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ABSTRACT

Vision-Language-Action (VLA) models have attracted increasing attention for
their strong control capabilities. However, their high computational cost and low
execution frequency hinder their suitability for real-time tasks such as robotic
manipulation and autonomous navigation. Existing VLA acceleration methods
primarily focus on structural optimization, overlooking the fact that these models
operate in sequential decision-making environments. As a result, temporal redun-
dancy in sequential action generation and spatial redundancy in visual input remain
unaddressed. To this end, we propose SP-VLA, a unified framework that acceler-
ates VLA models by jointly scheduling models and pruning tokens. Specifically,
we design an action-aware model scheduling mechanism that reduces temporal
redundancy by dynamically switching between VLA model and a lightweight
generator. Inspired by the human motion pattern of focusing on key decision
points while relying on intuition for other actions, we categorize VLA actions
into deliberative and intuitive, assigning the former to the VLA model and the
latter to the lightweight generator, enabling frequency-adaptive execution through
collaborative model scheduling. To address spatial redundancy, we further develop
a spatio-semantic dual-aware token pruning method. Tokens are classified into
spatial and semantic types and pruned based on their dual-aware importance to
accelerate VLA inference. These two mechanisms work jointly to guide the VLA
in focusing on critical actions and salient visual information, achieving effective
acceleration while maintaining high accuracy. Extensive experiments show that our
method achieves 1.5× lossless acceleration in LIBERO and 2.4× in SimplerEnv,
with up to 6% average performance gain. Inference frequency and latency improve
by 2.2× in SimplerEnv and 1.4× in LIBERO. Moreover, on real-robot evaluations,
our approach maintains accuracy with only a 1% drop while delivering a 2.5×
end-to-end acceleration.

1 INTRODUCTION

Vision-Language-Action (VLA) models integrate visual perception and language understanding to
generate actionable outputs for robotic control and task execution in embodied agents, demonstrating
remarkable progress across a wide range of tasks (Zhang et al., 2024; Han et al., 2024; Shi et al.,
2025; Figure AI, 2024; Team et al., 2024; Liu et al., 2024a;b). However, VLA models are generally
large-scale. For example, Google’s recently released RT-X series (Brohan et al., 2023; Belkhale
et al., 2024; O’Neill et al., 2024b) contains more than 55 billion parameters, and even lightweight
models widely used like OpenVLA (Kim et al., 2024) still exceed 7 billion parameters. The resulting
computational burden leads to slow inference, making them unsuitable for real-time scenarios such
as industrial control, autonomous navigation, and medical robotics.

Existing methods for VLA model acceleration focus solely on reducing the single-step computation
redundancy via model compression techniques (e.g., pruning (Li et al., 2024c), quantization (Tang
et al., 2024; 2022a;b), caching (Li et al., 2024d; Wimbauer et al., 2024; Ma et al., 2024)). Specifically,
DeeR-VLA (Yue et al., 2024) introduces an early-exit mechanism that reduces the computational
burden of the LLM backbone. QAIL (Park et al., 2024) incorporates an imitation learning mechanism
to quantize the VLA model to 4-bit precision, reducing computational cost while preserving model
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Figure 1: The main idea of SP-VLA. Unlike traditional VLA models, SP-VLA first determines
the type of the current action. 1 For intuitive actions, a lightweight action generator is employed
to approximate the output, while for deliberative actions, the high-precision VLA model is used to
ensure accuracy. 2 When the VLA model is invoked, we further accelerate inference by adaptively
pruning tokens based on integrated spatial and semantic information. By jointly leveraging the
above two strategies, SP-VLA effectively directs the model’s attention to critical actions and salient
visual information, achieving substantial speedup without compromising accuracy. Among these
components, the action head takes different forms across VLA architectures, such as a D-tokenizer in
OpenVLA or a diffusion-based policy in CogACT.

accuracy. VLA-Cache (Xu et al., 2025) reduces computation by selectively reusing tokens deemed
less informative. Although these works achieve certain levels of speedup, they primarily focus on
accelerating Vision-Language Model (VLM) architectures, overlooking the unique characteristics of
VLA models, which introduce an additional temporal dimension by generating actions step-by-step
through continuous interaction with the environment. As a result, accelerating VLA models presents
two major challenges: (1) Given the temporal dependencies in embodied tasks, how can we effec-
tively leverage historical information to support current decision-making and reduce computational
redundancy? (2) Given the high redundancy in visual input from the camera, how can we effectively
retain informative visual content and reduce redundancy along the spatial dimension? To this end, we
study the problem of handling temporal and spatial redundancy of VLA models for the first time,
and present SP-VLA, a unified framework that jointly Scheduling the model and Pruning tokens to
accelerate VLA models.

To solve temporal dependencies, we first design a action-type aware model scheduling approach that
enables frequency-adaptive inference by dynamically switching between the large-scale VLA model
and a lightweight model at different time steps. By rethinking human motion patterns, we observe
that deliberate thinking typically occurs only at critical moments such as grasping or turning, while
movements between those key points are executed intuitively (Schwartz, 2016; Merel et al., 2019;
Murray & Escola, 2020). This allows humans to perform complex tasks both quickly and accurately.
Interestingly, we find that VLA models follow a similar behavioral pattern like human, with
actions falling into two categories: deliberative and intuitive. Based on this observation, Based on
this, we propose using the VLA model to generate deliberative actions, while delegating intuitive
actions to a lightweight model. Specifically, we assume that high-speed movements are typically
intuitive, whereas low-speed movements are more likely to be deliberative, and we determine the
action type at each time step based on historical information. To model intuitive actions, we exploit
the inertia in object motion and design a lightweight action generator based on Ridge Regression,
enhanced with an action cache for efficient prediction. However, since embodied tasks are inherently
more complex than simple linear movements, the generation of intuitive actions still benefits from the
VLA model’s directional guidance to ensure task fidelity. As a result, intuitive actions are actually
produced through high-frequency switching between the lightweight generator and the VLA model.
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To mitigate spatial redundancy, we design a spatio-semantic dual-aware token pruning to preserve the
most relevant visual information. Unlike VLMs, VLA models must understand the relative positions
of objects to complete tasks, implying the need for spatial perception. Experimental results show that
disrupting token arrangement or aggressively pruning background tokens, such as object contours,
leads to significant performance degradation in VLA tasks. This indicates that the spatial perception
of VLA models relies on the relative order of tokens and object contour information. To address
this, we integrate edge and semantic information by extracting object contours using the Canny
operator and estimating semantic importance via accumulated attention scores. We also dynamically
adjust the token pruning threshold based on current motion speed to maximize inference efficiency.

Overall, we first perform adaptive scheduling between the VLA model and a lightweight action
generator based on the action type at each time step. When invoking the VLA model, we further apply
speed-aware token pruning, enabling task-aware and frequency-adaptive inference. Through this joint
optimization, we effectively eliminate both temporal and spatial redundancies, guiding the model
to focus on critical actions and salient visual elements to maximize inference efficiency. Extensive
experiments demonstrate that our method achieves 1.5× lossless speedup in LIBERO and 2.4× in
SimplerEnv, with up to 6% performance gain, while improving inference frequency and latency by
1.4× and 2.2×, respectively. On real-robot evaluations, our approach maintains accuracy with only
a 1% drop while delivering a 2.5× end-to-end acceleration, highlighting its strong efficiency and
robustness.

The main contributions of SP-VLA are as follows:

(1) To the best of our knowledge, this is the first work to accelerate VLA models via reducing
the temporal and spatial redundancy. We propose a framework that jointly performs model
scheduling and token pruning, guiding the VLA model to focus on key actions and visual
elements to achieve maximal acceleration.

(2) We propose an action-aware model scheduling algorithm that effectively reduces temporal
redundancy in VLA models. We observe that the VLA action sequences resemble human
behavior, comprising intuitive and deliberative actions. Leveraging this structure, we assign
intuitive actions to a lightweight model and deliberative ones to the VLA model, enabling
lossless, frequency-adaptive acceleration.

(3) We propose a spatio-semantic dual-aware token compression method. We find that the
spatial perception of VLA models relies on the relative positions of tokens and object
contour information. Based on this, we design a token pruning method that incorporates
both edge features and semantic importance, effectively reducing spatial redundancy.

2 RELATED WORK

Vision-Language-Action Models. As LLMs gain stronger reasoning ability, the VLA paradigm
emerges to extend VLMs to embodied control. DeepMind’s RT series, including RT-1 (Brohan et al.,
2022), RT-2 (Brohan et al., 2023), RT-X (O’Neill et al., 2024b), and RT-H (Belkhale et al., 2024), are
among the earliest large-scale VLA models. Additionally, the release of the Open X-Embodiment
(O’Neill et al., 2024a) dataset has laid a strong foundation for continued research. Built on it,
OpenVLA (Kim et al., 2024) leverages the reasoning capabilities of LLaMA 2, achieving significant
improvements in accuracy. On the other hand, generative models such as diffusion models have been
adopted in embodied tasks to enhance the temporal coherence of actions. π0 (Black et al., 2024)
and π0.5 (Intelligence et al., 2025) incorporate Flow Matching models as action decoders, allowing
VLA models to generate entire action sequences in a single pass, significantly improving execution
smoothness and efficiency. Nevertheless, compared to traditional control methods (Li et al., 2023;
Liu et al., 2024c; Lin et al., 2022), the lack of attention to action efficiency hampers their deployment
in more demanding applications, such as industrial assembly.

Acceleration for Vision-Language-Action Models. A lot of work has been devoted to improving
the efficiency of the VLA model. QAIL (Park et al., 2024) integrates quantization into the imitation
learning fine-tuning process to train quantized policies that approximate expert behavior. Fast
(Pertsch et al., 2025) transforms actions into the frequency domain, enabling efficient compression
by analyzing their spectral characteristics. VLA-Cache (Xu et al., 2025) accelerates inference
by distinguishing background tokens from task-relevant ones and caching the less critical parts.
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Figure 2: The visualization of VLA model behavior. (a) shows the velocity profile of the robot
arm across 50 pick-and-place trials, following a consistent four-phase pattern: targeting, grasping,
moving, and placing. The VLA model demonstrates complex behavior by adjusting orientation
at key points and learning kinematic patterns such as acceleration and deceleration. These action
sequences comprise both deliberative and intuitive components. (b) shows task performance under
different token distributions. Random pruning degrades accuracy, highlighting the presence of token
redundancy. However, relying exclusively on semantic importance, such as through reordering or
semantic-aware pruning, causes the model to fail in completing the task. In contrast, integrating
spatial and semantic information enables efficient pruning while preserving performance, as the VLA
model relies on token relative positions and object contours for spatial understanding.

PD-VLA (Song et al., 2025) and VLA-OFT (Kim et al., 2025) modify the autoregressive action
generation in VLA models by introducing parallel decoding, significantly improving generation
efficiency. However, these approaches fail to account for the specific nature of embodied tasks,
such as leveraging historical information and addressing visual redundancy, thus leaving significant
potential for further acceleration. Our approach adaptively switches between the VLA model and a
lightweight action generator based on intuitive and deliberative actions, and prunes tokens according
to task complexity, enabling frequency-adaptive acceleration.

3 A JOINT MODEL SCHEDULING AND TOKEN PRUNING APPROACH FOR VLA
MODEL ACCELERATION

In this section, we provide a detailed introduction to SP-VLA. The framework of our idea is shown
in Fig.1. Prior to processing environmental feedback, the historical action sequence is analyzed
to determine whether the current step requires a deliberative or intuitive action. Intuitive actions
are generated using a lightweight generator, while deliberative actions are handled by the VLA.
Furthermore, before entering the LLM backbone, input tokens are pruned based on their spatial
context and semantic importance, further reducing computational overhead. The lightweight action
generator will be introduced in Section 3.1, and the token pruning strategy will be detailed in
Section 3.2.

3.1 ACTION TYPE-AWARE MODEL SCHEDULING

Human motor behavior relies on deliberate thinking only for complex actions, such as grasping or
turning, while other simple actions are executed intuitively (Schwartz, 2016; Merel et al., 2019;
Murray & Escola, 2020). This hybrid strategy achieves high efficiency and low energy consumption
without sacrificing effectiveness. However, existing VLA models treat all actions as equally important,
relying on large model (e.g., parameter > 7B ) to generate each action through complex reasoning.
In reality, coherent action sequences involve not only high-level logical reasoning but also low-
level physical dynamics, including inertia and linear acceleration or deceleration during point-to-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Action Buffer

Speed Range

Intuitive Rate

Scheduler

Ridge Regression

Legality Check

{∆#, ∆%}
+
{∆'()*}!"#

lightweight Generator

Token Pruning

LLM ( e.g., 7B )

Action Head

Encoder

VLA Model

…

Accumulated Score Canny Edge Token Ranking

=

Space-awareToken Selection

X

Y
Z

Speed-aware
prune rate

…

Intuitive Action Deliberative Action

+$+#
+%
…

∧ V

Prune ratio

Spatio-Semantic dual-aware Token Pruning

∪

Figure 3: The framework of SP-VLA. SP-VLA accelerates the inference process through joint
model scheduling and token pruning. Left: At each time step t, the scheduler classifies the current
action as intuitive or deliberative based on the historial trajectories in the action buffer. For intuitive
actions, Ridge Regression estimates the translational and rotational components, reusing the gripper
state at t − 1. Otherwise, the VLA model will generate a fine-grained action. Right: To support
spatial understanding, we rank token importance by combining spatial information from the Canny
operator with semantic importance, and perform velocity-adaptive pruning for optimal acceleration.

point movements, which poses a significant challenge for VLA modeling. Ignoring the distinction
between action types leads to substantial redundant computation and ultimately compromises motion
smoothness. Therefore, leveraging this property to reduce the computational burden of VLA models
is a pressing challenge that needs to be addressed.

Action Type Indicator. In order to identify intuitive actions in VLA-generated trajectories, we
analyzed the behavioral patterns of VLA models and uncovered consistent patterns in grasping tasks.
The robotic arm typically performs a slow alignment with the target, then approaches the target
position at high speed, and finally executes the grasping action at a moderately low speed. A similar
motion pattern is observed during the placement phase, and the observed behavior is illustrated
in Fig.2a. As shown in the figure, the VLA model not only learns logical reasoning capabilities
but also captures dynamic patterns such as acceleration and deceleration. Therefore, we conclude
that deliberative actions are required for precise operations such as turning and grasping, whereas
intuitive actions are more appropriate during high-speed transitions between task phases. In this
paper, we treat the action output of the VLA model as a displacement per time step, i.e., velocity.
Let atd = {ax, ay, az} represent the translational velocity components of the end-effector at time
step t. An action ain ∈

{
a ∈ Rl||ai| > vmin, ∀i ∈ {x, y, z}

}
is classified as an intuitive action if all

components exceed a predefined threshold vmin, otherwise, it will be considered as a deliberative
action.

Model Schedular. Based on the above conclusion, we determine whether to use the lightweight
model based on motion speed and the action cache, as shown in Fig.3. Low velocities typically
indicate fine manipulation, whereas high velocities increase the risk of significant errors when relying
on the lightweight model. If at−1 ∈

{
a ∈ Rl|vmin < |ai| < vmax, ∀i ∈ {x, y, z}

}
, the lightweight

model can be called, vmin and vmax denote the velocity thresholds. On the other hand, we also
monitor the number of VLA-generated actions NG in the action buffer SA, and allow the lightweight
model to be used when NG/NA > τ , where NA is the total action number of SA, τ is a predefined
threshold. Overall, the triggering conditions for the lightweight model are:

LWM =

1, if at−1 ∈ [vmin, vmax] and
NG

NA
> τ

0, otherwise
. (1)
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By performing small-step, high-frequency model switching, we can achieve faster inference while
maintaining the accuracy of action direction.

Lightweight Action Generator. To support fast and reliable action approximation, we develop a
lightweight generator using Ridge Regression and an action buffer to efficiently estimate upcoming
actions. Although the end-effector trajectory of the manipulator is complex, we assume that short
segments of intuitive actions can be approximated as linear. Therefore, by modeling the relationship
between time and velocity in the action buffer, the current action at can be predicted. Specifically,
the action buffer SA = {at−n,at−n+1, · · · ,at−1} is used to store actions generated over the most
recent n steps, t is the current timesteps, at = {a1, a2, · · · , al} is the l-dimensional action vector at
t. T = [0, 1, · · · , n− 1]T is the timestep vector. The formulation of the Ridge Regression model is
Y = Xβ + ε, where X = [T,1] ∈ Rn×2 is the input, β ∈ R2×l denotes the parameter matrix to be
fitted, ε is the error term, Y ∈ Rn×l is the action buffer. To generate each new actions, the model is
re-fitted from scratch, with the following loss function:

J(β) = ||Xβ −Y||2 + λ||β||2, (2)
where ||β||2 is the Tikhonov regularization term, which imposes an L2 penalty on the parameters, λ
is the regularization term. The analytical solution to this equation is given by:

β = (XTX+ λI)−1XTY, (3)
where I ∈ R2×2 is the identity matrix. Once the optimal parameters of the current segment β∗ is
obtained, the action at the current time step can be calculated as follows:

at = xtβ
∗, where xt = [t 1] . (4)

It is worth noting that, since the end-effector state in this work is represented as a binary variable, we
do not apply the above fitting strategy. Instead, we directly reuse the value from the previous time
step t− 1, and delegate state transitions of the end-effector to the VLA model. Finally, the predicted
action is directly executed after passing a validity check.

3.2 SPATIAL-SEMANTIC DUAL-AWARE TOKEN PRUNING

To further reduce computation, we adopt a data-centric perspective and dynamically prune less
important tokens during VLA invocation, enabling the model to concentrate its attention on task
relevant content. Since the LLM accounts for the majority of computational overhead in VLA models,
we perform token pruning before feeding tokens into the LLM, ensuring compatibility with diverse
VLA architectures. Notably, we observe that VLA models are highly sensitive to both the relative
positions of input tokens and object contour-related tokens, as evidenced by the experimental results
in Fig.2b. As illustrated, randomly dropping tokens reduces accuracy but does not prevent task
completion, suggesting that many tokens are redundant. It is worth noting that even without pruning,
reordering tokens solely according to their semantic importance results in task failure, underscoring
the importance of token relative positioning for spatial understanding in VLA models. Moreover, even
without altering the relative positions of tokens, pruning solely based on semantic importance can
remove critical background information, also leading to task failure. Finally, reintroducing positional
tokens restores model performance, underscoring the critical role of both token relative ordering and
object contour-related tokens in supporting accurate spatial localization.

Semantic-aware Token Importance. Given the input image X, the vision encoder transforms it
into a sequence of tokens. We use the final layer of the encoder as the basis for token selection. The
queries, keys, and values can be calculated as follows:

Q = XWq, K = XWk, V = XWv, (5)

where Q,K,V ∈ RN×dk , Wq , Wk, and Wv ∈ Rd×dk are trainable weight matrices, and N is the
sequence length. The cumulative importance score of the tokens is given by:

Attn = Softmax

(
QK⊤
√
dk

)
V, AccuAttn =

1

N

(
e⊤ ⊗ IM

)
vec(Attn), (6)

where Attn ∈ RN×N denotes the attention weight matrix, vec(Attn) ∈ RN2×1 is the column-wise
vectorization, e ∈ RN×1 is an all-one vector, and ⊗ denotes the Kronecker product. Based on this,
we first identify semantically relevant tokens Tse by selecting those with cumulative attention scores
exceeding a threshold tks , i.e., Tse = {xi | AccuAttni > tks}.
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Table 1: Comparisons with the state-of-the-arts on LIBERO. To adapt these methods for the
VLA model, we introduced several enhancements. Specifically, ”+R” denotes the preservation
of relative token positions, while ”+S” represents the incorporation of Canny edge information.
Compared to existing approaches, our method achieves a 1.35× speedup without any performance
loss. Furthermore, it enables a 1.5× acceleration with less than a 3% drop in accuracy.

Method
Success Rate (%, ↑) / Speed up (↑)

Average FLOPs (%, ↓)Goal Object Spatial Long
OpenVLA 75.40 / 1.00 86.20 / 1.00 83.80 / 1.00 53.00 / 1.00 74.60 / 1.00 100

SparseVLM 74.20 / 1.33 84.00 / 1.33 83.40 / 1.33 52.80 / 1.33 73.60 / 1.33 75.55
FoPru + R 59.80 / 1.29 81.20 / 1.29 71.60 / 1.30 26.20 / 1.35 59.70 / 1.31 77.20

PruMerge + R 0.00 / 1.54 0.00 / 1.32 0.00 / 1.27 0.00 / 1.32 0.00 / 1.36 73.63
FastVLM + R + S 73.20 / 1.21 77.00 / 1.11 79.80 / 1.12 36.60 / 1.20 66.65 / 1.16 86.22
VisionZip + R + S 46.00 /1.20 47.40 / 1.23 34.20 / 1.19 4.60 / 1.22 33.05 / 1.21 81.95

Ours (Speed) 73.60 / 1.66 82.40 / 1.44 80.00 / 1.47 51.60 / 1.42 71.90 / 1.50 66.51
Ours (Acc.) 75.40 / 1.46 85.60 / 1.30 84.40 / 1.30 54.20 / 1.32 74.90 / 1.35 73.64

Table 2: The acceleration effects of individual modules. As shown in the table, model scheduling
yields the most significant acceleration for the VLA model with the least accuracy loss. In contrast,
the model exhibits higher sensitivity to token pruning, and its performance collapses entirely when
object edge information is removed.

Method
Success Rate (%, ↑) / Speed up (↑)

Average FLOPs (%, ↓)Goal Object Spatial Long
Ours 75.40 / 1.46 85.60 / 1.30 84.40 / 1.30 54.20 / 1.32 74.90 / 1.35 73.64

w/o Pruning 74.40 / 1.23 84.20 / 1.27 84.00 / 1.18 53.30 / 1.39 73.98 / 1.27 78.75
w/o Scheduling 77.31 / 1.24 81.80 / 1.16 79.00 / 1.30 48.00 / 1.13 71.52 / 1.21 82.55

w/o Canny 33.60 / 1.34 39.00 / 1.35 22.00 / 1.35 1.10 / 1.37 23.93 / 1.35 73.40

Spatial-aware Token Importance. We hypothesize that spatial information is primarily encoded
in object contours. Therefore, we extract spatially informative tokens using the Canny edge detector.
Xs = Canny(X) denotes the edge-only image that preserves only contour information extracted
from X. We then obtain an ordered sequence of edge-based tokens using Tsp = fE(Xs), where
fE(·) denotes the token extraction function.

Finally, the selected token set is obtained by computing the order-preserving union of the two,
Tselect = U(Tse,Tsp), where U(·) denotes a union operation that preserves the original token
ordering.

To align with the model collaboration strategy, we disable token pruning under low-speed conditions
to avoid disrupting precise manipulations. Furthermore, motivated by the observation that higher
motion speeds generally correspond to more intuitive actions, we define the pruning ratio to be
positively correlated with the current velocity. Accordingly, the retained token ratio is defined as:

Tr(v) =

1, v < vpmin

1− v − vpmin

vpmax
− vpmin

, v ≥ vpmin

, (7)

where vpmin is the minimum velocity threshold, vpmax is the maximum velocity of VLA model.

4 EXPERIMENTAL RESULTS

In this section, we present extensive experimental results to demonstrate the superior performance
of SP-VLA. We adopt OpenVLA (Kim et al., 2024) and CogACT (Li et al., 2024a) as the VLA
backbones and evaluate them in the LIBERO (Liu et al., 2023) and SimplerEnv (Li et al., 2024b)
simulation environments. LIBERO consists of four task suites (Spatial, Object, Goal, and Long),
covering 130 tasks with 2000 trajectories to evaluate model robustness. SimplerEnv provides three
settings (Google-VM, Google-VA, and Bridge-VM) with variations in color, material, lighting, and
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Table 3: Comparisons with the state-of-the-arts on SimplerEnv. We apply SP-VLA to the LLM of
CogACT, where the meanings of ‘+R’ and ‘+S’ follow Table 1. As shown, SP-VLAachieves SOTA
performance across diverse tasks, delivering significant speedup while also improving accuracy.

SIMPLER Method
Success Rate (%, ↑) / Speed up (↑)

Average FLOPs (%, ↓)PickCan MoveNear Drawer DrawerApple

Visual
Matching

CogACT 91.30 / 1.00 85.00 / 1.00 71.80 / 1.00 50.90 / 1.00 74.80 / 1.00 100.00

Random Dropping 9.70 / 1.20 20.40 / 1.20 53.50 / 1.20 0.00 / 1.20 20.90 / 1.20 58.50
FastV 92.60 / 1.21 81.40 / 1.21 69.80 / 1.21 52.40 / 1.21 74.10 / 1.21 42.00

VLA-Cache 92.00 / 1.38 83.30 / 1.38 70.50 / 1.38 51.60 / 1.38 74.40 / 1.38 80.10
EfficientVLA 93.30 / 1.93 81.30 / 1.93 68.20 / 1.93 53.80 / 1.93 74.20 / 1.93 28.90

Ours 90.00 / 2.62 82.08 / 2.52 75.35 / 1.80 52.78 / 1.67 75.05 / 2.15 38.15

Visual
Aggregation

CogACT 89.60 / 1.00 80.80 / 1.00 28.30 / 1.00 46.60 / 1.00 61.30 / 1.00 100.00

Random Dropping 4.00 / 1.20 16.10 / 1.20 15.60 / 1.20 0.00 / 1.20 8.90 / 1.20 58.50
FastV 91.40 / 1.19 78.60 / 1.19 27.60 / 1.19 50.60 / 1.19 62.10 / 1.19 42.00

VLA-Cache 91.70 / 1.37 79.30 / 1.37 32.50 / 1.37 45.80 / 1.37 62.30 / 1.37 82.60
EfficientVLA 93.20 / 1.91 75.80 / 1.91 26.90 / 1.91 49.20 / 1.91 61.20 / 1.91 28.90

Ours 86.18 / 2.48 77.33 / 2.63 55.29 / 1.81 41.80 / 1.44 65.16 / 2.09 40.20

SIMPLER Method
Success Rate (%, ↑) / Speed up (↑)

Average FLOPs (%, ↓)PutSpoon PutCarrot StackBlock PutEggplant

WindowX

CogACT 71.70 /1.00 50.80 / 1.00 15.00 / 1.00 67.50 / 1.00 51.30 / 1.00 100.00

Random Dropping 52.17 / 1.20 39.13 / 1.20 8.69 / 1.20 26.08 / 1.20 29.70 / 1.20 85.00
FoPru + R 52.17 / 1.33 39.13 / 1.33 13.04 / 1.33 69.56 / 1.33 43.38 / 1.33 78.00

FastVLM + R + S 34.78 / 1.14 30.43 / 1.14 4.35 / 1.14 30.43 / 1.08 25.00 / 1.13 90.50
Ours 70.83 / 3.64 54.17 / 1.73 29.17 / 2.54 75.00 / 1.72 57.29 / 2.41 35.35

Table 4: Real-robot performance on Franka. We evaluate two manipulation tasks over 50 trials
each (20 morning, 10 noon, 20 evening). SP-VLA achieves over 2.5× acceleration on average while
preserving accuracy, reduces FLOPs by over 60%, and lowers inference latency by nearly 50%.

Method
Success Rate (%, ↑) / Speed Up (↑)

Average FLOPs (%, ↓) Latency (s, ↓)Pick Up Pick and Place
CogACT 80.00 / 1.00 74.00 / 1.00 77.00 / 1.00 100 0.27

SP-VLA 78.00 / 2.46 74.00 / 2.57 76.00 / 2.52 35.55 0.13

camera pose for robustness assessment. We conduct real-world experiments by deploying SP-VLA
on a Franka Research 3 robot to validate its practical effectiveness. In these experiments, we use
CogACT as the base model and fine-tune it with 150 trajectories per task collected using the GELLO
suite. Experiments are run on NVIDIA A100 GPUs (40GB), and all reported results are averaged
over three independent runs with different random seeds to ensure statistical robustness.

Parameter Settings. In this experiment, we set the buffer size to n = 6 and the deliberation ratio
to τ = 0.5. The choice of velocity thresholds is device dependent. In practice, one should first
determine the maximum and minimum task-execution speeds of the embodied system, and then use
1/4 and 3/4 of this range as the values for Vmin and Vmax, respectively. For example, in simulation, we
assign a set of parameters for SP-VLA to a broad class of tasks, since different task types may require
different configurations. In the real-world experiments of this paper, however, a single parameter set
is sufficient for the Franka robot.

4.1 SIMULATION RESULTS

Table 1 and 3 report the main results of SP-VLA. SP-VLA achieves the best results in LIBERO,
consistently delivering a 1.35× speedup without accuracy loss, and up to 1.5× faster inference with
a slight 3% accuracy drop. In SimplerEnv tasks, it further achieves a 2× speedup with improved
performance, indicating a degree of error-correction capability. Notably, on the Visual Aggrega-
tion Drawer task, SP-VLA improves performance by about 27% while achieving a 1.8× speedup,
demonstrating clear error-correction capability. Besides, the VLA model is highly sensitive to spatial
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Table 5: Latency and Frequency in the SimplerEnv Environment. We measure these metrics on
an RTX 4090. SP-VLA achieves approximately a 2.2× inference speedup, highlighting its capability
for phase-aware dynamic acceleration that adapts frequency to different stages of the task.

SIMPLER Evaluation
Indicator

Frequency (Hz, ↑) / Latency (s, ↓)
AveragePickCan MoveNear Drawer DrawerApple

Visual Matching
CogACT 4.00 / 0.25 4.00 / 0.25 3.85 / 0.26 3.23 / 0.31 3.77 / 0.27
SP-VLA 9.09 / 0.11 8.33 / 0.12 7.14 / 0.14 7.69 / 0.13 8.06 / 0.13

SIMPLER Evaluation
Indicator

Frequency (Hz, ↑) / Latency (s, ↓)
AveragePutSpoon PutCarrot StackBlock PutEggplant

WindowX
CogACT 4.00 / 0.25 4.00 / 0.25 4.00 / 0.25 3.85 / 0.26 3.96 / 0.25
SP-VLA 12.5 / 0.08 6.25 / 0.16 8.33 / 0.12 7.69 / 0.13 8.69 / 0.12

information: disrupting token order or retaining too few tokens severely impairs perception, often
leading to task failure, particularly with generic compression methods. To address this, we reorder
tokens and add position tokens (‘+R’ and ‘+S’), but these approaches still perform poorly with
substantial performance degradation. Even after supplementing positional information and preserving
token order, FoPru (Jiang et al., 2024) and VisionZip (Yang et al., 2024) still suffer from substantial
performance degradation with limited speedup. These results demonstrate that SP-VLA effectively
identifies both temporal and spatial redundancies in VLA models, and accelerates the inference
process through joint model scheduling and token pruning, while preserving the model’s spatial
perception capabilities and overall performance. This confirms the significant effectiveness of our
approach in accelerating VLA inference.

4.2 REAL-WORLD RESULTS

To further validate the acceleration gains of SP-VLA, we first train CogACT using 150 trajectories
collected for each of the two tasks—Pick up the cylinder and Pick and Place the cylinder. We then
deploy SP-VLA on a real Franka Research 3 robot to evaluate its performance. The hyperparameters
are set using 1/4 and 3/4 of Franka’s velocity range as Vmin and Vmax, respectively, with τ = 0.5
and n = 6. For each task, we conduct 50 evaluations (20 in the morning, 10 at noon, and 20 in the
evening) and report the average performance to approximate operation across different time periods.
As shown in Table 4, CogACT achieves success rates of 80% and 74% on the two tasks. After
integrating SP-VLA, the success rates become 78% and 74%. This reflects only a 1% decrease in
average accuracy while achieving a 2.52× acceleration. These results demonstrate that SP-VLA
provides stable and consistent acceleration in both simulation and real-world deployment.

4.3 ANALYSIS

The Acceleration Effects of Individual Modules. The ablation results are summarized in Table 2.
Specifically, we conduct three ablation experiments here: (1) disabling token pruning, (2) removing
model scheduling, and (3) excluding positional information from the token pruning process. Overall,
model scheduling emerges as the most effective component for accelerating the VLA model, achieving
a 1.27× speedup with only a 1% drop in accuracy. This indicates that VLA models contain substantial
temporal redundancy. In contrast, token pruning yields only moderate acceleration but results in a
substantial accuracy drop, indicating that the VLA model is highly sensitive to token reduction and
offers limited redundancy for compression. Notably, eliminating the Canny edge information results
in a dramatic 50% degradation in performance, effectively collapsing the model’s functionality. This
underscores the critical role of relative token positions and object contour information in enabling the
VLA model’s spatial perception. Ultimately, the joint application of these techniques yields the best
overall acceleration, with no compromise in model accuracy.

Frequency and Latency. We evaluate the inference frequency and latency of SP-VLA on a single
NVIDIA RTX 4090 (40GB), with results in Table 5. CogACT runs at less than 4 Hz, while our
method increases the frequency to over 8 Hz—a 2.2× improvement—along with a 2.2× reduction in
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Figure 4: Visualizations of SP-VLA across different tasks. As shown in the figure, our method
efficiently prunes redundant image regions to accelerate VLA inference while preserving key object
contours to maintain spatial perception.

Figure 5: Visualizations of SP-VLA on real tasks. As illustrated in the figure, our method selectively
prunes unnecessary tokens while retaining critical visual cues, enabling efficient acceleration in real-
world scenarios without sacrificing task-relevant information.

per-inference latency. Furthermore, on LIBERO, our method delivers a 1.4× frequency improvement,
indicating that VLA models exhibit substantial temporal and spatial redundancy, which our approach
effectively exploits for dynamic frequency acceleration. More detailed results are in Appendix A.2.

Visualizations. To evaluate the efficiency of SP-VLA, we present both simulation and real-world
visualizations in Fig. 4 and Fig. 5, illustrating how the method accelerates VLA inference while
preserving task-relevant information. Fig.4 shows how SP-VLA performs task completion across
various tasks during the invocation of the VLA model. As shown in the figure, SP-VLA adaptively
identifies redundant components and prunes tokens accordingly to accelerate VLA inference. Morever,
it effectively preserves object edge information, maintaining the spatial perception capability required
by the VLA model. These results demonstrate the effectiveness of our spatio-semantic dual-aware
token pruning method in significantly enhancing inference efficiency. Fig.5 illustrates the real-world
performance of SP-VLA. As shown in the figure, our method effectively identifies and removes
redundant tokens while preserving the essential content, enabling efficient acceleration without
compromising task-relevant information. This demonstrates that SP-VLA preserves the execution
accuracy of the base model while simultaneously achieving substantial acceleration. For details
on parameter sensitivity analysis, in-depth experimental analysis, the acceleration ratios of different
model parts and additional experiments and visualizations, please refer to Appendices A.3, A.4, A.5,
A.7, A.8 and A.9.

5 CONCLUSION

In this work, we propose SP-VLA, a unified framework that accelerates VLA models through joint
model scheduling and token pruning. By dynamically switching between a full VLA model and a
lightweight generator based on deliberative or intuitive actions, and pruning tokens according to
spatio-semantic importance during VLA invocation, SP-VLA enables frequency-aware and task-
adaptive acceleration. Extensive experiments demonstrate that our method achieves 1.5× lossless
speedup in LIBERO and 2.4× in SimplerEnv, with up to 6% performance gain, while simultaneously
improving both inference frequency and latency by 1.4× in LIBERO and 2.2× in SimplerEnv. This
highlights the potential of collaborative model-data strategies in enabling practical deployment of
VLA systems in real-world applications.
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6 ETHICS STATEMENT

This work focuses solely on accelerating embodied models and involves only robotic arm simulations
and real-world experiments. It does not involve human subjects, sensitive personal data, or ethically
concerning applications. The research does not present foreseeable risks of misuse or harm, nor
does it raise issues of bias, discrimination, privacy, or security. All experiments were conducted in
compliance with standard research integrity practices.

7 REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. All experiments were
conducted with multiple random seeds and repeated runs to confirm robustness. The backbone models
and checkpoints used in this work are publicly available and open-source. The experimental envi-
ronments (LIBERO and SimplerEnv) are standardized and publicly accessible. All hyperparameters
and implementation details will be fully documented and released in a public GitHub repository, and
additional sensitivity analyses and extended results are provided in the appendix to further support
reproducibility.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, Large Language Models (LLMs) were used solely to polish the language for clarity and
readability. No LLMs were employed for idea generation, experimental design, data analysis, or any
other part of the research process.

A.2 LATENCY AND FREQUENCY

Table 6: Latency and Frequency in the LIBERO Environment. We measure these metrics on an
RTX 4090. As shown in the table, SP-VLA achieves about a 1.4× inference speedup.

Evaluation Inidcator
Frequency (Hz, ↑) / latency (s, ↓)

AverageGoal Object Spatial Long
OpenVLA 3.13 / 0.32 3.27 / 0.31 2.99 / 0.33 3.32 / 0.30 3.18 / 0.32
SP-VLA 4.34 / 0.23 4.56 / 0.22 4.37 / 0.23 4.44 / 0.23 4.43 / 0.23

Table 7: Latency and Frequency in the SimplerEnv Environment. We measure these metrics on
an RTX 4090. As shown in the table, SP-VLA achieves about a 2.2× inference speedup.

SIMPLER Evaluation
Indicator

Frequency (Hz, ↑) / latency (s, ↓)
AveragePickCan MoveNear Drawer DrawerApple

Visual Matching
CogACT 4.00 / 0.25 4.00 / 0.25 3.85 / 0.26 3.23 / 0.31 3.77 / 0.27
SP-VLA 9.09 / 0.11 8.33 / 0.12 7.14 / 0.14 7.69 / 0.13 8.06 / 0.13

Visual Aggregation
CogACT 4.17 / 0.24 3.85 / 0.26 3.45 / 0.29 2.86 / 0.35 3.58 / 0.29
SP-VLA 9.09 / 0.11 9.09 / 0.11 5.56 / 0.18 4.76 / 0.21 7.13 / 0.15

SIMPLER Evaluation
Indicator

Frequency (Hz, ↑) / latency (s, ↓)
AveragePutSpoon PutCarrot StackBlock PutEggplant

WindowX
CogACT 4.00 / 0.25 4.00 / 0.25 4.00 / 0.25 3.85 / 0.26 3.96 / 0.25
SP-VLA 12.5 / 0.08 6.25 / 0.16 8.33 / 0.12 7.69 / 0.13 8.69 / 0.12

Tables 6 and 7 report the frequency and latency measurements of SP-VLA on an RTX 4090. As shown
in the table, OpenVLA and CogACT achieve only 3–4 Hz inference frequency. By incorporating
SP-VLA, their inference rates are improved by approximately 1.4× and 2.2×, respectively, while
preserving model accuracy. This suggests that VLA models contain substantial temporal and spatial
redundancies, offering considerable acceleration potential. By effectively identifying and exploiting
both, SP-VLA achieves significant speedups and demonstrates strong application prospects.

A.3 SENSITIVITY ANALYSIS OF KEY PARAMETERS.

Table 8 presents an ablation study in the LIBERO simulation environment, examining the impact of
execution speed V , buffer size n, and the proportion of deliberative actions τ . Specifically, execution
speed is varied by ±25% around Vmax and Vmin, buffer size is set to {4, 6, 8}, and the proportion
of deliberative actions in the buffer is chosen from {3/8, 4/8, 5/8}. The results show how model
accuracy and speedup vary under different settings. Overall, SP-VLA is robust to speed changes, with
±25% fluctuations having little impact on accuracy or acceleration. In contrast, buffer size n and the
proportion of intuitive actions τ have a much stronger effect, significantly influencing accuracy. This
is because, even during skipping, SP-VLA relies on the VLA model to provide correct directional
guidance and critical decision points, thereby preserving overall performance.

A.4 ANALYSIS OF EXPERIMENTAL RESULTS.

Analysis for Baseline Methods. Owing to the lack of a direct baseline, we instead compare our
method with state-of-the-art approaches that have demonstrated strong performance in LLAVA.
Tables 1 and 3 show that the majority of baseline methods do not perform well on VLA models.
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Table 8: Sensitivity Analysis of Key Parameters. We present the sensitivity analysis of SP-VLA in
the LIBERO environment. We vary execution speed (±25% around Vmax and Vmin), buffer size
(n ∈ 4, 6, 8), and the proportion of deliberative actions (τ ∈ 3/8, 4/8, 5/8), and report their effects
on model accuracy and acceleration. The results show that SP-VLA is robust to speed changes,
whereas buffer size and the proportion of deliberative actions exert a stronger influence, significantly
affecting accuracy.

Task Scaling
Success Rate (%, ↑) / Speed up (↑)

Vmin (0.2) Vmax (0.5) τ (0.5) n (6)

Object
0 82.4 / 1.44 82.4 / 1.44 82.4 / 1.44 82.4 / 1.44

↑ [25%, 25%, 5/8, 8] 82.2 / 1.41 83.2 / 1.33 81.7 / 1.34 68.4 / 1.58
↓ [25%, 25%, 3/8, 4] 83.6 / 1.37 81.6 / 1.38 64.4 / 1.75 80.8 / 1.33

Goal
0 73.6 / 1.66 73.6 / 1.66 73.6 / 1.66 73.6 / 1.66

↑ [25%, 25%, 5/8, 8] 72.8 / 1.41 70.4 / 1.47 71.7 / 1.45 66.2 / 1.87
↓ [25%, 25%, 3/8, 4] 74.8 / 1.22 69.0 / 1.78 56.4 / 1.91 74.0 / 1.31

Spatial
0 80.0 / 1.47 80.0 / 1.47 80.0 / 1.47 80.0 / 1.47

↑ [25%, 25%, 5/8, 8] 77.6 / 1.49 80.0 / 1.47 79.1 / 1.36 74.8 / 1.59
↓ [25%, 25%, 3/8, 4] 78.6 / 1.43 78.4 / 1.52 62.2 / 1.83 74.4 / 1.27

Long
0 51.6 / 1.42 51.6 / 1.42 51.6 / 1.42 51.6 / 1.42

↑ [25%, 25%, 5/8, 8] 50.4 / 1.45 49.2 / 1.31 48.9 / 1.28 47.4 / 1.37
↓ [25%, 25%, 3/8, 4] 50.1 / 1.37 46.6 / 1.53 42.5 / 1.77 44.6 / 1.32

Although the baseline methods are effective lightweight solutions for VLMs, VLA models differ
in two fundamental aspects: they are highly sensitive to spatial information and are required to
perform sequential decision-making. Consequently, VLA models exhibit both temporal and spatial
redundancies. These characteristics render token lightweighting strategies designed for VLMs unfit
for VLA applications.

(1) Failed extraction of spatial information. Since FoPru (Jiang et al., 2024) and PruMerge
(Shang et al., 2024) already incorporate mechanisms for extracting spatial information, we
did not add Canny-based edge detection to these methods. However, their spatial information
extraction primarily aims to preserve semantic integrity rather than focusing on the relative
positioning between objects, which leads to performance degradation when applied to VLA
models.

(2) Feature fusion–induced spatial ambiguity. VisionZip (Yang et al., 2024) merges tokens
to compress semantic information, which proves effective for VLMs but disrupts spatial
information in VLA models, leading to a collapse in performance.

(3) Performance degradation due to overlooked temporal redundancy. Although FastVLM
(Vasu et al., 2024) and FastV (Chen et al., 2024) performs token pruning and information
augmentation, it retains a fixed number of tokens at each timestep, making it unable to adapt
to the varying complexity of VLA tasks. This limitation results in degraded performance.
In contrast, SP-VLA maintains a constant cumulative attention threshold, dynamically
adjusting the number of retained tokens—preserving more at critical moments and fewer
during less demanding phases—thereby effectively preserving the performance of the VLA
model.

In contrast, VLA-Cache (Xu et al., 2025) and EfficientVLA (Yang et al., 2025) are acceleration
algorithms specifically designed for VLA models. VLA-Cache leverages KV cache reuse, while
EfficientVLA combines layer skipping, token pruning, and activation caching to accelerate both the
VLM and the Action Head, achieving relatively stronger speedups. SP-VLA, on the other hand,
targets temporal and spatial redundancies without altering the model itself and is therefore, to some
extent, orthogonal to these two methods.

Analysis for the Simulation Environments. We evaluate SP-VLA using two simulation environ-
ments: LIBERO and SimplerEnv. LIBERO consists of four task suites (Spatial, Object, Goal, and
Long), covering 130 tasks with 2000 trajectories to evaluate model robustness. SimplerEnv provides
three settings (Google-VM, Google-VA, and Bridge-VM) with variations in color, material, lighting,
and camera pose for robustness assessment. LIBERO is mainly used to evaluate the stability of
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Table 9: The Acceleration Ratios of Model Scheduling and Token Pruning. Model scheduling
yields the most prominent speedup, with redundancy increasing as task sequences grow longer.
Optimizing a single dimension reveals redundancy specific to it, suggesting that temporal and spatial
accelerations are interdependent. SP-VLA exploits this interplay to achieve superior acceleration.

Method
Pruning Rate (%, ↑) / Intuitive Action Rate (%, ↑)

Average Average Acc. (%, ↑)Goal Object Spatial Long
Ours 19.45 / 15.00 6.00 / 18.07 10.50 / 13.90 5.80 / 19.64 10.44 / 16.65 74.90

w/o Pruning 0.00 / 18.58 0.00 / 21.11 0.00 / 15.41 0.00 / 28.00 0.00 / 20.78 73.98
w/o Scheduling 19.66 / 0.00 13.50 / 0.00 22.70 / 0.00 11.53 / 0.00 16.85 / 0.00 71.52

w/o Canny 16.42 / 11.42 10.10 / 18.13 17.40 / 11.13 17.30 / 13.20 15.31 / 13.47 23.93

Table 10: The results under different settings. SP-VLA maintains high accuracy across various
acceleration ratios, demonstrating the strong robustness of our approach. For example, our method
not only improves accuracy under moderate acceleration (1.35×), but also maintains competitive
performance under higher speedup (1.5×) with only a 3% accuracy drop.

Method
Success Rate (%, ↑) / Speed up (↑)

Average FLOPs (%, ↓)Goal Object Spatial Long
OpenVLA 75.40 86.20 83.80 53.30 74.68 100.00

Ours-1 73.60 / 1.66 82.40 / 1.44 80.00 / 1.47 51.60 / 1.42 71.90 / 1.50 66.51
Ours-2 72.20 / 1.58 83.60 / 1.36 81.40 / 1.35 50.40 / 1.44 71.90 / 1.43 69.83
Ours-3 74.80 / 1.36 84.80 / 1.30 82.20 / 1.29 53.40 / 1.29 73.80 / 1.31 76.25
Ours-4 75.40 / 1.46 85.60 / 1.30 84.40 / 1.30 54.20 / 1.32 74.90 / 1.35 73.63

SP-VLA across diverse tasks, whereas SimplerEnv focuses on generalization. As shown in Tables 1
and 3, SP-VLA delivers strong results in both settings: 1.5× lossless acceleration on LIBERO and up
to 2.4× acceleration with a 6% performance gain on SimplerEnv, underscoring its robustness.

A.5 THE ACCELERATION RATIOS OF MODEL SCHEDULING AND TOKEN PRUNING.

Using the same parameter settings as in Table 2, Table 9 presents the acceleration contributions of
model scheduling and token pruning. Model scheduling achieves the highest accuracy at comparable
acceleration levels, suggesting that much of the computational redundancy in VLA models arises from
intuitive and deliberate actions. We further find that the proportion of intuitive actions grows with task
length, from 18% in LIBERO-Spatial (1.18× speedup) to 28% in LIBERO-Long (1.39× acceleration).
While individual techniques expose redundancy mainly along a single dimension—e.g., token pruning
identifies 22.7% in LIBERO-Spatial and model scheduling 21% in LIBERO-Object—SP-VLA jointly
optimizes temporal and spatial redundancies. These dimensions are interdependent rather than
orthogonal, and SP-VLA effectively exploits this synergy to achieve superior acceleration.

A.6 LIMITATION

In this work, we discovered and verified that the VLA model can be categorized into deliberative
actions and intuitive actions. By leveraging this distinction, we propose a method that jointly
schedules the model and prunes tokens for VLA models, achieving acceleration in both the temporal
and spatial dimensions. However, our current exploration of intuitive action generation is limited
to model lightweighting and remains preliminary. As a result, a complete separation between the
generation of deliberative and intuitive actions has not yet been achieved. We believe that explicitly
distinguishing these two types of actions in the behavioral logic of VLA models will make them more
human-like and is a crucial step toward achieving higher accuracy, faster inference, and lower energy
consumption, with significant potential for future development. Therefore, this will be one of the key
directions of our future exploration.
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Table 11: The Acceleration Ratios of Model Scheduling and Token Pruning. Overall, model
scheduling achieves higher acceleration ratios than token pruning, indicating that VLA contains
significant temporal redundancy. By categorizing actions into deliberative and intuitive types, this
redundancy can be efficiently addressed. Moreover, the varying tolerance of different tasks to the two
acceleration methods suggests that these approaches are not orthogonal, but rather complementary,
working together to achieve optimal performance.

Method
Pruning Rate (%, ↑) / Intuitive Action Rate (%, ↑)

Average Average Acc. (↑)Goal Object Spatial Long
Ours-1 19.45 / 15.00 6.00 / 18.07 10.50 / 13.90 5.80 / 19.64 10.44 / 16.65 71.90
Ours-2 24.91 / 15.88 6.25 / 21.58 15.51 / 12.63 9.09 / 23.81 13.93 / 18.48 72.20
Ours-3 15.01 / 12.87 5.89 / 18.61 9.57 / 14.33 5.71 / 17.95 9.05 / 15.94 73.80
Ours-4 26.70 / 17.40 6.47 / 25.70 18.02 / 17.29 5.67 / 25.53 14.22 / 21.48 74.90

A.7 MORE EXPERIMENTAL RESULTS.

Tables 10 and 11 present the results of SP-VLA under different settings. Overall, SP-VLA maintains
high accuracy across diverse acceleration ratios, demonstrating robust adaptability to varying acceler-
ation demands. For instance, at the 1.35× acceleration rate, SP-VLA achieves an overall accuracy
of 74.90%, outperforming OpenVLA. This indicates that moderately reducing redundancy can help
correct errors and improve performance. Even under a 1.5× acceleration, the accuracy only drop 3%,
highlighting the significant temporal and spatial redundancy present in VLA models. These results
highlight that SP-VLA achieves outstanding acceleration on VLA models, while also demonstrating
strong robustness by maintaining stable performance across a wide range of acceleration ratios.

In terms of acceleration contributions, model scheduling delivers markedly larger speedups than token
pruning, consistently outperforming it across all settings. This finding suggests that VLA execution
involves a high proportion of intuitive actions, revealing substantial computational redundancy. On
the other hand, different tasks exhibit varying levels of tolerance to acceleration methods. For
example, the LIBERO-Goal task allows a relatively large degree of token pruning, achieving a
26.70% reduction while maintaining accuracy. In contrast, the LIBERO-Long task only supports
a 5.67% pruning rate, with most of the acceleration coming from intuitive action generation. This
indicates that as task complexity increases, higher spatial perception capability is required from the
VLA model. Furthermore, the two acceleration methods are not entirely independent; instead, they
work synergistically to achieve optimal acceleration performance.

To further demonstrate the generality and effectiveness of our approach, we provide visualizations
and task-wise speedup curves for various LIBERO tasks in Sections A.8 and A.9, respectively. These
examples further illustrate that SP-VLA is well-suited for a wide range of manipulation tasks and
achieves remarkable acceleration performance.

A.8 MORE VISUALIZATION RESULTS.
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Figure 6: Visualization examples generated by SP-VLA on LIBERO-Spatial.
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Figure 7: Visualization examples generated by SP-VLA on LIBERO-Goal.
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Figure 8: Visualization examples generated by SP-VLA on LIBERO-Object.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Visualization examples generated by SP-VLA on LIBERO-Long.
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A.9 ACTION DYNAMICS ACROSS DIFFERENT TASKS.

Grasping Moving

Speed Change

Targeting Putting

(a) LIBERO-Spatial: Pick up the black bowl
between the plate and the ramekin and place it on the
plate.

Grasping Moving

Speed Change

Targeting Putting

(b) LIBERO-Spatial: Pick up the black bowl next to
the ramekin and place it on the plate.

Grasping Moving

Speed Change

Targeting Putting

(c) LIBERO-Spatial: Pick up the black bowl from
table center and place it on the plate.

Grasping Moving

Speed Change

Targeting Putting

(d) LIBERO-Spatial: Pick up the black bowl on the
cookie box and place it on the plate.

Grasping Moving

Speed Change

Targeting Putting

(e) LIBERO-Spatial: Pick up the black bowl in the
top drawer of the wooden cabinet and place it on the
plate.

Grasping Moving

Speed Change

Targeting Putting

(f) LIBERO-Spatial: Pick up the black bowl on the
ramekin and place it on the plate.

Figure 10: Visualizations of SP-VLA on the first 6 LIBERO-Spatial tasks.
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Grasping Moving

Speed Change

Targeting Putting

(a) LIBERO-Spatial: Pick up the black bowl next to
the cookie box and place it on the plate.

Grasping Moving

Speed Change

Targeting Putting

(b) LIBERO-Spatial: Pick up the black bowl on the
stove and place it on the plate.

Grasping Moving

Speed Change

Targeting Putting

(c) LIBERO-Spatial: Pick up the black bowl next to
the plate and place it on the plate.

Grasping Moving

Speed Change

Targeting Putting

(d) LIBERO-Spatial: Pick up the black bowl on the
wooden cabinet and place it on the plate.

Figure 11: Visualizations of SP-VLA on the remaining 4 LIBERO-Spatial tasks.
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Grasping MovingTargeting

(a) LIBERO-Goal: Open the middle drawer of the
cabinet.

Grasping Moving

Speed Change

Targeting Putting

(b) LIBERO-Goal: Put the bowl on the stove.

Grasping Moving

Speed Change

Targeting Putting

(c) LIBERO-Goal: Put the wine bottle on top of the
cabinet.

Grasping MovingTargeting Putting

Speed Change

(d) LIBERO-Goal: Open the top drawer and put the
bowl inside.

Grasping MovingTargeting Putting

Speed Change

(e) LIBERO-Goal: Put the bowl on top of the
cabinet.

Grasping Moving

Speed Change

Targeting Putting

(f) LIBERO-Goal: Push the plate to the front of the
stove.

Figure 12: Visualizations of SP-VLA on the first 6 LIBERO-Goal tasks.
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Grasping Moving

Speed Change

Targeting Putting

(a) LIBERO-Goal: Put the cream cheese in the bowl.

Grasping Moving

Speed Change

Targeting Putting

(b) LIBERO-Goal: Turn on the stove.

Grasping Moving

Speed Change

Targeting Putting

(c) LIBERO-Goal: Put the bowl on the plate.

Grasping Moving

Speed Change

Targeting Putting

(d) LIBERO-Goal: Put the wine bottle on the rack.

Figure 13: Visualizations of SP-VLA on the remaining 4 LIBERO-Goal tasks.
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Grasping MovingTargeting Putting
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Speed Change

(a) LIBERO-Object: Pick up the alphabet soup and
place it in the basket.

Grasping MovingTargeting Putting
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Speed Change

(b) LIBERO-Object: Pick up the cream cheese and
place it in the basket.

Grasping MovingTargeting Putting
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Speed Change

(c) LIBERO-Object: Pick up the salad dressing and
place it in the basket.

Grasping MovingTargeting Putting
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Speed Change

(d) LIBERO-Object: Pick up the bbq sauce and
place it in the basket.

Grasping MovingTargeting Putting
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Speed Change

(e) LIBERO-Object: Pick up the ketchup and place
it in the basket.

Grasping Moving

Speed Change

Targeting Putting

(f) LIBERO-Object: Pick up the tomato sauce and
place it in the basket.

Figure 14: Visualizations of SP-VLA on the first 6 LIBERO-Object tasks.
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Grasping Moving

Speed Change

Targeting Putting

(a) LIBERO-Object: Pick up the butter and place it
in the basket.

Grasping Moving

Speed Change

Targeting Putting

(b) LIBERO-Object: Pick up the milk and place it in
the basket.

Grasping Moving

Speed Change

Targeting Putting

(c) LIBERO-Object: Pick up the chocolate pudding
and place it in the basket.

Grasping Moving

Speed Change

Targeting Putting

(d) LIBERO-Object: Pick up the orange juice and
place it in the basket.

Figure 15: Visualizations of SP-VLA on the remaining 4 LIBERO-Object tasks.
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(a) LIBERO-Long: Put both the alphabet soup and
the tomato sauce in the basket.
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(b) LIBERO-Long: Put both the cream cheese box
and the butter in the basket.
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Speed Change

(c) LIBERO-Long: Turn on the stove and put the
moka pot on it.

Grasping
MovingTargeting Putting

Speed Change

(d) LIBERO-Long: Put the black bowl in the bottom
drawer of the cabinet and close it.

Grasping
MovingTargeting

Putting

Speed Change

(e) LIBERO-Long: Put the white mug on the left
plate and put the yellow and white mug on the right
plate.
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Grasping
MovingTargeting Putting

Speed Change

(f) LIBERO-Long: Pick up the book and place it in
the back compartment of the caddy.

Figure 16: Visualizations of SP-VLA on the first 6 LIBERO-Long tasks.
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(a) LIBERO-Long: Put the white mug on the plate
and put the chocolate pudding to the right of the plate.
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(b) LIBERO-Long: Put both the alphabet soup and
the cream cheese box in the basket.
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(c) LIBERO-Long: Put both moka pots on the stove.
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(d) LIBERO-Long: Put the yellow and white mug in
the microwave and close it.

Figure 17: Visualizations of SP-VLA on the remaining 4 LIBERO-Long tasks.
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