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Abstract

The measurement of fetal head circumference (HC) is performed throughout the pregnancy
as a key biometric to monitor fetus growth. This measurement is performed on ultrasound
images, via the manual fitting of an ellipse. The operation is operator-dependent and as
such prone to intra and inter-variability error. There have been attempts to design auto-
mated segmentation algorithms to segment fetal head, especially based on deep encoding-
decoding architectures. In this paper, we depart from this idea and propose to leverage the
ability of convolutional neural networks (CNN) to directly measure the head circumference,
without having to resort to handcrafted features or manually labeled segmented images.
The intuition behind this idea is that the CNN will learn itself to localize and identify the
head contour. Our approach is experimented on the public HC18 dataset, that contains
images of all trimesters of the pregnancy. We investigate various architectures and three
losses suitable for regression. While room for improvement is left, encouraging results show
that it might be possible in the future to directly estimate the HC - without the need for a
large dataset of manually segmented ultrasound images. This approach might be extended
to other applications where segmentation is just an intermediate step to the computation
of biomarkers.
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1. Introduction

Automated measurement of fetal head circumference (HC) is performed throughout the
pregnancy as a key biometric to monitor fetus growth and estimate gestational age. In
clinical routine, this measurement is performed on ultrasound (US) images, via manually
tracing of the skull contour or fitting it to an ellipse. Indeed, identifying the head con-
tour is challenging due to low signal-to-noise ratio in US images, and also because the
contours have fuzzy (and sometimes missing) borders (Fig. 1). Manual contouring is an
operator-dependant operation, prone to intra and inter-variability, which provokes inac-
curate measurements (Sarris et al., 2012). More precisely, the 95% limits of agreement
are ±7mm for the intra-operator variability and ±12mm for the inter-operator variability
(Sarris et al., 2012, Tab. 1 p. 272).

Some works have been proposed to automate the measurement of fetal head circumfer-
ence in US images, such as (Li et al., 2017; Lu et al., 2005; Jardim and Figueiredo, 2005).
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Figure 1: Ultrasound images of fetal head from (van den Heuvel et al., 2018b). Correspond-
ing head circumference (HC) is displayed in millimeters and pixels.

However, there are now more and more works aiming at directly extracting biomarkers from
medical images, such as organ volume, area or features, to help clinical diagnosis. The goal
is to avoid intermediate steps, such as segmentation, that maybe computationally expen-
sive (both for model training and labeling) and prone to errors (Zhen and Li, 2015). For
example, in (Zhen et al., 2015), the authors propose a learning-based approach to perform
a direct volume estimation of the cardiac left and right ventricles from magnetic resonance
images, without segmentation. The approach consists in computing shape descriptors us-
ing a bag-of-word model, and to perform Bayesian estimation and regression forests. By
taking advantage of the power of convolutional neural networks (CNN), one can now skip
the feature design step and learn the features, while at the same time performing the pre-
diction of the value of interest, i.e. performing regression. Note that regression CNN have
found several applications in the field of computer vision, such as head-pose estimation (Liu
et al., 2016), facial landmark detection (Sun et al., 2013) and human-body pose estimation
(Toshev and Szegedy, 2014).

In this work, we investigate if such a direct approach is reasonable to estimate the HC
from ultrasound images, without having to resort to segmentation. Our approach is based
on a regression CNN, for which we investigate four architectures, which differ by their
complexity, and explore three losses for regression. Our experiments are carried out on the
public dataset HC18 (van den Heuvel et al., 2018b). To our knowledge, this is the first
attempt to directly assess the fetal head circumference, without resorting to segmentation.

The rest of the paper is organized as follows. Section 2 introduces related works about
HC measurement in ultrasound images. Section 3 describes the proposed architecture and
the loss functions. Experiments are conducted in Section 4. The conclusion and future
works are drawn in Section 5.

2. Related works

Several approaches have been proposed in the literature to measure the head circumference
in US images, based on image segmentation. Usually they follow at two-step approach,
namely fetal head localization and segmentation refinement. In (van den Heuvel et al.,
2018a), the first step consists in locating the fetal head via machine learning, with Haar-
like features used to train a random forest classifier; and the second step consists in the
measurement of the HC, via ellipse fitting and Hough transform. Similar method is used
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in (Li et al., 2017). Other approaches build upon deep segmentation models also in a two-
step process, prediction and ellipse fitting (Kim et al., 2019). In (Budd et al., 2019), the
standard segmentation model U-Net (Ronneberger et al., 2015) is trained using manually
labeled images, and segmentation results are fitted to ellipses. In (Sobhaninia et al., 2019),
authors build upon the same idea, combining image segmentation and ellipse tuning together
in a multi-task network.

3. CNN regressor

Standard CNN have several convolutional layers followed by fully-connected layers, ended
with a classification softmax layer. Adapting a classification CNN architecture to regression
consists in removing the softmax layer and replacing it by a fully connected regression layer
with linear or sigmoid activation. Linear activation means that the transfer function is a
straight line, thus the activation is proportional to input, and not confined to a specific
range.

3.1. Model architectures

We have experimented four deep models with varying numbers of parameters and depths:
two custom models and two common architectures. We have considered two simple models
inspired by the base regressor of (Dubost et al., 2019): a first model called CNN 263K,
with around 263K parameters and the second one called CNN 1M which has around 1M
parameters (see Fig. 2). We also experimented VGG16 (+14M parameters) (Simonyan
and Zisserman, 2015) and Resnet50 (+23M parameters) (He et al., 2016) pre-trained on
ImageNet, and subsequently trained on our dataset. In each model, the fully connected
regression layer has linear activation.

3.2. Regression loss function

Conventional regression loss functions are metrics-inspired losses, namely the Mean Absolute
Error (MAE), Mean Squared Error (MSE) and Huber Loss (HL), defined as:

MAE =
1

n

n∑
i=1

|pi − gi| (1)

MSE =
1

n

n∑
i=1

(pi − gi)2 (2)

HL =


1

n

n∑
i=1

1

2
(pi − gi)2, for |pi − gi| < δ

1

n

n∑
i=1

δ ∗ (|pi − gi| −
δ

2
), otherwise

(3)

where predicted (resp. ground truth) values are denoted pi (resp. gi). Huber loss is less
sensitive to outliers than the quadratic loss (Esmaeili and Marvasti, 2019). As there is
no heuristics to chose one loss over the other, we experience these three loss functions, as
advocated in (Lathuilière et al., 2019).
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Figure 2: Architectures of the custom CNN based regression models

4. Experiments

4.1. The HC18 dataset

We use the HC18 training dataset (van den Heuvel et al., 2018b), that contains 999 US im-
ages acquired at varying times during the pregnancy, along with the corresponding head cir-
cumference1. HC values range from 439.1 pixels (44.3 mm) to 1786.5 pixels (346.4 mm), with
average value being 1263.3±264.4pixels (174.4±65.2mm). We randomly split the dataset
into a training (600), a validation (200) and a test set (199), except for the images that were
made during one echographic examination, that are assigned the same set. We augment
the data of the training set to 1800 images, by performing horizontal flipping, translation
with 5 pixels offset, and rotation with 10 degrees.

Image preprocessing includes a resizing from 800 × 540 pixels to 224×224, and normal-
ization by subtracting the mean and dividing by standard deviation. The HC values are
normalized by dividing the maximum value of HC, in order to improve convergence.

4.2. Experimental setup

All the experiments are performed with 5-fold cross validation. The metrics to evaluate the
results are Mean Absolute Error (mae) measured in pixels and in mm, and the percentage
of mae (pmae). We have empirically set δ = 0.5 in Huber loss. Models are trained with a
batch size of 8, a learning rate of 1e−3, and Adam as optimizer. Models are implemented
with Keras and TensorFlow.

1. The HC18 challenge is rather dedicated to head segmentation and evaluation on the HC18 test set
requires to submit the parameters of an ellipse, which we do not have in our case.
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4.3. Results

Table 1: Performance of regression models in terms of mean absolute error (mae) in pixels
and %mae (± standard deviation) for three different loss functions: MSE, MAE,
HL

CNN 263K CNN 1M Reg-VGG16 Reg-ResNet50

loss mae(pix) pmae(%) mae(pix) pmae(%) mae(pix) pmae(%) mae (pix) pmae(%)

MSE 90.18±86.42 8.74±12.51 50.96±58.61 4.96±7.85 38.85±40.31 5.31±5.63 36.21±35.82 4.62±4.27
MAE 101.85±108.51 10.99±18.48 51.61±59.96 5.15±8.66 40.17±40.99 5.26±5.79 37.34±37.46 4.85±4.93
HL 98.18±89.77 9.69±13.9 53.87±66.46 5.45±9.08 40.7±40.07 5.67±5.19 38.18±37.32 5.16±4.84

Table 2: Performance of Reg-Resnet50 vs Reg-VGG16 in terms of mae (pixels) (± standard
deviation) with and without data augmentation (DA).

Reg-Resnet50 Reg-VGG16

loss without DA with DA without DA with DA

MSE 63.92±63.61 36.21±35.82 66.84±67.48 38.85±40.31
MAE 62.44±63.63 37.34±37.46 67.71±68.03 40.17±40.99
HL 66.62±66.18 38.18±37.32 67.02±76.08 40.7±40.07

Table 3: Performance of Reg-Resnet50 vs Reg-VGG16 in terms of mae (pixels and mm)
for three different loss functions: MAE, MSE, HL with data augmentation. †:
significantly different (p < 0.05) from all other methods, ◦: significantly different
(p<0.05) from all other methods, except for Reg-VGG16-MAE and Reg-VGG16-
HL.

Reg Resnet50 Reg VGG16

loss mae (pixels) mae (mm) mae (pixels) mae (mm)

MSE 36.21±35.82† 4.52±4.27† 38.85±40.31 4.87±5.81
MAE 37.34±37.46 4.78±4.41 40.17±40.99◦ 5.46±5.99◦

HL 38.18±37.32 4.68±4.37 40.7±40.07◦ 5.19±5.42◦

In our experiments, we compare the four regression models and the three loss functions,
the Mean Absolute Error (MAE), the Mean Squared Error (MSE) and the Huber Loss
(HL), and assess the added value of data augmentation.

Results in Tab. 1 show that the MSE loss obtains the best results, while the MAE
and Huber loss have similar accuracy. Best results are obtained with Reg-VGG16 and
Reg-ResNet50, which argues for a deeper architecture, with more power to grasp the image
features. Reg-ResNet50 with MSE is found particularly powerful, as confirmed by the loss
evolution during training and validation in Fig. 3.
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(a) Reg-VGG16-MSE (b) Reg-ResNet50-MSE

Figure 3: Training and validation losses for Reg-VGG16 and ResNet50 with MSE

Figure 4: Samples of well predicted HC values (in pixels) with corresponding US images,
with Reg-Resnet50-MSE

Thus, in the rest of the experiments, we focus on Reg-VGG16 and Reg-Resnet50 only.
First, looking at the contribution of data augmentation, we can gather from Tab. 2 that
data augmentation is really necessary to get a boost in performance, the error being divided
by almost 2 with data augmentation. Then, we use a paired Wilcoxon signed-rank test to
evaluate if the differences between methods and regression losses are significant: it appears
that Reg-Resnet50 with the MSE loss has a significantly different error (p < 0.05) than the
rest of the methods, and is thus the best setting in this case, as shown in Table 3, where
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Figure 5: Samples of incorrectly predicted HC values (in pixels) with corresponding US
images, with Reg-Resnet50-MSE

errors are reported in mm also. The best configuration thus has an error of 4.52±4.27 mm.
This value is to be compared to the accuracy obtained by segmentation-based approaches:
2.12 ± 1.8 mm in (Sobhaninia et al., 2019), 2.8 ± 3.3 mm in (van den Heuvel et al., 2018a)
and 1.81 ± 1.6 mm in (Budd et al., 2019). One should handle this comparison with care,
since results have not been obtained on the same dataset and/or using the same protocol;
however, we can say that the error obtained by the CNN regressor is doubled w.r.t that of
segmentation-based approaches. Furthermore, standard deviation is high and remains to
be investigated and compared to segmentation-based approaches.

The analysis of the prediction correctness w.r.t the images shows that correct predictions
mainly stem from low speckle and highly contrasted US images; where the skull is rather
correctly outlined, as shown in Figure 4, whereas images with a high level of speckle inside
and outside the skull, that include other structures, yield high errors (Figure 5).

5. Conclusion

In this work, we have proposed an approach to directly estimate the fetal head circumference
from US images by regression CNN. Our goal was to estimate how far a direct estimation
method of the HC via regression was, from conventional prediction methods, which are based
on segmentation and ellipse fitting. The rationale behind our approach is to remove the need
for segmenting the US image. We compared several regression CNN architectures and three
loss functions. Experimental results showed that the deeper model Reg-ResNet50 performed
better, along with the MSE loss function. Encouraging results are obtained, since the best
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models results in error comparable to manual measurement variability; however room for
improvement for CNN-based regressors is left, especially when comparing to the accuracy
of segmentation-based approaches. Future work will focus on designing the network so that
the feature extraction is fostered in a way to segment the image - without segmentation
ground truth. For this, we will investigate attention mechanisms and multi-task learning.
We will also investigate whether errors are related to gestational age, as is the case for
manual measurements (Sarris et al., 2012).
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