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Abstract. Knowledge graphs represent an unparalleled opportunity for
machine learning, given their ability to provide meaningful context to the
data through semantic representations. However, general-purpose knowl-
edge graphs may describe entities from multiple perspectives, with some
being irrelevant to the learning task. Despite the recent advances in se-
mantic representations such as knowledge graph embeddings, existing
methods are unsuited to tailoring semantic representations to a specific
learning target that is not encoded in the knowledge graph.
We present evoKGsim+, a framework that can evolve similarity-based
semantic representations for learning relations between knowledge graph
entity pairs, which are not encoded in the graph. It employs genetic pro-
gramming, where the evolutionary process is guided by a fitness function
that measures the quality of relation prediction. The framework combines
several taxonomic and embedding similarity measures and provides sev-
eral baseline evaluation approaches that emulate domain expert feature
selection and optimal parameter setting.

1 Introduction

Knowledge graphs (KGs) have been explored as providers of features and back-
ground knowledge in a wide variety of machine learning (ML) application sce-
narios [8]. One of these is predicting relations between KG entities that are not
encoded in the KG, a problem cast as a classification task that takes as in-
put a KG and a set of KG entity pairs. In the biomedical domain, ontologies are
commonly employed to describe biological entities through semantic annotation.
Tasks such as predicting protein-protein interactions using the Gene Ontology
(GO) [12] or the mining of gene-disease associations on the Human Phenotype
Ontology (HPO) [1] can be framed in this scenario.

In these cases, when we have a general-purpose KG (e.g., a KG that includes
proteins and described their functions) that we aim to explore in the context of an
independent and specific learning task (e.g., predicting if two proteins interact),
it may very well be the case that large portions of the KG are irrelevant for
the task. While in node/link/type prediction, instance representations such as
embeddings [10] may be trained within the context of a particular learning task,
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in our scenario, no such tuning is possible since the classification targets are not
a part of the KG. This problem is exacerbated in complex domains, such as the
biomedical, where KGs represent multiple views (or semantic aspects) over the
underlying data, some of which may be less relevant to train the model towards a
specific target. For instance, the prediction of protein-protein interactions using
the GO is more accurate if only a portion of the ontology is used [9] (in this
case, the one concerning biological processes).

This brings us to the challenge of tailoring the semantic representation (SR)
of the KG entities to an independent and specific classification task when the
classification target is not encoded in the KG. A KG-based SR is a set of fea-
tures describing a KG entity obtained by processing the KG and bridge the gap
between KGs and the typical vector-based representations of entities used by
most ML techniques. Most state-of-the-art KG-based numeric representations
are based on graph embeddings [10], which produce feature vector (proposi-
tional) representations of the KG entities. Taxonomic semantic similarity [4]
can also be used as an SR by comparing entities based on the properties they
share and their taxonomic relationships. Both types of approaches are, in fact,
methods for feature generation, but they also result in feature selection by the
heuristics and approaches they employ in creating the representations.

To address the specific goal of predicting relations between KG entities when
those relations are not encoded in the KG, we postulate that similarity between
the entities is a suitable frame for SR to be used by downstream supervised
learning approaches. Then, the problem is how to tailor a given semantic simi-
larity representation to the classification task, i.e., classifying a pair of entities
as related or not. Previously, we presented evoKGsim [9], a methodology that
learns suitable semantic similarity-based SRs of data objects extracted from KGs
optimized for supervised learning. This tailoring is achieved by evolving a suit-
able combination of semantic aspects using Genetic Programming (GP) using
taxonomy-based semantic similarity measures.

In this work, we present an extension of evoKGsim into a full framework,
evoKGsim+, that encompasses 10 KG-based similarity measures based on a
selection of representative state-of-the-art KG embeddings and taxonomic simi-
larity approaches. We evaluate the framework in its full extension in benchmark
datasets devoted to protein-protein interaction (PPI) prediction.

2 Methodology

evoKGsim+ targets classification tasks that take as input a KG and a set of
KG individual pairs for which we wish to learn a relation that is outside the
scope of the KG. The models are trained using external information about the
classification targets for each pair. The evoKGsim+ framework is able to: (1)
compute semantic similarity-based representations of KG individuals according
to different semantic aspects and using different similarity approaches; (2) em-
ploy GP to learn a suitable representation targeted to a supervised learning task
by combining the different semantic aspects; and (3) evaluate the outcome of
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(2) against a set of static representations emulating experts. An overview of the
framework is shown in Figure 1.

Fig. 1. Overview of the evoKGsim+ framework.

The first step of the framework is to represent each instance (i.e., a pair
of KG entities) according to KG-based similarities computed for each semantic
aspect. Currently, evoKGsim+ takes as semantic aspects the subgraphs rooted
in the classes at a distance of one from the root class of the T-box in the KG, but
this parameter can be easily adjusted. The second step is to employ GP to learn
a suitable combination of the different aspect-based similarities, using a set of
predefined operators, to address a given ML task. The last step is to evaluate the
predictions made on the test set, and comparing them against optimized static
representations that represent expert feature selection and parameter tuning.

This framework is independent of the specific implementation of KG-based
similarity and the GP parameters employed to evolve the representations. Cur-
rently, evoKGsim+ supports 10 different KG-based similarity measures: 6 tax-
onomic similarity measures, derived by combining one of two information con-
tent approaches (ICSeco and ICResnik) with one of three set similarity measures
(ResnikMax, ResnikBMA, and SimGIC [6]); 4 measures based on cosine similar-
ity over embeddings generated from TransE[2], distMult[11], RDF2Vec [7] and
Owl2Vec [5].

3 Evaluation

PPI prediction was chosen as our evaluation domain for the following reasons:
(1) it is backed by a large ontology with multiple semantic aspects, the GO; (2)
there are gold-standard datasets [3]; (3) it is well known that the GO aspects
biological process (BP) and cellular component (CC) describe properties that
are stronger indicators for PPI than the molecular function aspect (MF) [9],
which provides an ideal test bed for the need of adapting the SR to the learning
task.
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Table 1 presents the results obtained using different similarity-based SRs.
As baselines, we have used five static SRs (the BP, CC and MF single aspects,
and the average and maximum of the single aspect similarities). The static SRs
are based on a simple threshold-based classifier, where a similarity score for a
protein pair above the threshold predicts a positive interaction. For evaluating
the quality of a predicted classification, the weighted average F-measure (WAF)
was used for stratified 10-fold cross-validation.

Table 1. Median of WAF for 10-fold cross-validation.

Similarity Measure
Static SRs

evoKGsim
BP CC MF Avg Max

ResnikMax + ICSeco 0.760 0.713 0.646 0.749 0.743 0.765
ResnikMax + ICResnik 0.750 0.717 0.653 0.766 0.774 0.776
ResnikBMA + ICSeco 0.753 0.715 0.643 0.771 0.744 0.777
ResnikBMA + ICResnik 0.753 0.714 0.648 0.777 0.772 0.782
SimGIC + ICSeco 0.736 0.682 0.642 0.729 0.701 0.746
SimGIC + ICResnik 0.739 0.704 0.651 0.750 0.734 0.758
TransE 0.501 0.534 0.502 0.519 0.521 0.521
distMult 0.704 0.599 0.498 0.670 0.668 0.712
RDF2Vec 0.675 0.654 0.631 0.684 0.668 0.685
Owl2vec 0.678 0.662 0.621 0.693 0.686 0.693

evoKGsim with taxonomic similarity always achieves the best performance
compared to the static SRs. Regarding the graph embedding approaches, TransE
has performed worse than the other embedding methods. These differences are
not unexpected since we are interested in learning which aspects of a KG are
more relevant to the learning task, and most of the information to be processed
is represented in the ontology portion of the KG, where taxonomic relations play
an important role. Therefore, translational distance approaches that emphasize
local neighbourhoods are less suitable than semantic matching methods, like
disMult, or methods that capture longer-distance relations, such as path-based
approaches (RDF2Vec and Owl2Vec).

When comparing the two SRs, evoKGsim with taxonomic similarity achieves
a better performance than evoKGsim with embedding similarity. Although em-
beddings consider all types of relations, we hypothesize that taxonomic similarity
can take into account class specificity that may give it the advantage over em-
bedding similarity in more accurately estimating similarity.

4 Conclusion

We have developed a framework, evoKGsim+, that tailors KG-based similar-
ity representations for supervised learning of relations between KG instances
when the classification target is not encoded in the KG. We have shown that
evoKGsim+ can generate tailored SRs that improve classification performance
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over static SRs both using embedding similarity and taxonomic semantic similar-
ity. This framework can be readily generalized to other applications and domains,
where KG-based similarity is a suitable instance representation, such as predic-
tion of drug-target interactions and gene-disease association, KG link prediction
or recommendations.
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