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Abstract

We present DrJAX, a JAX-based library designed
to support large-scale distributed and parallel ma-
chine learning algorithms that use MapReduce-
style operations. DrJAX leverages JAX’s shard-
ing mechanisms to enable native targeting of
TPUs and state-of-the-art JAX runtimes, includ-
ing Pathways (Barham et al., 2022). DrJAX em-
beds building blocks for MapReduce computa-
tions as primitives in JAX. This enables three
key benefits. First, DrJAX computations can be
translated directly to XLA HLO, enabling flexible
integration with a wide array of ML training plat-
forms. Second, DrJAX computations are fully
differentiable. Last, DrJAX computations can
be interpreted out to existing batch-processing
compute systems, including traditional MapRe-
duce systems like Apache Beam and cross-device
compute systems like those powering federated
learning applications. We show that Dr JAX pro-
vides an easily programmable, performant, and
scalable framework for parallelized algorithm de-
velopment.

1. Introduction

The ability to scale abstractly written compute-intensive
programs across large distributed compute environments
is a key factor in the success of modern machine learning
(ML). This is crucial for ML computations involving large
language models, which are often too large to fit on a single
compute node. Another key facet of modern ML software
is the general ease with which computations can be written
and optimized. Techniques such as automatic differentia-
tion (AD) and just-in-time (JIT) compilation have enabled
frameworks such as PyTorch (Paszke et al., 2019), Tensor-
Flow (Abadi et al., 2016), and JAX (Bradbury et al., 2018)
to scale to larger and more complex ML workloads.
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These software frameworks generally focus on enabling
parallelism for their most common use case: computation
of a function’s derivative across a batch of inputs. This
computation is typically parallelized in two well-defined
manners: across the batch dimension (i.e. data parallelism),
and within the computation of the derivative at a single
example (i.e. model parallelism). Data parallelism is ex-
tremely common across ML frameworks. Model parallelism
is more complex, but has seen an explosion of progress in
recent years (Gholami et al., 2018; Shazeer et al., 2018; Jia
et al., 2019; Lepikhin et al., 2020; Xu et al., 2021) which has
enabled the training and deployment of significantly larger
models than previously possible (e.g. foundation models).

However, many sub-fields of ML do not fit neatly into this
description, and instead employ parallelism over higher-
level partitioned structures of data: in meta-learning (where
data is partitioned across tasks) (Finn et al., 2017); in group-
level differential privacy (where data is partitioned over
discrete groups whose individual contributions to algorithm
outputs are information-theoretically bounded) (Dwork,
2010); in model merging (Li et al., 2022) or “model soup”
algorithms (where data, in the form of hyperparameters, is
partitioned across model copies) (Li et al., 2022; Wortsman
et al., 2022); in federated learning (where data is partitioned
across clients who avoid directly sharing data) (McMahan
et al., 2017); and in optimization with intermittent com-
munication (where data is partitioned across model repli-
cas) (Mangasarian and Solodov, 1993; Zinkevich et al.,
2010; Zhang et al., 2016). The algorithms studied in these
nominally different areas share many commonalities. An es-
pecially common factor is the use of the MapReduce (Dean
and Ghemawat, 2004) programming paradigm, mapping
parallel model training steps over partitioned data before
invoking a reduction function. Data parallelism is a special
case: we simply map and reduce over batches of data. In
other applications, MapReduce is applied to coarser groups
of data (e.g. multiple batches), which may additionally en-
code semantic structure of the underlying data.

While ML frameworks provide scalability, flexibility, and
efficiency for data- and model-parallelism, an algorithm
author who wishes to program over partitioned data in a par-
allel manner finds themselves in an awkward position. For
example, frameworks for federated learning (e.g. Ingerman
and Ostrowski (2019); Ziller et al. (2021); Ro et al. (2021);
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He et al. (2020)) offer parallelism over clients, but either
do not support other ML use cases discussed above, or do
not focus on large-scale datacenter performance. Underly-
ing ML frameworks often offer powerful parallelism prim-
itives (e.g. jax.shard._map), but these often assume (as
is the case for jax.shard_map) that the specification of
all model shardings and physical resources is known to the
code author (Shazeer et al., 2018). By contrast, in DrJAX
we wish to abstract out MapReduce-style computations, al-
lowing them to be defined in terms of model forwards and
backwards passes (for example) that are already sharded.
Finally, we note that bridging research and production of-
ten requires translating computations (e.g. from JAX) to
production platforms.

An ideal authoring surface for ML algorithms using MapRe-
duce operations provides several features simultaneously:
performant and scalable datacenter performance; the ability
to decouple logical partitioning of data (number of groups
of data to parallelize over) from physical compute (number
of compute nodes); easy and extensible algorithm expres-
sion; JIT compilation and AD; and the capacity to translate
algorithms to alternative infrastructure.

Contributions. We present DrJAX (Differentiable
MapReduce JAX) a software library that brings the benefits
of modern large-scale machine learning software — sharding,
easy-to-use JIT compilation, and AD — to MapReduce-style
algorithms operating on partitioned data. DrJAX embeds
a simple mapping and reduction programming model, by
decomposing computations into differentiable building
blocks (Section 2). We fully implement this programming
model in JAX by embedding these building blocks via
JAX’s Primitive mechanism (Section 3). This allows
DrJAX to use powerful features like sharding and JIT
compilation to XLA. For example, DrJAX can shard
computations over data partitions, model, and within-
data partitions simultaneously across physical and logical
meshes of devices. Because DrJAX is essentially a careful
programming of parallel algorithms in XLA, DrJAX can
leverage advances in distributed datacenter training like
GSPMD (Xu et al., 2021) and Pathways (Barham et al.,
2022). We showcase the scaling and runtime benefits of
DrJAX across a suite of large language model training
experiments (Section 4).

JAX’s Primitive mechanism also enables forward- and
reverse-mode differentiation which DrJAX leverages to pro-
vide full differentiability of its MapReduce-style programs.
By implementing the AD framework of Rush et al. (2023),
we ensure that the derivative of a DrJAX program is simply
another DrJAX program. This allows DrJAX and its AD
system to be interpreted out to other platforms for parallel
machine learning, including systems with strong guarantees
about data locality and privacy (Section 5).

Related work. DrJAX draws inspiration from three main
areas of software. First, DrJAX directly utilizes the pro-
gramming model of MapReduce (Dean and Ghemawat,
2004) and its evolution in Apache Beam (Foundation), high-
lighting the power of focusing on replications, mappings
and reductions on parallelized collections of data.

Second, much of DrJAX’s treatment of machine learning
and automatic differentiation is influenced by modern ML
frameworks such as PyTorch (Paszke et al., 2019) and Ten-
sorFlow (Abadi et al., 2016). DrJAX’s design is directly
based on the functional-first nature of JAX (Bradbury et al.,
2018). Several libraries implemented in JAX leverage sim-
ilar (though not identical) mechanisms for ensuring scal-
ability, notably the Praxis library for neural network lay-
ers (Google).

Finally, DrJAX is inspired by frameworks for federated
learning. Without intending to be exhaustive, examples
of such frameworks include: PySyft (Ziller et al., 2021),
FedJAX (Ro et al., 2021), FedScale (Lai et al., 2022),
FedML (He et al., 2020), Flower (Beutel et al., 2020),
FLUTE (Dimitriadis et al., 2022), FL_Pytorch (Burlachenko
et al., 2021), and FATE (Liu et al., 2021). In particular,
DrJAX’s programming model was significantly influenced
by TensorFlow Federated (Ingerman and Ostrowski, 2019)
and its federated computations (Charles et al., 2022). More-
over, DrJAX uses the AD framework for federated com-
putations proposed by Rush et al. (2023) to extend AD to
MapReduce computations more broadly.

2. System Design

DrJAX is designed with two key ideas in mind. First, the
types of parallel computing for machine learning discussed
above can all be viewed as applications of MapReduce-style
computations that use functions like model forward and
backwards passes as black-box subroutines. Second, we can
differentiate through MapReduce computations by using
the AD techniques proposed by Rush et al. (2023). While
their framework, federated AD, was motivated by federated
learning, it can be directly adapted into a mechanism to
apply AD to MapReduce computations. By combining stan-
dard AD techniques (e.g. computation graphs (Bauer, 1974))
with proper accounting of how data moves between logical
partitions, we can express the derivative of a MapReduce
computation as another MapReduce computation.

DrJAX operates on partitioned and non-partitioned values.
A partition represents the data that we would like to perform
MapReduce-style computations over. A non-partitioned
value conceptually represents a singleton. We denote a
non-partitioned value by v, and a partitioned value as v =
[v1,...,v,], where all v; are elements of the same space.
Note that the value of n depends on the partition, but the
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ordering within the partition is arbitrary.

The inputs and outputs of DrJAX computations can include
non-partitioned and partitioned values. Unlike classical
MapReduce treatments, we do not assume that a compu-
tation will use a reducer. We consider a specific class of
computations that can be built from the following computa-
tions, which we refer to as building blocks.

1. broadcast: Creates a partitioned value in which all
groups have the same value (ie. broadcast(v) =
[v,0,...,0]).

2. map-fn: Applies a function f across a partition (ie.

map-fn(f,v) = [f(v1), f(v2), -, fvn))).

3. reduce_sum: Sums over a partitioned value, return-
ing a non-partitioned value (ie. reduce_sum(v) =

ZZL:I V;).

This class is sufficiently expressive to include many par-
allel algorithms of interest, including parallel model-
agnostic meta learning (MAML) (Finn et al., 2017), parallel
and local SGD (Mangasarian and Solodov, 1993; Zinke-
vich et al., 2010), federated averaging (FedAvg) (McMa-
han et al., 2017), Branch-Train-Merge (Li et al., 2022),
DiLoCo (Douillard et al., 2023), and many others.

For our purposes, the key fact about these computations is
that they are closed under MapReduce AD. In particular,
let f : x — y where x is any collection of partitioned and
non-partitioned inputs, and y is non-partitioned. If f can be
composed from the building blocks above, then Rush et al.
(2023) show that the function Vf : x — dy/dx can also be
expressed in terms of the building blocks above. Moreover,
this can be done in a programmatic fashion. We will refer
to this as MapReduce AD in the sequel.

This leads to our key observation: If we embed the building
blocks above into JAX in a suitable manner, then we can
(1) lower these computations to data structures accepted
by performant data center runtimes, (2) implement MapRe-
duce AD by appropriately delegating to JAX’s AD, and (3)
preserve partition information to enable translation to other
production ML systems. DrJAX does just this, embedding
the building blocks into JAX in a JIT-compatible manner.
DrJAX also provides implementations of Jacobian-vector
and vector-Jacobian products of the building blocks. This al-
lows DrJAX to perform forward- and reverse-mode AD on
MapReduce computations by delegating to JAX’s forward-
and reverse-mode AD.

Authoring surface. DrJAX code is almost entirely JAX
code, with two general exceptions. First, there are the build-
ing blocks above. Second, Dr JAX code must specify how
many groups are in a partition during the invocation of the

computation. To see this, consider the code in Snippet 1,
which simply broadcasts a value across a partition, doubles
the value in each group, and takes a sum over the partition.

import drjax

def broadcast_double_and_sum(x) :
y = drjax.broadcast (x)
z = drjax.map_f£fn (lambda a: 2*a, y)
return drjax.reduce_sum(z)

Snippet 1. An incomplete Dr JAX program, which broadcasts x
to a partition, doubles the value held by each group, and
then sums over the partition. The program must know the
partition size to correctly compute the desired result.

To compute the result, DrJAX needs to know the size of
the partition. The user has to give this information to the
DrJAX programs. For example, Snippet 2 modifies Snippet
1 to include explicit information about the partition size (ie.
the number of groups in the partition).

@drjax.program(partition_size=3)
def broadcast_double_and_sum(x) :
y = drjax.broadcast (x)
z = drjax.map_fn(lambda a: 2xa, y)
return drjax.reduce_sum(z)

Snippet 2. A basic DrJAX program, with a decorator
specifying the partition size. With this information,
DrJAX can determine that the program should return 6.

3. Implementation

We now discuss DrJAX’s implementation in JAX, in par-
ticular how it represents partitioned values and implements
computations on them. We also discuss how we ensure
DrJAX computations are effectively sharded across data
center runtimes, and how DrJAX can implement MapRe-
duce AD. While we focus on the programming model above,
we note DrJAX’s lower-level implementation can be used
for much more general distributed and even hierarchical
processing and sharding patterns.

Paritioned values. DrJAX represents both partitioned
values as arrays with an extra leading dimension indicating
the number of groups associated to them. Compared to par-
titioned values, non-partitioned values have an extra leading
axis of cardinality equal to the number of groups. Given
an (d + 1)-dimensional array x, the i-th component x[i, ...]
is the d-dimensional array held by the i-th group. Figure 1
gives an example of this representation.

All JAX values are essentially represented as structures
whose leaf nodes are arrays (referred to as pytrees in JAX),
which DrJAX carries forward. A partitioned structure is a
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structure (ie. a pytree) of partitioned arrays. For example,
Figure 2 gives an example of a partitioned structure with
multiple leaf arrays.

Non-partitioned Partitioned

array array Partitioned Structure

Shape: [4] @ I
s s

Shape: [3, 4] Shape: [3,4]  Shape: (3] Shape: 3,2, 2]

Figure 2. A partitioned struc-
ture in DrJAX with 3 groups.
Each leaf is a partitioned array.

Figure 1. DrJAX’s representa-
tion of a non-partitioned array
(left) and an array partitioned
over 3 groups (right).

DrJAX computations. Since partitioned values are repre-
sented as JAX arrays, DrJAX computations must operate
on JAX arrays. Other goals of DrJAX, like scalability, data
center performance, and enabling differentiability, inform
how DrJAX operates on arrays. We address these simulta-
neously by leveraging JAX’s Primitive mechanism.

Briefly, DrJAX defines the building blocks above at
decorator-installation time. These building blocks are pro-
cessed symbolically by functional transformations in JAX.
DrJAX registers the behavior of these operators under the
action of these transformations, providing JAX with the nec-
essary information to (1) lower DrJAX-defined functions
wholesale to XLA HLO, (2) shard intermediate tensors in
a maximally efficient manner, and (3) transform JAX func-
tions containing DrJAX code under operations including
JIT compilation and differentiation.

Given the representation of partitioned values above, we
can implement the building blocks via straightforward array
operations:

1. broadcast: Tile an array over its leading axis.

2. map-fn: Apply a function pointwise over an array’s
leading axis.

3. reduce_sum: Sum an array over its leading axis.

We extend these to partitioned structures by applying them
leaf-wise. Dr JAX registers these implementations with JAX
lowering logic. This ensures that DrJAX code is entirely
replaced by JAX code by the time JAX dispatches logic to
an XLA runtime. Other building blocks can be added to
DrJAX by registering primitives in a similar fashion, or by
defining them in terms of the building blocks above. For
example, DrJAX provides a reduce_mean symbol which
takes an average across groups in a partitioned array, which
lowers to two calls to reduce_sum.

Non-partitioned arrays
] efe]n] BERn
lbr‘oadcast T reduce_sum

1 2 3 4 2 4 6 8

1 2 3 4 —_— 3 6 9 12

map_fn

1 2 3 4 5 |10 | 15 | 20

Partitioned arrays

Figure 3. A high-level depiction of DrJAX building blocks operat-
ing on and transforming non-partitioned and partitioned arrays.

Sharding DrJAX computations. By registering the prim-
itives above, we ensure that compilers like GSPMD (Xu
et al., 2021) can shard DrJAX computations across worker
nodes. Ceritically, and distinct from paradigms such as
jax.pmap, DrJAX decouples partition size from sharding
computations. A partition of size n is purely logical, and
can be sharded across any number of m workers as long as
m|n. We want to ensure that, no matter how many workers
we shard over, Dr JAX computations are as efficient as pos-
sible. To do so, we only need to focus on how the building
blocks above are sharded by compilers. Once this is done,
we are free to compose with model- and data-parallelism
provided by various JAX libraries.

While some DrJAX building blocks are trivially paralleliz-
able (e.g. map_fn), compilers may not be able to detect this
and generate efficient code. As noted by Xu et al. (2021)
and Lepikhin et al. (2020), internal sharding annotations can
dramatically affect the performance of a compiler targeting
distributed execution. DrJAX uses static and dynamic shard-
ing constraints to ensure that after compilation, the resulting
computation will run efficiently in the data center. As we
will see in Section 4, without these annotations, compilers
like GSPMD do not optimally shard DrJAX computations,
especially as the partition size increases.

Derivatives of DrJAX computations. The last benefit of
embedding building blocks as JAX primitives is that it gives
us a straightforward way to take derivatives of DrJAX com-
putations using AD. We refer to this as MapReduce AD. To
do so, we only need to define the action of vector-Jacobian
products (VJPs) and Jacobian-vector products (JVPs) on
the DrJAX primitives. Rush et al. (2023) discuss how to
compute these products, and show that their computation
does not require any new building blocks. That is, the JVPs
and VJPs of these primitives can be expressed in terms of
the same set of primitives. With the JVPs and VJPs, we can
now entirely rely on JAX’s AD to do forward- and reverse-
mode AD on computations involving these primitives. For
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more details, see Section 5.

4. Scalability and Efficiency

We now present numerical evidence of the scalability and
efficiency of DrJAX, by testing DrJAX in a distributed
training setting. We perform multiple rounds of local
SGD (Zhang et al., 2016) on transformer language mod-
els with 350 million (350M), 1 billion (1B), and 8 billion
(8B) parameters. We use a causal language modeling loss
and a sequence length of 512. In every round, we parallelize
4 local SGD steps, each with batch size 8, across some num-
ber of data groups from a partition before synchronization.
We use a partitioned version of CCNews dataset, where
news articles are partitioned according to their base URL
domain. We use Dataset Grouper (Charles et al., 2023) to
iterate over groups of data efficiently. In each round, we
sample some number of data groups, which form a partition
of some size. We vary the partition size proportionally to
the number of workers used in the computation. To describe
the scale of the experiments, Table 1 contains the maximum
number of tokens processed and model parameters updated
per round for each model.

For all experiments, we shard the training computation over
some number of TPUv2s. The total number of TPU chips,
m, is proportional to the partition size, n. For 350M, 1B,
and 8B models we use n, 4n, and 8n chips in total, re-
spectively. This means that if we double the partition size,
we also double the number of TPU chips used. We fully
shard the computations across the workers, and additionally
do model parallelism for the 1B and 8B models. For all
experiments, our DrJAX computations are first compiled
using GSPMD (Xu et al., 2021) and then delegated to the
Pathways runtime (Barham et al., 2022).

Weak scaling. The weak scaling of a system refers to
how its compute time changes as the workload and com-
pute resources scale simultaneously. Generally, modern ML
systems attempt to obtain near-constant weak scaling per-
formance.! For DrJaX, we fix the model size and number
of local SGD steps computed per data group in the par-
tition, and vary the partition size and number of workers
proportionally in order to vary the workload size. As dis-
cussed above, we scale the number of TPU chips used in
our simulations linearly with respect to the partition size.

Figure 4 shows how training time of DrJAX-based local
SGD scales as the partition size and number of TPU chips
increase, across a range of model sizes. DrJAX-exhibits
near-constant runtime for a fixed model size, even up to
a pool of 128 or 512 workers. This is highly non-trivial.

!Constant performance is generally impossible due to overhead
such as synchronization costs.
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Figure 4. Total training time for 100 rounds of local SGD on var-
ious transformer language models sizes, with varying partition
sizes.
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Figure 5. Total training time for 100 rounds of local SGD, with
varying partition sizes. We implement local SGD using DrJAX
and a python for-loop which we JIT compile.

Because local SGD involves parallel model training across
workers, and for multiple steps per worker, the per-round
workload size (in terms of total floating point operations)
is at least as large as 4 x(model size) x (partition size). To
see this, note that in each round, for each group in the data
partition, we update a local model copy 4 times. As shown
in Table 1, the largest workload for each model size involves
updating over 1 trillion model parameters per round.

JIT compilation alone is not enough. ML research often
involves writing custom training loops. A naive implementa-
tion of local SGD, often used for research in distributed train-
ing, is simply a double for loop that iterates over workers
in the pool, and over the batches held by each worker. The
outer loop here has no data dependency, meaning that the
values returned by iterations of this loop are not processed
as inputs to the next iteration. One might therefore imagine
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Table 1. Maximum partition size, partition size, number of workers, number of tokens processed, and total floating point operations
(FLOPs) when training with local SGD, for each model size. For simplicity, we only present FLOPs associated with the forward pass,
using the approximation that a forward pass on a model of size d uses d FLOPs.

Model Size Partition Size Num Workers Tokens per Round FLOPs per Round
350M 2048 2048 3.355 x 107 2.293 x 10'3
1B 512 512 8.389 x 10° 1.638 x 10"
8B 128 128 2.097 x 10° 3.277 x 10'3

that a sufficiently advanced compiler could detect this fact,
and parallelize worker training when possible (e.g. within
resource constraints in the data center environment).

This can be a difficult task for a compiler. To illustrate
this difficulty, we implemented a double for loop in place of
DrJAX-based training (looping over workers, and over each
worker’s data). For both programs, we JIT-compiled the pro-
gram, and provided identical input and output shardings to
GSPMD and the XL A compiler stack. Though this stack is
quite advanced and used to train many of the largest contem-
porary ML models, it does not recover the performance of
DrJAX from this for-loop implementation. Indeed, round
runtime scales linearly with the partition size (and therefore,
the number of workers), as expected, rather than remain-
ing constant, indicating an inability to use the increased
resource scale allocated to the experiment.

GSPMD alone is not enough. A better way to parallelize
across workers than the for-loop approach above is to im-
plement DrJAX’s MapReduce building blocks and use a
compiler like GSPMD (Xu et al., 2021) to do automated
sharding of the program. This leads to the question: Do
we need DrJAX’s internal sharding annotations to obtain
weak scaling behavior, or can GSPMD alone fully and ef-
ficiently parallelize DrJAX computations? Given the rel-
atively simple nature of local SGD’s parallel processing
patterns (heavily parallelized model training with infrequent
synchronization), one might expect that isolating MapRe-
duce building blocks as primitives with specially-designed
sharding annotations is unnecessarily complex.

To test this, we took a Dr JAX-based implementation of local
SGD and removed all of DrJAX’s internal sharding anno-
tations at function-tracing time, denoting this Dr JAX-NS
(DrJAX with no sharding). We then re-ran the simulations
in Figure 4. The results in Figure 6 show that at present,
these explicit sharding annotations play a crucial role in
ensuring DrJAX’s weak-scaling behavior. DrJAX-NS com-
putation times increased sublinearly but significantly faster
than DrJAX computation times. Moreover, Dr JAX-NS ex-
hibited memory footprint scaling issues. We found that for
sufficiently large model or worker pool sizes, Dr JAX-NS
eventually ran out of high-bandwidth memory. In particular,
this occurred for the 1B model with 512 workers and for the

8B model with all tested numbers of workers; that is, at 2
workers and beyond.
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Figure 6. Total training time for 100 rounds of local SGD for the
1B model, with varying partition sizes. We implement local SGD
using DrJAX with and without (DrJAX-NS) DrJAX’s sharding
annotations. The red X represents the point at which the Dr JAX-
NS could not be sharded without triggering out of memory errors.

5. Interpreting DrJAX to Other Platforms

While data center performance is the primary goal of
DrJAX, we wish to preserve the optionality to translate
DrJAX computations into artifacts interpretable by other
systems, such as federated learning systems (Bonawitz
et al., 2019; Paulik et al., 2021; Huba et al., 2022). For
example, if reduce_sum is only captured as a jnp . sum,
then it may be difficult to tell whether this sum is intended
to be within a partition group, or across groups in a partition.
Below, we discuss how DrJAX’s implementation enables
computing program representations that can be automati-
cally translated to other platforms.

Preserving partition information. Recall from above
that we implement MapReduce building blocks as JAX
primitives, and build DrJAX computations out of these
primitives. This has a key benefit when interpreting out
to other systems: the ability to preserve information about
how DrJAX building blocks are applied to partitioned data,
which can inform things like cross-node communication
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and computation boundaries within a production system.

JAX’s Primitive mechanism allows users to inject new
symbols into JAX itself, defining how these symbols behave
under JAX’s functional transformations like jax.vmap
and jax.grad. These primitives are preserved in JAX’s
intermediate data structure, the jaxpr, which is usually
later lowered into XLLA HLO. By using a custom interpreter,
we can instead generate and consume jaxprs. This cus-
tom interpreter can use special behavior when it encounters
the DrJAX-defined symbols injected via the Primitive
mechanism. This preserves information about data partition-
ing and operations within and across partitions, allowing us
to translate jaxprs into computations that can be run by
other platforms.

An example jaxpr is illustrative. In Snippet 3, we define a
DrJAX program for computing the MAML loss from Finn
et al. (2017). This is the loss of a model on some data after
some number of steps of (stochastic) gradient descent. For
our purposes, we do a single gradient descent step before
evaluating the loss, using some user-specified learning rate.
In the nomenclature of meta-learning, the data is partitioned
across some number of tasks, and we assume we have access
to some loss function 1oss(x,y) where x is the model, and
vy is the task.

def maml_loss (model, lr, task):
g = jax.grad(loss) (model, task)
model = model - 1lr * g
return loss (model, task)

Snippet 3. MAML loss

This loss is easily parallelized across workers using DrJAX,
as in Snippet 4. The algorithm is straightforward: The
model and learning rate are broadcast to every task, the
MAML loss is computed using the model, learning rate, and
task, and the resulting loss values are averaged.

@drjax.program(partition_size=3)
def parallel_maml_loss (model, 1r,
model = drjax.broadcast (model)

lr = drjax.broadcast (1lr)

losses = drjax.map_£n (
maml_loss, (model, 1lr, tasks))

return drjax.reduce_mean (client_losses)

tasks) :

Snippet 4. Computing the average meta-learning loss over a
data partition of size 3 via DrJAX.

To obtain a jaxpr representing this processing pattern,
we provide the concrete shape and type of arguments. For
brevity, we assume the model and tasks are scalars, and the
loss function is the square loss (ie. loss(z,y) = (x —y)?).

Given this information, JAX can generate a jaxpr rep-
resenting Snippet 4. The result is in Snippet 5. The
key takeaway is that this jaxpr preserves the DrJAX-
defined primitives representing cross-machine communi-
cation, broadcast and reduce_mean, both of which
are primitives registered by DrJAX in JAX. We can trace
through the arguments in the jaxpr to see that the com-
putation operates by (1) broadcasting values (the model
and learning rate) across the partition, (2) calculating 1oss
using the broadcast values, (3) taking a mean over the parti-
tion.

{ lambda ; a:f32[] b:£f32[] c:£32[3]. let

d:£32[1] = broadcast a
e:f32[1] = broadcast b
f:£32[1] = sub d e

_:f32[1] = integer pow[y=2] f
g:£f32[1] = integer_pow[y=1] f
h:£f32[1] = mul 2.0 g

1:£32[1] = mul 1.0 h

J:£32[1] = mul c i

k:£32[1] = sub d j

1:£32[1] = sub k e

m:£32[1] = integer_pow[y=2] 1
n:f£f32[] = reduce_mean m

Snippet 5. jaxpr generated for parallel maml_loss.

Interpreting the jaxpr to a production systems, especially
distributed systems, such as TensorFlow Federated (Inger-
man and Ostrowski, 2019) is now straightforward: all cross-
machine communication is explicit, and the processing in-
between communication is entirely local and can be ex-
tracted into standalone functions executed locally by com-
pute nodes in the system.

Integrating MapReduce AD. As discussed in Section 2,
the Primitive mechanism allows DrJAX to to specify
the behavior of building blocks under JAX’s functional trans-
formations, including computing forward- and reverse-mode
Jacobians (jax . jacfwdand jax. jacrev). This allows
DrJAX to apply AD to MapReduce computations via the
forward- and reverse-mode algorithms presented in Rush
et al. (2023). For example, forward- and reverse-mode Jaco-
bians of broadcast can be computed via broadcast
and reduce_sum, respectively. DrJAX can therefore im-
plement MapReduce AD without additional primitives. This
means that the jaxpr of DrJAX computations that use
MapReduce AD will contain JAX’s standard AD symbols,
along with DrJAX’s primitive set, ensuring that computa-
tions using MapReduce AD are still interpretable to other
systems.

For example, Snippet 6 gives the jaxpr of the reverse-
mode gradient of parallel maml_loss) (ie. the deriva-
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tive of the parallel MAML loss computation in Snippet 4).
Again, we see that information about communication in
the system is preserved. The jaxpr contains the prim-
itives broadcast, reduce_mean, and reduce_sum,
and which just as above, can be used by a custom inter-
preter to translate the jaxpr into a production system.

{ lambda ; a:f32[] b:£f32[] c:£f32[3]. let
d:£f32[1] = broadcast a
e:f32[1] = broadcast b
f:£32[1] = sub d e
_:f32[1] = integer pow[y=2] £
g:£32[1] = integer pow[y=1] f
_:f32[1] = mul 2.0 g
h:£32[1] = integer pow[y=1] f
1:£32[1] = integer_pow[y=0] £
3:£32[1] = mul 1.0 i
k:£f32[1] = mul 2.0 h
1:£32[1] = mul 1.0 k
m:f32[1] = mul c 1
n:f32[1] = sub d m
0:£32[1] = sub n e
p:£32[1] = integer_pow|[y=2] o
g:£32[1] = integer pow[y=1l] o
r:£32[1] = mul 2.0 g
_:f32[] = reduce_mean p
s:f32[1] = broadcast 1.0
t:f32[1] = div s 1.0
u:f32[1] = mul t r
v:£32[1] = neg u
w:f32[1] = mul c v
x:£32[1] = mul 1.0 w
y:£32[1] = mul 2.0 x
z:£32[1] = mul y j
ba:£f32[1] = add_any u z
bb:£32[] = reduce_sum ba

in (bb,) }

Snippet 6. jaxpr generated for
jax.grad(parallel maml_loss).

6. Discussion

Why MapReduce AD? While features like scalability
and efficiency are self-explanatory, the reader may be in-
terested in why we wish to implement MapReduce AD,
especially given the care required to interpret to produc-
tion systems. In short, MapReduce AD makes expressing
efficient algorithms easier (Rush et al., 2023). By way of
analogy, AD has made the development of sophisticated
neural network architectures significantly easier. Libraries
can define the conceptually simpler forward-pass, and rely
on AD to perform backpropagation. The result is often
faster and less error-prone than hand-implemented gradient
computations (Baydin et al., 2018).

Algorithms that operate on partitioned data can see
similar benefits. For example, Snippet 4 contains a

DrJAX program used to compute the average MAML
loss over tasks, as in meta-learning. By simply calling
jax.grad(parallel maml_loss), we immediately
get a DrJAX program that computes the average MAML
gradient over tasks. Using this, we can easily write an al-
gorithm that efficiently parallelizes the MAML algorithm.
Snippet 7 depicts this, defining implementing a parallel
MAML algorithm by simply pairing jax.grad with an
SGD update step.

@drjax.program(partition_size=3)

def parallel _maml_step (model, lr, tasks):
g = jax.grad(parallel_maml_loss) (model,
lr, tasks)
return model - 1lr * g

Snippet 7. Implementing Parallel MAML via MapReduce AD.

Self-tuning algorithms. Another potential use case for
MapReduce AD is creating self-tuning algorithms, which
use AD to optimize algorithmic hyperparameters (e.g. hy-
pergradient descent). By using MapReduce AD, we can
automatically adjust hyperparameters that govern underly-
ing optimization algorithms, but also adjust the MapReduce
operations themselves. For example, Rush et al. (2023)
show that the weights governing a weighted mean-based re-
duction can be learned in tandem with performing federated
learning. Similarly, Wang et al. (2023) derive formulas for
hypergradient descent on federated learning algorithms, but
this process can be slow, error-prone, and algorithm-specific.
By contrast, Rush et al. (2023) use an AD system (that in-
spired MapReduce AD, as we discuss in Section 3)) to do
the same, without needing to derive algorithm-specific rules.
More generally, MapReduce AD opens the door to a wide
variety of self-tuning distributed and parallel algorithms.

Conclusion. By pairing differentiable MapReduce prim-
itives with an easy-to-use front-end via JAX, performant
building block implementations, and useful sharding infor-
mation, we hope to accelerate research on distributed and
parallel ML. Future work includes (1) generalizations of
DrJAX to non-linear reductions, (2) extensions of DrJAX
to more general types of data, including hierarchically parti-
tioned data, and (3) mature DrJAX interpreters for specific
production systems.
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