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Abstract

It is difficult to use subsampling with variational inference in hierarchical models
since the number of local latent variables scales with the dataset. Thus, inference
in hierarchical models remains a challenge at large scale. It is helpful to use a
variational family with structure matching the posterior, but optimization is still
slow due to the huge number of local distributions. Instead, this paper suggests an
amortized approach where shared parameters simultaneously represent all local
distributions. This approach is similarly accurate as using a given joint distribution
(e.g., a full-rank Gaussian) but is feasible on datasets that are several orders of
magnitude larger. It is also dramatically faster than using a structured variational
distribution.

1 Introduction

Hierarchical Bayesian models are a general framework where parameters of “groups” are drawn
from some shared distribution, and then observed data is drawn from a distribution specified by each
group’s parameters. After data is observed, the inference problem is to infer both the parameters for
each group and the shared parameters. These models have proven useful in various domains [13]
including hierarchical regression amd classification [12], topic models [4, 22, 3], polling [11, 24],
epidemiology [23], ecology [8], psychology [37], matrix-factorization [35], and collaborative filtering
[26, 33].

A proven technique for scaling variational inference (VI) to large datasets is subsampling. The idea
is that if the target model has the form p(z, y) = p(z)

∏
i p(yi|z) then an unbiased gradient can be

estimated while only evaluating p(z) and p(yi|z) at a few i [29, 16, 20, 31, 30, 36, 15].

This paper addresses hierarchical models of the form p(θ, z, y) = p(θ)
∏

i p(zi, yi|θ), where only y
is observed. There are two challenges. First, the number of local latent variables zi increases with
the dataset, meaning the posterior distribution increases in dimensionality. Second, there is often a
dependence between zi and θ which must be captured to get strong results [15, 18].

The aim of this paper is to develop a black-box variational inference scheme that can scale to large
hierarchical models without losing benefits of a joint approximation. Our solution takes three steps.
First, in the true posterior, the different latent variables zi are conditionally independent given θ, which
suggests using a variational family of the same form. We confirm this intuition by showing that for
any joint variational family q(θ, z), one can define a corresponding "branch" family q(θ)

∏
i q(zi|θ)

such that inference will be equally accurate (theorem 2). We call inference using such a family the
"branch" approach.

Second, we observe that if using the branch approach, the optimal local variational parameters can be
computed only from θ and local data (eq. (12)). Thus, we propose to amortize the computation of
the local variational parameters by learning a network to approximately solve that optimization. We
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show that when the target distribution is symmetric over latent variables, this will be as accurate as
the original joint family, assuming a sufficiently capable amortization network (claim 5).

Third, we note that in many real hierarchical models, there are many i.i.d. data generated from
each local latent variable. This presents a challenge for learning an amortization network, since the
full network should deal with different numbers of data points and naturally reflect the symmetry
between the inputs (that is, without having to relearn the symmetry.) We propose an approach where
a preliminary "feature" network processes each datum, after which they are combined with a pooling
operation which forms the input for a standard network (section 6). This is closely related to the
"deep sets" [39] strategy for permutation invariance.

We validate these methods on a synthetic model where exact inference is possible, and on a user-
preference model for the MovieLens dataset with 162K users who make 25M ratings of different
movies. At small scale (2.5K ratings), we show similar accuracy using a dense joint Gaussian, a
branch distribution, or our amortized approach. At moderate scale (180K ratings), joint inference
is intractable. Branch distributions gives a meaningful answer, and the amortized approach is
comparable or better. At large scale (18M ratings) the amortized approach is thousands of nats better
on test-likelihoods even after branch distributions were trained for almost ten times as long as the
amortized approach took to converge (fig. 6).

2 Hierarchical Branched Distributions

θ

zi

yij xij

j ∈ {1, . . . , ni}

i ∈ {1, . . . , N}

θ

z1 z2 z3

y11 y12 y21 y31 y32 y33

x11 x12 x21 x31 x32 x33

Figure 1: The graphical model for the HBDs. On the left, we have plate notation for the generic HBD
from eq. (3). Note, we can have an edge from θ to yij (we skip it for clarity.) On the right, we have
an example model with N = 3.

We focus on two-level hierarchical distributions. A generic model of this type is given by

p(θ, z, y|x) = p(θ)

N∏
i=1

p(zi|θ)p(yi|θ, zi, xi), (1)

where θ and z = {zi}Ni=1 are latent variables, y = {yi}Ni=1 are observations, and x = {xi}Ni=1
are covariates. As the visual representations of these models resemble branches, we refer them as
hierarchical branch distributions (HBDs).

Symmetric. We call an HBD symmetric if the conditionals are symmetric, i.e., if zi = zj , xi = xj ,
and yi = yj , it implies that

p(zi|θ) = p(zj |θ), and
p(yi|θ, zi, xi) = p(yj |θ, zj , xj). (2)

Locally i.i.d. Often local observations yi (and xi) are a collection of conditionally i.i.d observations.
Then, an HBD takes the form of

p(θ, z, y|x) = p(θ)

N∏
i=1

p(zi|θ)
ni∏
j=1

p(yij |θ, zi, xij), (3)

where yi = {yij}ni
j=1 and xi = {xij}ni

j=1 are collections of conditionally i.i.d observations and
covariates; ni ≥ 1 is the number of observations for branch i.

2



No local covariates. Some applications do not involve the covariates xi. In such cases, HBDs have
a simplified form of

p(θ, z, y) = p(θ)

N∏
i=1

p(zi|θ)p(yi|θ, zi). (4)

In this paper, we will be using eq. (1) and eq. (3) to refer HBDs—the results extend easily to case
where there are no local covariates. (For instance, in section 5, we amortize using (xi, yi) as inputs.
When there are no covariates, we can amortize with just yi.)

2.1 Related Work

Bayesian inference in hierarchical models is an old problem. The most common solutions are
Markov chain Monte Carlo (MCMC) and VI. A key advantage of VI is that gradients can sometimes
be estimated using only a subsample of data [29]. Hoffman et al. [16] observe that inference in
hierarchical models is still slow at large scale, since the number of parameters scales with the dataset.
Instead, they assume that θ and zi from eq. (1) are in conjugate exponential families, and observe that
for a mean-field variational distribution q(θ)

∏
i q(zi), the optimal q(zi) can be calculated in closed

form for fixed q(θ). This is highly scalable, though it is limited to factorized approximations and
requires a conditionally conjugate target model.

A structured variational approximation like q(θ)
∏

i q(zi|θ) can be used which reflects the dependence
of zi on θ [15, 34, 2, 18]. However, this still has scalability problems in general since the number
of parameters grows in the size of the data (section 7). To the best of our knowledge, the only
approach that avoids this is the framework of structured stochastic VI [15, 18], which assumes the
target is conditionally conjugate, and that for a fixed θ an optimal "local" distribution q(zi|θ) can be
calculated from local data. Hoffman and Blei [15] address matrix factorization models and latent
Dirichlet allocation, using Gibbs sampling to compute the local distributions. Johnson et al. [18]
use amortization for conjugate models but do not consider the setting where local observations are a
collection of i.i.d observations. Our approach is not strictly an instance of either of these frameworks,
as we do not assume conjugacy or that amortization can exactly recover optimal local distributions
[15, Eq. 7]. Still the spirit is the same, and our approach should be seen as part of this line of research.

Amortized variational approximations have been used to learn models with local variables [20, 10,
17, 5]. A particularly related instance of model learning is the Neural Statistician approach [10],
where a “statistics network” learns representations of closely related datasets–the construction of this
network is similar to our “pooling network” in section 6. However, in the Neural Statistician model
there are no global variables θ, and it is not obvious how to generalize their approach for HBDs. In
contrast, our “pooling network” results from the analysis in section 5, reducing the architectural space
when θ is present while retaining accuracy. Moreover, learning a model is strictly different from our
“black-box" setting where we want to approximate the posterior of a given model, and the inference
only has access to log p or ∇θ,z log p (or their parts) [30, 21, 2, 1].

3 Joint approximations for HBD

When dealing with HBDs, a non-structured distribution does not scale. To see this, consider the naive
VI objective—Evidence Lower Bound (ELBO, L). Let qJoint

ϕ be a joint variational approximation
over θ and z; we use sans-serif font for random variables. Then,

L (qJoint
ϕ ∥p) = EqJointϕ (θ,z)

[
log

p(θ, z, y|x)
qJoint
ϕ (θ, z)

]
, (5)

where ϕ are variational parameters. Usually the above expectation is not tractable and one uses a
Monte-Carlo estimator. A single sample estimator is given by

L̂ = log
p(θ, z, y|x)
qJoint
ϕ (θ, z)

, (6)

where (θ, z) ∼ qJoint
ϕ and L̂ is unbiased. Since qJoint

ϕ need not factorize, even a single estimate
requires sampling all the latent variables at each step. This is problematic when there are a large
number of local latent variables. One encounters the same scaling problem when taking the gradient of
the ELBO. We can estimate the gradient using any of the several available estimators [30, 20, 31, 32];
however, none of them scale if qJoint

ϕ does not factorize [16].
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4 Branch approximations for HBD

It is easy to see that the posterior distribution of the HBD eq. (1) takes the form

p(θ, z|y, x) = p(θ|y, x)
N∏
i=1

p(zi|θ, yi, xi).

As such, it is natural to consider variational distributions that factorize the same way (see fig. 2.) In
this section, we confirm this intuition—we start with any joint variational family which can have
any dependence between θ and z1, · · · , zN . Then, we define a corresponding “branch” family where
z1, · · · , zN are conditionally independent given θ. We show that inference using the branch family
will be at least as accurate as using the joint family. We formalize the idea of branch distribution in
the next definition.

Definition 1. Let qJoint
ϕ be any variational family with parameters ϕ. We define qBranch

v,w to be a
corresponding branch family if, for all ϕ, there exists (v, {wi}Ni=1), such that,

qBranch
v,w (θ, z) = qv(θ)

N∏
i=1

qwi
(zi|θ) = qJoint

ϕ (θ)

N∏
i=1

qJoint
ϕ (zi|θ). (7)

θ

z1 z2 zN. . .

Figure 2: qBranch
v,w as in

eq. (7).

Given a joint distribution, a branch distribution can always be defined by
choosing w and vi as the components of ϕ that influence qJoint

ϕ (θ) and
qJoint
ϕ (zi|θ), respectively, and choosing qw(θ) and qwi(zi|θ) correspond-

ingly. However, the choice is not unique (for instance, the parameteri-
zation can require transformations—different transformations can create
different variants.)

The idea to use qBranch
v,w is natural [15, 2]. However, one might question if the branch variational

family is as good as the original qJoint
ϕ ; in theorem 2, we establish that this is indeed true.

Theorem 2. Let p be a HBD, and qJoint
ϕ (θ, z) be a joint approximation family parameterized by ϕ.

Choose a corresponding branch variational family qBranch
v,w (θ, z) as in definition 1. Then,

min
v,w

KL (qBranch
v,w ∥p) ≤ min

ϕ
KL (qJoint

ϕ ∥p) .

We stress that qBranch
v,w is a new variational family derived from but not identical to qJoint

ϕ . Theorem 2
implies that we can optimize a branched variational family qBranch

v,w without compromising the quality
of approximation (see appendix D for proof.) In the following corollary, we apply theorem 2 to a
joint Gaussian to show that using a branch Gaussian will be equally accurate.

Corrolary 3. Let p be a HBD, and let qJoint
ϕ (θ, z) = N ((θ, z)|µ,Σ) be a joint Gaussian approxima-

tion (with ϕ = (µ,Σ)). Choose a variational family

qBranch
v,w (θ, z) = N (θ|µ0,Σ0)

N∏
i=1

N (zi|µi +Aiθ, Σi)

with v = (µ0,Σ0) and wi = (µi,Σi, Ai). Then, min
v,w

KL (qBranch
v,w ∥p) ≤ min

ϕ
KL (qJoint

ϕ ∥p) .

In the above corollary, the structured family qBranch
v,w is chosen such that it can represent any branched

Gaussian distribution. Notice, the mean of the conditional distribution is an affine function of θ. This
affine relationship appears naturally when you factorize the joint Gaussian over (θ, z). For more
details see appendix F.

4.1 Subsampling in branch distributions

In this section, we show that if p is an HBD and qBranch
v,w is as in definition 1, we can estimate ELBO

using local observations and scale better. Consider the ELBO

L (qBranch
v,w ∥p) = E

qBranch
v,w (θ,z)

[
log

p (θ, z, y|x)
qBranch
v,w (θ, z)

]
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JointELBO(ϕ, y, x)
θ, z ∼ qJoint

ϕ (θ, z)

L̂ ← log
p(θ, z, y|x)
qJoint
ϕ (θ, z)

(a) Estimation with qJoint
ϕ as in eq. (6)

BranchELBO(v, w, y, x)
θ ∼ qv(θ)
zi ∼ qwi

(zi|θ) for i ∈ {1, · · · , N}.

L̂ ← log
p (θ)

qv (θ)
+

N∑
i=1

log
p (zi, yi|θ, xi)

qwi
(zi|θ)

(b) Estimation with qBranch
v,w as in eq. (9)

SubSampledBranchELBO(v, w, y, x)
θ ∼ qv(θ)
B ∼ Minibatch(B)
zi ∼ qwi(zi|θ) for i ∈ B

L̂ ← log
p (θ)

qv (θ)
+

N

|B|
∑
i∈B

log
p (zi, yi|θ, xi)

qwi
(zi|θ)

(c) Estimation with qBranch
v,w as in eq. (10)

AmortizedSubSampledBranchELBO(v, u, y, x)
θ ∼ qv(θ)
B ∼ Minibatch(B)
wi ← netu(xi, yi) for i ∈ B
zi ∼ qwi(zi|θ) for i ∈ B

L̂ ← log
p (θ)

qv (θ)
+

N

|B|
∑
i∈B

log
p (zi, yi|θ, xi)

qwi
(zi|θ)

(d) Estimation with qAmort
v,u for p as in eq. (2)

Figure 3: Pseudo codes for ELBO estimation with different variational methods; w = {wi}Ni=1,
y = {yi}Ni=1, and yi = {yij}ni

j=1 (x is defined similar to y.) (a) Estimates ELBO for a joint
approximation; (b) to (d) estimate ELBO for branch approximations; (c, d) use subsampling to
estimate ELBO; (d) uses amortized conditionals; (a) to (c) work for any HBD, and (d) assumes p is a
symmetric HBD as in eq. (2). For models where ni > 1, we use the netu as in fig. 4. Minibatch is
some distribution over the set of possible minibatches and |B| denotes the number of samples in a
minibatch B.

= E
qv(θ)

[
log

p (θ)

qv (θ)

]
+

N∑
i=1

E
qv(θ)

E
qwi

(zi|θ)

[
log

p (zi, yi|θ, xi)

qwi (zi|θ)

]
. (8)

Without assuming special structure (e.g. conjugacy) the above expectations will not be available in
closed form. To estimate the ELBO, let (θ, {zi}Ni=1) ∼ qBranch

v,w . Then, an unbiased estimator is

L̂ = log
p (θ)

qv (θ)
+

N∑
i=1

[
log

p (zi, yi|θ, xi)

qwi
(zi|θ)

]
. (9)

Unlike the joint estimator of eq. (6), one can subsample the terms in eq. (9) to create a new unbiased
estimator. Let B be randomly selected minibatch of indices from {1, 2, . . . , N}. Then,

L̂ = log
p (θ)

qv (θ)
+

N

|B|
∑
i∈B

[
log

p (zi, yi|θ, xi)

qwi (zi|θ)

]
, (10)

is another unbiased estimator of ELBO. In figs. 3b and 3c, we present the complete pseudocodes for
ELBO estimation with and without subsampling in branch distributions.

Unsurprisingly, the same summation structure appears for gradients estimators of branch ELBO,
allowing for efficient gradient estimation. With subsampled evaluation and training, branch distri-
butions are immensely computationally efficient—in our experiments, we scale to models with 103

times more latent variables by switching to branch approximations (see fig. 6).

While branch distributions are immensely more scalable than joint approximations, the number of
parameters still scales as O(N). In the next section, we demonstrate that for symmetric HBDs, we
can share parameters for the local conditionals (amortize) to allow further scalability.

5 Amortized branch approximations

In this section, we discuss how one can amortize the local conditionals of a branch approximations
when the target HBD is symmetric (see eq. (2).) We first formally introduce the amortized branch
distributions in the next definition and then justify the amortization for symmetric HBD.
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Definition 4. Let qJoint
ϕ be a joint approximation and let qBranch

v,w be as in definition 1. Suppose
netu(xi, yi) is some parameterized map (with parameters u) from local observations (xi, yi) to
space of wi. Then,

qAmort
v,u (θ, z) = qv(θ)

N∏
i=1

qnetu(xi,yi)(zi|θ) (11)

is a corresponding amortized branch distribution.

The idea to amortize is natural once you examine the optimization for symmetric HBDs. Consider
the optimization for objective in eq. (8).

max
v,w
L (qBranch

v,w ∥p) = max
v,w

[
E

qv(θ)

[
log

p (θ)

qv (θ)

]
+

N∑
i=1

E
qv(θ)

E
qwi

(zi|θ)

[
log

p (zi, yi|θ, xi)

qwi (zi|θ)

]]

= max
v

[
E

qv(θ)

[
log

p (θ)

qv (θ)

]
+

N∑
i=1

max
wi

E
qv(θ)

E
qwi

(zi|θ)

[
log

p (zi, yi|θ, xi)

qwi (zi|θ)

]]
.

The crucial observation in the above equation is that for any given v, the optimal solution of inner
optimization depends only on local data points (xi, yi), i.e.,

w∗
i = argmax

wi

E
qv(θ)

E
qwi

(zi|θ)

[
log

p (zi, yi|θ, xi)

qwi
(zi|θ)

]
. (12)

Now, notice that if p and qBranch
v,w have symmetric conditionals, then, for each i, we solve the

same optimization over wi, just with different parameters yi and xi. Thus, one could replace the
optimization over wi with an optimization over a parameterized function from (xi, yi) to the space of
wi. Formally, when the network netu is sufficiently capable, we make the following claim.

Claim 5. Let p be a symmetric HBD and let qJoint
ϕ be some joint approximation. Let qAmort

v,u be as in
definition 1. Suppose that for all v, there exists a u, such that,

netu(xi, yi) = argmax
wi

E
qv(θ)

E
qwi

(zi|θ)

[
log

p (zi, yi|θ, xi)

qwi (zi|θ)

]
. (13)

Then,

min
v,u

KL (qAmort
v,u ∥p) ≤ min

ϕ
KL (qJoint

ϕ ∥p) (14)

Note, we only amortize the conditional distribution qwi
(zi|θ) and leave qv (θ) unchanged. In practice,

of course, we do not have perfect amortization functions. The quality of the amortization depends on
our ability to parameterize and optimize a powerful neural network. In other words, we make the
following approximation

netu(xi, yi) ≈ argmax
wi

E
qv(θ)

E
qwi

(zi|θ)

[
log

p (zi, yi|θ, xi)

qwi
(zi|θ)

]
. (15)

In our experiments, we found the amortized approaches work well even with moderately sized
networks. Due to parameter sharing, the amortized approaches converge much faster than other
alternatives (especially, true for larger models; see fig. 6 and table 2).

6 Amortized branch approximations for i.i.d. observations

In the previous section, we discussed how we could amortize branch approximations for symmetric
HBDs. However, in some applications, the construction of amortization network netu is not as
straightforward. Consider the case when we have a varying number of local i.i.d observations for
each local latent variable. In this section, we highlight the problem with naive amortization for locally
i.i.d HBDs, and present a simple solution to alleviate them.
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Table 1: All variational families used in our experiments. Σ denotes a generic covariance matrix and
σ2 denotes a diagonal covariance.

Gaussian Family qJoint
ϕ as in eq. (5) qBranch

v,w as in eq. (7) qAmort
v,u as in definition 4

Dense N (θ, z|µ,Σ) N (θ|µ0,Σ0)
N∏
i=1

N (zi|µi +Aiθ,Σi) N (θ|µ0,Σ0)
N∏
i=1

N (zi|µi +Aiθ,Σi)

ϕ = (µ,Σ) v = (µ0,Σ0), wi = (µi, Ai,Σi) v = (µ0,Σ0), (µi, Ai,Σi) = netu(xi, yi)

Block Diagonal N (θ|µ0,Σ0)N (z|µ1,Σ1) N (θ|µ0,Σ0)

N∏
i=1

N (zi|µi,Σi) N (θ|µ0,Σ0)

N∏
i=1

N (zi|µi,Σi)

ϕ = (µ0, µ1,Σ0,Σ1) v = (µ0,Σ0), wi = (µi,Σi) v = (µ0,Σ0), (µi,Σi) = netu(xi, yi)

Diagonal N (θ, z|µ, σ2) N (θ|µ0, σ
2
0)

N∏
i=1

N (zi|µi, σ
2
i ) N (θ|µ0, σ

2
0)

N∏
i=1

N (zi|µi, σ
2
i )

ϕ = (µ, σ2) v = (µ0, σ
2
0), wi = (µi, σ

2
i ) v = (µ0, σ

2
0), (µi, σ

2
i ) = netu(xi, yi)

Mathematically, for locally i.i.d HBDs we have yi = {yij}ni
j=1 and xi = {xij}ni

j=1, such that the
conditional over yi factorizes as

p (yi|xi, zi, θ) =

ni∏
j=1

p (yij |xij , zi, θ) .

Now, if xi and yi are directly input to the amortization network netu, the input size to the network
would change for different i (notice we have ni observations for ith local variable.) Another problem
is that the optimal variational parameters are invariant to the order in which the i.i.d. observations
are presented. For instance, consider two data points: (xi, yi) = [(xi1, yi1), . . . , (xini

, yini
)] and

(x′
i, y

′
i) = [(xini , yini), . . . , (xi1, yi1)]. A naive amortization scheme will evaluate very different

conditionals for these two data points because netu(xi, yi) and netu(x′
i, y

′
i) will be different.

netu(xi, yi)
for j in {1, 2, . . . , ni}

ej ← feat_netu(xij , yij)

e← pool({ej}ni
j=1)

wi ← param_netu(e)
return wi

Figure 4: Psuedocode for netu
for locally i.i.d symmetric HBD.

To deal with both issues: variable length input and permutation
invariance, we suggest learning a “feature network” and "pooling
function" based amortization network; this is reminiscent of "deep
sets" [39] albeit here intended not just to enforce permutation
invariance but also to deal with inputs of different sizes. Firstly, a
feature network feat_net takes each (xij , yij) pair and returns a
vector of features ej . Secondly, a pooling function pool takes the
collection {ej}ni

j=1 and achieves the two aims. First, it collapses
ni feature vectors into a single fixed-sized feature e (with the same
dimensions as ej). Second, pooling is invariant by construction
to the order of observations (for example, pooling function would take a dimension-wise mean or sum
across j.) Finally, this pooled feature vector e is input to another network param_net that returns
the final parameters wi. The pseudocode for a netu with feature networks is available in fig. 4. In
table 4, in appendix, we summarize the applicability of proposed variational methods to different
HBD variants.

7 Experiments

Figure 5: Visualization of dense,
block-diagonal, and diagonal co-
variances. For each, we exper-
iment with qJoint

ϕ , qBranch
v,w , and

qAmort
v,u methods.

We conduct experiments on a synthetic and a real-world prob-
lem. For each, we consider three inference methods: using a
joint distribution, using a branch variational approximation, and
using our amortized approach. For each method, we consider
three variational approximations a completely diagonal Gaussian,
a block-diagonal Gaussian (with blocks for θ and z) and a dense
Gaussian; see fig. 5 for a visual. (For each choice of a joint distribu-
tion, the corresponding qBranch

v,w is used for the branch variational
approximation and the corresponding qAmort

v,u for the amortized
approach; see table 1 for details.)

We use reparameterized gradients [20] and optimize with Adam [19] (see appendix G for complete
experimental details.) In appendix A, we discuss some of the observations we had during experimen-
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tation involving parameterization, feat-net architecture, batch-size selection, initialization, and
gradient estimators.

7.1 Synthetic problem

The aim of the synthetic experiment is to work with models where we have access to closed-form
posterior (and the marginal likelihood.) If the variational family contains the posterior, one can expect
the methods to perform close to ideal (provided we can optimize well.)

For our experiments, we use the following hierarchical regression model

p(θ, z, y|x) = N (θ|0, I)
N∏
i=1

N (zi|θ, I)
ni∏
j=1

N (yij |x⊤
ijzi, 1), (16)

where N denotes a Gaussian distribution, and I is an identity matrix (see appendix G.2 for posterior
and the marginal closed-form expressions.)

To demonstrate the performance of our methods, we experiment with three different problems scale
(correspond to three different models with N = 10, 1K, and 100K.) Synthetic data is created using
forward sampling for each of the scale variants independently. We avoid any test data and metrics for
the synthetic problem as the log-marginal is known in closed form. The inference results are present
in fig. 7 (in appendix.) In all cases, amortized distributions perform favorably when compared to
branch and joint distributions.

7.2 MovieLens

Next, we test our method on the MovieLens25M [14], a dataset of 25 million movie ratings for over
62,000 movies, rated by 162,000 users, along with a set of features (tag relevance scores [38]) for
each movie.

Table 3: Details for different scales
of the MovieLens 25M problem.

Scale # of ratings # of users # ratings
# of users

Small 2.5K 16 156.3
Moderate 180K 1600 112.5
Large 18M 159978 112.5

Purely, to make experiments more efficient on GPU hardware,
we pre-process the data to drop users with more than 1,000
ratings—leaving around 20M ratings. Also, for the sake of
efficiency, we PCA the movie features to reduce their dimen-
sionality to 10. We used a train-test split such that, for each
user, one-tenth of the ratings are in the test set. This gives us
≈ 18M ratings for training (and ≈ 2M ratings for testing.)

We use the hierarchical model

p(θ, z, y|x) = N (θ|0, I)
N∏
i=1

N (zi|µ(θ),Σ(θ))
ni∏
j=1

B(yij |sigmoid(x⊤
ijzi)), (17)

Table 2: Inference results for the MovieLens25M problem. For both metrics, we draw a fresh batch
of 10,000 samples from the final posterior. All values are in nats (higher is better).

Metric Final ELBO Test likelihood
≈ # train ratings 2.5K 180K 18M 2.5K 180K 18M

Methods (see table 1)

Dense qJoint
ϕ -1572.31 -166.37
qBranch
v,w -1572.39 -1.0368e+05 -1.1413e+07 -166.66 -11054.43 -1.3046e+06
qAmort
v,u -1572.45 -1.0352e+05 -1.0665e+07 -166.64 -10976.38 -1.1476e+06

Block qJoint
ϕ -1579.04 -167.36

Diagonal qBranch
v,w -1579.05 -1.0350e+05 -1.1078e+07 -166.97 -10987.17 -1.2538e+06
qAmort
v,u -1579.06 -1.0353e+05 -1.0665e+07 -166.96 -10975.96 -1.1484e+06

Diagonal qJoint
ϕ -1592.59 -167.39
qBranch
v,w -1592.64 -1.0428e+05 -1.1325e+07 -167.31 -10977.95 -1.2713e+06
qAmort
v,u -1592.64 -1.0430e+05 -1.0736e+07 -167.29 -10980.75 -1.1497e+06
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Figure 6: Training ELBO trace for the MovieLens25M problem. Top to bottom: dense, block
diagonal, and diagonal Gaussian (for each, we have qJoint

ϕ , qBranch
v,w , and qAmort

v,u method.) Left to right:
small, moderate, and large scale of the MovieLens25M problem. For clarity, we plot the exponential
moving average of the training ELBO trace with a smoothing value of 0.001. These traces correspond
to the values reported in table 2.

where θ represents distribution over user preferences; for instance, θ might represent that users who
like action films tend to also like thrillers but tend to dislike musicals; zi determine the user specific
preference; xij are the features of the jth movie rated by user i; yij is the binary movie ratings; ni

is the number of movies rated by user i, and B denotes a Bernoulli distribution. Here, µ and Σ are
functions of θ, such that, for θ = [θµ, θΣ], we have

µ(θ) = θµ, and Σ(θ) = tril(θΣ)
⊤tril(θΣ)

where tril is a function that transforms an unconstrained vector into a lower-triangular positive
Cholesky factor. As movie features xij ∈ R10, we have θµ ∈ R10, θΣ ∈ R55, and zi ∈ R10. Note
that as Σ depends on θ, and the likelihood is Bernoulli, the model is non-conjugate.

For inference, we use the methods as described in table 1. Note, we hold the amortization network
architecture constant across the scales–the number of parameters remains fixed for qAmort

v,u (for all
Gaussian variants) while the number of parameters scale as O(N) for qBranch

v,w (see appendix F for
more details.)

In fig. 6, we plot the training time ELBO trace, and in table 2, we present the final training
ELBO and test likelihood values. We approximate the test likelihood p(ytest|xtest, x, y) with
Eq [p(y

test|xtest, q)], and draw a fresh batch of 10,000 samples to approximate the expectation
(see appendix G for complete details.) For the smaller model, the amortized and branch approaches
perform similar to the joint approach for all three variational approximations; this supports theorem 2
and claim 5. For the moderate size model, the branch and amortize approaches are very comparable
to each other, while joint approaches fail to scale. For the large model (18M ratings), amortized
approaches are significantly better than branch methods. We conjecture this is because parameter
sharing in amortized approaches improves convergence for models where batch size is smaller com-
pared to total iterates–true only for large model. Interestingly, the performance of amortized Dense
and Block Gaussian approximation is very similar in the large and moderate setting (see qAmort

v,u
results in tables 2, 7 and 8.) We conjecture this is because the posterior over the global parameters is

9



very concentrated for this problem. As θ behaves like a single fixed value, Block Gaussian performs
just as good as the Dense approach (see appendix B for more discussion.)

8 Discussion

In this paper, we present structured amortized variational inference scheme that can scale to large
hierarchical models without losing benefits of joint approximations. Such models are ubiquitous
in social sciences, ecology, epidemiology, and other fields. Our ideas can not only inspire further
research in inference but also provide a formidable baseline for applications.
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