

000 SP-VLA: A JOINT MODEL SCHEDULING AND TOKEN 001 PRUNING APPROACH FOR VLA MODEL ACCELE- 002 RATION 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Vision-Language-Action (VLA) models have attracted increasing attention for
014 their strong control capabilities. However, their high computational cost and low
015 execution frequency hinder their suitability for real-time tasks such as robotic
016 manipulation and autonomous navigation. Existing VLA acceleration methods
017 primarily focus on structural optimization, overlooking the fact that these models
018 operate in sequential decision-making environments. As a result, temporal redun-
019 dancy in sequential action generation and spatial redundancy in visual input remain
020 unaddressed. To this end, we propose **SP-VLA**, a unified framework that acceler-
021 ates VLA models by jointly scheduling models and pruning tokens. Specifically,
022 we design an action-aware model scheduling mechanism that reduces temporal
023 redundancy by dynamically switching between VLA model and a lightweight
024 generator. Inspired by the human motion pattern of focusing on key decision
025 points while relying on intuition for other actions, we categorize VLA actions
026 into *deliberative* and *intuitive*, assigning the former to the VLA model and the
027 latter to the lightweight generator, enabling frequency-adaptive execution through
028 collaborative model scheduling. To address spatial redundancy, we further develop
029 a spatio-semantic dual-aware token pruning method. Tokens are classified into
030 *spatial* and *semantic* types and pruned based on their dual-aware importance to
031 accelerate VLA inference. These two mechanisms work jointly to guide the VLA
032 in focusing on critical actions and salient visual information, achieving effective
033 acceleration while maintaining high accuracy. Extensive experiments show that our
034 method achieves $1.5\times$ lossless acceleration in LIBERO and $2.4\times$ in SimplerEnv,
035 with up to 6% average performance gain. Inference frequency and latency improve
036 by $2.2\times$ in SimplerEnv and $1.4\times$ in LIBERO. **Moreover, on real-robot evaluations,**
037 **our approach maintains accuracy with only a 1% drop while delivering a $2.5\times$**
038 **end-to-end acceleration.**

039 1 INTRODUCTION

040 Vision-Language-Action (VLA) models integrate visual perception and language understanding to
041 generate actionable outputs for robotic control and task execution in embodied agents, demonstrating
042 remarkable progress across a wide range of tasks (Zhang et al., 2024; Han et al., 2024; Shi et al.,
043 2025; Figure AI, 2024; Team et al., 2024; Liu et al., 2024a;b). However, VLA models are generally
044 large-scale. For example, Google’s recently released RT-X series (Brohan et al., 2023; Belkhale
045 et al., 2024; O’Neill et al., 2024b) contains more than 55 billion parameters, and even lightweight
046 models widely used like OpenVLA (Kim et al., 2024) still exceed 7 billion parameters. **The resulting**
047 **computational burden leads to slow inference, making them unsuitable for real-time scenarios such**
048 **as industrial control, autonomous navigation, and medical robotics.**

049 Existing methods for VLA model acceleration focus solely on reducing the single-step computation
050 redundancy via model compression techniques (e.g., pruning (Li et al., 2024c), quantization (Tang
051 et al., 2024; 2022a;b), caching (Li et al., 2024d; Wimbauer et al., 2024; Ma et al., 2024)). Specifically,
052 DeeR-VLA (Yue et al., 2024) introduces an early-exit mechanism that reduces the computational
053 burden of the LLM backbone. QAIL (Park et al., 2024) incorporates an imitation learning mechanism
to quantize the VLA model to 4-bit precision, reducing computational cost while preserving model

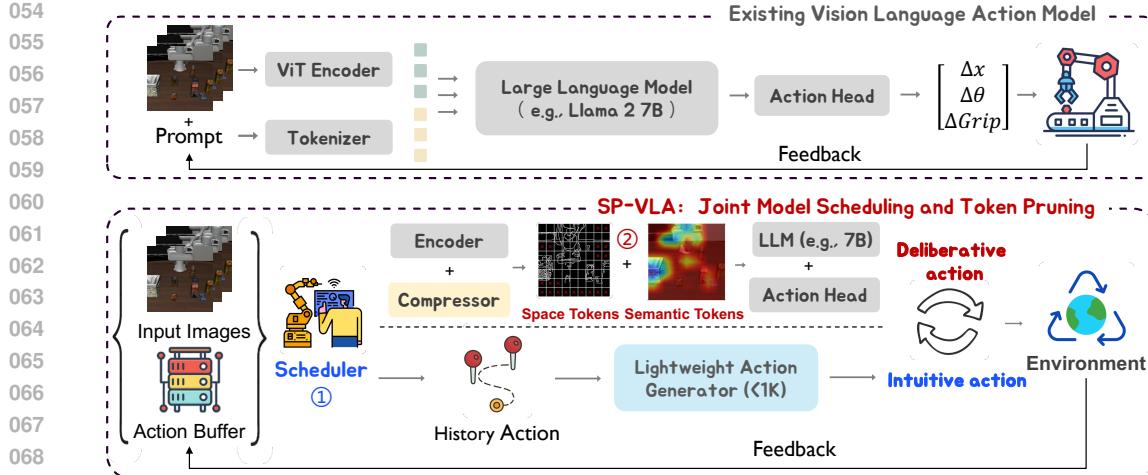


Figure 1: **The main idea of SP-VLA.** Unlike traditional VLA models, SP-VLA first determines the type of the current action. ① For intuitive actions, a lightweight action generator is employed to approximate the output, while for deliberative actions, the high-precision VLA model is used to ensure accuracy. ② When the VLA model is invoked, we further accelerate inference by adaptively pruning tokens based on integrated spatial and semantic information. By jointly leveraging the above two strategies, SP-VLA effectively directs the model’s attention to critical actions and salient visual information, achieving substantial speedup without compromising accuracy. **Among these components, the action head takes different forms across VLA architectures, such as a D-tokenizer in OpenVLA or a diffusion-based policy in CogACT.**

accuracy. VLA-Cache (Xu et al., 2025) reduces computation by selectively reusing tokens deemed less informative. Although these works achieve certain levels of speedup, they primarily focus on accelerating Vision-Language Model (VLM) architectures, overlooking the unique characteristics of VLA models, which introduce an additional temporal dimension by generating actions step-by-step through continuous interaction with the environment. As a result, accelerating VLA models presents two major challenges: (1) Given the temporal dependencies in embodied tasks, how can we effectively leverage historical information to support current decision-making and reduce computational redundancy? (2) Given the high redundancy in visual input from the camera, how can we effectively retain informative visual content and reduce redundancy along the spatial dimension? To this end, we study the problem of handling temporal and spatial redundancy of VLA models for the first time, and present **SP-VLA**, a unified framework that jointly **Scheduling** the model and **Pruning** tokens to accelerate **VLA** models.

To solve temporal dependencies, we first design a *action-type aware model scheduling* approach that enables frequency-adaptive inference by dynamically switching between the large-scale VLA model and a lightweight model at different time steps. By rethinking human motion patterns, we observe that deliberate thinking typically occurs only at critical moments such as grasping or turning, while movements between those key points are executed intuitively (Schwartz, 2016; Merel et al., 2019; Murray & Escola, 2020). This allows humans to perform complex tasks both quickly and accurately. Interestingly, we find that **VLA models follow a similar behavioral pattern like human, with actions falling into two categories: *deliberative* and *intuitive***. Based on this observation, Based on this, we propose using the VLA model to generate *deliberative* actions, while delegating *intuitive* actions to a lightweight model. Specifically, we assume that high-speed movements are typically *intuitive*, whereas low-speed movements are more likely to be *deliberative*, and we determine the action type at each time step based on historical information. To model *intuitive* actions, we exploit the inertia in object motion and design a lightweight action generator based on Ridge Regression, enhanced with an action cache for efficient prediction. However, since embodied tasks are inherently more complex than simple linear movements, the generation of *intuitive* actions still benefits from the VLA model’s directional guidance to ensure task fidelity. As a result, *intuitive* actions are actually produced through high-frequency switching between the lightweight generator and the VLA model.

To mitigate spatial redundancy, we design a *spatio-semantic dual-aware token pruning* to preserve the most relevant visual information. Unlike VLMs, VLA models must understand the relative positions of objects to complete tasks, implying the need for spatial perception. Experimental results show that disrupting token arrangement or aggressively pruning background tokens, such as object contours, leads to significant performance degradation in VLA tasks. This indicates that **the spatial perception of VLA models relies on the relative order of tokens and object contour information**. To address this, we integrate edge and semantic information by extracting object contours using the Canny operator and estimating semantic importance via accumulated attention scores. We also dynamically adjust the token pruning threshold based on current motion speed to maximize inference efficiency.

Overall, we first perform adaptive scheduling between the VLA model and a lightweight action generator based on the action type at each time step. When invoking the VLA model, we further apply speed-aware token pruning, enabling task-aware and frequency-adaptive inference. Through this joint optimization, we effectively eliminate both temporal and spatial redundancies, guiding the model to focus on critical actions and salient visual elements to maximize inference efficiency. Extensive experiments demonstrate that our method achieves $1.5\times$ lossless speedup in LIBERO and $2.4\times$ in SimplerEnv, with up to 6% performance gain, while improving inference frequency and latency by $1.4\times$ and $2.2\times$, respectively. **On real-robot evaluations, our approach maintains accuracy with only a 1% drop while delivering a $2.5\times$ end-to-end acceleration, highlighting its strong efficiency and robustness.**

The main contributions of SP-VLA are as follows:

- (1) To the best of our knowledge, this is the first work to accelerate VLA models via reducing the temporal and spatial redundancy. We propose a framework that jointly performs model scheduling and token pruning, guiding the VLA model to focus on key actions and visual elements to achieve maximal acceleration.
- (2) We propose an action-aware model scheduling algorithm that effectively reduces temporal redundancy in VLA models. We observe that the VLA action sequences resemble human behavior, comprising *intuitive* and *deliberative* actions. Leveraging this structure, we assign intuitive actions to a lightweight model and deliberative ones to the VLA model, enabling lossless, frequency-adaptive acceleration.
- (3) We propose a spatio-semantic dual-aware token compression method. We find that the spatial perception of VLA models relies on the relative positions of tokens and object contour information. Based on this, we design a token pruning method that incorporates both edge features and semantic importance, effectively reducing spatial redundancy.

2 RELATED WORK

Vision-Language-Action Models. As LLMs gain stronger reasoning ability, the VLA paradigm emerges to extend VLMs to embodied control. DeepMind’s RT series, including RT-1 (Brohan et al., 2022), RT-2 (Brohan et al., 2023), RT-X (O’Neill et al., 2024b), and RT-H (Belkhale et al., 2024), are among the earliest large-scale VLA models. Additionally, the release of the Open X-Embodiment (O’Neill et al., 2024a) dataset has laid a strong foundation for continued research. Built on it, OpenVLA (Kim et al., 2024) leverages the reasoning capabilities of LLaMA 2, achieving significant improvements in accuracy. On the other hand, generative models such as diffusion models have been adopted in embodied tasks to enhance the temporal coherence of actions. π_0 (Black et al., 2024) and $\pi_{0.5}$ (Intelligence et al., 2025) incorporate Flow Matching models as action decoders, allowing VLA models to generate entire action sequences in a single pass, significantly improving execution smoothness and efficiency. Nevertheless, compared to traditional control methods (Li et al., 2023; Liu et al., 2024c; Lin et al., 2022), the lack of attention to action efficiency hampers their deployment in more demanding applications, such as industrial assembly.

Acceleration for Vision-Language-Action Models. A lot of work has been devoted to improving the efficiency of the VLA model. QAIL (Park et al., 2024) integrates quantization into the imitation learning fine-tuning process to train quantized policies that approximate expert behavior. Fast (Pertsch et al., 2025) transforms actions into the frequency domain, enabling efficient compression by analyzing their spectral characteristics. VLA-Cache (Xu et al., 2025) accelerates inference by distinguishing background tokens from task-relevant ones and caching the less critical parts.

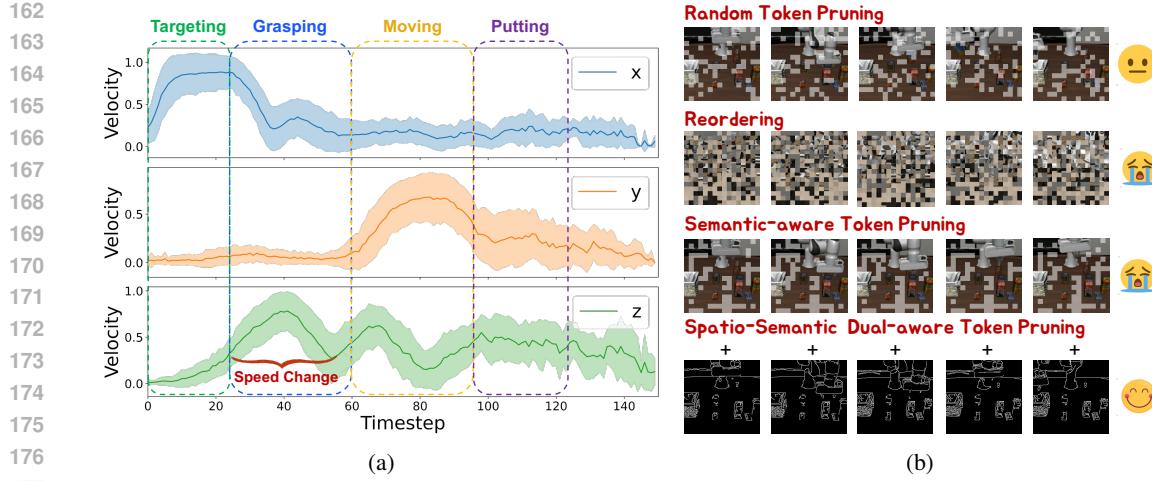


Figure 2: **The visualization of VLA model behavior.** (a) shows the velocity profile of the robot arm across 50 pick-and-place trials, following a consistent four-phase pattern: targeting, grasping, moving, and placing. The VLA model demonstrates complex behavior by adjusting orientation at key points and learning kinematic patterns such as acceleration and deceleration. These action sequences comprise both *deliberative* and *intuitive* components. (b) shows task performance under different token distributions. Random pruning degrades accuracy, highlighting the presence of token redundancy. However, relying exclusively on semantic importance, such as through reordering or semantic-aware pruning, causes the model to fail in completing the task. In contrast, integrating *spatial* and *semantic* information enables efficient pruning while preserving performance, as the VLA model relies on token relative positions and object contours for spatial understanding.

PD-VLA (Song et al., 2025) and VLA-OFT (Kim et al., 2025) modify the autoregressive action generation in VLA models by introducing parallel decoding, significantly improving generation efficiency. However, these approaches fail to account for the specific nature of embodied tasks, such as leveraging historical information and addressing visual redundancy, thus leaving significant potential for further acceleration. Our approach adaptively switches between the VLA model and a lightweight action generator based on *intuitive* and *deliberative* actions, and prunes tokens according to task complexity, enabling frequency-adaptive acceleration.

3 A JOINT MODEL SCHEDULING AND TOKEN PRUNING APPROACH FOR VLA MODEL ACCELERATION

In this section, we provide a detailed introduction to SP-VLA. The framework of our idea is shown in Fig.1. Prior to processing environmental feedback, the historical action sequence is analyzed to determine whether the current step requires a *deliberative* or *intuitive* action. *Intuitive* actions are generated using a lightweight generator, while *deliberative* actions are handled by the VLA. Furthermore, before entering the LLM backbone, input tokens are pruned based on their *spatial* context and *semantic* importance, further reducing computational overhead. The lightweight action generator will be introduced in Section 3.1, and the token pruning strategy will be detailed in Section 3.2.

3.1 ACTION TYPE-AWARE MODEL SCHEDULING

Human motor behavior relies on deliberate thinking only for complex actions, such as grasping or turning, while other simple actions are executed intuitively (Schwartz, 2016; Merel et al., 2019; Murray & Escola, 2020). This hybrid strategy achieves high efficiency and low energy consumption without sacrificing effectiveness. However, existing VLA models treat all actions as equally important, relying on large model (e.g., parameter $> 7B$) to generate each action through complex reasoning. In reality, coherent action sequences involve not only high-level logical reasoning but also low-level physical dynamics, including inertia and linear acceleration or deceleration during point-to-

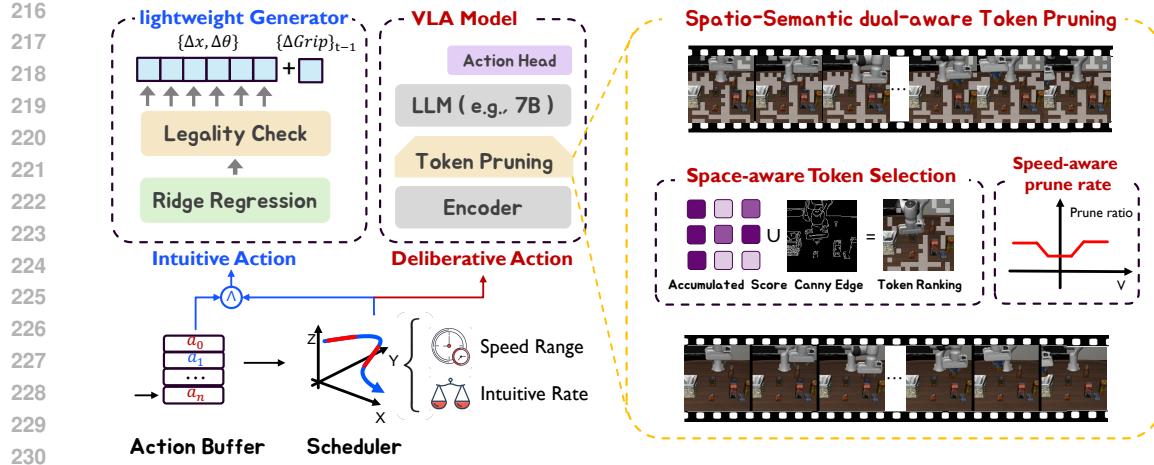


Figure 3: **The framework of SP-VLA.** SP-VLA accelerates the inference process through joint model scheduling and token pruning. **Left:** At each time step t , the scheduler classifies the current action as *intuitive* or *deliberative* based on the historial trajectories in the action buffer. For intuitive actions, Ridge Regression estimates the translational and rotational components, reusing the gripper state at $t - 1$. Otherwise, the VLA model will generate a fine-grained action. **Right:** To support spatial understanding, we rank token importance by combining *spatial* information from the Canny operator with *semantic* importance, and perform velocity-adaptive pruning for optimal acceleration.

point movements, which poses a significant challenge for VLA modeling. Ignoring the distinction between action types leads to substantial redundant computation and ultimately compromises motion smoothness. Therefore, leveraging this property to reduce the computational burden of VLA models is a pressing challenge that needs to be addressed.

Action Type Indicator. In order to identify *intuitive* actions in VLA-generated trajectories, we analyzed the behavioral patterns of VLA models and uncovered consistent patterns in grasping tasks. The robotic arm typically performs a slow alignment with the target, then approaches the target position at high speed, and finally executes the grasping action at a moderately low speed. A similar motion pattern is observed during the placement phase, and the observed behavior is illustrated in Fig.2a. As shown in the figure, the VLA model not only learns logical reasoning capabilities but also captures dynamic patterns such as acceleration and deceleration. Therefore, we conclude that *deliberative* actions are required for precise operations such as turning and grasping, whereas *intuitive* actions are more appropriate during high-speed transitions between task phases. In this paper, we treat the action output of the VLA model as a displacement per time step, *i.e.*, velocity. Let $\mathbf{a}_{t_d} = \{a_x, a_y, a_z\}$ represent the translational velocity components of the end-effector at time step t . An action $\mathbf{a}_{in} \in \{\mathbf{a} \in \mathbb{R}^l | |a_i| > v_{min}, \forall i \in \{x, y, z\}\}$ is classified as an *intuitive* action if all components exceed a predefined threshold v_{min} , otherwise, it will be considered as a *deliberative* action.

Model Schedular. Based on the above conclusion, we determine whether to use the lightweight model based on motion speed and the action cache, as shown in Fig.3. Low velocities typically indicate fine manipulation, whereas high velocities increase the risk of significant errors when relying on the lightweight model. If $\mathbf{a}_{t-1} \in \{\mathbf{a} \in \mathbb{R}^l | v_{min} < |a_i| < v_{max}, \forall i \in \{x, y, z\}\}$, the lightweight model can be called, v_{min} and v_{max} denote the velocity thresholds. On the other hand, we also monitor the number of VLA-generated actions N_G in the action buffer \mathbf{S}_A , and allow the lightweight model to be used when $N_G/N_A > \tau$, where N_A is the total action number of \mathbf{S}_A , τ is a predefined threshold. Overall, the triggering conditions for the lightweight model are:

$$LWM = \begin{cases} 1, & \text{if } \mathbf{a}_{t-1} \in [v_{min}, v_{max}] \text{ and } \frac{N_G}{N_A} > \tau \\ 0, & \text{otherwise} \end{cases} \quad (1)$$

270 By performing small-step, high-frequency model switching, we can achieve faster inference while
 271 maintaining the accuracy of action direction.
 272

273 **Lightweight Action Generator.** To support fast and reliable action approximation, we develop a
 274 lightweight generator using Ridge Regression and an action buffer to efficiently estimate upcoming
 275 actions. Although the end-effector trajectory of the manipulator is complex, we assume that short
 276 segments of *intuitive* actions can be approximated as linear. Therefore, by modeling the relationship
 277 between time and velocity in the action buffer, the current action \mathbf{a}_t can be predicted. Specifically,
 278 the action buffer $\mathbf{S}_A = \{\mathbf{a}_{t-n}, \mathbf{a}_{t-n+1}, \dots, \mathbf{a}_{t-1}\}$ is used to store actions generated over the most
 279 recent n steps, t is the current timestep, $\mathbf{a}_t = \{a_1, a_2, \dots, a_l\}$ is the l -dimensional action vector at
 280 t . $\mathbf{T} = [0, 1, \dots, n-1]^T$ is the timestep vector. The formulation of the Ridge Regression model is
 281 $\mathbf{Y} = \mathbf{X}\beta + \varepsilon$, where $\mathbf{X} = [\mathbf{T}, \mathbf{1}] \in \mathbb{R}^{n \times 2}$ is the input, $\beta \in \mathbb{R}^{2 \times l}$ denotes the parameter matrix to be
 282 fitted, ε is the error term, $\mathbf{Y} \in \mathbb{R}^{n \times l}$ is the action buffer. To generate each new actions, the model is
 283 re-fitted from scratch, with the following loss function:
 284

$$J(\beta) = \|\mathbf{X}\beta - \mathbf{Y}\|^2 + \lambda\|\beta\|^2, \quad (2)$$

285 where $\|\beta\|^2$ is the Tikhonov regularization term, which imposes an L2 penalty on the parameters, λ
 286 is the regularization term. The analytical solution to this equation is given by:
 287

$$\beta = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}, \quad (3)$$

288 where $\mathbf{I} \in \mathbb{R}^{2 \times 2}$ is the identity matrix. Once the optimal parameters of the current segment β^* is
 289 obtained, the action at the current time step can be calculated as follows:
 290

$$\mathbf{a}_t = \mathbf{x}_t \beta^*, \quad \text{where } \mathbf{x}_t = [t \ 1]. \quad (4)$$

291 It is worth noting that, since the end-effector state in this work is represented as a binary variable, we
 292 do not apply the above fitting strategy. Instead, we directly reuse the value from the previous time
 293 step $t-1$, and delegate state transitions of the end-effector to the VLA model. Finally, the predicted
 294 action is directly executed after passing a validity check.
 295

296 3.2 SPATIAL-SEMANTIC DUAL-AWARE TOKEN PRUNING

297 To further reduce computation, we adopt a data-centric perspective and dynamically prune less
 298 important tokens during VLA invocation, enabling the model to concentrate its attention on task
 299 relevant content. Since the LLM accounts for the majority of computational overhead in VLA models,
 300 we perform token pruning before feeding tokens into the LLM, ensuring compatibility with diverse
 301 VLA architectures. Notably, we observe that VLA models are highly sensitive to both the relative
 302 positions of input tokens and object contour-related tokens, as evidenced by the experimental results
 303 in Fig. 2b. As illustrated, randomly dropping tokens reduces accuracy but does not prevent task
 304 completion, suggesting that many tokens are redundant. It is worth noting that even without pruning,
 305 reordering tokens solely according to their semantic importance results in task failure, underscoring
 306 the importance of token relative positioning for spatial understanding in VLA models. Moreover, even
 307 without altering the relative positions of tokens, pruning solely based on semantic importance can
 308 remove critical background information, also leading to task failure. Finally, reintroducing positional
 309 tokens restores model performance, underscoring the critical role of both token relative ordering and
 310 object contour-related tokens in supporting accurate spatial localization.
 311

312 **Semantic-aware Token Importance.** Given the input image \mathbf{X} , the vision encoder transforms it
 313 into a sequence of tokens. We use the final layer of the encoder as the basis for token selection. The
 314 queries, keys, and values can be calculated as follows:
 315

$$\mathbf{Q} = \mathbf{X}\mathbf{W}_q, \quad \mathbf{K} = \mathbf{X}\mathbf{W}_k, \quad \mathbf{V} = \mathbf{X}\mathbf{W}_v, \quad (5)$$

316 where $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d_k}$, $\mathbf{W}_q, \mathbf{W}_k$, and $\mathbf{W}_v \in \mathbb{R}^{d \times d_k}$ are trainable weight matrices, and N is the
 317 sequence length. The cumulative importance score of the tokens is given by:
 318

$$\mathbf{Attn} = \text{Softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d_k}} \right) \mathbf{V}, \quad \text{AccuAttn} = \frac{1}{N} (\mathbf{e}^\top \otimes \mathbf{I}_M) \text{vec}(\mathbf{Attn}), \quad (6)$$

319 where $\mathbf{Attn} \in \mathbb{R}^{N \times N}$ denotes the attention weight matrix, $\text{vec}(\mathbf{Attn}) \in \mathbb{R}^{N^2 \times 1}$ is the column-wise
 320 vectorization, $\mathbf{e} \in \mathbb{R}^{N \times 1}$ is an all-one vector, and \otimes denotes the Kronecker product. Based on this,
 321 we first identify semantically relevant tokens \mathbf{T}_{se} by selecting those with cumulative attention scores
 322 exceeding a threshold t_{k_s} , i.e., $\mathbf{T}_{se} = \{\mathbf{x}_i \mid \text{AccuAttn}_i > t_{k_s}\}$.
 323

324
 325 **Table 1: Comparisons with the state-of-the-arts on LIBERO.** To adapt these methods for the
 326 VLA model, we introduced several enhancements. Specifically, "+R" denotes the preservation
 327 of relative token positions, while "+S" represents the incorporation of Canny edge information.
 328 Compared to existing approaches, our method achieves a $1.35 \times$ speedup without any performance
 329 loss. Furthermore, it enables a $1.5 \times$ acceleration with less than a 3% drop in accuracy.

Method	Success Rate (% ,↑) / Speed up (↑)				Average	FLOPs (% ,↓)
	Goal	Object	Spatial	Long		
OpenVLA	75.40 / 1.00	86.20 / 1.00	83.80 / 1.00	53.00 / 1.00	74.60 / 1.00	100
SparseVLM	74.20 / 1.33	84.00 / 1.33	83.40 / 1.33	52.80 / 1.33	73.60 / 1.33	75.55
FoPru + R	59.80 / 1.29	81.20 / 1.29	71.60 / 1.30	26.20 / 1.35	59.70 / 1.31	77.20
PruMerge + R	0.00 / 1.54	0.00 / 1.32	0.00 / 1.27	0.00 / 1.32	0.00 / 1.36	73.63
FastVLM + R + S	73.20 / 1.21	77.00 / 1.11	79.80 / 1.12	36.60 / 1.20	66.65 / 1.16	86.22
VisionZip + R + S	46.00 / 1.20	47.40 / 1.23	34.20 / 1.19	4.60 / 1.22	33.05 / 1.21	81.95
Ours (Speed)	73.60 / 1.66	82.40 / 1.44	80.00 / 1.47	51.60 / 1.42	71.90 / 1.50	66.51
Ours (Acc.)	75.40 / 1.46	85.60 / 1.30	84.40 / 1.30	54.20 / 1.32	74.90 / 1.35	73.64

339
 340 **Table 2: The acceleration effects of individual modules.** As shown in the table, model scheduling
 341 yields the most significant acceleration for the VLA model with the least accuracy loss. In contrast,
 342 the model exhibits higher sensitivity to token pruning, and its performance collapses entirely when
 343 object edge information is removed.

Method	Success Rate (% ,↑) / Speed up (↑)				Average	FLOPs (% ,↓)
	Goal	Object	Spatial	Long		
Ours	75.40 / 1.46	85.60 / 1.30	84.40 / 1.30	54.20 / 1.32	74.90 / 1.35	73.64
w/o Pruning	74.40 / 1.23	84.20 / 1.27	84.00 / 1.18	53.30 / 1.39	73.98 / 1.27	78.75
w/o Scheduling	77.31 / 1.24	81.80 / 1.16	79.00 / 1.30	48.00 / 1.13	71.52 / 1.21	82.55
w/o Canny	33.60 / 1.34	39.00 / 1.35	22.00 / 1.35	1.10 / 1.37	23.93 / 1.35	73.40

351
 352 **Spatial-aware Token Importance.** We hypothesize that spatial information is primarily encoded
 353 in object contours. Therefore, we extract spatially informative tokens using the Canny edge detector.
 354 $\mathbf{X}_s = \text{Canny}(\mathbf{X})$ denotes the edge-only image that preserves only contour information extracted
 355 from \mathbf{X} . We then obtain an ordered sequence of edge-based tokens using $\mathbf{T}_{sp} = f_E(\mathbf{X}_s)$, where
 356 $f_E(\cdot)$ denotes the token extraction function.

357
 358 Finally, the selected token set is obtained by computing the order-preserving union of the two,
 359 $\mathbf{T}_{select} = U(\mathbf{T}_{se}, \mathbf{T}_{sp})$, where $U(\cdot)$ denotes a union operation that preserves the original token
 360 ordering.

361 To align with the model collaboration strategy, we disable token pruning under low-speed conditions
 362 to avoid disrupting precise manipulations. Furthermore, motivated by the observation that higher
 363 motion speeds generally correspond to more *intuitive* actions, we define the pruning ratio to be
 364 positively correlated with the current velocity. Accordingly, the retained token ratio is defined as:

$$T_r(v) = \begin{cases} 1, & v < v_{p_{\min}}, \\ 1 - \frac{v - v_{p_{\min}}}{v_{p_{\max}} - v_{p_{\min}}}, & v \geq v_{p_{\min}} \end{cases} \quad (7)$$

365
 366 where $v_{p_{\min}}$ is the minimum velocity threshold, $v_{p_{\max}}$ is the maximum velocity of VLA model.

4 EXPERIMENTAL RESULTS

373 In this section, we present extensive experimental results to demonstrate the superior performance
 374 of SP-VLA. We adopt OpenVLA (Kim et al., 2024) and CogACT (Li et al., 2024a) as the VLA
 375 backbones and evaluate them in the LIBERO (Liu et al., 2023) and SimplerEnv (Li et al., 2024b)
 376 simulation environments. LIBERO consists of four task suites (Spatial, Object, Goal, and Long),
 377 covering 130 tasks with 2000 trajectories to evaluate model robustness. SimplerEnv provides three
 378 settings (Google-VM, Google-VA, and Bridge-VM) with variations in color, material, lighting, and

378
 379 Table 3: **Comparisons with the state-of-the-arts on SimplerEnv.** We apply SP-VLA to the LLM of
 380 CogACT, where the meanings of ‘+R’ and ‘+S’ follow Table 1. As shown, SP-VLA achieves SOTA
 381 performance across diverse tasks, delivering significant speedup while also improving accuracy.

SIMPLER	Method	Success Rate (% ,↑) / Speed up (↑)				Average	FLOPs (% ,↓)
		PickCan	MoveNear	Drawer	DrawerApple		
Visual Matching	CogACT	91.30 / 1.00	85.00 / 1.00	71.80 / 1.00	50.90 / 1.00	74.80 / 1.00	100.00
	Random Dropping	9.70 / 1.20	20.40 / 1.20	53.50 / 1.20	0.00 / 1.20	20.90 / 1.20	58.50
	FastV	92.60 / 1.21	81.40 / 1.21	69.80 / 1.21	52.40 / 1.21	74.10 / 1.21	42.00
	VLA-Cache	92.00 / 1.38	83.30 / 1.38	70.50 / 1.38	51.60 / 1.38	74.40 / 1.38	80.10
	EfficientVLA	93.30 / 1.93	81.30 / 1.93	68.20 / 1.93	53.80 / 1.93	74.20 / 1.93	28.90
Visual Aggregation	Ours	90.00 / 2.62	82.08 / 2.52	75.35 / 1.80	52.78 / 1.67	75.05 / 2.15	38.15
	CogACT	89.60 / 1.00	80.80 / 1.00	28.30 / 1.00	46.60 / 1.00	61.30 / 1.00	100.00
	Random Dropping	4.00 / 1.20	16.10 / 1.20	15.60 / 1.20	0.00 / 1.20	8.90 / 1.20	58.50
	FastV	91.40 / 1.19	78.60 / 1.19	27.60 / 1.19	50.60 / 1.19	62.10 / 1.19	42.00
	VLA-Cache	91.70 / 1.37	79.30 / 1.37	32.50 / 1.37	45.80 / 1.37	62.30 / 1.37	82.60
WindowX	EfficientVLA	93.20 / 1.91	75.80 / 1.91	26.90 / 1.91	49.20 / 1.91	61.20 / 1.91	28.90
	Ours	86.18 / 2.48	77.33 / 2.63	55.29 / 1.81	41.80 / 1.44	65.16 / 2.09	40.20
Success Rate (% ,↑) / Speed up (↑)							
SIMPLER	Method	PutSpoon	PutCarrot	StackBlock	PutEggplant	Average	FLOPs (% ,↓)
WindowX	CogACT	71.70 / 1.00	50.80 / 1.00	15.00 / 1.00	67.50 / 1.00	51.30 / 1.00	100.00
	Random Dropping	52.17 / 1.20	39.13 / 1.20	8.69 / 1.20	26.08 / 1.20	29.70 / 1.20	85.00
	FoPru + R	52.17 / 1.33	39.13 / 1.33	13.04 / 1.33	69.56 / 1.33	43.38 / 1.33	78.00
	FastVLM + R + S	34.78 / 1.14	30.43 / 1.14	4.35 / 1.14	30.43 / 1.08	25.00 / 1.13	90.50
	Ours	70.83 / 3.64	54.17 / 1.73	29.17 / 2.54	75.00 / 1.72	57.29 / 2.41	35.35

400 Table 4: **Real-robot performance on Franka.** We evaluate two manipulation tasks over 50 trials
 401 each (20 morning, 10 noon, 20 evening). SP-VLA achieves over **2.5**× acceleration on average while
 402 preserving accuracy, reduces FLOPs by over **60**%, and lowers inference latency by nearly **50**%.

Method	Success Rate (% ,↑) / Speed Up (↑)			Average	FLOPs (% ,↓)	Latency (s, ↓)
	Pick Up	Pick and Place	Average			
CogACT	80.00 / 1.00	74.00 / 1.00	77.00 / 1.00	100		0.27
SP-VLA	78.00 / 2.46	74.00 / 2.57	76.00 / 2.52	35.55		0.13

410 camera pose for robustness assessment. We conduct real-world experiments by deploying SP-VLA
 411 on a Franka Research 3 robot to validate its practical effectiveness. In these experiments, we use
 412 CogACT as the base model and fine-tune it with 150 trajectories per task collected using the GELLO
 413 suite. Experiments are run on NVIDIA A100 GPUs (40GB), and all reported results are averaged
 414 over three independent runs with different random seeds to ensure statistical robustness.

417 **Parameter Settings.** In this experiment, we set the buffer size to $n = 6$ and the deliberation ratio
 418 to $\tau = 0.5$. The choice of velocity thresholds is device dependent. In practice, one should first
 419 determine the maximum and minimum task-execution speeds of the embodied system, and then use
 420 1/4 and 3/4 of this range as the values for V_{\min} and V_{\max} , respectively. For example, in simulation, we
 421 assign a set of parameters for SP-VLA to a broad class of tasks, since different task types may require
 422 different configurations. In the real-world experiments of this paper, however, a single parameter set
 423 is sufficient for the Franka robot.

4.1 SIMULATION RESULTS

427 Table 1 and 3 report the main results of SP-VLA. SP-VLA achieves the best results in LIBERO,
 428 consistently delivering a 1.35× speedup without accuracy loss, and up to 1.5× faster inference with
 429 a slight 3% accuracy drop. In SimplerEnv tasks, it further achieves a 2× speedup with improved
 430 performance, indicating a degree of error-correction capability. Notably, on the Visual Aggregation
 431 Drawer task, SP-VLA improves performance by about 27% while achieving a 1.8× speedup,
 demonstrating clear error-correction capability. Besides, the VLA model is highly sensitive to spatial

432 Table 5: **Latency and Frequency in the SimplerEnv Environment.** We measure these metrics on
 433 an RTX 4090. SP-VLA achieves approximately a $2.2\times$ inference speedup, highlighting its capability
 434 for phase-aware dynamic acceleration that adapts frequency to different stages of the task.

SIMPLER	Evaluation Indicator	Frequency (Hz, \uparrow) / Latency (s, \downarrow)				Average
		PickCan	MoveNear	Drawer	DrawerApple	
Visual Matching	CogACT	4.00 / 0.25	4.00 / 0.25	3.85 / 0.26	3.23 / 0.31	3.77 / 0.27
	SP-VLA	9.09 / 0.11	8.33 / 0.12	7.14 / 0.14	7.69 / 0.13	8.06 / 0.13
SIMPLER	Evaluation Indicator	Frequency (Hz, \uparrow) / Latency (s, \downarrow)				Average
		PutSpoon	PutCarrot	StackBlock	PutEggplant	
WindowX	CogACT	4.00 / 0.25	4.00 / 0.25	4.00 / 0.25	3.85 / 0.26	3.96 / 0.25
	SP-VLA	12.5 / 0.08	6.25 / 0.16	8.33 / 0.12	7.69 / 0.13	8.69 / 0.12

446 information: disrupting token order or retaining too few tokens severely impairs perception, often
 447 leading to task failure, particularly with generic compression methods. To address this, we reorder
 448 tokens and add position tokens ('+R' and '+S'), but these approaches still perform poorly with
 449 substantial performance degradation. Even after supplementing positional information and preserving
 450 token order, FoPru (Jiang et al., 2024) and VisionZip (Yang et al., 2024) still suffer from substantial
 451 performance degradation with limited speedup. These results demonstrate that SP-VLA effectively
 452 identifies both temporal and spatial redundancies in VLA models, and accelerates the inference
 453 process through joint model scheduling and token pruning, while preserving the model’s spatial
 454 perception capabilities and overall performance. This confirms the significant effectiveness of our
 455 approach in accelerating VLA inference.

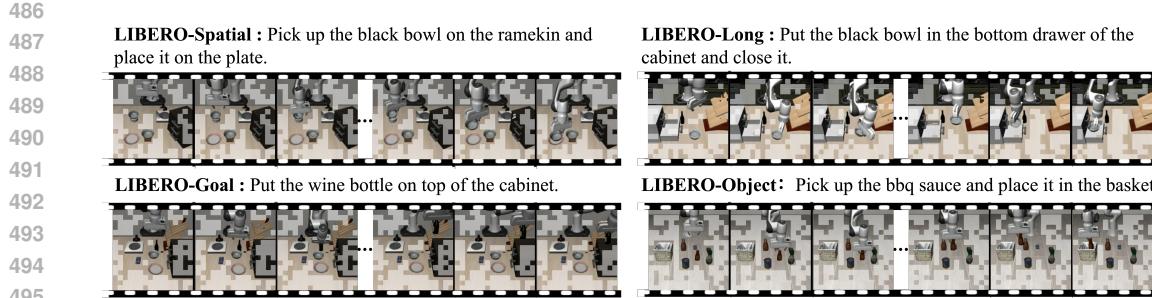
4.2 REAL-WORLD RESULTS

456
 457
 458 To further validate the acceleration gains of SP-VLA, we first train CogACT using 150 trajectories
 459 collected for each of the two tasks—*Pick up the cylinder* and *Pick and Place the cylinder*. We then
 460 deploy SP-VLA on a real Franka Research 3 robot to evaluate its performance. The hyperparameters
 461 are set using 1/4 and 3/4 of Franka’s velocity range as V_{min} and V_{max} , respectively, with $\tau = 0.5$
 462 and $n = 6$. For each task, we conduct 50 evaluations (20 in the morning, 10 at noon, and 20 in the
 463 evening) and report the average performance to approximate operation across different time periods.
 464 As shown in Table 4, CogACT achieves success rates of 80% and 74% on the two tasks. After
 465 integrating SP-VLA, the success rates become 78% and 74%. This reflects only a 1% decrease in
 466 average accuracy while achieving a $2.52\times$ acceleration. These results demonstrate that SP-VLA
 467 provides stable and consistent acceleration in both simulation and real-world deployment.
 468

4.3 ANALYSIS

469
 470
 471 **The Acceleration Effects of Individual Modules.** The ablation results are summarized in Table 2.
 472 Specifically, we conduct three ablation experiments here: (1) disabling token pruning, (2) removing
 473 model scheduling, and (3) excluding positional information from the token pruning process. Overall,
 474 model scheduling emerges as the most effective component for accelerating the VLA model, achieving
 475 a $1.27\times$ speedup with only a 1% drop in accuracy. This indicates that VLA models contain substantial
 476 temporal redundancy. In contrast, token pruning yields only moderate acceleration but results in a
 477 substantial accuracy drop, indicating that the VLA model is highly sensitive to token reduction and
 478 offers limited redundancy for compression. Notably, eliminating the Canny edge information results
 479 in a dramatic 50% degradation in performance, effectively collapsing the model’s functionality. This
 480 underscores the critical role of relative token positions and object contour information in enabling the
 481 VLA model’s spatial perception. Ultimately, the joint application of these techniques yields the best
 482 overall acceleration, with no compromise in model accuracy.

483
 484 **Frequency and Latency.** We evaluate the inference frequency and latency of SP-VLA on a single
 485 NVIDIA RTX 4090 (40GB), with results in Table 5. CogACT runs at less than 4 Hz, while our
 486 method increases the frequency to over 8 Hz—a $2.2\times$ improvement—along with a $2.2\times$ reduction in



486
487 **LIBERO-Spatial** : Pick up the black bowl on the ramekin and
488 place it on the plate.
489
490
491 **LIBERO-Long** : Put the black bowl in the bottom drawer of the
492 cabinet and close it.
493
494
495 **LIBERO-Goal** : Put the wine bottle on top of the cabinet.
496 **LIBERO-Object** : Pick up the bbq sauce and place it in the basket.
497
498
499

Figure 4: **Visualizations of SP-VLA across different tasks.** As shown in the figure, our method efficiently prunes redundant image regions to accelerate VLA inference while preserving key object contours to maintain spatial perception.

500 **Task Prompt** : Pick up the cylinder.
501
502 **Task prompt** : Pick up the cylinder and place it into the
503 basket.
504
505
506 **Figure 5: Visualizations of SP-VLA on real tasks.** As illustrated in the figure, our method selectively
507 prunes unnecessary tokens while retaining critical visual cues, enabling efficient acceleration in
508 real-world scenarios without sacrificing task-relevant information.
509
510

510 per-inference latency. Furthermore, on LIBERO, our method delivers a $1.4\times$ frequency improvement,
511 indicating that VLA models exhibit substantial temporal and spatial redundancy, which our approach
512 effectively exploits for dynamic frequency acceleration. More detailed results are in Appendix A.2.
513

514 **Visualizations.** To evaluate the efficiency of SP-VLA, we present both simulation and real-world
515 visualizations in Fig. 4 and Fig. 5, illustrating how the method accelerates VLA inference while
516 preserving task-relevant information. Fig.4 shows how SP-VLA performs task completion across
517 various tasks during the invocation of the VLA model. As shown in the figure, SP-VLA adaptively
518 identifies redundant components and prunes tokens accordingly to accelerate VLA inference. Moreover,
519 it effectively preserves object edge information, maintaining the spatial perception capability required
520 by the VLA model. These results demonstrate the effectiveness of our spatio-semantic dual-aware
521 token pruning method in significantly enhancing inference efficiency. Fig.5 illustrates the real-world
522 performance of SP-VLA. As shown in the figure, our method effectively identifies and removes
523 redundant tokens while preserving the essential content, enabling efficient acceleration without
524 compromising task-relevant information. This demonstrates that SP-VLA preserves the execution
525 accuracy of the base model while simultaneously achieving substantial acceleration. For details
526 on parameter sensitivity analysis, in-depth experimental analysis, the acceleration ratios of different
527 model parts and additional experiments and visualizations, please refer to Appendices A.3, A.4, A.5,
528 A.7, A.8 and A.9.
529

5 CONCLUSION

530 In this work, we propose SP-VLA, a unified framework that accelerates VLA models through joint
531 model scheduling and token pruning. By dynamically switching between a full VLA model and a
532 lightweight generator based on *deliberative* or *intuitive* actions, and pruning tokens according to
533 spatio-semantic importance during VLA invocation, SP-VLA enables frequency-aware and task-
534 adaptive acceleration. Extensive experiments demonstrate that our method achieves $1.5\times$ lossless
535 speedup in LIBERO and $2.4\times$ in SimplerEnv, with up to 6% performance gain, while simultaneously
536 improving both inference frequency and latency by $1.4\times$ in LIBERO and $2.2\times$ in SimplerEnv. This
537 highlights the potential of collaborative model-data strategies in enabling practical deployment of
538 VLA systems in real-world applications.
539

540 **6 ETHICS STATEMENT**
541542 This work focuses solely on accelerating embodied models and involves only robotic arm simulations
543 and real-world experiments. It does not involve human subjects, sensitive personal data, or ethically
544 concerning applications. The research does not present foreseeable risks of misuse or harm, nor
545 does it raise issues of bias, discrimination, privacy, or security. All experiments were conducted in
546 compliance with standard research integrity practices.
547548 **7 REPRODUCIBILITY STATEMENT**
549550 We have taken several measures to ensure the reproducibility of our results. All experiments were
551 conducted with multiple random seeds and repeated runs to confirm robustness. The backbone models
552 and checkpoints used in this work are publicly available and open-source. The experimental envi-
553 ronments (LIBERO and SimplerEnv) are standardized and publicly accessible. All hyperparameters
554 and implementation details will be fully documented and released in a public GitHub repository, and
555 additional sensitivity analyses and extended results are provided in the appendix to further support
556 reproducibility.
557558 **REFERENCES**
559560 Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen
561 Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. Rt-h: Action hierarchies using language. *arXiv*
562 *preprint arXiv:2403.01823*, 2024.563 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
564 Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow model for
565 general robot control. *arXiv preprint arXiv:2410.24164*, 2024.566 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
567 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
568 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.569 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
570 Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
571 models transfer web knowledge to robotic control. *arXiv preprint arXiv:2307.15818*, 2023.572 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
573 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
574 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024.575 Figure AI. Helix: A vision-language-action model for generalist humanoid control. <https://www.figure.ai/news/helix>, 2024.576 ByungOk Han, Jaehong Kim, and Jinhyeok Jang. A dual process vla: Efficient robotic manipulation
577 leveraging vlm, 2024. URL <https://arxiv.org/abs/2410.15549>.578 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
579 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, et al. $\pi_{0.5}$: A vision-language-action
580 model with open-world generalization. *arXiv preprint arXiv:2504.16054*, 2025.581 Lei Jiang, Weizhe Huang, Tongxuan Liu, Yuting Zeng, Jing Li, Lechao Cheng, and Xiaohua Xu.
582 Fopru: Focal pruning for efficient large vision-language models. *arXiv preprint arXiv:2411.14164*,
583 2024.584 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
585 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
586 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.587 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
588 speed and success. *arXiv preprint arXiv:2502.19645*, 2025.

- 594 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 595 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
 596 synergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024a.
 597
- 598 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
 599 Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su, Quan
 600 Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation. *arXiv*
 601 *preprint arXiv:2405.05941*, 2024b.
- 602 Ye Li, ZhongXin Liu, Ge Lan, Malika Sader, and ZengQiang Chen. A ddpg-based solution for
 603 optimal consensus of continuous-time linear multi-agent systems. *Science China Technological*
 604 *Sciences*, 66(8):2441–2453, 2023.
- 605 Ye Li, Chen Tang, Yuan Meng, Jiajun Fan, Zenghao Chai, Xinzhu Ma, Zhi Wang, and Wenwu Zhu.
 606 Prance: Joint token-optimization and structural channel-pruning for adaptive vit inference. *arXiv*
 607 *preprint arXiv:2407.05010*, 2024c.
- 608 Yingxin Li, Ye Li, Yuan Meng, Xinzhu Ma, Zihan Geng, Shutao Xia, and Zhi Wang. Ems: Adaptive
 609 evict-then-merge strategy for head-wise kv cache compression based on global-local importance.
 610 *arXiv preprint arXiv:2412.08521*, 2024d.
- 612 Runji Lin, Ye Li, Xidong Feng, Zhaowei Zhang, Xian Hong Wu Fung, Haifeng Zhang, Jun Wang,
 613 Yali Du, and Yaodong Yang. Contextual transformer for offline meta reinforcement learning. *arXiv*
 614 *preprint arXiv:2211.08016*, 2022.
- 615 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 616 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information*
 617 *Processing Systems*, 36:44776–44791, 2023.
- 618 Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Lily Lee, Kaichen Zhou, Pengju An, Senqiao Yang,
 619 Renrui Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Multimodal state space model
 620 for efficient robot reasoning and manipulation. *arXiv preprint arXiv:2406.04339*, 2024a.
- 622 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 623 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint*
 624 *arXiv:2410.07864*, 2024b.
- 625 Zhongxin Liu, Ye Li, Ge Lan, and Zengqiang Chen. A novel data-driven model-free synchronization
 626 protocol for discrete-time multi-agent systems via td3 based algorithm. *Knowledge-Based Systems*,
 627 287:111430, 2024c.
- 629 Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
 630 diffusion transformer via layer caching. *Advances in Neural Information Processing Systems*, 37:
 631 133282–133304, 2024.
- 632 Josh Merel, Matthew Botvinick, and Greg Wayne. Hierarchical motor control in mammals and
 633 machines. *Nature communications*, 10(1):5489, 2019.
- 634 James M Murray and G Sean Escola. Remembrance of things practiced with fast and slow learning
 635 in cortical and subcortical pathways. *Nature Communications*, 11(1):6441, 2020.
- 637 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 638 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 639 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE*
 640 *International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024a.
- 641 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 642 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 643 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE*
 644 *International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024b.
- 646 Seongmin Park, Hyungmin Kim, Wonseok Jeon, Juyoung Yang, Byeongwook Jeon, Yoonseon Oh,
 647 and Jungwook Choi. Quantization-aware imitation-learning for resource-efficient robotic control.
arXiv preprint arXiv:2412.01034, 2024.

- 648 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 649 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 650 models. *arXiv preprint arXiv:2501.09747*, 2025.
- 651 Andrew B Schwartz. Movement: how the brain communicates with the world. *Cell*, 164(6):
 652 1122–1135, 2016.
- 653 Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
 654 reduction for efficient large multimodal models. *arXiv preprint arXiv:2403.15388*, 2024.
- 655 Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
 656 Tanner, Anna Walling, Haohuan Wang, Niccolò Fusai, et al. Hi robot: Open-ended instruction
 657 following with hierarchical vision-language-action models. *arXiv preprint arXiv:2502.19417*,
 658 2025.
- 659 Wenxuan Song, Jiayi Chen, Pengxiang Ding, Han Zhao, Wei Zhao, Zhide Zhong, Zongyuan Ge, Jun
 660 Ma, and Haoang Li. Accelerating vision-language-action model integrated with action chunking
 661 via parallel decoding, 2025. URL <https://arxiv.org/abs/2503.02310>.
- 662 Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Wen Ji, Yaowei Wang, and Wenwu Zhu. Mixed-
 663 precision neural network quantization via learned layer-wise importance. In *European conference
 664 on computer vision*, pp. 259–275. Springer, 2022a.
- 665 Chen Tang, Haoyu Zhai, Kai Ouyang, Zhi Wang, Yifei Zhu, and Wenwu Zhu. Arbitrary bit-width
 666 network: A joint layer-wise quantization and adaptive inference approach. In *Proceedings of the
 667 30th ACM International Conference on Multimedia*, pp. 2899–2908, 2022b.
- 668 Chen Tang, Yuan Meng, Jiacheng Jiang, Shuzhao Xie, Rongwei Lu, Xinzhu Ma, Zhi Wang, and
 669 Wenwu Zhu. Retraining-free model quantization via one-shot weight-coupling learning. In
 670 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 671 15855–15865, 2024.
- 672 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 673 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 674 policy. *arXiv preprint arXiv:2405.12213*, 2024.
- 675 Pavan Kumar Anasosalu Vasu, Fartash Faghri, Chun-Liang Li, Cem Koc, Nate True, Albert Antony,
 676 Gokul Santhanam, James Gabriel, Peter Grasch, Oncel Tuzel, et al. Fastvlm: Efficient vision
 677 encoding for vision language models. *arXiv preprint arXiv:2412.13303*, 2024.
- 678 Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
 679 Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models
 680 through block caching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 681 Pattern Recognition*, pp. 6211–6220, 2024.
- 682 Siyu Xu, Yunke Wang, Chenghao Xia, Dihao Zhu, Tao Huang, and Chang Xu. Vla-cache: Towards
 683 efficient vision-language-action model via adaptive token caching in robotic manipulation. *arXiv
 684 preprint arXiv:2502.02175*, 2025.
- 685 Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya
 686 Jia. Visionzip: Longer is better but not necessary in vision language models. *arXiv preprint
 687 arXiv:2412.04467*, 2024.
- 688 Yantai Yang, Yuhao Wang, Zichen Wen, Luo Zhongwei, Chang Zou, Zhipeng Zhang, Chuan Wen,
 689 and Linfeng Zhang. Efficientvla: Training-free acceleration and compression for vision-language-
 690 action models. *arXiv preprint arXiv:2506.10100*, 2025.
- 691 Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji Song, Jiashi Feng, and Gao
 692 Huang. Deer-vla: Dynamic inference of multimodal large language models for efficient robot
 693 execution. *Advances in Neural Information Processing Systems*, 37:56619–56643, 2024.
- 694 Jianke Zhang, Yanjiang Guo, Xiaoyu Chen, Yen-Jen Wang, Yucheng Hu, Chengming Shi, and
 695 Jianyu Chen. Hirt: Enhancing robotic control with hierarchical robot transformers. *arXiv preprint
 696 arXiv:2410.05273*, 2024.

702
703 A APPENDIX704
705 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)706
707 In this work, Large Language Models (LLMs) were used solely to polish the language for clarity and
708 readability. No LLMs were employed for idea generation, experimental design, data analysis, or any
709 other part of the research process.710
711 A.2 LATENCY AND FREQUENCY712
713 Table 6: **Latency and Frequency in the LIBERO Environment.** We measure these metrics on an
714 RTX 4090. As shown in the table, SP-VLA achieves about a $1.4\times$ inference speedup.

Evaluation Indicator	Frequency (Hz, \uparrow) / latency (s, \downarrow)				Average
	Goal	Object	Spatial	Long	
OpenVLA	3.13 / 0.32	3.27 / 0.31	2.99 / 0.33	3.32 / 0.30	3.18 / 0.32
SP-VLA	4.34 / 0.23	4.56 / 0.22	4.37 / 0.23	4.44 / 0.23	4.43 / 0.23

720
721 Table 7: **Latency and Frequency in the SimplerEnv Environment.** We measure these metrics on
722 an RTX 4090. As shown in the table, SP-VLA achieves about a $2.2\times$ inference speedup.

SIMPLER	Evaluation Indicator	Frequency (Hz, \uparrow) / latency (s, \downarrow)				Average
		PickCan	MoveNear	Drawer	DrawerApple	
Visual Matching	CogACT	4.00 / 0.25	4.00 / 0.25	3.85 / 0.26	3.23 / 0.31	3.77 / 0.27
	SP-VLA	9.09 / 0.11	8.33 / 0.12	7.14 / 0.14	7.69 / 0.13	8.06 / 0.13
Visual Aggregation	CogACT	4.17 / 0.24	3.85 / 0.26	3.45 / 0.29	2.86 / 0.35	3.58 / 0.29
	SP-VLA	9.09 / 0.11	9.09 / 0.11	5.56 / 0.18	4.76 / 0.21	7.13 / 0.15
SIMPLER	Evaluation Indicator	Frequency (Hz, \uparrow) / latency (s, \downarrow)				Average
		PutSpoon	PutCarrot	StackBlock	PutEggplant	
WindowX	CogACT	4.00 / 0.25	4.00 / 0.25	4.00 / 0.25	3.85 / 0.26	3.96 / 0.25
	SP-VLA	12.5 / 0.08	6.25 / 0.16	8.33 / 0.12	7.69 / 0.13	8.69 / 0.12

734
735 Tables 6 and 7 report the frequency and latency measurements of SP-VLA on an RTX 4090. As shown
736 in the table, OpenVLA and CogACT achieve only 3–4 Hz inference frequency. By incorporating
737 SP-VLA, their inference rates are improved by approximately $1.4\times$ and $2.2\times$, respectively, while
738 preserving model accuracy. This suggests that VLA models contain substantial temporal and spatial
739 redundancies, offering considerable acceleration potential. By effectively identifying and exploiting
740 both, SP-VLA achieves significant speedups and demonstrates strong application prospects.741
742 A.3 SENSITIVITY ANALYSIS OF KEY PARAMETERS.743
744 Table 8 presents an ablation study in the LIBERO simulation environment, examining the impact of
745 execution speed V , buffer size n , and the proportion of deliberative actions τ . Specifically, execution
746 speed is varied by $\pm 25\%$ around V_{max} and V_{min} , buffer size is set to $\{4, 6, 8\}$, and the proportion
747 of deliberative actions in the buffer is chosen from $\{3/8, 4/8, 5/8\}$. The results show how model
748 accuracy and speedup vary under different settings. Overall, SP-VLA is robust to speed changes, with
749 $\pm 25\%$ fluctuations having little impact on accuracy or acceleration. In contrast, buffer size n and the
750 proportion of intuitive actions τ have a much stronger effect, significantly influencing accuracy. This
751 is because, even during skipping, SP-VLA relies on the VLA model to provide correct directional
752 guidance and critical decision points, thereby preserving overall performance.753
754 A.4 ANALYSIS OF EXPERIMENTAL RESULTS.755
756 **Analysis for Baseline Methods.** Owing to the lack of a direct baseline, we instead compare our
757 method with state-of-the-art approaches that have demonstrated strong performance in LLaVA.
758 Tables 1 and 3 show that the majority of baseline methods do not perform well on VLA models.

756
 757 **Table 8: Sensitivity Analysis of Key Parameters.** We present the sensitivity analysis of SP-VLA in
 758 the LIBERO environment. We vary execution speed ($\pm 25\%$ around V_{\max} and V_{\min}), buffer size
 759 ($n \in 4, 6, 8$), and the proportion of deliberative actions ($\tau \in 3/8, 4/8, 5/8$), and report their effects
 760 on model accuracy and acceleration. The results show that SP-VLA is robust to speed changes,
 761 whereas buffer size and the proportion of deliberative actions exert a stronger influence, significantly
 762 affecting accuracy.

Task	Scaling	Success Rate (%), \uparrow / Speed up (\uparrow)			
		V_{\min} (0.2)	V_{\max} (0.5)	τ (0.5)	n (6)
Object	0	82.4 / 1.44	82.4 / 1.44	82.4 / 1.44	82.4 / 1.44
	\uparrow [25%, 25%, 5/8, 8]	82.2 / 1.41	83.2 / 1.33	81.7 / 1.34	68.4 / 1.58
	\downarrow [25%, 25%, 3/8, 4]	83.6 / 1.37	81.6 / 1.38	64.4 / 1.75	80.8 / 1.33
Goal	0	73.6 / 1.66	73.6 / 1.66	73.6 / 1.66	73.6 / 1.66
	\uparrow [25%, 25%, 5/8, 8]	72.8 / 1.41	70.4 / 1.47	71.7 / 1.45	66.2 / 1.87
	\downarrow [25%, 25%, 3/8, 4]	74.8 / 1.22	69.0 / 1.78	56.4 / 1.91	74.0 / 1.31
Spatial	0	80.0 / 1.47	80.0 / 1.47	80.0 / 1.47	80.0 / 1.47
	\uparrow [25%, 25%, 5/8, 8]	77.6 / 1.49	80.0 / 1.47	79.1 / 1.36	74.8 / 1.59
	\downarrow [25%, 25%, 3/8, 4]	78.6 / 1.43	78.4 / 1.52	62.2 / 1.83	74.4 / 1.27
Long	0	51.6 / 1.42	51.6 / 1.42	51.6 / 1.42	51.6 / 1.42
	\uparrow [25%, 25%, 5/8, 8]	50.4 / 1.45	49.2 / 1.31	48.9 / 1.28	47.4 / 1.37
	\downarrow [25%, 25%, 3/8, 4]	50.1 / 1.37	46.6 / 1.53	42.5 / 1.77	44.6 / 1.32

776
 777 Although the baseline methods are effective lightweight solutions for VLMs, VLA models differ
 778 in two fundamental aspects: they are highly sensitive to spatial information and are required to
 779 perform sequential decision-making. Consequently, VLA models exhibit both temporal and spatial
 780 redundancies. These characteristics render token lightweighting strategies designed for VLMs unfit
 781 for VLA applications.

- 782
- (1) **Failed extraction of spatial information.** Since FoPru (Jiang et al., 2024) and PruMerge
 783 (Shang et al., 2024) already incorporate mechanisms for extracting spatial information, we
 784 did not add Canny-based edge detection to these methods. However, their spatial information
 785 extraction primarily aims to preserve semantic integrity rather than focusing on the relative
 786 positioning between objects, which leads to performance degradation when applied to VLA
 787 models.
 - (2) **Feature fusion-induced spatial ambiguity.** VisionZip (Yang et al., 2024) merges tokens
 788 to compress semantic information, which proves effective for VLMs but disrupts spatial
 789 information in VLA models, leading to a collapse in performance.
 - (3) **Performance degradation due to overlooked temporal redundancy.** Although FastVLM
 790 (Vasu et al., 2024) and FastV (Chen et al., 2024) performs token pruning and information
 791 augmentation, it retains a fixed number of tokens at each timestep, making it unable to adapt
 792 to the varying complexity of VLA tasks. This limitation results in degraded performance.
 793 In contrast, SP-VLA maintains a constant cumulative attention threshold, dynamically
 794 adjusting the number of retained tokens—preserving more at critical moments and fewer
 795 during less demanding phases—thereby effectively preserving the performance of the VLA
 796 model.

797
 800 In contrast, VLA-Cache (Xu et al., 2025) and EfficientVLA (Yang et al., 2025) are acceleration
 801 algorithms specifically designed for VLA models. VLA-Cache leverages KV cache reuse, while
 802 EfficientVLA combines layer skipping, token pruning, and activation caching to accelerate both the
 803 VLM and the Action Head, achieving relatively stronger speedups. SP-VLA, on the other hand,
 804 targets temporal and spatial redundancies without altering the model itself and is therefore, to some
 805 extent, orthogonal to these two methods.

806
 807 **Analysis for the Simulation Environments.** We evaluate SP-VLA using two simulation environments:
 808 LIBERO and SimplerEnv. LIBERO consists of four task suites (Spatial, Object, Goal, and
 809 Long), covering 130 tasks with 2000 trajectories to evaluate model robustness. SimplerEnv provides
 810 three settings (Google-VM, Google-VA, and Bridge-VM) with variations in color, material, lighting,
 811 and camera pose for robustness assessment. LIBERO is mainly used to evaluate the stability of

810
 811 **Table 9: The Acceleration Ratios of Model Scheduling and Token Pruning.** Model scheduling
 812 yields the most prominent speedup, with redundancy increasing as task sequences grow longer.
 813 Optimizing a single dimension reveals redundancy specific to it, suggesting that temporal and spatial
 814 accelerations are interdependent. SP-VLA exploits this interplay to achieve superior acceleration.

Method	Pruning Rate (% ,↑) / Intuitive Action Rate (% ,↑)				Average	Average Acc. (% ,↑)
	Goal	Object	Spatial	Long		
Ours	19.45 / 15.00	6.00 / 18.07	10.50 / 13.90	5.80 / 19.64	10.44 / 16.65	74.90
w/o Pruning	0.00 / 18.58	0.00 / 21.11	0.00 / 15.41	0.00 / 28.00	0.00 / 20.78	73.98
w/o Scheduling	19.66 / 0.00	13.50 / 0.00	22.70 / 0.00	11.53 / 0.00	16.85 / 0.00	71.52
w/o Canny	16.42 / 11.42	10.10 / 18.13	17.40 / 11.13	17.30 / 13.20	15.31 / 13.47	23.93

815
 816
 817
 818
 819
 820
 821
 822 **Table 10: The results under different settings.** SP-VLA maintains high accuracy across various
 823 acceleration ratios, demonstrating the strong robustness of our approach. For example, our method
 824 not only improves accuracy under moderate acceleration (1.35×), but also maintains competitive
 825 performance under higher speedup (1.5×) with only a 3% accuracy drop.

Method	Success Rate (% ,↑) / Speed up (↑)				Average	FLOPs (% ,↓)
	Goal	Object	Spatial	Long		
OpenVLA	75.40	86.20	83.80	53.30	74.68	100.00
Ours-1	73.60 / 1.66	82.40 / 1.44	80.00 / 1.47	51.60 / 1.42	71.90 / 1.50	66.51
Ours-2	72.20 / 1.58	83.60 / 1.36	81.40 / 1.35	50.40 / 1.44	71.90 / 1.43	69.83
Ours-3	74.80 / 1.36	84.80 / 1.30	82.20 / 1.29	53.40 / 1.29	73.80 / 1.31	76.25
Ours-4	75.40 / 1.46	85.60 / 1.30	84.40 / 1.30	54.20 / 1.32	74.90 / 1.35	73.63

834
 835
 836 SP-VLA across diverse tasks, whereas SimplerEnv focuses on generalization. As shown in Tables 1
 837 and 3, SP-VLA delivers strong results in both settings: 1.5× lossless acceleration on LIBERO and up
 838 to 2.4× acceleration with a 6% performance gain on SimplerEnv, underscoring its robustness.

841 A.5 THE ACCELERATION RATIOS OF MODEL SCHEDULING AND TOKEN PRUNING.

842
 843 Using the same parameter settings as in Table 2, Table 9 presents the acceleration contributions of
 844 model scheduling and token pruning. Model scheduling achieves the highest accuracy at comparable
 845 acceleration levels, suggesting that much of the computational redundancy in VLA models arises from
 846 *intuitive* and *deliberate* actions. We further find that the proportion of *intuitive* actions grows with task
 847 length, from 18% in LIBERO-Spatial (1.18× speedup) to 28% in LIBERO-Long (1.39× acceleration).
 848 While individual techniques expose redundancy mainly along a single dimension—e.g., token pruning
 849 identifies 22.7% in LIBERO-Spatial and model scheduling 21% in LIBERO-Object—SP-VLA jointly
 850 optimizes temporal and spatial redundancies. These dimensions are interdependent rather than
 851 orthogonal, and SP-VLA effectively exploits this synergy to achieve superior acceleration.

852 A.6 LIMITATION

853
 854 In this work, we discovered and verified that the VLA model can be categorized into *deliberative*
 855 actions and *intuitive* actions. By leveraging this distinction, we propose a method that jointly
 856 schedules the model and prunes tokens for VLA models, achieving acceleration in both the temporal
 857 and spatial dimensions. However, our current exploration of *intuitive* action generation is limited
 858 to model lightweighting and remains preliminary. As a result, a complete separation between the
 859 generation of *deliberative* and *intuitive* actions has not yet been achieved. We believe that explicitly
 860 distinguishing these two types of actions in the behavioral logic of VLA models will make them more
 861 human-like and is a crucial step toward achieving higher accuracy, faster inference, and lower energy
 862 consumption, with significant potential for future development. Therefore, this will be one of the key
 863 directions of our future exploration.

864
 865 **Table 11: The Acceleration Ratios of Model Scheduling and Token Pruning.** Overall, model
 866 scheduling achieves higher acceleration ratios than token pruning, indicating that VLA contains
 867 significant temporal redundancy. By categorizing actions into *deliberative* and *intuitive* types, this
 868 redundancy can be efficiently addressed. Moreover, the varying tolerance of different tasks to the two
 869 acceleration methods suggests that these approaches are not orthogonal, but rather complementary,
 870 working together to achieve optimal performance.

Method	Pruning Rate (% ,↑) / Intuitive Action Rate (% ,↑)				Average	Average Acc. (↑)
	Goal	Object	Spatial	Long		
Ours-1	19.45 / 15.00	6.00 / 18.07	10.50 / 13.90	5.80 / 19.64	10.44 / 16.65	71.90
Ours-2	24.91 / 15.88	6.25 / 21.58	15.51 / 12.63	9.09 / 23.81	13.93 / 18.48	72.20
Ours-3	15.01 / 12.87	5.89 / 18.61	9.57 / 14.33	5.71 / 17.95	9.05 / 15.94	73.80
Ours-4	26.70 / 17.40	6.47 / 25.70	18.02 / 17.29	5.67 / 25.53	14.22 / 21.48	74.90

871 A.7 MORE EXPERIMENTAL RESULTS.

872
 873 Tables 10 and 11 present the results of SP-VLA under different settings. Overall, SP-VLA maintains
 874 high accuracy across diverse acceleration ratios, demonstrating robust adaptability to varying acceler-
 875 ation demands. For instance, at the $1.35 \times$ acceleration rate, SP-VLA achieves an overall accuracy
 876 of 74.90%, outperforming OpenVLA. This indicates that moderately reducing redundancy can help
 877 correct errors and improve performance. Even under a $1.5 \times$ acceleration, the accuracy only drop 3%,
 878 highlighting the significant temporal and spatial redundancy present in VLA models. These results
 879 highlight that SP-VLA achieves outstanding acceleration on VLA models, while also demonstrating
 880 strong robustness by maintaining stable performance across a wide range of acceleration ratios.

881 In terms of acceleration contributions, model scheduling delivers markedly larger speedups than token
 882 pruning, consistently outperforming it across all settings. This finding suggests that VLA execution
 883 involves a high proportion of *intuitive* actions, revealing substantial computational redundancy. On
 884 the other hand, different tasks exhibit varying levels of tolerance to acceleration methods. For
 885 example, the LIBERO-Goal task allows a relatively large degree of token pruning, achieving a
 886 26.70% reduction while maintaining accuracy. In contrast, the LIBERO-Long task only supports
 887 a 5.67% pruning rate, with most of the acceleration coming from *intuitive* action generation. This
 888 indicates that as task complexity increases, higher spatial perception capability is required from the
 889 VLA model. Furthermore, the two acceleration methods are not entirely independent; instead, they
 890 work synergistically to achieve optimal acceleration performance.

891 To further demonstrate the generality and effectiveness of our approach, we provide visualizations
 892 and task-wise speedup curves for various LIBERO tasks in Sections A.8 and A.9, respectively. These
 893 examples further illustrate that SP-VLA is well-suited for a wide range of manipulation tasks and
 894 achieves remarkable acceleration performance.

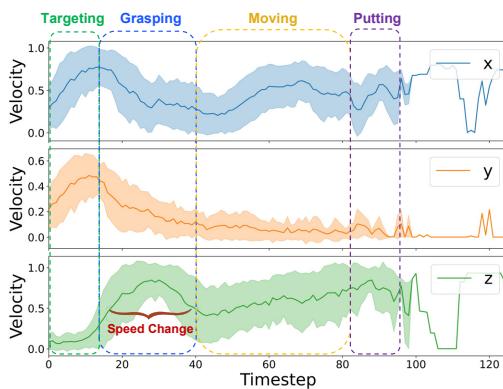
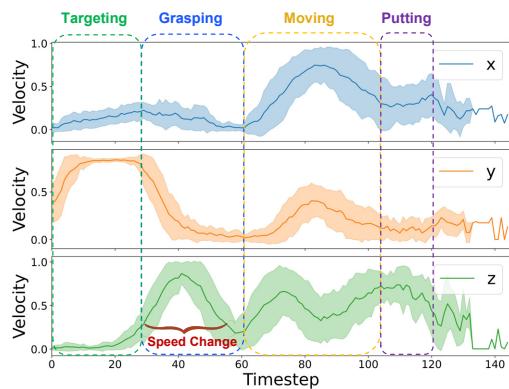
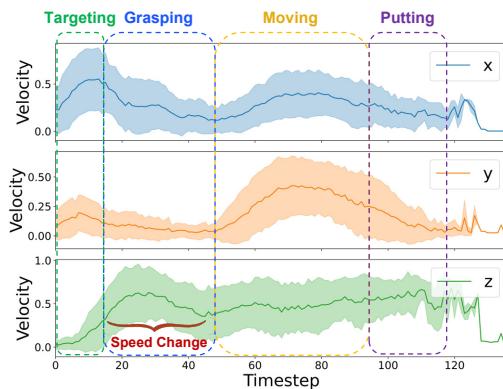
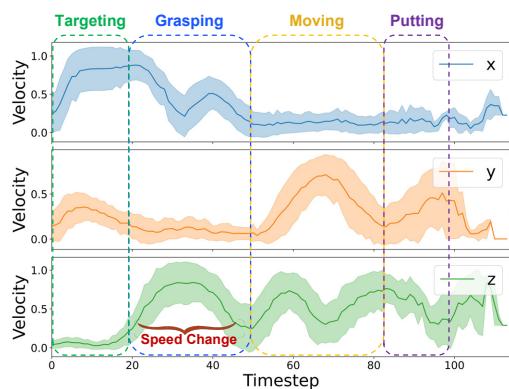
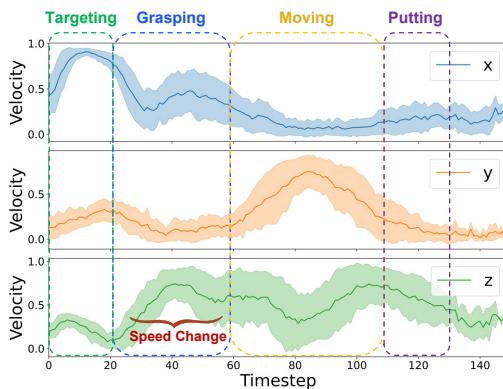
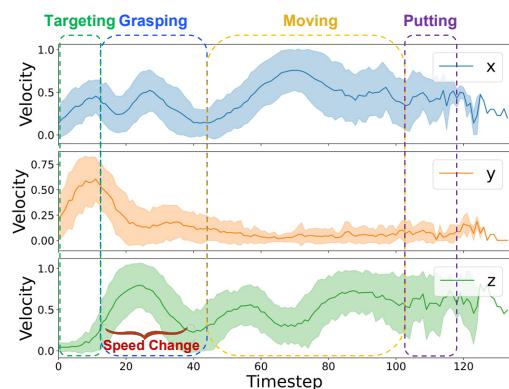
902 A.8 MORE VISUALIZATION RESULTS.

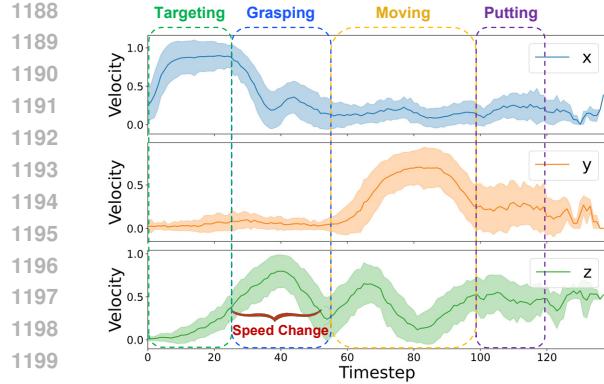
Figure 6: **Visualization examples generated by SP-VLA on LIBERO-Spatial.**

Figure 7: Visualization examples generated by SP-VLA on LIBERO-Goal.

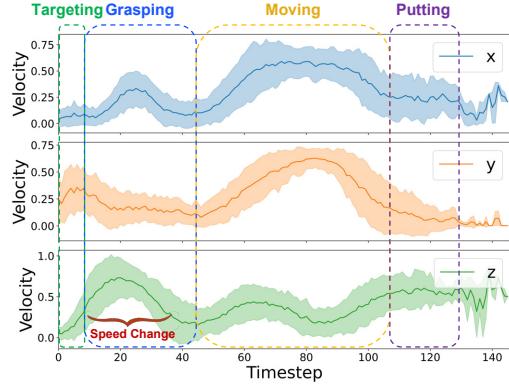
Figure 8: **Visualization examples generated by SP-VLA on LIBERO-Object.**

Figure 9: Visualization examples generated by SP-VLA on LIBERO-Long.

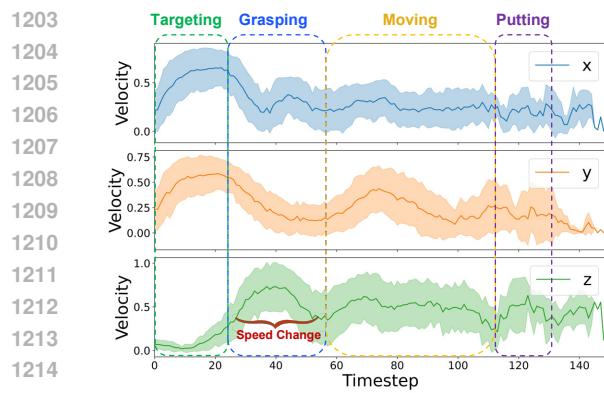
1134 A.9 ACTION DYNAMICS ACROSS DIFFERENT TASKS.
11351149 (a) **LIBERO-Spatial**: Pick up the black bowl
1150 between the plate and the ramekin and place it on the
1151 plate.1149 (b) **LIBERO-Spatial**: Pick up the black bowl next to
1150 the ramekin and place it on the plate.1149 (c) **LIBERO-Spatial**: Pick up the black bowl from
1150 table center and place it on the plate.1149 (d) **LIBERO-Spatial**: Pick up the black bowl on the
1150 cookie box and place it on the plate.1149 (e) **LIBERO-Spatial**: Pick up the black bowl in the
1150 top drawer of the wooden cabinet and place it on the
1151 plate.1149 (f) **LIBERO-Spatial**: Pick up the black bowl on the
1150 ramekin and place it on the plate.1183 Figure 10: **Visualizations of SP-VLA on the first 6 LIBERO-Spatial tasks.**
1184
1185
1186
1187



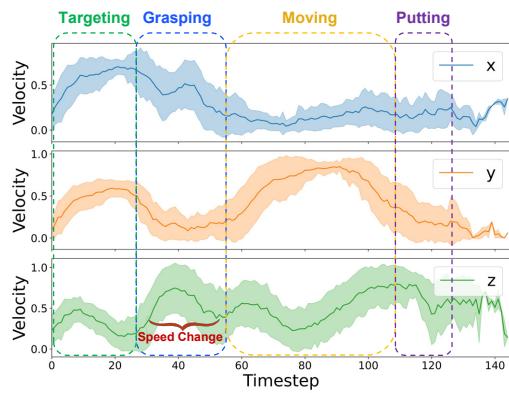
(a) LIBERO-Spatial: Pick up the black bowl next to the cookie box and place it on the plate.



(b) LIBERO-Spatial: Pick up the black bowl on the stove and place it on the plate.



(c) LIBERO-Spatial: Pick up the black bowl next to the plate and place it on the plate.



(d) LIBERO-Spatial: Pick up the black bowl on the wooden cabinet and place it on the plate.

Figure 11: Visualizations of SP-VLA on the remaining 4 LIBERO-Spatial tasks.

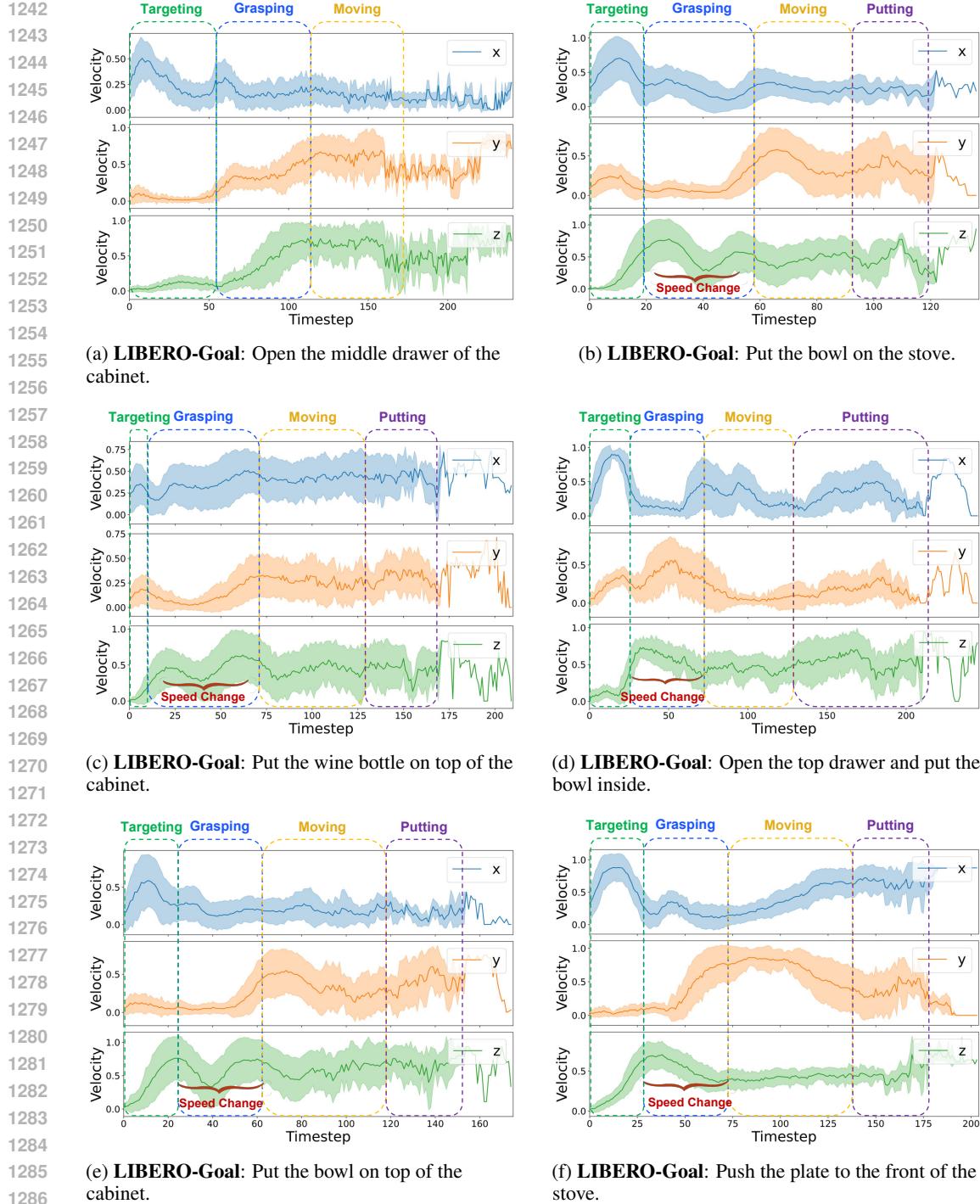


Figure 12: Visualizations of SP-VLA on the first 6 LIBERO-Goal tasks.

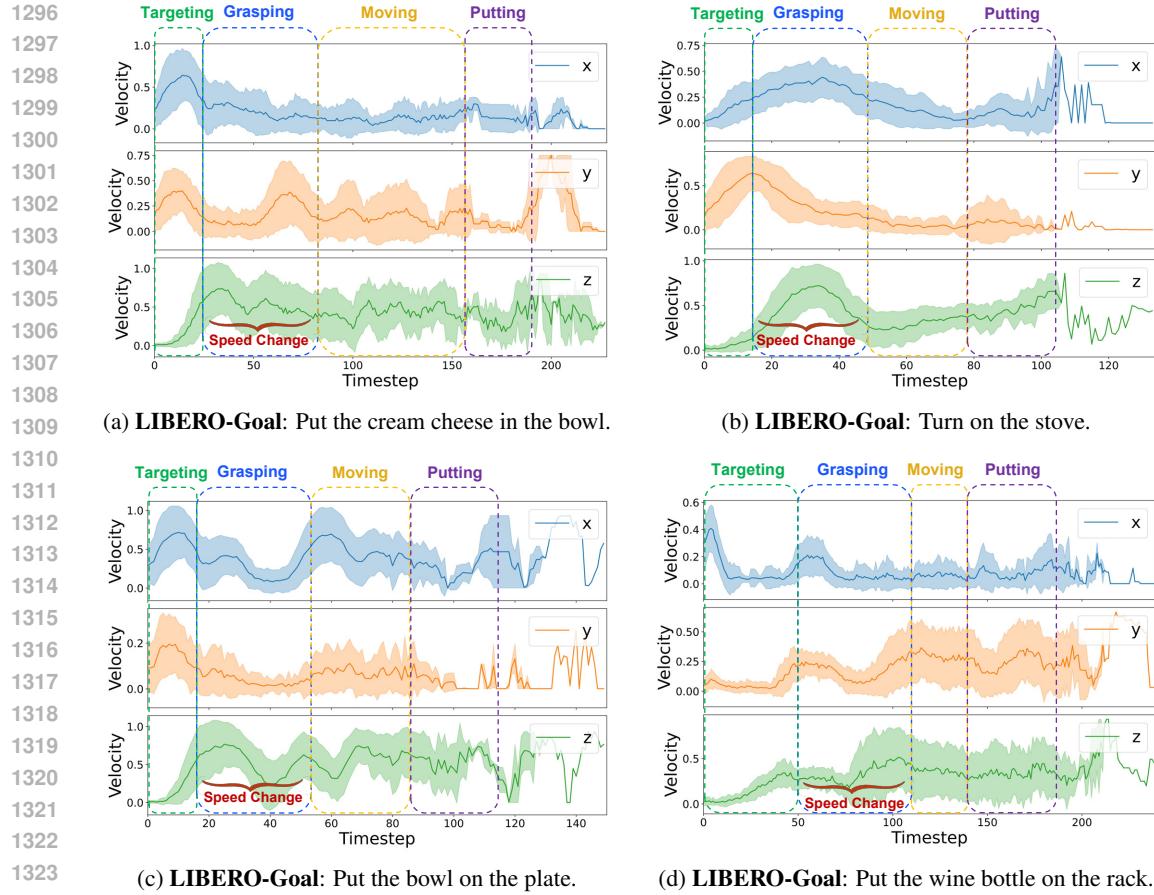


Figure 13: Visualizations of SP-VLA on the remaining 4 LIBERO-Goal tasks.

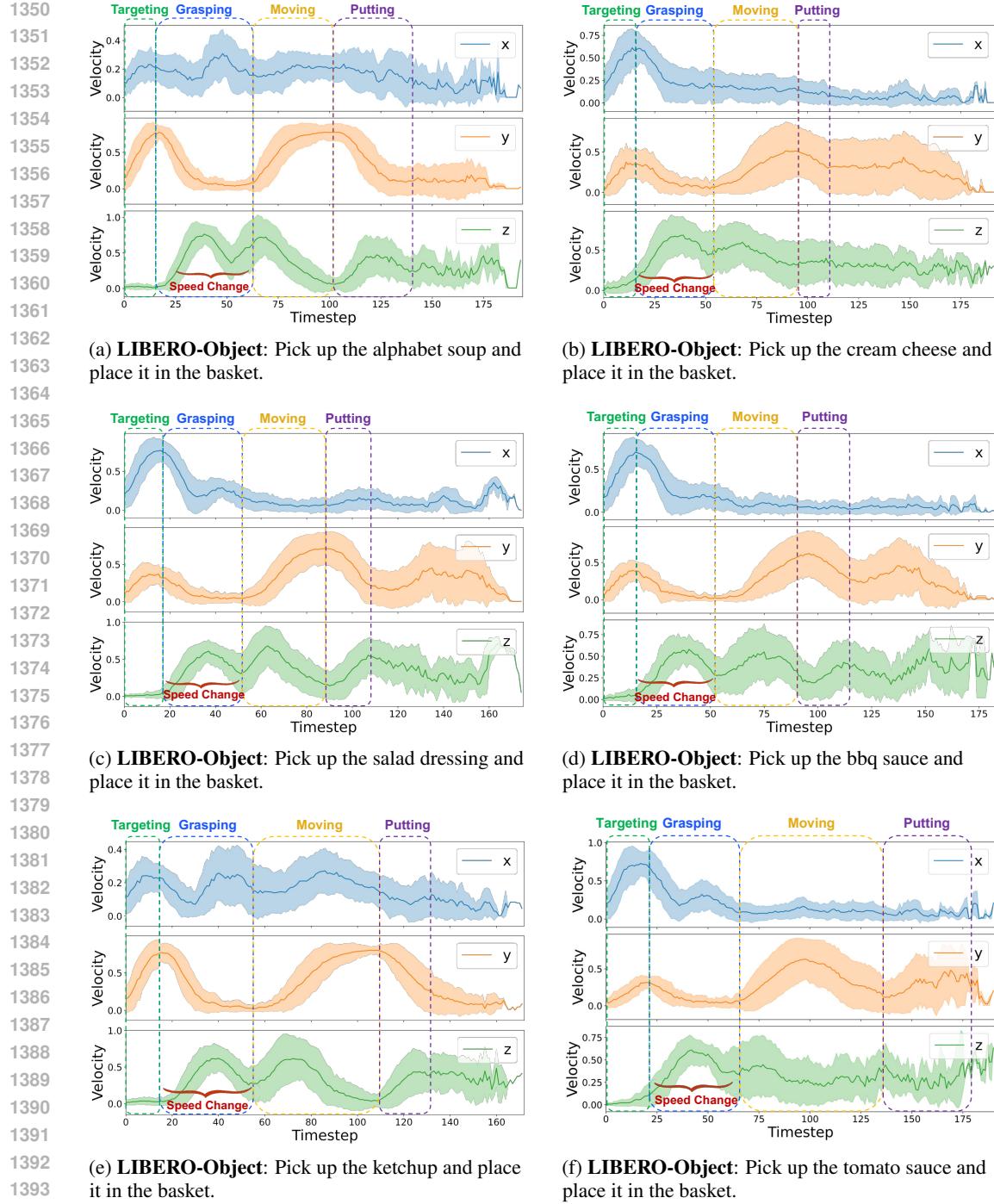


Figure 14: **Visualizations of SP-VLA on the first 6 LIBERO-Object tasks.**

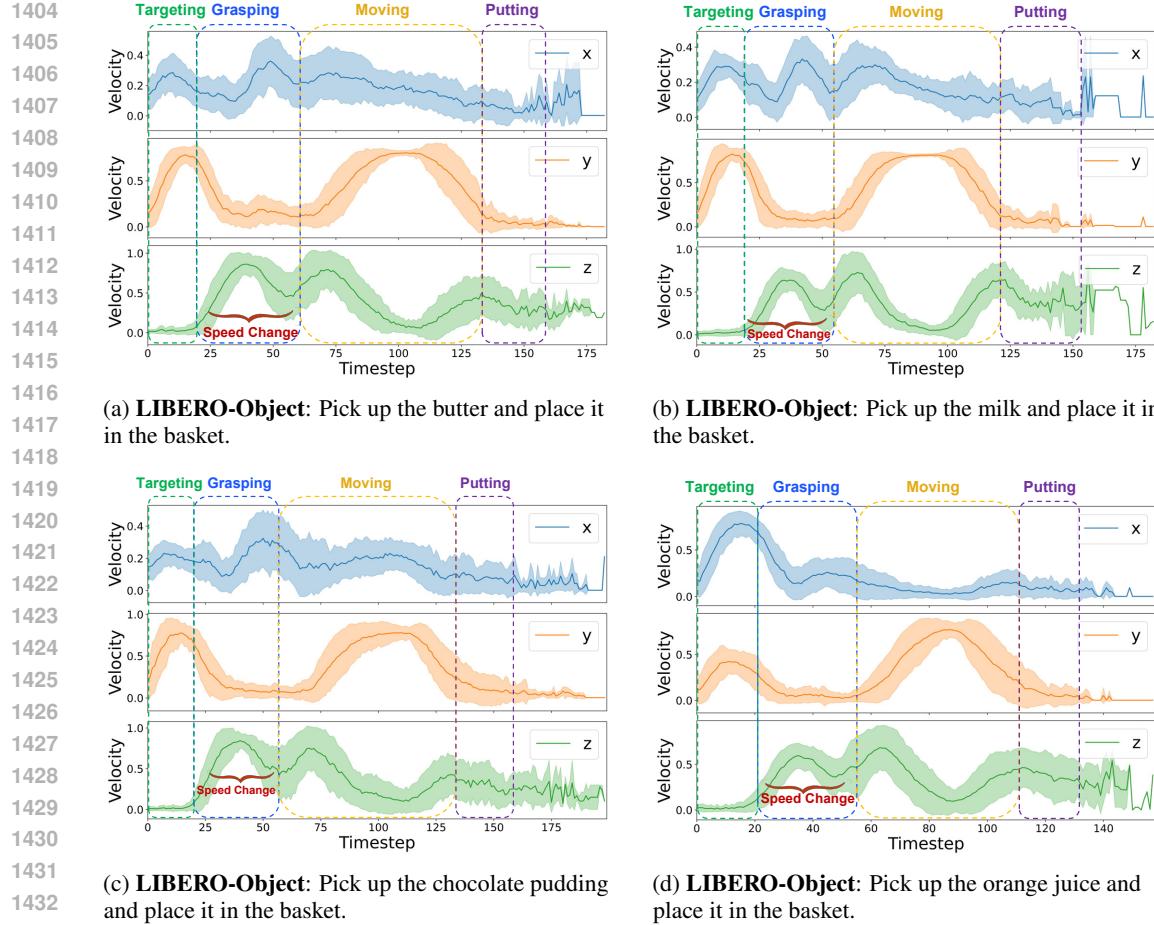
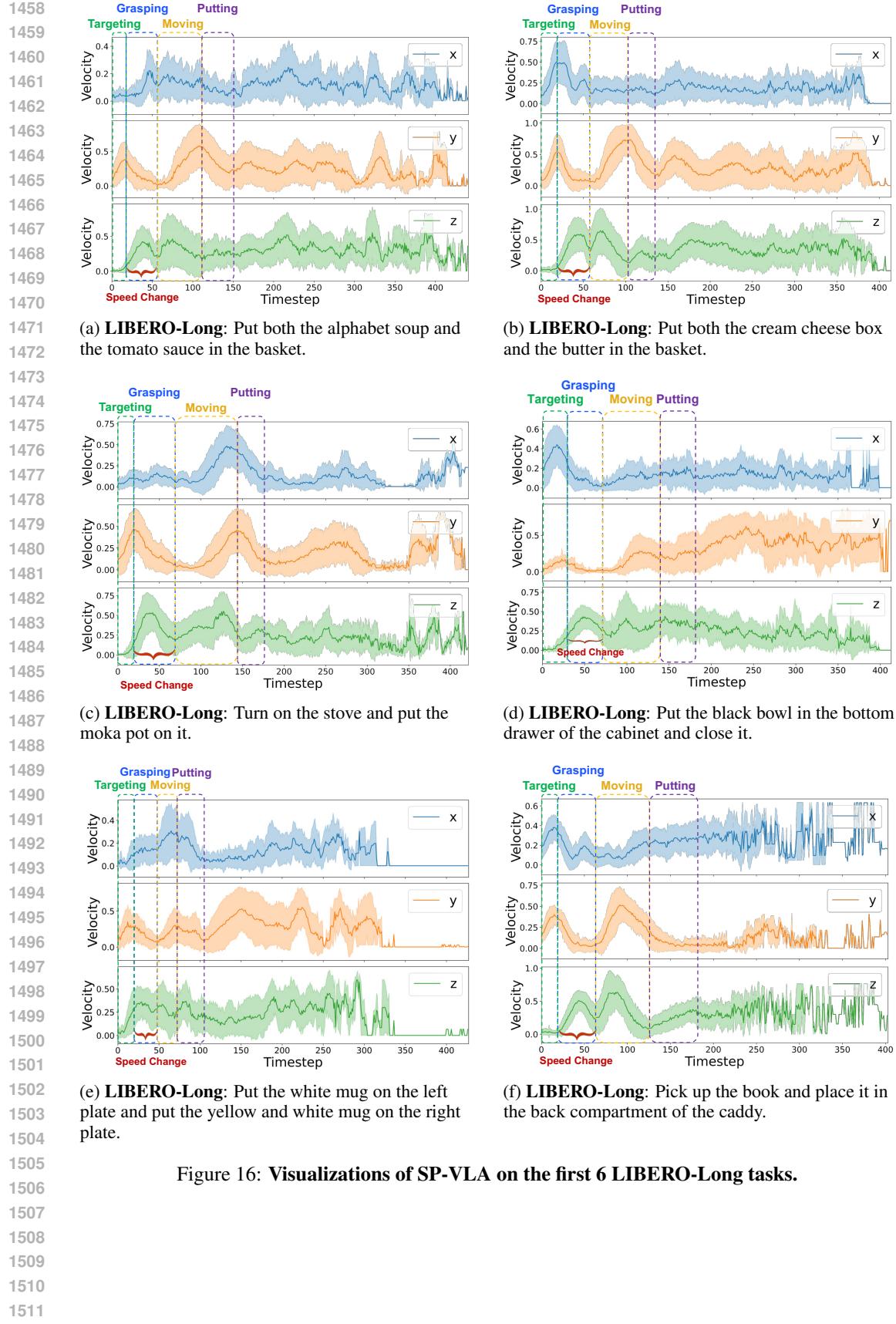


Figure 15: Visualizations of SP-VLA on the remaining 4 LIBERO-Object tasks.



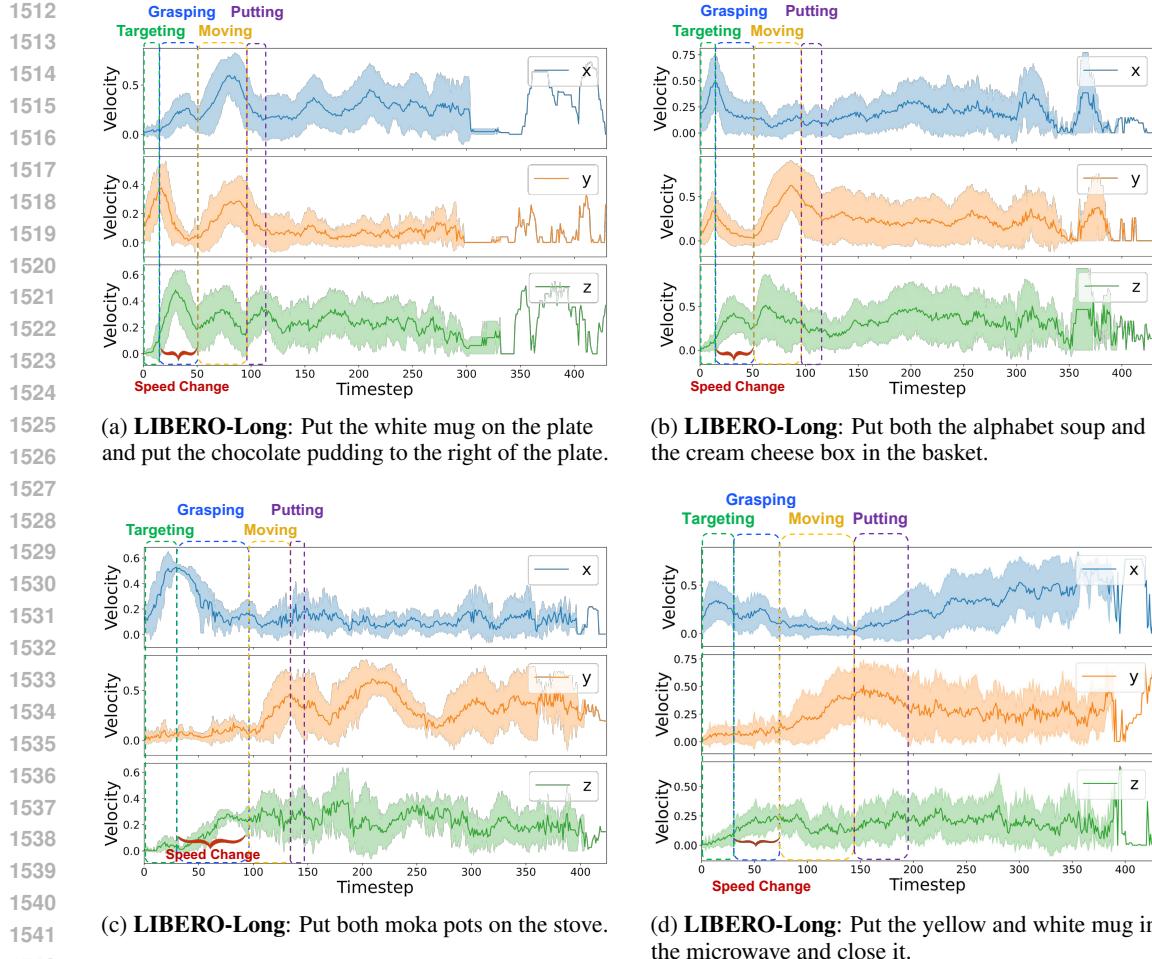


Figure 17: Visualizations of SP-VLA on the remaining 4 LIBERO-Long tasks.