and coverage expansion. Somerstep et al. (2024) frame WTSG as a transfer
learning problem, revealing limitations of fine-tuning on weak labels. Wu & Sahai (2025) study linear
models under a spiked covariance setting and derive asymptotic bounds. Charikar et al. (2024) take a
convex-theoretic approach in regression, quantifying performance improvements under squared loss
via the misfit error between weak and strong models.

The work most closely related to ours is Charikar et al. (2024), which primarily focuses on squared
loss in regression. In contrast, we consider KL divergence-like losses, including KL divergence for
classification and output distribution divergence for regression. Furthermore, while they focuses on
establishing upper bounds, our study incorporates both upper and lower bounds as well as calibration
analysis through experiments on language models.
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3 PRELIMINARIES

3.1 CLASSIFICATION AND REGRESSION

We examine two problem settings. In the first case, we consider classification tasks using KL
divergence as the loss function. Minimizing this loss is equivalent to minimizing cross-entropy loss,
which is widely used in the WTSG literature (Burns et al., 2023). In the second case, we focus
on regression tasks, employing the KL divergence between the predictions of two models as the
loss function. The model outputs over the entire data domain are normalized to form probability
distributions. This approach is an extension of previous result (Charikar et al., 2024) on squared loss,
and provides an intuitive framework for understanding WTSG.

Given the data distribution P , data domain X and output domain Y , let F : X → Y . Consider the
difference dP and empirical difference d̂P between two models, where dP , d̂P : F ×F → R+

0 . We
define the below two settings:

Setting 1: KL divergence loss. Firstly, we consider a k-classification problem. Given the data
domain X ⊆ Rd and output domain Y ⊆ Rk. Consider the model with the softmax module, i.e.,
∀y = (y1, · · · , yk)T ∈ Y , there holds

∑k
i=1 yi = 1 and 0 < yi ≤ 1. Given two models f, g ∈ F ,

define dP and d̂P :

dP(f, g) ≜ Ex∼P [DKL(f(x)∥g(x))] , (1)

d̂P(f, g) ≜
1

n

n∑
j=1

DKL(f(xj)∥g(xj)), (2)

where DKL(f(x)∥g(x)) =
∑k

i=1[f(x)]i log
[f(x)]i
[g(x)]i

is the KL divergence between predictions, and
[f(x)]i, [g(x)]i are elements of f(x), g(x).

Setting 2: Output distribution divergence. Secondly, we consider a regression problem. Let the
data domain and output domain be X ⊆ Rd and Y = {y ∈ R|0 < y ≤ 1}, respectively. In this
setting, the outputs of the model for all input data are probability-normalized to ensure they form
valid probability distributions. The difference between two models f, g ∈ F is then measured as the
KL divergence between their corresponding output distributions:

dP(f, g) ≜
∫
X
f(x) log

f(x)

g(x)
dx, (3)

d̂P(f, g) ≜
n∑

i=1

f(xi) log
f(xi)

g(xi)
. (4)

3.2 WEAK-TO-STRONG GENERALIZATION

In the context of WTSG, we focus on the fine-tuning phase after pre-training. Let h⋆ : Rd → Rd⋆

denotes the ground truth representation function, which maps data x ∈ X to an ideal, fully enriched
representation h⋆(x). The target fine-tuning task, composed with the ground truth representation, is
denoted as f⋆ ◦ h⋆, where f⋆ : Rd⋆ → Y . The weak model learns a mapping fw ◦ hw, where the
pre-trained representation hw : X → Rdw extracts features from the input data, and fw : Rdw → Y
is fine-tuned using supervised data with ground truth labels. The strong model, on the other hand,
aims to learn a mapping fsw ◦ hs, where hs : X → Rds is the representation, and fsw ∈ Fs is
a task-specific function from a hypothesis class Fs : Rds → Y . The strong model leverages the
representation hs to improve performance on the fine-tuning task. In the convention setting of AI
alignment (Ouyang et al., 2022), the model is learned through human-annotated ground truth data:

fs = argminf∈Fs
dP(f

⋆ ◦ h⋆, f ◦ hs). (5)

Nevertheless, the acquisition of human-generated data is both costly and time-consuming. To address
this challenge, the WTSG framework leverages weak supervision from the weak model’s predictions,
enabling the strong model to be trained through population risk minimization:

fsw = argminf∈Fs
dP(fw ◦ hw, f ◦ hs). (6)
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In practice, we label n i.i.d. samples using the weak model and minimize the empirical risk to conduct
WTSG:

f̂sw = argminf∈Fs
d̂P(fw ◦ hw, f ◦ hs). (7)

Denote the labeling function F ⋆ = f⋆ ◦ h⋆, strong ceiling model Fs = fs ◦ hs, weak model
Fw = fw ◦ hw, and strong models Fsw = fsw ◦ hs, F̂sw = f̂sw ◦ hs, respectively.

4 UNIVERSAL RESULTS IN WTSG

In this section, we consider the classification problem, where dP is the KL divergence loss defined
in Equation (2). We first establish lower and upper generalization error bounds of the strong model in
WTSG in Section 4.1. Then the lower and upper calibration error bounds are shown in Section 4.2.

4.1 LOWER AND UPPER BOUND

Theorem 1 (Proved in Appendix B.1). Given the data domain X , output domain Y and models
Fsw, Fw, F

⋆ defined above. Then there holds

dP (F ⋆, Fw)− C1

√
dP(Fw, Fsw) ≤ dP(F

⋆, Fsw) ≤ dP (F ⋆, Fw) + C1

√
dP(Fw, Fsw), (8)

where C1 is a positive constant.
Remark. The proof can be also extended to the regression setting, which is provided in Appendix B.2.

Theorem 1 provides a quantitative framework for assessing the performance gap between weak model
and strong model in WTSG. Specifically, the value of dP(F ⋆, Fsw) is constrained by two terms:
(1) dP(F ⋆, Fsw), which reflects the performance of the weak model, and (2) dP(Fw, Fsw), which
is decided by the optimization result in Equation (6) and measures how the strong model learns
to imitate the weak supervisor. This result is examined from two complementary perspectives: a
lower bound and an upper bound. They offer insights into the fundamental limitation and theoretical
guarantee for WTSG.

Lower bound. The lower bound indicates the fundamental limitation: dP(F ⋆, Fsw) cannot be arbi-
trarily reduced. Firstly, a minimal dP(F ⋆, Fsw) is intrinsically tied to the weak model performance
dP (F ⋆, Fw). To improve the strong model, the weak model becomes critical—that is, dP (F ⋆, Fw)
should be as small as possible. It underscores the importance of carefully selecting the weak
model (Burns et al., 2023; Yang et al., 2025). Secondly, the performance improvement of strong model
over the weak model cannot exceed O

(√
dP(Fw, Fsw)

)
. In WTSG, while the student-supervisor

disagreement dP(Fw, Fsw) is minimized in Equation (6), we anticipate O
(√

dP(Fw, Fsw)
)

to
remain relatively small. However, a paradox arises: achieving a smaller dP (F ⋆, Fsw) necessitates
a larger dP(Fw, Fsw). This implies that the performance improvement of WTSG is probably
constrained by its own optimization objective.

Upper bound. The upper bound provides a theoretical guarantee for WTSG by ensuring that
dP(F

⋆, Fsw) remains bounded and does not grow arbitrarily large. Firstly, effective WTSG requires
choosing a weak model that produces supervision signal closely aligned with the true score, i.e.,
achieving a small dP (F ⋆, Fw). To this end, employing a stronger weak model is crucial to ob-
tain a tighter upper bound of dP(F ⋆, Fsw). Secondly, the worst-case performance of the strong
model is constrained by the sum of dP (F ⋆, Fw) and O

(√
dP(Fw, Fsw)

)
. By appropriately se-

lecting the weak model and determining the minimizer of Equation (6), both dP (F ⋆, Fw) and
O
(√

dP(Fw, Fsw)
)

can be kept small, ensuring the practicality of the strong model.

4.2 CALIBRATION IN WEAK-TO-STRONG GENERALIZATION

In this section, we further explore WTSG through the lens of calibration (Kumar et al., 2019), which
requires that the prediction confidence should match the actual outcome. We first state the definition
of Marginal Calibration Error (MCE) (Kumar et al., 2019), which is an extended version of Expected
Calibration Error (ECE) (Guo et al., 2017) designed for multi-class classification. In particular, we
use an ℓ1 version of it, with the weight constant 1

k omitted.
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Definition 1 (Marginal Calibration Error (Kumar et al., 2019)). Let x ∈ X , ground truth y =

[y1, · · · , yk]T ∈ {0, 1}k where
∑k

i=1 yi = 1, and a model f : X → Y . Define the marginal
calibration error of f as:

MCE(f) =
k∑

i=1

Ex |[f(x)]i − P[yi = 1|[f(x)]i]| . (9)

It measures the difference between model confidence and actual outcome, and MCE(f) ∈ [0, 2]. For
binary classification, MCE is twice the ECE. We shed light on upper and lower bounds of calibration
of the strong model.

Theorem 2 (Proved in Appendix B.3). Let MCE(·) be the marginal calibration error in Definition 1.
Then there holds

|MCE(Fsw)− MCE(Fw)| ≤ 2 ·
√
1− exp (−dP(Fw, Fsw)). (10)

Theorem 2 demonstrates that the calibration error of Fsw is influenced by two key factors: (1) the
calibration error of Fw, and (2) the teacher-student disagreement, as characterized by the optimization
result in Equation (6). This theoretical result yields two insights. First, to achieve a strong model
with acceptable calibration, the weak teacher should also exhibit acceptable calibration. Otherwise,
the strong model will inherit a non-trivial calibration error from the weak teacher as dP(Fw, Fsw)
goes to zero. Second, closely imitating the weak supervisor minimizes dP(Fw, Fsw), causing the
calibration errors of the strong and weak models to converge. Taking them together, to ensure
WTSG with reasonable calibration and prevent a poorly-calibrated Fsw, it is crucial to avoid using
a poorly-calibrated weak model with an overfitted strong model. Additionally, since models
with larger capacity may exhibit higher calibration errors (Guo et al., 2017), a potential trade-off
exists between the weak model’s calibration error and the teacher-student disagreement. In other
words, MCE(Fw) and

√
1− exp (−dP(Fw, Fsw)) may not be minimized simultaneously, posing a

challenge in selecting the weak model and designing an effective optimization strategy to achieve
better calibration in the strong model.

4.3 EXPERIMENTAL VALIDATION IN LANGUAGE MODELS

In this section, we use language models to verify our theoretical results in WTSG.

4.3.1 EXPERIMENTAL SETTING

Dataset. We define the alignment objective as enabling a weak model to guide a strong model
in achieving harmlessness. To this end, we employ CAI-Harmless (Bai et al., 2022b), which is a
widely adopted single-turn harmless dataset for reward modeling task. Each sample is structured as
(x; yc, yr), where x denotes the prompt, and yc and yr represent the human-preferred and human-
rejected completions, respectively. The dataset is randomly split into three 4K-sample subsets: one
for fine-tuning both weak and strong base models, another for weak supervision via weak model
predictions, and the last for testing and evaluation.

Model. To explore weak-to-strong generalization, we utilize GPT-2 series (Radford et al., 2019)
(including GPT-2-Base, GPT-2-Medium, GPT-2-Large, and GPT-2-XL) and Pythia series (Biderman
et al., 2023) (including Pythia-70M, Pythia-160M, Pythia-410M and Pythia-1B). For each model, we
append a linear projection head to facilitate logit predictions for each completion pair x̃ = (x; yc, yr).
Consequently, the task can be framed as a binary classification problem, where the model F predicts
the soft label as

F (x̃) = Sigmoid(F (yc)− F (yr)).

Training. The models are trained via KL divergence loss. Training details are in Appendix C.1.

Metric. To evaluate whether a model F can effectively distinguish between chosen and rejected
completions (yc and yr) for a given prompt x, we aim for F to assign a higher score to the chosen
completion compared to the rejected one. Specifically, this requires F (yc) − F (yr) > 0 for each
completion pair x̃ = (x; yc, yr), which implies F (x̃) > 0.5. Accordingly, the test accuracy of a
model F is reported as the fraction of predictions that satisfy F (x̃) > 0.5.
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Figure 1: Accuracy and calibration results for Pythia and GPT-2 series. (a) Test accuracies of Pythia
series. Each curve demonstrates the variation in accuracy of WTSG as strong models are supervised
by weak models of varying capabilities. “Strong Ceiling” corresponds to models fine-tuned using
ground truth data. (b) Test accuracies of GPT-2 series. (c) Expected calibration errors of Pythia series.
Each curve depicts the change in ECE as strong models are supervised by different weak teachers.
(d) Expected calibration errors of GPT-2 series.
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Figure 2: Ablation study for the Pythia and GPT-2 series. (a)-(b) Test accuracies of Pythia and
GPT-2. The accuracies of Pythia-70M and GPT-2-Base fine-tuned on ground truth data is 92.45% and
90.95%, respectively. (c)-(d) ECE of Pythia and GPT-2. The ECE of Pythia-70M and GPT-2-Base
fine-tuned on ground truth data is 0.049 and 0.042, respectively.

4.3.2 RESULTS AND ANALYSIS

The main results of WTSG for Pythia and GPT-2 series are shown in Figure 1. To further investigate
the optimization result dP(Fw, Fsw) in WTSG, we increase the number of epochs to train a strong
model that more closely imitates the weak model. The corresponding results are in Figure 2.

Main results. Figure 1(a) and Figure 1(b) demonstrate that, for the same strong model, the general-
ization of WTSG increases when supervised by a weak model of greater capacity. It is consistent
with Theorem 1. Figure 1(c) and Figure 1(d) illustrate the results for calibration errors. Interestingly,
we observe that stronger models with higher capacity tend to exhibit larger ECE. Furthermore,
increasing the weak model’s capacity results in a U-shaped trend in ECE. This pattern suggests a
potential trade-off between the weak model’s calibration quality and the teacher-student disagreement,
which is consistent with Theorem 2.
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Ablation study. To investigate WTSG over extended training epochs, we design a series of teacher-
student pairs with increasing model capacities. Specifically, we employ Pythia-70M as the weak
teacher to supervise larger student models, including Pythia-160M, 410M, and 1B. We also utilize
GPT-2-Base as the weak teacher for supervising GPT-2-Medium, Large, and XL. Figure 2 illustrates
that as we increase the number of epochs to reduce dP(Fw, Fsw), there is a simultaneous decline
in both the accuracy and calibration error of other strong models. Taking the Pythia series as an
example, Figure 1(a) and Figure 1(c) demonstrate that Pythia-70M achieves the lowest accuracy
and best ECE performance among the Pythia models. While Theorem 2 indicates that reducing
dP(Fw, Fsw) causes the accuracy and calibration results of strong models to converge toward those
of the weak model, our experiments show that increasing the number of epochs leads to reduced
accuracy and ECE for Pythia-160M, 410M, and 1B. In other words, the accuracy and ECE of strong
models approach those of the weak model, consistent with Theorem 1 and Theorem 2. And this trend
is also observed in the GPT-2 series.

Potential overfitting. As the number of epochs increases, the accuracy of GPT-2-XL drops even
below that of GPT-2-Base (90.95%). This is attributed to the strong expressive power of GPT-2-
XL, which leads to overfitting to the weak supervision provided by GPT-2-Base. Note that the
upper bounds derived in Theorem 1 and Theorem 2 do not guarantee that the strong model will
outperform the weak model in terms of both generalization performance and calibration properties.
The underlying intuition is that if a strong model overfits to the weak supervision, it may closely
mimic the weak model’s generalization and calibration behavior. Consequently, the strong model
could end up performing on par with or potentially even worse than the weak model.

5 RESULTS BEYOND SQUARED LOSS

In regression problems under some assumptions, Charikar et al. (2024) proves that the strong model’s
error is smaller than the weak model’s, with the gap at least the strong model’s error on the weak
labels. This observation naturally raises the following question: Can their proof be extended from
squared loss to output distribution divergence? In this section, we show how to theoretically bridge
the gap between squared loss and KL divergence within the overall proof framework established
in Charikar et al. (2024). To begin with, we restate an assumption used in previous study.
Assumption 1 (Convexity Assumption (Charikar et al., 2024)). The strong model learns fine-tuning
tasks from a function class Fs, which is a convex set.
It requires that, for any f, g ∈ Fs, and for any λ ∈ [0, 1], there exists h ∈ F such that for all z ∈ Rds ,
h(z) = λf(z) + (1− λ)g(z). To satisfy the convex set assumption, Fs can be the class of all linear
functions. In these cases, Fs is a convex set. Note that it is validated by practice: a popular way to
fine-tune a pre-trained model on task-specific data is by tuning the weights of only the last linear
layer of the model (Howard & Ruder, 2018; Kumar et al., 2022).

5.1 UPPER BOUND (REALIZABILITY)

Firstly, we consider the case where ∃fs ∈ Fs such that Fs = F ⋆ (also called “Realizability” (Charikar
et al., 2024)). It means we can find a fs such that fs ◦ hs = f⋆ ◦ h⋆. This assumption implicitly
indicates the strong power of pre-training. It requires that the representation hs has learned extremely
enough information during pre-training, which is reasonable in modern large language models pre-
trained on very large corpus (Touvron et al., 2023; Achiam et al., 2023). The scale and diversity of
the corpus ensure that the model is exposed to a broad spectrum of lexical, syntactic, and semantic
structures, enhancing its ability to generalize effectively across varied language tasks.

We state our result in the realizable setting, which corresponds to Theorem 1 in Charikar et al. (2024).
Theorem 3 (Proved in Appendix B.4). Given F ⋆, Fw and Fsw defined above. Consider Fs that
satisfies Assumption 1. Consider WTSG using reverse KL divergence loss:

fsw = argminf∈Fs
dP(f ◦ hs, fw ◦ hw).

Assume that ∃fs ∈ Fs such that Fs = F ⋆. Then

dP(F
⋆, Fsw) ≤ dP(F

⋆, Fw)− dP(Fsw, Fw). (11)
Remark. The corresponding theorem and proof in the case of forward KL divergence loss is provided
in Corollary 1 from Appendix B.5, under an additional assumption.
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In contrast to the symmetric squared loss studied in prior work (Charikar et al., 2024), the emergence
of the reverse KL divergence is inherently tied to the asymmetric properties of the KL divergence.
Although extending previous work to both forward and reverse KL divergences presents significant
technical challenges, our results demonstrate the theoretical guarantees of WTSG in these settings. In
Inequality (11), the left-hand side represents the error of the weakly-supervised strong model on the
true data. On the right-hand side, the first term denotes the true error of the weak model, while the
second term captures the disagreement between the strong and weak models, which also serves as the
minimization objective in WTSG. This inequality indicates that the weakly-supervised strong model
improves upon the weak model by at least the magnitude of their disagreement, dP(Fsw, Fw). To
reduce the error of Fsw, Theorem 3 aligns with Theorem 1, highlighting the importance of selecting
an effective weak model and the inherent limitations of the optimization objective in WTSG.

5.2 UPPER BOUND (NON-REALIZABILITY)

Now we relax the “realizability” condition and draw n i.i.d. samples to perform WTSG. We provide
the result in the “unrealizable” setting, where the condition Fs = F ⋆ may not be satisfied for any
fs ∈ Fs. It corresponds to Theorem 2 in Charikar et al. (2024).
Theorem 4 (Proved in Appendix B.6). Given F ⋆, Fw and Fsw defined above. Consider Fs that
satisfies Assumption 1. Consider weak-to-strong generalization using reverse KL:

fsw = argminf∈Fs
dP(f ◦ hs, fw ◦ hw),

f̂sw = argminf∈Fs
d̂P(f ◦ hs, fw ◦ hw),

Denote dP(F ⋆, Fs) = ε. With probability at least 1− δ over the draw of n i.i.d. samples, there holds

dP(F
⋆, F̂sw) ≤ dP(F

⋆, Fw)− dP(F̂sw, Fw) +O(
√
ε) +O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,

(12)

where CFs
is a constant capturing the complexity of the function class Fs, and the asymptotic notation

is with respect to ε → 0, n → ∞.
Remark. The extension to forward KL divergence loss is provided in Corollary 2 from Appendix B.7,
under an additional assumption.

Compared to Inequality (11), this bound introduces two another error terms: the first term of O(
√
ε)

arises due to the non-realizability assumption, and diminishes as the strong ceiling model Fs becomes
more expressive. The remaining two error terms arise from the strong model F̂sw being trained on a
finite weakly-labeled sample. They also asymptotically approach zero as the sample size increases.

5.3 SYNTHETIC EXPERIMENTS

In this section, we conduct experiments on synthetically generated data to validate the theoretical
results in Section 5. While drawing inspiration from the theoretical framework of Charikar et al.
(2024), we extend their synthetic experiments by replacing the squared loss used in their work with
the output distribution divergence defined in Equation (4).

5.3.1 EXPERIMENTAL SETTING

In our setup, The data distribution P is chosen as N (0, σ2I), with σ = 500 to ensure the data is
well-dispersed. The ground truth representation h⋆ : R8 → R16 is implemented as a randomly
initialized 16-layer multi-layer perceptron (MLP) with ReLU activations. Let the weak model and
strong model representations hw, hs : R8 → R16 be 2-layer and 8-layer MLP with ReLU activations,
respectively. Given hw and hs frozen, both the strong and weak models learn from the fine-tuning
task class Fs, which consists of linear functions mapping R16 → R. This makes Fs a convex set.

For the “realizable” setting, we set hs = h⋆. For the “unrealizable” setting, we adopt the approach
of Charikar et al. (2024) and investigate two methods for generating weak and strong representations:
(1) Pre-training: 20 models f⋆

1 , . . . , f
⋆
20 : R8 → R16 are randomly sampled as fine-tuning tasks.

2000 data points are independently generated from P for these tasks. Accordingly, hw and hs

8
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(f) Non-realizable (perturbation).

Figure 3: Experiments on synthetic data using reverse KL divergence loss (a-c) and forward KL
divergence loss (d-f). Each point corresponds to a task and the gray dotted line represents y = x.
h⋆ is a 16-layer MLP. (a,d) Realizable (pre-training): hs = h⋆, and hw is a 2-layer MLP obtained
by pre-training. (b,e) Non-realizable (pre-training): hs is an 8-layer MLP, and hw is a 2-layer MLP.
Both hs and hw are obtained by pre-training. (c,f) Non-realizable (perturbation): Both hs and hw are
obtained by directly perturbing the weights in h⋆: hs = h⋆ +N (0, 0.01), and hw = h⋆ +N (0, 9).

are obtained by minimizing the average output distribution divergence between ground truth label
(f⋆

t ◦ h⋆) and model prediction (f⋆
t ◦ hw and f⋆

t ◦ hs) over the 20 tasks. (2) Perturbations: As an
alternative, we directly perturb the parameters of h⋆ to obtain the weak and strong representations.
Specifically, we add independent Gaussian noises N (0, σ2

s) and N (0, σ2
w) to every parameter in

h⋆ to generate hs and hw, respectively. To ensure the strong representation hs is closer to h⋆ than
hw (Charikar et al., 2024), we set σs = 0.1 and σw = 3.

Weak Model Finetuning. We freeze the weak model representation hw and train the weak models
on new fine-tuning tasks. We randomly sample 100 new fine-tuning tasks f⋆

21, . . . , f
⋆
120 : R8 → R16,

and independently generate another 2000 data points from P . For each task t ∈ {21, · · · , 120}, the
corresponding weak model is obtained by minimizing the output distribution divergence between
ground truth label and weak model prediction.

Weak-to-Strong Supervision. Using the trained weak models, we generate weakly labeled data to
supervise the strong model. Specifically, we first independently generate another 2000 data points
from P . Then for each task t ∈ {21, · · · , 120}, the strong model is obtained by minimizing the
output distribution divergence between weak model supervision and strong model prediction. At
this stage, the weak-to-strong training procedure is complete. The detailed introduction of above is
in Appendix C.2.

Evaluation. We independently draw an additional 2000 samples from P to construct the test set. They
are used to estimate dP(F

⋆, Fsw), dP(F ⋆, Fw) and dP(Fsw, Fw) for each task t ∈ {21, · · · , 120}.
We estimate these quantities using their empirical counterparts: d̂P(F

⋆, Fw), d̂P(F ⋆, Fsw), and
d̂P(Fsw, Fw). To validate Theorem 3-4 and visualize the trend clearly, we plot d̂P(F ⋆, Fw) −
d̂P(F

⋆, Fsw) on the x-axis versus d̂P(Fsw, Fw) on the y-axis. The results are presented in Figure 3(a)-
(c). We also examine forward KL divergence loss. To validate Corollary 1-2, which extend Theorem 3-
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4 to the case of using forward KL divergence loss in WTSG, we plot d̂P(Fw, F
⋆)− d̂P(Fsw, F

⋆) on
the x-axis versus d̂P(Fw, Fsw) on the y-axis. The results are presented in Figure 3(d)-(f).

5.3.2 RESULTS AND ANALYSIS

Reverse KL divergence loss. Similar to previous results (Charikar et al., 2024), the points in our
experiments also cluster around the line y = x. This suggests that d̂P(F ⋆, Fw)− d̂P(F

⋆, Fsw) ≈
d̂P(Fsw, Fw). It is consistent with our theoretical framework, suggesting that the improvement over
the weak teacher can be quantified by the disagreement between strong and weak models.

Forward KL divergence loss. The observed trend closely mirrors that of reverse KL. The dots
are generally around the line y = x. It suggest that the relationship d̂P(Fw, F

⋆)− d̂P(Fsw, F
⋆) ≈

d̂P(Fw, Fsw) may also hold, indicating a similar theoretical guarantee for forward KL in WTSG.

6 CONCLUSION

This paper provides a comprehensive theoretical framework for understanding the capability and
limitation of weak-to-strong generalization. In the classification setting, we establish upper and lower
bounds for both the generalization and calibration errors of the strong model, revealing that the primary
limitations arise from the weak model and the optimization objective. These bounds emphasize
two critical insights: (1) the weak model must demonstrate strong generalization and calibration
performance, and (2) the strong model should avoid excessive training to prevent overfitting on weak
supervision. In the regression setting, we extended prior work to output distribution divergence loss,
proving that a strong model can outperform its weak teacher by at least their disagreement under
certain assumptions. Our theoretical findings were validated through experiments with language
models and MLP, providing practical insights and some interesting observations for the WTSG
paradigm. Overall, we hope this work enhances the understanding of weak-to-strong generalization
and encourages future research to unlock its promise for human-aligned AI systems.

BROADER IMPACT AND ETHICS STATEMENT

This work on weak-to-strong generalization aims to improve the alignment of superhuman models
with human values. While our theoretical and empirical insights highlight the potential of this
approach, we acknowledge the risks of propagating biases or errors from the weak model to the
strong model. To address these concerns, we emphasize the importance of ensuring the weak model’s
generalization and calibration, as well as carefully balancing the strong model’s optimization to
avoid over-reliance on weak supervision. We encourage rigorous testing, transparency, and ongoing
monitoring in real-world applications to ensure the safe and ethical deployment of such systems.
Our work contributes to the broader effort of aligning advanced AI with human values, but its
implementation must prioritize fairness, accountability, and safety.
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Appendix

A FURTHER RELATED WORK

Teacher-student learning paradigm. The student-teacher training paradigm (Meseguer-Brocal
et al., 2019; Meng et al., 2019), which involves first training a teacher model and then using its
outputs (e.g., pseudo-labels or soft targets) to guide the training of a student model, has become
a cornerstone in various machine learning domains. This approach is particularly prominent in
knowledge distillation (Hinton, 2015; Beyer et al., 2022), semi-supervised learning (Tarvainen &
Valpola, 2017) and domain adaptation (Shu et al., 2018). It can also be used in other fields like
curriculum learning (Matiisen et al., 2019) and continual learning (Lee et al., 2021). However, most
prior work assumes that the teacher is either more capable or at least comparable to the student in
terms of model capacity or performance. In contrast, weak-to-strong generalization (Burns et al.,
2023) explores a less studied setting where the student model is significantly more capable than the
teacher, which is different from the traditional assumptions of the student-teacher framework. By
theoretically investigating this setting, we aim to uncover novel insights into the capabilities and
limitations of weak-to-strong generalization. We hope that our theoretical investigation into it will
serve as a catalyst for advancements not only in the domain of super-alignment but also in the broader
landscape of teacher-student learning paradigm.

Weakly-supervised learning. Weakly-supervised learning has emerged as a powerful paradigm to
address the challenges of limited labeled data by leveraging weak supervision (Ratner et al., 2020).
Such weak supervision may be incomplete (i.e., only a small subset of labels are given), inexact (i.e.,
only coarse-grained labels are given) and inaccurate (i.e., the given labels are noisy) (Zhou, 2018).
This problem setting is also closely related to label noise (Song et al., 2022) and semi-supervised
learning (Van Engelen & Hoos, 2020). To address the problem of weakly-supervised learning,
practical trials leverage these various forms of weak supervision, such as utilizing noisy labels (Cheng
et al., 2020), coarse-grained labels (Oquab et al., 2015), and incomplete annotations (Papadopoulos
et al., 2017). And most of them improving model performance within the limitations of weak
supervision. In contrast, weak-to-strong generalization explores a distinct yet related direction: it
investigates how a strong model, when trained on weak supervision, can not only correct the errors
of the weak supervisor but also generalize to instances where the weak supervisor is uncertain
or incorrect (Burns et al., 2023; Yang et al., 2025). We hope that our theoretical exploration of
weak-to-strong generalization can inspire not only the field of super-alignment but also research in
weakly-supervised learning.

Calibration. Calibration is an important concept about uncertainty estimation and confidence (Guo
et al., 2017; Kuleshov et al., 2018; Kumar et al., 2019; Mehrtash et al., 2020) in machine learning.
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There are several kinds of definition for calibration. For instance, taking expectation conditioned on
the data distribution (Kull et al., 2019; Kumar et al., 2019; Roelofs et al., 2022) (Also, see Definition
3 in (Pleiss et al., 2017) and Equation (2) in (Liu et al., 2019) in the fairness literature), and (2) taking
expectation conditioned on the probability score (Naeini et al., 2015; Guo et al., 2017). Researchers
also investigate the calibration in natural language processing (Desai & Durrett, 2020; Guo et al.,
2021; Ulmer et al., 2022; Chen et al., 2023). In recent years, the calibration of large language models
has garnered significant attention (Zhu et al., 2023; Tian et al., 2023; Liang et al., 2023), with a
thorough survey provided in (Geng et al., 2024). However, to the best of our knowledge, while
confidence issues in weak-to-strong generalization have been investigated in (Burns et al., 2023), the
role of calibration has not been sufficiently investigated. In this paper, we theoretically demonstrate
how strong model’s calibration is affected in WTSG. And we believe that calibration warrants further
in-depth investigation in this field.

Information-theoretic analysis. Information-theoretic analysis is commonly employed to bound the
expected generalization error in supervised learning (Russo & Zou, 2016; Xu & Raginsky, 2017), with
subsequent studies providing sharper bounds (Bu et al., 2020; Wang & Mao, 2023b). These bounds
have been used to characterize the generalization ability of stochastic gradient-based optimization
algorithms (Pensia et al., 2018). Furthermore, this theoretical framework has been extended to
diverse settings, including meta-learning (Chen et al., 2021), semi-supervised learning (Aminian
et al., 2022), transductive learning (Tang & Liu, 2023), and domain adaptation (Wang & Mao, 2023a).
For a comprehensive overview of these developments, we refer readers to the recent monograph
by Hellström et al. (2023). Nonetheless, despite its extensive application across various domains,
the information-theoretic analysis of super-alignment (OpenAI, 2024), particularly in the context of
weak-to-strong generalization, remains largely underexplored. In this paper, we use KL divergence to
analyze weak-to-strong generalization, which is not considered in previous work. KL divergence is
an information-theoretic measure between two probability distributions in information theory (Cover,
1999). And how to extend it to other information-theoretic measures remains an open question and
warrants further exploration in future work.

B MAIN PROOF

B.1 PROOF OF THEOREM 1

We first state some preliminaries for the proof.
Lemma 1 (Donsker and Varadhan’s variational formula (Donsker & Varadhan, 1983)). Let Q,P be
probability measures on X , for any bounded measurable function f : X → R, we have

DKL(Q∥P ) = sup
f

Ex∼Q[f(x)]− logEx∼P [exp f(x)].

Lemma 2 (Hoeffding’s lemma). Let X ∈ R such that a ≤ X ≤ b. Then, for all λ ∈ R,

E
[
eλ(X−E[X])

]
≤ exp

(
λ2(b− a)2

8

)
.

Definition 2 (Subgaussian random variable). A random variable X ∈ R is σ-subgaussian if for any
ρ,

logE exp(ρ(X − EX)) ≤ ρ2σ2/2.

Notation of probability distribution for the model output. We define the corresponding probability
distributions for prediction of Fsw and Fw. Recall that for Fw, Fsw : X → Y and x ∈ X :

dP(Fw, Fsw) = Ex

 k∑
j=1

[Fw(x)]j log
[Fw(x)]j
[Fsw(x)]j

 = Ex [DKL(Fw(x), Fsw(x))] ,

where DKL is the discrete version of KL divergence. ∀x ∈ X , we know that
∑k

j=1[Fw(x)]j = 1.
Therefore, given the class space Ck = {1, · · · , k}, we define a probability distribution Pw(x) with
the probability density function pw, where j ∈ Ck and

pw(j) = [Fw(x)]j . (13)
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Using this method, we also define the probability distribution Psw(x) for Fw(x).

Now we start the proof.

Proof. For better readability, we divide the proof into several steps.

The first step. Given the probability distributions Pw(x) and Psw(x) above, the first step is motivated
by Lemma A.2 from (Wang & Mao, 2023a). For any x ∈ X , j ∈ Ck, g : Ck → R and assume that g
is σ-subgaussian (we will specify σ later). Let f = t · g for any t ∈ R. We have

DKL (Fw(x)∥Fsw(x)) = DKL(Pw(x)∥Psw(x))

= sup
t

Ej′∼Pw(x) [t · g(j′)]− logEj∼Psw(x)[exp (t · g(j))] (Lemma 1)

= sup
t

Ej′∼Pw(x) [tg (j
′)]− logEj∼Psw(x)

[
exp t

(
g(j)− Ej∼Psw(x)[g(j)] + Ej∼Psw(x)[g(j)]

)]
= sup

t
Ej′∼Pw(x) [tg (j

′)]− Ej∼Psw(x)[tg(j)]− logEj∼Psw(x)

[
exp t

(
g(j)− Ej∼Psw(x)[g(j)]

)]
≥ sup

t
t
(
Ej′∼Pw(x) [g (j

′)]− Ej∼Psw(x)[g(j)]
)
− t2σ2/2.

(Subgaussianity)

The second step. The second step is associating the above result with dP(Fw, Fsw). In particular,
by taking expectations of x on both sides of the above inequality, we obtain

dP(Fw, Fsw) = ExDKL (Fw(x)∥Fsw(x)) ≥ sup
t

t
(
ExEj′∼Pw(x) [g (j

′)]− ExEj∼Psw(x)[g(j)]
)
− t2σ2/2︸ ︷︷ ︸

ϕ(t)

.

Note that ϕ(t) is a quadratic function of t. Therefore, by AM–GM inequality, we find the maximum
of this quadratic function:

ϕ(t) ≤ 1

2σ2

(
ExEj′∼Pw(x) [g (j

′)]− ExEj∼Psw(x)[g(j)]
)2

= sup
t

ϕ(t) ≤ dP(Fw, Fsw).

Subsequently, there holds∣∣ExEj′∼Pw(x) [g (j
′)]− ExEj∼Psw(x)[g(j)]

∣∣ ≤√2σ2dP(Fw, Fsw). (14)

The third step. The third step is constructing g to associate the above result with dP(F
⋆, Fsw) and

dP (F ⋆, Fw). Specifically, given a probability distribution Pg with the density function pg , we define
function g : Ck → (0, 1] associated with Pg:

g(j) ≜
[F ⋆(x)]j
pg(j)

log
[F ⋆(x)]j
pg(j)

, for j ∈ Ck.

We have

ExEj∼Pg
[g(j)] = ExEj∼Pg

[
[F ⋆(x)]j
pg(j)

log
[F ⋆(x)]j
pg(j)

]

= Ex

∑
j∈Ck

pg(j) ·
[F ⋆(x)]j
pg(j)

· log [F ⋆(x)]j
pg(j)


= Ex

∑
j∈Ck

[F ⋆(x)]j · log
[F ⋆(x)]j
pg(j)


Recall the definition of Psw and Pw in (13), we replace Pg with Psw and Pw in the above equation:

ExEj′∼Psw [g (j′)] = Ex

∑
j=1

[F ⋆(x)]j log
[F ⋆(x)]j
[Fsw(x)]j

 = dP(F
⋆, Fsw),
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ExEj∼Pw
[g(j)] = Ex

∑
j=1

[F ⋆(x)]j log
[F ⋆(x)]j
[Fw(x)]j

 = dP(F
⋆, Fw).

Substitute the above into (14):

|dP(F ⋆, Fsw)− dP(F
⋆, Fw)| ≤

√
2σ2dP(Fw, Fsw). (15)

The final step. Finally, we obtain the subgaussian factor R of function g by using the fact that g is
bounded. For simplicity, we use Hoeffding’s Lemma (Lemma 2) to obtain the subgaussian factor R.
However, it can be more precisely determined using advanced techniques in learning theory literature
(for instance, see Remark 2.14 in (Li et al., 2024), where α = 2 recovers the subgaussian setting).

Recall that the output domain Y ⊆ Rk, where ∀y = (y1, · · · , yk)T ∈ Y , there holds
∑k

i=1 yi = 1
and 0 < yi ≤ 1. In other words, ∃γ > 0 such that 0 < γ ≤ yi ≤ 1. It means that g(j) ∈
[− 1

γ log 1
γ ,

1
γ log 1

γ ]. According to Lemma 2, ∀λ ∈ R, we have

E
[
eλ(g(j)−E[g(j)])

]
≤ exp

λ2
(

1
γ log 1

γ

)2
2

 .

In other words, g(j) is σ-subgaussian, where σ = 1
γ log 1

γ . Substitute it into Equation (15) and we
obtain:

|dP(F ⋆, Fsw)− dP (F ⋆, Fw)| ≤ C1

√
dP(Fw, Fsw),

where the constant C1 =
√
2

γ log 1
γ . The proof is complete.

B.2 EXTENSION OF THEOREM 1

In this section, we extend Theorem 1 to output distribution divergence in regression.

Proof. Denote dKL(f∥g) = DKL(Pf∥Pg) =
∫
X f(x) log f(x)

g(x)dx. Let (X ,F ,Psw), (X ,F ,Pw) be
two probability spaces. Denoting Fsw and Fw the densities of the measures. Therefore,∫

X
Fsw(x)dx =

∫
X
Fw(x)dx = 1.

Let x ∈ X , g : X → R and assume that g is R-subgaussian (we will specify R later). Let f = t · g
for any t ∈ R. By Lemma 1, we have

dKL (Fw∥Fsw) = DKL(Pw∥Psw)

= sup
t

Ex′∼Pw [t · g (x′)]− logEx∼Psw [exp (t · g(x))]

= sup
t

Ex′∼Pw [tg (x′)]− logEx∼Psw [exp t (g(x)− Ex∼Psw [g(x)] + Ex∼Psw [g(x)])]

= sup
t

Ex′∼Pw [tg (x′)]− Ex∼Psw [tg(x)]− logEx∼Psw [exp t (g(x)− Ex∼Psw [g(x)])]

≥ sup
t

t (Ex′∼Pw
[g (x′)]− Ex∼Psw

[g(x)])− t2R2/2︸ ︷︷ ︸
ϕ(t)

. (Subgaussianity)

Let
ϕ(t) = t (Ex′∼Pw [g (x′)]− Ex∼Psw [g(x)])− t2R2/2,

which is a quadratic function of t. Therefore,

ϕ(t) ≤ 1

2R2
(Ex′∼Psw

[g (x′)]− Ex∼Pw
[g(x)])

2
= sup

t
ϕ(t) ≤ DKL(Pw∥Psw) = dKL (Fw∥Fsw) .
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So we have

|Ex′∼Psw
[g (x′)]− Ex∼Pw

[g(x)]| ≤
√
2R2dKL (Fw∥Fsw). (16)

Given a probability space (X ,F ,Pg) with the density function pg . Define

g(x) ≜
F ⋆(x)

pg(x)
log

F ⋆(x)

pg(x)
.

So there holds

Ex∼Pg
[g(x)] =

∫
X
F ⋆(x) · log F ⋆(x)

pg(x)
dx.

Replace Pg with Psw and Pw:

Ex′∼Psw
[g (x′)] =

∫
X
F ⋆(x) log

F ⋆(x)

Fsw(x)
dx = dP(F

⋆, Fsw),

Ex∼Pw
[g(x)] =

∫
X
F ⋆(x) log

F ⋆(x)

Fw(x)
dx = dP(F

⋆, Fw).

Substitute them back into (16) and we obtain:

|dP(F ⋆, Fsw)− dP(F
⋆, Fw)| ≤

√
2R2dKL (Fw∥Fsw). (17)

Finally, recall that the output domain Y = {y ∈ R|0 < y ≤ 1}. In other words, ∃γ > 0 such that
Y = {y ∈ R|0 < γ ≤ y ≤ 1}. It means that g(x) ∈ [− 1

γ log 1
γ ,

1
γ log 1

γ ]. According to Lemma 2,
∀λ ∈ R, we have

E
[
eλ(g(x)−E[g(x)])

]
≤ exp

λ2
(

1
γ log 1

γ

)2
2

 .

In other words, g(x) is R-subgaussian, where R = 1
γ log 1

γ . Substitute it into Equation (17) and we
obtain:

|dP(F ⋆, Fsw)− dP (F ⋆, Fw)| ≤
√

C1dP(Fw, Fsw),

where the constant C1 = 2
(

1
γ log 1

γ

)2
.

B.3 PROOF OF THEOREM 2

Total variation distance is introduced for our proof.

Definition 3 (Total Variation Distance). Given two probability distributions P and Q, the Total
Variation (TV) distance between P and Q is

DTV(P∥Q) =
1

2

∫
x∈X

|P (x)−Q(x)| dx.

Note that DTV(P∥Q) ∈ [0, 1]. Also, DTV(P∥Q) = 0 if and only if P and Q coincides, and
DTV(P∥Q) = 1 if and only if P and Q are disjoint.

Let the calibrated bayes score function F b : X → Y that satisfies ∀i ∈ {1, · · · , k}, [F b(x)]i =
P(Yi = 1|X = x), where Y = [Y1, · · · , Yk]

T ∈ {0, 1}k and ∥Y ∥1 = 1. Now we start our proof.

Proof. Consider the definition of MCE in Equation (9). Notice that

MCE(F ) =

k∑
i=1

EX |[F (X)]i − P[Yi = 1|[F (X)]i]|
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= EX

[
k∑

i=1

|[F (X)]i − P[Yi = 1|[F (X)]i]|

]
= EX

∥∥F (X)− F b(X)
∥∥
1
,

and MCE(F ) ∈ [0, 2].

So there holds

MCE(Fw)− MCE(Fsw) = EX

∥∥Fw(X)− F b(X)
∥∥
1
− EX

∥∥Fsw(X)− F b(X)
∥∥
1

≤ EX ∥Fw(X)− Fsw(X)∥1 (Triangle inequality)
= 2 · EXDTV(Fw(X), Fsw(X))

≤ 2 · EX

√
1− exp (−DKL(Fw(X), Fsw(X)))

(Bretagnolle–Huber inequality)

≤ 2 ·
√
1− exp (−EXDKL(Fw(X), Fsw(X))) (Jensen’s inequality)

= 2 ·
√

1− exp (−dP(Fw, Fsw)).
(Definition of dP for KL divergence loss)

Likewise,

MCE(Fsw)− MCE(Fw) = EX

∥∥Fsw(X)− F b(X)
∥∥
1
− EX

∥∥Fw(X)− F b(X)
∥∥
1

≤ EX ∥Fsw(X)− Fw(X)∥1 (Triangle inequality)
≤ EX ∥Fw(X)− Fsw(X)∥1 (Symmetry)
= 2 · EXDTV(Fw(X), Fsw(X))

≤ 2 ·
√
1− exp (−dP(Fw, Fsw)). (Using the derivation above)

Combining the above, we have

MCE(Fsw)− MCE(Fw) ≤ 2 ·
√
1− exp (−dP(Fw, Fsw)),

MCE(Fw)− MCE(Fsw) ≤ 2 ·
√
1− exp (−dP(Fw, Fsw)).

The proof is complete.

B.4 PROOF OF THEOREM 3

We first restate a lemma for our proof. Recall that the strong model learns from a linear function class
F : Rds → R of fine-tuning tasks. Recall also that we denote the strong model representation map
by hs : Rd → Rds . Let Vs = {f ◦ hs : f ∈ F} be the set of all tasks in F composed with the strong
model representation. We first observe that Vs is also a convex set.

Lemma 3 (Charikar et al. (2024)). Vs is a convex set.

Proof. Fix f, g ∈ F , and consider f ◦ hs, g ◦ hs ∈ Vs. Fix any λ ∈ [0, 1]. Since F is the
linear function class so that it is a convex set, there exists p ∈ F such that for all y ∈ Rds ,
p(y) = λf(y) + (1− λ)g(y). Now, fix any x ∈ Rd. Then, we have that

λ(f ◦ hs)(x) + (1− λ)(g ◦ hs)(x) = λf(hs(x)) + (1− λ)g(hs(x)) = p(hs(x)) = (p ◦ hs)(x),

and hence λ(f ◦ hs) + (1− λ)(g ◦ hs) = p ◦ hs ∈ Vs.

Now we start the proof.

Proof. For any f, g ∈ X → Y , denote dKL(f∥g) =
∫
X f(x) log f(x)

g(x)dx.
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Given any g ∈ Vs, observe that

dKL(g∥Fw) =

∫
X
g(x) log

g(x)

Fw(x)
dx

=

∫
X
g(x) log

(
g(x)

Fsw(x)
· Fsw(x)

Fw(x)

)
dx

= dKL(g∥Fsw) + dKL(Fsw∥Fw)− dKL(Fsw∥Fw) +

∫
X
g(x) log

Fsw(x)

Fw(x)
dx

= dKL(g∥Fsw) + dKL(Fsw∥Fw) +

∫
X
(g(x)− Fsw(x)) log

Fsw(x)

Fw(x)
dx︸ ︷︷ ︸

Q1

. (18)

Now our goal is to judge whether Q1 ≥ 0.

Recall that
fsw = argminf dKL(f ◦ hs∥Fw).

In other words, Fsw is the projection of Fw onto the convex set Vs. Therefore:

dKL(g∥Fw) ≥ dKL(Fsw∥Fw).

Therefore,

dKL(g∥Fsw) +Q1 ≥ 0. (19)

Now, fix t ∈ (0, 1), and consider the function g = Fsw + t(F ⋆ − Fsw).

dKL(g∥Fsw) =

∫
X
g(x) log

g(x)

Fsw(x)

= −
∫
X
g(x) log

Fsw(x)

g(x)
dx

= −
∫
X
g(x) log

[
1− t(F ⋆(x)− Fsw(x))

g(x)

]
dx

=

∫
X
g(x)

[
t(F ⋆(x)− Fsw(x))

g(x)
+O(t2)

]
dx

=

∫
X

[
t(F ⋆(x)− Fsw(x)) +O(t2)

]
dx (Taylor expansion)

= O(t2). (
∫
X Fsw(x)dx =

∫
X F ⋆(x)dx = 1)

While

Q1 =

∫
X
(g(x)− Fsw(x)) log

Fsw(x)

Fw(x)
dx

= t ·
∫
X
(F ⋆(x)− Fsw(x)) log

Fsw(x)

Fw(x)
dx

= O(t).

Recall Equation (19) that
dKL(Fsw∥g)︸ ︷︷ ︸

O(t2)

+ Q1︸︷︷︸
O(t)

≥ 0,

which means Q1 ≥ 0. So we have∫
X
(F ⋆(x)− Fsw(x)) log

Fsw(x)

Fw(x)
dx ≥ 0.

Let g = F ⋆ in Equation (18) and we can prove the result dP(F
⋆, Fsw) ≤ dP(F

⋆, Fw) −
dP(Fsw, Fw).
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B.5 EXTENSION OF THEOREM 3

We first introduce some definitions.

Definition 4 (Itakura–Saito Divergence (Itakura, 1968; Févotte et al., 2009; Prasetyawan & Takamichi,
2020)). Given two probability distributions P and Q, the Itakura–Saito divergence between them is
defined as

DIS(P∥Q) =

∫
X

(
P (x)

Q(x)
− log

P (x)

Q(x)
− 1

)
dx.

Similar to the KL divergence, the Itakura–Saito divergence is also a Bregman divergence (Dhillon,
2007).

Definition 5 (Weighted Itakura–Saito Divergence (Chu & Messerschmitt, 1982)). Given two proba-
bility distributions P and Q, the weighted Itakura–Saito divergence between them is defined as

DWIS(P∥Q) =

∫
X
w(x)

(
P (x)

Q(x)
− log

P (x)

Q(x)
− 1

)
dx,

where w(x) is the weight function.

We also define the inner product of functions

⟨f, g⟩ ≜
∫
X
f(x)g(x)dx.

Now we present the theoretical extension of Theorem 3 to forward KL divergence loss in WTSG.

Corollary 1. Given F ⋆, Fw and Fsw defined above. Let dP be the output distribution divergence
and consider WTSG in Equation (6) using forward KL divergence loss. Assume that ∃fs ∈ Fs such
that Fs = F ⋆. Consider Fs that satisfies Assumption 1. If the weighted Itakura–Saito divergence
DWIS(F

⋆∥Fsw) ≤ 0 with the weight function w = Fsw − Fw, then:

dP (Fsw, F
⋆) ≤ dP (Fw, F

⋆)− dP (Fw, Fsw) . (20)

Corollary 1 shows that Charikar et al. (2024) can be extended to our setting if we introduce another
assumption, which comes from the technical challenges of theoretically analyzing the non-linear
nature of KL divergence. Denote F+ = F⋆

Fsw
−1−log F⋆

Fsw
, then the assumption DWIS(F

⋆∥Fsw) ≤ 0

is equivalent to ⟨Fsw − Fw, F
+⟩ ≤ 0. Note that ∀x ∈ X , F+(x) ≥ 0 always holds, and a very

small or large value of F⋆(x)
Fsw(x) generally contributes to a large F+(x). To make ⟨Fsw − Fw, F

+⟩ ≤ 0

more likely to hold, we expect Fsw(x) ≤ Fw(x) if F ⋆(x) is small or large. In general, since this
condition cannot be guaranteed to hold universally, the inequality in Equation (11) may fail to hold.
This reveals a key discrepancy between the square function (as considered in Charikar et al. (2024))
and the KL divergence (in this work) within the WTSG framework—a phenomenon that will be
empirically validated through our experiments.

Proof sketch of Charikar et al. (2024). For the proof technique, Charikar et al. (2024) constructs
a function within a convex set. By exploiting the property of projection and square function, they
demonstrate that O(t) +O(t2) is non-negative as t → 0+. Consequently, the first-order term must
be non-negative, which proves the result.

Proof sketch of ours. Extending the proof framework from Theorem 1 in (Charikar et al., 2024)
presents several challenges. First, due to the properties of KL divergence, the constructed function
does not lie within the convex set. To address this issue, we employ a first-order Taylor expansion and
introduce a remainder term. Secondly, because of the remainder, we derive that O(t) +O(t) +O(t2)
is non-negative. Consequently, we must assume that one of the first-order terms is non-positive to
ensure that the other first-order term is non-negative, which allows us to prove the result. However, if
the first-order term is positive, the second first-order term might also remain non-negative.

Now we start our proof of Corollary 1. Some Taylor expansion claims used in the proof (Claim 1,
Claim 2 and Claim 3) are provided at the end of the proof.
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Proof. For any f, g ∈ X → Y , denote dKL(f∥g) =
∫
X f(x) log f(x)

g(x)dx.

Given any g ∈ Vs, observe that

dKL(Fw∥g) =
∫
X
Fw(x) log

Fw(x)

g(x)
dx

=

∫
X
Fw(x) log

(
Fw(x)

Fsw(x)
· Fsw(x)

g(x)

)
dx

=

∫
X
Fw(x) log

Fw(x)

Fsw(x)
dx+

∫
X
Fw(x) log

Fsw(x)

g(x)
dx

= dKL(Fw∥Fsw) + dKL(Fsw∥g)− dKL(Fsw∥g) +
∫
X
Fw(x) log

Fsw(x)

g(x)
dx

= dKL(Fw∥Fsw) + dKL(Fsw∥g) +
∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

g(x)
dx︸ ︷︷ ︸

Q1

. (21)

Now our goal is to judge whether Q1 ≥ 0.

Recall that
fsw = argminf dKL(Fw∥f ◦ hs).

In other words, Fsw is the projection of Fw onto the convex set Vs. Therefore:

dKL(Fw∥g) ≥ dKL(Fw∥Fsw).

And hence

dKL(Fw∥g)− dKL(Fw∥Fsw) ≥ 0

⇒
∫
X
Fw(x) log

Fw(x)

g(x)
dx−

∫
X
Fw(x) log

Fw(x)

Fsw(x)
dx ≥ 0

⇒
∫
X
Fw(x) log

Fsw(x)

g(x)
dx︸ ︷︷ ︸

Q2

≥ 0.

Therefore,

Q2 = dKL(Fsw∥g) +Q1 ≥ 0. (22)

Now, fix t ∈ (0, 1), and consider the functions

w(x) = (Fsw(x)) ·
(

F ⋆(x)

Fsw(x)

)t

, (23)

w′(x) = Fsw(x) + t (F ⋆(x)− Fsw(x)) . (24)

It is clear that w(x) > 0, w′(x) > 0. And according to Claim 1, we have

w(x) = Fsw(x) ·

[
1 + t log

F ⋆(x)

Fsw(x)
+

1

2
t2
(
log

F ⋆(x)

Fsw(x)

)2(
F ⋆(x)

Fsw(x)

)ξ
]
,

where ξ ∈ (0, t). It means that

w′(x)− w(x) = t · Fsw(x)

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
︸ ︷︷ ︸

O(t)

− t2 · Fsw(x)

2

(
log

F ⋆(x)

Fsw(x)

)2(
F ⋆(x)

Fsw(x)

)ξ

︸ ︷︷ ︸
O(t2)

.

(25)

And F⋆(x)
Fsw(x) − 1− log F⋆(x)

Fsw(x) > 0. It means that as t → 0+, w′(x)−w(x) > 0 and w′(x)−w(x) =

O(t).
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Define

ϕ(x) ≜ log
Fsw(x)

w′(x)
− log

Fsw(x)

w(x)
(26)

= log
w(x)

w′(x)

= log

(
1− w′(x)− w(x)

w′(x)

)
= − w′(x)− w(x)

w′(x)︸ ︷︷ ︸
O(t)

−1

2

(
w′(ζ)− w(ζ)

w′(ζ)

)2

︸ ︷︷ ︸
O(t2)

, (Claim 2)

where ζ is between 0 and w′(x)−w(x)
w′(x) . As t → 0+, we know that ϕ(x) ≤ 0 and ϕ(x) = O(t).

Combining (23) with (26) and we have:

log
Fsw(x)

w(x)
= t log

Fsw(x)

F ⋆(x)
,

and log
Fsw(x)

w′(x)
= t log

Fsw(x)

F ⋆(x)
+ ϕ(x). (27)

Note that Fsw ∈ Vs, which is a convex set (Lemma 3). Also, F ⋆ ∈ Vs (Realizability). Therefore,
according to the definition of convexity, we have w′ ∈ Vs. Hence, substituting w′ for g in (22) and
consider Equation (27), we get

Q2 =

∫
X
Fsw(x) log

Fsw(x)

g(x)
dx︸ ︷︷ ︸

dKL(Fsw∥g)

+

∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

g(x)
dx︸ ︷︷ ︸

Q1

≥ 0,

⇒ dKL(Fsw∥w′) +

∫
X
(Fw(x)− Fsw(x)) · ϕ(x)dx+

t

∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

F ⋆(x)
dx ≥ 0. (28)

Here, we address these three components individually. Our goal is to show that the first term is O(t2),
while the second term, which is O(t), is negative. Considering these collectively, the third term, also
O(t), must be positive.

The first term. Denote u(x) = F ⋆(x)− Fsw(x). Note that

dKL(Fsw∥w′) =

∫
X
(Fsw(x)) log

Fsw(x)

Fsw(x) + t · u(x)
dx

=

∫
X
(Fsw(x)) log

(
1− t · u(x)

Fsw(x) + t · u(x)

)
dx

= −t

∫
X

Fsw(x) · u(x)
Fsw(x) + t · u(x)

dx− 1

2
t2
∫
X

Fsw(x) · (u(ζ ′))2

(w′(ζ ′))2
dx (Claim 2)

= −t

∫
X

[
u(x)− t · (u(x))2

Fsw(x) + t · u(x)

]
dx− 1

2
t2
∫
X

Fsw(x) · (u(ζ ′))2

(w′(ζ ′))2
dx

= −t

∫
X
u(x)dx︸ ︷︷ ︸
0

+t2
∫
X

(u(x))2

Fsw(x) + t · u(x)
dx− t2

∫
X

Fsw(x) · (u(ζ ′))2

2(w′(ζ ′))2
dx

= t2
∫
X

[
(u(x))2

Fsw(x) + t · u(x)
− Fsw(x) · (u(ζ ′))2

2(w′(ζ ′))2

]
dx

where ζ ′ is between 0 and t·u(x)
Fsw(x)+t·u(x) . Therefore, taking the limit as t → 0+, we get that

dKL(Fsw∥w′) = O(t2).
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The second term. Recall Equation (25) that

w′(x)− w(x) = t · Fsw(x)

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
+O(t2),

w′(x) = Fsw(x)

(
1 + t

(
F ⋆(x)

Fsw(x)
− 1

))
.

Therefore,

w′(x)− w(x)

w′(x)
=

t
(

F⋆(x)
Fsw(x) − 1− log F⋆(x)

Fsw(x)

)
+O(t2)

1 + t
(

F⋆(x)
Fsw(x) − 1

)
=

[
t

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
+O(t2)

]
·
[
1− t

(
F ⋆(x)

Fsw(x)
− 1

)
+O(t2)

]
(Claim 3)

= t

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
+O(t2).

In other words, the second term in (28) is∫
X
(Fw(x)− Fsw(x)) · ϕ(x)dx

=−
∫
X
(Fw(x)− Fsw(x)) ·

(
w′(x)− w(x)

w′(x)
+O(t2)

)
dx (Equation (26))

=

∫
X
(Fsw(x)− Fw(x)) ·

(
w′(x)− w(x)

w′(x)

)
dx+O(t2)

=t

∫
X
(Fsw(x)− Fw(x))

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
dx+O(t2)

=t ·DWIS(F
⋆∥Fsw) +O(t2),

where the weight function of the weighted Itakura–Saito Divergence is w = Fsw − Fw. Therefore,
as t → 0+, the second term in (28) is of the order O(t). If DWIS(F

⋆∥Fsw) ≤ 0, the second term
in (28) will be non-positive (otherwise, it will be positive).

The third term. Taking the limit as t → 0+ in (28):

dKL(Fsw∥w′)︸ ︷︷ ︸
O(t2)

+

∫
X
(Fw(x)− Fsw(x)) · ϕ(x)dx︸ ︷︷ ︸

O(t)

+ t

∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

F ⋆(x)
dx︸ ︷︷ ︸

O(t)

≥ 0.

If the middle term is non-positive, the last term should be non-negative:∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

F ⋆(x)
dx ≥ 0. (29)

Substituting F ⋆ for g in (21), and using (29), we obtain the desired result

dP(Fsw, F
⋆) ≤ dP(Fw, F

⋆)− dP(Fw, Fsw).

Else, if the middle term is positive (i.e,, DWIS(F
⋆∥Fsw) ≤ 0 is not satisfied), the last term may also

be non-negative, which means that dP(Fsw, F
⋆) ≤ dP(Fw, F

⋆)− dP(Fw, Fsw) may also hold.

The following tools used in the above proof can be proved by Taylor expansion.
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Claim 1. For t, x ∈ R+, there holds

xt = 1 + t log x+
1

2
t2(log x)2xξ,

where ξ ∈ (0, t).

Claim 2. For x ∈ (0, 1), there holds:

log(1− x) = −x− 1

2
ζ2,

where ζ ∈ (0, x).

Claim 3. For x ∈ (−1, 1), there holds:

1

1 + x
= 1− x+ ϵ2,

where ϵ is between 0 and x.

B.6 PROOF OF THEOREM 4

Proof sketch of Charikar et al. (2024). They apply the proof technique from their Theorem 1 to
different variables and obtain several inequalities. Subsequently, leveraging the triangle inequality for
the ℓ2-norm and a uniform convergence argument, they establish the desired result.

Proof sketch of ours. Extending the proof framework from Theorem 2 in (Charikar et al., 2024) is
also non-trivial. Specifically, the absence of a triangle inequality for KL divergence necessitates an
alternative approach. To address this, we decompose the relevant terms in a manner analogous to
the triangle inequality and exhaustively demonstrate that each of the three resulting remainder terms
asymptotically converges to zero.

Notations. For a clear presentation, let

A = dP(Fs, Fsw)

B = dP(Fsw, Fw)

C = dP(Fs, Fw)

D = dP(F
⋆, Fs) = ε

E = dP(F
⋆, Fsw)

F = dP(F
⋆, Fw)

G = dP(F
⋆, F̂sw)

H = dP(F̂sw, Fsw)

I = dP(F̂sw, Fw).

Now we start the proof of Theorem 4. A uniform convergence result and two claims used in the proof
(Lemma 4, Claim 4 and Claim 5) are provided at the end of the proof.

Proof. Non-realizable weak-to-strong generalization where F ⋆ /∈ Vs, and we use a finite sample to
perform weak-to-strong supervision. Note that by virtue of the range of f⋆, fw and all functions in F
being absolutely bounded, and dP is also bounded.

Due to F ⋆ /∈ Vs, we replace F ⋆ with Fs in the final step of proof of Theorem 3, we obtain

C ≥ A+B. (30)

Notice that

E = A+D −
∫
X
(F ⋆(x)− Fs(x)) log

Fsw(x)

Fs(x)
dx︸ ︷︷ ︸

t1

, (31)
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F = C +D −
∫
X
(F ⋆(x)− Fs(x)) log

Fw(x)

Fs(x)
dx︸ ︷︷ ︸

t2

, (32)

G = E −H −
∫
X
(F̂sw(x)− F ⋆(x)) log

Fsw(x)

F̂sw(x)
dx︸ ︷︷ ︸

t3

. (33)

Combining (30) and (31), we get

E ≤ C +D −B − t1. (34)

By a uniform convergence argument (Lemma 5), we have that with probability at least 1− δ over the
draw of {(x1, y1), . . . , (xn, yn)} that were used to construct F̂sw,

I ≤ B +O

(√
CFs

n

)
︸ ︷︷ ︸

t4

+O

(√
log(1/δ)

n

)
︸ ︷︷ ︸

t5

. (35)

Combining (34) with (35) and we have

E ≤ C +D − I − t1 + t4 + t5. (36)

Combining (32) with (36) and we have

E ≤ F − I − t1 + t2 + t4 + t5. (37)

Combining (33) with (37) and we have

G ≤ F − I −H − t1 + t2 − t3 + t4 + t5. (38)

We replace F ⋆ with F̂sw in the final step of proof of Corollary 1 and obtain:

I ≥ H +B. (39)

Combining (39) with (35) and we have

0 ≤ H ≤ t4 + t5 = O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
. (40)

Combining (40) with (38) and we have

G ≤ F − I − t1 + t2 − t3 + t4 + t5. (41)

While t4 and t5 are known in (35), we analyze t1, t2 and t3 one by one.

Deal with t1. We know that

t1 =

∫
X
(F ⋆(x)− Fs(x)) log

Fsw(x)

Fs(x)
dx.

Using Pinsker’s inequality and the fact that Fsw(x)
Fs(x)

≤ 1
γ , we have

|t1| ≤
1

γ

∫
X
|Fs(x)− F ⋆(x)| dx ≤ 1

γ

√
1

2
dKL(Fs∥F ⋆) =

1

γ

√
1

2
ε. (42)

Therefore,

|t1| = O(
√
ε). (43)
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Deal with t2. The proof for t2 is similar for t1. In particular, replacing Fsw with Fw in the above
and we can get

|t2| = O(
√
ε). (44)

Deal with t3. We know that

t3 =

∫
X
(F̂sw(x)− F ⋆(x)) log

Fsw(x)

F̂sw(x)
dx.

According to Lemma 5, with probability at least 1− δ over the draw of (x1, y1), . . . , (xn, yn), we
have ∣∣∣dP(F̂sw, Fw)− dP(Fsw, Fw)

∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (45)

According to Claim 4 and (45), we have∣∣∣∣∣
∫
X
log

Fsw(x)

F̂sw(x)
dx

∣∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
.

Since |F̂sw(x)− F ⋆(x)| is upper bounded, there holds

|t3| =

∣∣∣∣∣
∫
X
(F̂sw(x)− F ⋆(x)) log

Fsw(x)

F̂sw(x)
dx

∣∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (46)

Therefore, combing (43), (44) and (46), we have

|t1|+ |t2|+ |t3| ≤ O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (47)

Finally, combing (35) and (41) with (40) and (47), we get the result:

dP(F
⋆, F̂sw) ≤ dP(F

⋆, Fw)− dP(F̂sw, Fw) +O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
,

where in the last inequality, we instantiate asymptotics with respect to ε → 0 and n → ∞.

Here are some tools used in the above proof.

Lemma 4 (Uniform convergence (forward KL loss)). Let (x1, y1), . . . , (xn, yn) be an i.i.d. training
sample, where each xi ∼ P and yi = Fw(xi) for a target function Fw. For a fixed strong model
representation hs, let

fsw = argminf∈Fs
dP(Fw, f ◦ hs),

f̂sw = argminf∈Fs
d̂P(Fw, f ◦ hs).

Assume that the range of Fw and functions in Fs is absolutely bounded. Then, with probability at
least 1− δ over the draw of (x1, y1), . . . , (xn, yn), we have∣∣∣dP(Fw, F̂sw)− dP(Fw, Fsw)

∣∣∣ ≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,

where CFs is a constant capturing the complexity of the function class Fs.
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Proof. The proof is strongly motivated by lemma 4 in Charikar et al. (2024).

Note that

dP(Fw, F̂sw)− dP(Fw, Fsw) = dP(Fw, F̂sw)− d̂P(Fw, F̂sw)︸ ︷︷ ︸
a

+

d̂P(Fw, F̂sw)− d̂P(Fw, Fsw)︸ ︷︷ ︸
b

+ d̂P(Fw, Fsw)− dP(Fw, Fsw)︸ ︷︷ ︸
c

. (48)

By the definition of f̂sw, the second term b ≤ 0 in (48). Therefore,∣∣∣dP(Fw, F̂sw)− dP(Fw, Fsw)
∣∣∣ ≤ |a|+ |c|. (49)

The terms a and c measure the difference between the empirical risk and true population risk, and
can be controlled by a standard uniform convergence argument.

Let S = {(x1, y1), . . . , (xn, yn)}, where xi ∼ P and yi = Fw(xi). According to statistical learning
theory literature (Bartlett & Mendelson, 2002), it first holds that with probability at least 1− δ,

sup
f∈Fs

|d̂P(Fw, f ◦ hs)− dP(Fw, f ◦ hs)| ≤ O (Rn(l(Fs))) +O

(√
log(1/δ)

n

)
,

where Rn(l(Fs)) is the Rademacher complexity of the loss class of Fs:

Rn(l(Fs)) = ESEεi∼{−1,1} sup
f∈Fs

1

n

n∑
i=1

εi · ℓ(f ◦ hs(xi), yi).

Notice again that the model output space Y = {y ∈ R|0 < γ ≤ y ≤ 1, γ > 0}. We can then use the
assumption that the range of Fw and Fs is absolutely bounded, which implies that ℓ is both bounded
and Lipschitz in both arguments. This allows us to use the contraction principle in Theorem 4.12
from Ledoux & Talagrand (2013) so as to move from the Rademacher complexity of the loss class
l(Fs) to that of Fs itself, and claim that with probability at least 1− δ,

sup
f∈Fs

|d̂P(Fw, f ◦ hs)− dP(Fw, f ◦ hs)| ≤ O (Rn(Fs)) +O

(√
log(1/δ)

n

)
(50)

Finally, the Rademacher complexity Rn(Fs) can be upper bounded by a quantity known as the
worst-case Gaussian complexity of Fs; in any case, for a majority of parametric function classes

Fs, this quantity scales as
√

CFs

n (Bartlett & Mendelson, 2002), where CFs is a constant capturing

the inherent complexity of Fs. Plugging this into (50) and considering f = f̂sw or f = fsw in this
inequality, we have∣∣∣d̂P(Fw, F̂sw)− dP(Fw, F̂sw)

∣∣∣︸ ︷︷ ︸
|a|

≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,

∣∣∣d̂P(Fw, Fsw)− dP(Fw, Fsw)
∣∣∣︸ ︷︷ ︸

|c|

≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
.

Finally, substitute it into Equation (49) and we can obtain the desired bound.

Lemma 5 (Uniform convergence (reverse KL loss)). Let (x1, y1), . . . , (xn, yn) be an i.i.d. training
sample, where each xi ∼ P and yi = Fw(xi) for a target function Fw. For a fixed strong model
representation hs, let

fsw = argminf∈Fs
dP(f ◦ hs, Fw),

f̂sw = argminf∈Fs
d̂P(f ◦ hs, Fw).
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Assume that the range of Fw and functions in Fs is absolutely bounded. Then, with probability at
least 1− δ over the draw of (x1, y1), . . . , (xn, yn), we have∣∣∣dP(F̂sw, Fw)− dP(Fsw, Fw)

∣∣∣ ≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,

where CFs is a constant capturing the complexity of the function class Fs.

Proof. Swap the order of the two elements in dP(·, ·) and d̂P(·, ·) in the proof of Lemma 4 and we
can prove the result.

Claim 4. Let f(x), g(x) ∈ [γ, 1] where γ > 0. If there exists ξ > 0 such that
∫
X |f(x)− g(x)| dx ≤

ξ, then there holds ∫
X
|log f(x)− log g(x)| dx ≤ 1

γ
ξ.

Proof. Using the property of the function ϕ(x) = log x (as shown in Figure 4): if x ∈ (0, 1], then
the slope of a line with any two points on the function ϕ(x) is bounded.

Figure 4: The function ϕ(x) = log x.

In particular, we have ∫
X
|log f(x)− log g(x)| dx

=

∫
X

∣∣∣∣ log f(x)− log g(x)

f(x)− g(x)

∣∣∣∣ |f(x)− g(x)|dx

≤ 1

γ

∫
X
|f(x)− g(x)| dx

≤ 1

γ
ξ.

Claim 5. Let f(x), g(x) ∈ [γ, 1] where γ > 0. If there exists ξ > 0 such that∫
X |log f(x)− log g(x)| dx ≤ ξ, then there holds∫

X
|f(x)− g(x)| dx ≤ ξ.

Proof. Using the property of the function ϕ(x) = log x (as shown in Figure 4): if x ∈ (0, 1], then
the slope of a line with any two points on the function ϕ(x) is bounded.

In particular, we have ∫
X
|f(x)− g(x)| dx
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=

∫
X

∣∣∣∣ log f(x)− log g(x)

f(x)− g(x)

∣∣∣∣−1

| log f(x)− log g(x)|dx

≤
∫
X
|log f(x)− log g(x)| dx

≤ξ.

B.7 EXTENSION OF THEOREM 4

This additional theoretical result follows Corollary 1 in Appendix B.5.
Corollary 2. Given F ⋆, Fw and Fsw defined above. Let dP be the output distribution divergence
and consider WTSG in Equation (7) using forward KL divergence loss. Consider Fs that satisfies As-
sumption 1. If the weighted Itakura–Saito divergence DWIS(F

⋆∥Fsw) ≤ 0 with the weight function
w = Fsw − Fw, then we have that with probability at least 1− δ over the draw of n i.i.d. samples,

dP(F̂sw, F
⋆) ≤ dP(Fw, F

⋆)− dP(Fw, F̂sw) +O(
√
ε) +O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,

(51)

where CFs
is a constant capturing the complexity of the function class Fs, and the asymptotic notation

is with respect to ε → 0, n → ∞.

Proof. For a clear presentation, let

A = dP(Fsw, Fs)

B = dP(Fw, Fsw)

C = dP(Fw, Fs)

D = dP(Fs, F
⋆) = ε

E = dP(Fsw, F
⋆)

F = dP(Fw, F
⋆)

G = dP(F̂sw, F
⋆)

H = dP(Fsw, F̂sw)

I = dP(Fw, F̂sw).

The main proof idea follows Appendix B.6. Specifically, we first replace F ⋆ with Fs in the final step
of proof of Corollary 1, we obtain

C ≥ A+B. (52)

Notice that

E = A+D −
∫
X
(Fsw(x)− Fs(x)) log

F ⋆(x)

Fs(x)
dx︸ ︷︷ ︸

t1

, (53)

F = C +D −
∫
X
(Fw(x)− Fs(x)) log

F ⋆(x)

Fs(x)
dx︸ ︷︷ ︸

t2

, (54)

G = E −H −
∫
X
(F̂sw(x)− Fsw(x)) log

F ⋆(x)

Fsw(x)
dx︸ ︷︷ ︸

t3

. (55)

Combining (52) and (53), we get

E ≤ C +D −B − t1. (56)
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According to Lemma 4, we have that with probability at least 1 − δ over the draw of
{(x1, y1), . . . , (xn, yn)} that were used to construct F̂sw,

I ≤ B +O

(√
CFs

n

)
︸ ︷︷ ︸

t4

+O

(√
log(1/δ)

n

)
︸ ︷︷ ︸

t5

. (57)

Combining (56) with (57) and we have

E ≤ C +D − I − t1 + t4 + t5. (58)

Combining (54) with (58) and we have

E ≤ F − I − t1 + t2 + t4 + t5. (59)

Combining (55) with (59) and we have

G ≤ F − I −H − t1 + t2 − t3 + t4 + t5. (60)

We replace F ⋆ with F̂sw in the final step of proof of Corollary 1 (Recall the fact that F̂sw ∈ Vs

and (29): substituting F̂sw for g in (21), and using (29)), we obtain:

I ≥ H +B. (61)

Combining (61) with (57) and we have

0 ≤ H ≤ t4 + t5 = O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
. (62)

Combining (62) with (60) and we have

G ≤ F − I − t1 + t2 − t3 + t4 + t5. (63)

While t4 and t5 are known in (57), we analyze t1, t2 and t3 one by one.

Deal with t1. We know that

t1 =

∫
X
(Fsw(x)− Fs(x)) log

F ⋆(x)

Fs(x)
dx.

Using the fact that |Fsw(x)− Fs(x)| ≤ 1, we have

|t1| ≤
∫
X

∣∣∣∣log F ⋆(x)

Fs(x)

∣∣∣∣ dx =

∫
X
|logFs(x)− logF ⋆(x)| dx. (64)

According to Pinsker’s inequality,∫
X
|Fs(x)− F ⋆(x)| dx ≤

√
1

2
dKL(Fs∥F ⋆) =

√
1

2
ε. (65)

Substitute f(x) = Fs(x), g(x) = F ⋆(x) and ξ =
√

1
2ε into Claim 4 and recall (64), we have

|t1| ≤
1

γ

√
1

2
ε = O(

√
ε). (66)

Deal with t2. The proof for t2 is similar for t1. In particular, replacing Fsw with Fw in the above
and we can get

|t2| = O(
√
ε). (67)
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Deal with t3. We know that

t3 =

∫
X
(F̂sw(x)− Fsw(x)) log

F ⋆(x)

Fsw(x)
dx.

According to Lemma 4, with probability at least 1− δ over the draw of (x1, y1), . . . , (xn, yn), we
have ∣∣∣dP(Fw, F̂sw)− dP(Fw, Fsw)

∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (68)

Notice that

H = dP(Fsw, F̂sw)

= dP(Fw, Fsw)− dP(Fw, F̂sw) +

∫
X
(Fw(x) + Fsw(x)) log

Fsw(x)

F̂sw(x)
dx. (69)

Substitute (62) and (68) into Equation (69) with the triangle inequality for absolute values, we get∣∣∣∣∣
∫
X
(Fw(x) + Fsw(x)) log

Fsw(x)

F̂sw(x)
dx

∣∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
Since |Fw(x) + Fsw(x)| is bounded, we have∣∣∣∣∫

X

[
logFsw(x)− log F̂sw(x)

]
dx

∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
.

Using Claim 5, we have∣∣∣∣∫
X
(F̂sw(x)− Fsw(x))dx

∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
.

Since
∣∣∣log F⋆(x)

Fsw(x)

∣∣∣ is bounded, there holds

|t3| =
∣∣∣∣∫

X
(F̂sw(x)− Fsw(x)) log

F ⋆(x)

Fsw(x)
dx

∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (70)

Therefore, combing (66), (67) and (70), we have

|t1|+ |t2|+ |t3| ≤ O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (71)

Finally, combing (57) and (63) with (62) and (71), we get the result:

dP(F̂sw, F
⋆) ≤ dP(Fw, F

⋆)− dP(Fw, F̂sw) +O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
,

where in the last inequality, we instantiate asymptotics with respect to ε → 0 and n → ∞.

C FURTHER DETAILS AND RESULTS OF EXPERIMENTS

C.1 TRAINING DETAILS OF EXPERIMENTS IN LANGUAGE MODELS

The dataset is randomly divided into three distinct subsets:

• 4K samples (ground truth): They are used to fine-tune weak and strong base language
models;
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• 4K samples (held-out set): These labels are predicted by the weak model and used to provide
weak supervision for training the strong model;

• 4K samples (the remaining): They are used for testing and evaluating the performance of all
models.

When fine-tuning the weak-to-strong models, we follow (Yang et al., 2025) to set the batch size to 32,
learning rate to 10−5, max seq len to 512. The training epoch is set to 1 to avoid overfitting. All
experiments are conducted on NVIDIA A100 80G.

C.2 WEAK-TO-STRONG TRAINING PROCEDURE IN SYNTHETIC EXPERIMENTS

We explore two methods to generate the weak and strong representations, which follows the experi-
mental setting in (Charikar et al., 2024).

• Pre-training. We begin by randomly sampling T fine-tuning tasks f⋆
1 , . . . , f

⋆
T ∈ Fs.

For each t ∈ {1, · · · , T}, we generate Nr data {x(t)
j }Nr

j=1 where x
(t)
j ∼ P . Let the

representations hw, hs : R8 → R16 be 2-layer and 8-layer MLP with ReLU activations,
respectively. And hw ∈ Hw, hs ∈ Hs. We obtain hw and hs via gradient descent on
the representation parameters to find the minimizer of output distribution divergence loss.
Specifically, We use Equation (4) as the loss function on T tasks:

hl = argminh∈Hl

1

T

T∑
t=1

d̂P(f
⋆
t ◦ h, f⋆

t ◦ h⋆), (72)

where l ∈ {w, s}, T = 10, and Nr = 2000. Additionally, the realizable setting (Corollary 1)
is considered by explicitly setting hs = h⋆, and only obtaining hw as above.

• Perturbations. As an alternative, we directly perturb the parameters of h⋆ to obtain the
weak and strong representations. Specifically, we add independent Gaussian noise N (0, σ2

s)
to every parameter in h⋆ to generate hs. Similarly, we perturb h⋆ with N (0, σ2

w) to generate
hw. To ensure the strong representation hs is closer to h⋆ than hw, we set σs = 0.1 and
σw = 9.

Weak Model Fine-tuning. After obtaining hw and hs, we fix these representations and train weak
models on new fine-tuning tasks. We randomly sample M new fine-tuning tasks f⋆

1 , . . . , f
⋆
M ∈ Fs,

and generate data {x(i)
j }Nf

j=1, where x
(i)
j ∼ P . For each task i = {1, · · · ,M}, the weak model is

trained through:

f (i)
w = argminf

1

M

M∑
i=1

d̂P(f
⋆
t ◦ h⋆, f ◦ hw), (73)

where M = 100, Nf = 2000. Here, the representation parameters hw are frozen, and f
(i)
w is learned

via gradient descent. Weak models are thus trained on true data.

Weak-to-Strong Supervision. Using the trained weak models, we generate weakly labeled datasets
for each fine-tuning task. Specifically, for each i ∈ {1, · · · ,M}, we generate {x̃(i)

j }Nf

j=1 where

x̃
(i)
j ∼ P . The strong models are then trained on these weakly labeled datasets by solving the

following optimization problem using reverse KL divergence loss for each task i ∈ {1, · · · ,M}:

f (i)
sw = argminf∈F d̂P(f ◦ hs, f

(i)
w ◦ hw). (74)

At this stage, the weak-to-strong training procedure is complete.
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