
Under review as submission to TMLR

Adaptive Incentive Design for Markov Decision Processes
with Unknown Rewards

Anonymous authors
Paper under double-blind review

Abstract

Incentive design, also known as model design or environment design for Markov decision
processes(MDPs), refers to a class of problems in which a leader can incentivize his follower
by modifying the follower’s reward function, in anticipation that the follower’s optimal pol-
icy in the resulting MDP can be desirable for the leader’s objective. In this work, we propose
gradient-ascent algorithms to compute the leader’s optimal incentive design, despite the lack
of knowledge about the follower’s reward function. First, we formulate the incentive design
problem as a bi-level optimization problem and demonstrate that, by the softmax temporal
consistency between the follower’s policy and value function, the bi-level optimization prob-
lem can be reduced to single-level optimization, for which a gradient-based algorithm can be
developed to optimize the leader’s objective. We establish several key properties of incentive
design in MDPs and prove the convergence of the proposed gradient-based method. Next,
we show that the gradient terms can be estimated from observations of the follower’s best
response policy, enabling the use of a stochastic gradient-ascent algorithm to compute a
locally optimal incentive design without knowing or learning the follower’s reward function.
Finally, we analyze the conditions under which an incentive design remains optimal for two
different rewards which are policy invariant. The effectiveness of the proposed algorithm is
demonstrated using a small probabilistic transition system and a stochastic gridworld.

1 Introduction

Incentive design has been widely explored in economics (Seabright, 1993; Kamenica, 2012; Easley & Ghosh,
2016; Athey & Roberts, 2001) and control systems (Ho et al., 1981; Ho & Teneketzis, 1984; Ratliff & Fiez,
2020), with applications such as demand response (Zhou et al., 2017; Dobakhshari & Gupta, 2016) and
network congestion control (Barrera & Garcia, 2014; Alpcan et al., 2009; Li et al., 2017).

From a game-theoretic perspective, incentive design can be viewed as a non-cooperative Stackelberg
game (Simaan & Cruz Jr, 1973), also called a leader-follower game. In a leader-follower game, the fol-
lower faces a planning problem that can be influenced by an incentive policy designed by the leader. Once
the incentive policy is chosen, the follower will play a best response policy that optimizes the objective of the
planning problem. With the anticipation of the follower’s best response policy, the leader aims to choose the
incentive policy to align the follower’s policy with the objective of the leader, subject to limited resources to
realize the incentive policy.

In this work, we consider a special class of leader-follower games: The follower faces a sequential planning
problem described by a Markov decision process (MDP), whereas the incentive policy of the leader can be
used to provide additional side-payments or rewards to the follower at the cost of the leader’s own payoff.
The leader has complete knowledge of the MDP faced by the follower except the follower’s reward function.
The leader interacts with the follower repeatedly, during which the leader can observe the follower’s decisions
and tunes the incentive policy based on the observations.

Our setting of an unknown follower’s reward is different from most existing settings in incentive design,
which assume that the leader knows the follower’s reward function. Relaxing this assumption is crucial for
many practical applications: In congestion control, a traffic management system cannot know individual

1

Under review as submission to TMLR

drivers’ preferred routes and destinations; in resource allocation for defense in security, a defender in general
has limited or incomplete information about the attacker’s goal or intention. These applications motivate
the following question: Despite the unknown reward of the follower, can we learn an optimal incentive policy
when it is possible to interact with the follower multiple times? To this end, we develop a gradient-based
optimization method that computes a locally optimal incentive policy and prove its convergence. We also
develop a method to compute a unbiased estimate of the gradient, based on the observed trajectories from
the follower’s best-response policy. The gradient estimation leads to an adaptive incentive design method
for the unknown follower’s reward case.

Related work Incentive design where the follower’s planning problem is modeled as an MDP has been
studied under several other names including “reward tempering” (Everitt et al., 2021; Skalse et al., 2022),
“model design” (Chen et al., 2022), “behavior modification” (Savas et al., 2022), and “environment de-
sign” (Zhang & Parkes, 2008; Zhang et al., 2009). Zhang & Parkes (2008) first introduced environment
design in the MDP setting and developed a mixed-integer programming approach to solve the optimal de-
sign assuming the follower best responds to the designed MDP with a deterministic optimal policy. Zhang
et al. (2009) further generalized the environment design and provided a binary-search algorithm with loga-
rithmic convergence for the case when an agent’s model parameters are initially unknown to the designer.

In (Chakraborty et al., 2023), the authors study a similar bi-level optimization formulation to align the
follower’s policy with the leader’s interests, where the leader is allowed to directly choose the parameters
that define the follower’s reward function. In order to compute the gradient of the follower’s policy mapping
with respect to the reward parameters, both the Jacobian and the Hessian of the lower-level objective (i.e., the
follower’s value function) have to be evaluated. In (Chen et al., 2022), the authors propose a gradient-based
algorithm to regulate the follower’s reward function or transition dynamics by selecting a design parameter.
The gradient computation requires evaluating the gradients of the value function, the Q-function, and the
advantage function in the design parameter. They developed a provably convergent single-loop gradient
algorithm to update the MDP policy and the design parameter. The authors mentioned that in the case
when the pre-regulated MDP is unknown, one can learn the transition model and the reward function using
offline data. Our gradient-based optimal incentive design does not require learning the follower’s reward
function— the gradient can be computed using the sampled trajectories under the follower’s best response
policy.

Savas et al. (2019) studied sequential incentive design for a principal agent to optimize the probability of
satisfying a temporal logic formula. Sequential incentive design differs from environment design or model
design as the principle can provide incentive dynamically based on the agent’s current state , rather than
static design, anticipating the agent’s best response. As a result, sequential incentive design can be formulated
as an MDP with an augmented state space. Savas et al. (2022) studied the sequential incentive design in
a setup with a myopic follower who selects the optimal action based on the sum of the current reward
and the provided incentive from the leader. They showed that the sequential incentive design problem is
PSPACE-hard but computing an ϵ-optimal solution can be reformulated as a constrained MDP.

However, all these aforementioned works assume that the follower’s reward function is known to the leader.
Ratliff & Fiez (2020) studied adaptive incentive problem with multiple followers, whose decision-making
processes are unknown to the leader. They consider another class of incentive design where the follower’s
planning problem is a generalized linear model, rather than an MDP with modifiable reward function.
Another related line of work is optimization with decision-dependent distribution (Wood & Dall’Anese,
2023; Drusvyatskiy & Xiao, 2023), where the variability in the follower’s policies is modeled as a distribution
that depends on the leader’s decision variable. However, the optimization method does not adjust the leader’s
decision based on the observation of the follower’s responses.

Our contributions Compared to existing work, our work has the following contributions:

1. The aforementioned work on incentive design in MDPs requires knowing the follower’s reward func-
tion, either by having it as prior knowledge or learning the follower’s reward from observed behaviors.
Our approach does not rely on knowing the follower’s reward function and only assumes that the
follower’s response satisfies softmax temporal consistency (Nachum et al., 2017) and that the fol-

2

Under review as submission to TMLR

lower uses a softmax policy. The resulting incentivizing strategy for the leader is an adaptive law
that chooses the incentivizing decisions based the historical response from the follower.

2. We propose a gradient-based method to compute the optimal incentive for the follower. Leveraging
the softmax parameterization and the property of entropy-regularized optimal policies, we develop
a method to compute the exact gradient of the follower’s policy with respect to the incentive design
variables. The method involves multiple policy evaluations, each for a different “reward” function
(see Section 3). As a main advantage, our method avoids the computationally expensive procedure of
evaluating the Jacobian and the Hessian of the lower-level objective, which are used in hypergradient
descent methods in bi-level optimization . Further, our method leads to adaptive incentive design
using estimated gradients. We formally prove that the proposed method is guaranteed to converge
to a locally optimal incentive policy.

3. Building on the insight from the gradient-based method, we develop an unbiased estimator of the
gradient terms, which enables us to extend the method to the case when the follower’s reward function
is unknown. Our method does not require reward learning, which differs from other adaptive model
design method (Chen et al., 2022).

4. Lastly, we prove that under certain conditions, the optimal incentive design for a follower with
reward function R remains to be optimal for a follower with reward function R†, provided that R
and R† are policy-invariant under reward shaping. This result has two implications: 1) It shows
that our method for the reward-known case is also applicable to the case when the follower’s reward
function is unknown but learned from data, provided that the learned reward R† is policy-invariant
to the true reward R under reward shaping; 2) The leader only needs to design one incentive policy
to a set of followers whose different reward functions are policy-invariant.

2 Preliminaries and Problem Formulation

Notations Let R denote the set of real numbers and Rn the set of real n-vectors. The vector of all ones
is represented as 1 with the dimension understood from the context. The notation zi refers to the i-th
component of a vector z ∈ Rn or to the i-th element of a sequence z1, z2, . . ., which will be clarified by the
context. The set of probability distributions over a finite set Z is denoted as D(Z).

We consider an incentive design problem where an agent (the leader, player 1/P1) can incentivize his oppo-
nent (the follower, player 2/P2) with a side payment, in anticipation that the best response of P2, given the
combined side payment and P2’s original reward, can maximize P1’s utility.

We start by modeling the interaction dynamics between P2 and a stochastic environment as an MDP:
M = (S, A, P, µ),

where S is a set of states, A is a set of actions, P : S ×A→ D(S) is a probabilistic transition function such
that P (s′|s, a) is the probability of reaching state s′ given action a being taken in state s, and µ ∈ D(S) is
the initial state distribution. Throughout the paper, we assume that both S and A are finite. Under this
assumption, for any function f : S × A → R, we sometimes view f as a vector in R|S×A| and use fs,a in
place of f(s, a).

The leader (P1)’s objective P1’s objective is given by a reward function R1 : S×A→ R. However, P1
cannot take actions in the MDP but relies on P2’s policy to obtain reward. Given a P2’s policy π and the
initial state distribution µ, the total discounted reward received by P1 is

V1(µ, π) = Eπ

[∞∑
t=0

γtR1(St, At) | S0 ∼ µ

]
.

where γ is a discount factor. That is, P1’s value is defined by evaluating P2’s policy in the MDP M given
P1’s reward function.

Because P1’s objective depends on P2’s policy, P1 aims to incentivize P2 to take a policy that maximizes
P1’s own value.

3

Under review as submission to TMLR

Incentives as side payments In the MDP, P2’s original reward function without any incentive is R̄2 : S×
A → R where R̄2(s, a) is the reward received by P2 for taking action a in state s. P1’s incentive to P2 is
represented as a function x : S × A → R+, hereafter referred to as the side payment. Specifically, x(s, a) is
the additional non-negative reward that P1 offers to P2 when P2 takes action a in state s.

Given a side payment x, P2’s modified reward function R2(x) is defined as follows: For all (s, a) ∈ S ×A,

R2(s, a; x) = R̄2(s, a) + x(s, a). (1)

We model P2’s planning problem with side payment x as an entropy-regularized MDP

M(x) = (S, A, P, µ, γ, R2(x)).

The value function of the entropy-regularized MDP is defined by

V2(s, R2(x), π) = Eπ

[∞∑
t=0

γtR2(St, At; x)− τ log π(St, At)
∣∣∣S0 = s

]
,

where τ > 0 is the temperature parameter that controls the amount of entropy regularization and reflects
the level of rationality of P2. We assume that the temperature parameter is common knowledge. The value
given the initial distribution µ is written as V2(µ, R2(x), π) = Es∼µV2(s, R2(x), π).
Problem 1 (Incentive design). P1’s incentive design problem is the following bi-level optimization problem:

maximize
x∈R|S×A|

+ , π⋆

V1(µ, π⋆)− h(x)

subject to π⋆ ∈ arg max
π∈Π

V2(µ, R2(x), π),
(2)

where h is a cost function for side payment. The function h is Lh-Lipschitz continuous and L-smooth (i.e.,
∇h is L-Lipschitz continuous).

One particular choice of h is given by h(x) = c∥x∥1 for some constant c > 0.
Remark 1. P2’s reward function with the incentive can be more general than the sum of P2’s original reward
and the side payment. Our results only require knowing the derivative of R2(s, a; ·) for all s ∈ S and a ∈ A.
This holds, for example, when R2(s, a; x) = R̄2(s, a)+f(x, s, a), where f(·, s, a) is an Lf -Lipschitz-continuous
function for all s ∈ S and a ∈ A. We omit this generalization for clarity in the main results.

The optimal value function V ⋆
2 of the entropy-regularized MDP satisfies the following entropy-regularized

Bellman equation (Nachum et al., 2017):

V ⋆
2 (s, R2(x)) = τ log

∑
a∈A

exp{(R2(s, a; x) + γEs′∼P (·|s,a)V
⋆

2 (s′, R2(x)))/τ}, ∀s ∈ S. (3)

Note that, as τ approaches 0, equation 3 recovers the standard optimal Bellman equation.

Let Q⋆(R2(x)) : S×A→ R be the optimal state-action value function of the entropy-regularized MDP under
reward R2(x):

Q⋆(s, a, R2(x)) = R2(s, a; x) + Es′∼P (·|s,a)V
⋆

2 (s′, R2(x)).
For a fixed temperature parameter τ , the optimal policy of the entropy-regularized MDP is uniquely defined
by

π⋆(s, a) = exp(Q⋆(s, a, R2(x))/τ)∑
a′∈A exp(Q⋆(s, a′, R2(x))/τ) . (4)

For convenience, for any θ ∈ R|S×A|, define the softmax policy πθ as

πθ(s, a) = exp(θs,a/τ)∑
a′∈A exp(θs,a′/τ) . (5)

Then, the optimal policy of the entropy-regularized MDP can be written succinctly as πQ⋆(R2(x)), where
Q⋆(R2(x)) is viewed as a vector in R|S×A|.

4

Under review as submission to TMLR

3 Main Results

Due to the relation between the optimal policy and the optimal state-action value function of the entropy-
regularized MDP given by equation 4, the lower-level problem in the bilevel optimization problem in equa-
tion 2 has a unique solution πQ⋆(R2(x)). Thus, the bi-level optimization problem reduces to a single-level
optimization problem using constraint elimination:

maximize
x∈R|S×A|

+

V1(µ, πQ⋆(R2(x)))− h(x). (6)

For convenience, we denote the objective function by J(x) ≜ V1(µ, πQ⋆(R2(x)))− h(x).

3.1 Computing the total gradient with known P2’s reward

We consider using the gradient-ascent method to find x that maximizes P1’s objective function. For any θ,
define J1(θ) ≜ V1(µ, πθ), using which one can write J(x) = J1(Q⋆(R2(x)))− h(x). Following the chain rule,
the derivative of J is given by

DJ(x) = DJ1(Q⋆(R2(x))) ·DQ⋆(R2(x)) ·DR2(x)−Dh(x). (7)

Because h is given, Dh(x) can be computed analytically. Similarly, DR2(x) can be computed analytically
given the function R2.The derivative DJ1 can be computed using the following proposition. (Recall that the
derivative and the gradient of a real-valued function J1 are related by DJ1(θ) = ∇J1(θ)T .)
Proposition 1 (Agarwal et al. (2021)). Let πθ be the softmax policy defined by equation 5. Then

∇J1(θ) = ∇Eπθ
[R1(ρ)] = Eπθ

[R1(ρ)∇ log πθ(ρ)] , (8)

where ρ = s0, a0, s1, a1, . . . sn, an is the path generated from the Markov chain Mπθ
, πθ(ρ) =∏n

t=0 P (st+1|st, at)πθ(st, at) is the probability of the path ρ from the Markov chain Mπθ
, and R1(ρ) =∑n

k=0 γkR1(sk, ak) is the cumulative reward of the path ρ. For a path ρ, the gradient ∇ log πθ(ρ) =∑n
k=0∇ log πθ(sk, ak), where ∇ log πθ(s, a) can be computed as follows:

∂ log πθ(s, a)
∂θs̃,ã

=

0 if s ̸= s̃,

(1− πθ(s, a))/τ if s = s̃ and a = ã,

−πθ(s, ã)/τ if s = s̃ and a ̸= ã.

(9)

The derivative DQ⋆ can be computed using the following proposition.
Proposition 2. Consider an infinite-horizon MDP M = (S, A, P, s0, γ, r) with discounting. Let Q⋆(r) : S×
A→ R be the optimal state-action value function of the entropy-regularized MDP under the reward function
r. For any (s, a), (s̃, ã) ∈ S ×A, it holds that

∂Q⋆
s,a

∂rs̃,ã
= 1(s̃,ã)(s, a) + γEs′∼P (·|s,a)

∑
a′∈A

πQ⋆(r)(s′, a′)
∂Q⋆

s′,a′

∂rs̃,ã
, (10)

where

1(s̃,ã)(s, a) =
{

1 if (s, a) = (s̃, ã),
0 otherwise.

(11)

Proof. According to the entropy-regularized Bellman equation (Nachum et al., 2017), the optimal state-
action value function Q⋆ satisfies

Q⋆(s, a, r) = r(s, a) + γEs′∼P (·|s,a)

[
τ log

∑
a′∈A

exp (Q⋆(s′, a′, r)/τ)
]

,

5

Under review as submission to TMLR

or equivalently, by treating both Q⋆(r) and r as vectors in R|S×A|,

Q⋆
s,a(r) = rs,a + γEs′∼P (·|s,a)

[
τ log

∑
a′∈A

exp (Q⋆
s′,a′(r)/τ)

]
. (12)

Let Z(s) ≜
∑

a∈A exp (Q⋆(s, a, r)/τ) =
∑

a∈A exp
(
Q⋆

s,a(r)/τ
)

. Taking the derivative with respect to rs̃,ã on
both sides of equation 12, one can obtain

∂Q⋆
s,a

∂rs̃,ã
= 1(s̃,ã)(s, a) + γEs′∼P (·|s,a)

[
τ

1
Z(s′)

∑
a′∈A

1
τ

∂Q⋆
s′,a′

∂rs̃,ã
exp(Q⋆

s′,a′(r)/τ)
]

= 1(s̃,ã)(s, a) + γEs′∼P (·|s,a)

[
1

Z(s′)
∑

a′∈A

∂Q⋆
s′,a′

∂rs̃,ã
exp(Q⋆

s′,a′(r)/τ)
]

= 1(s̃,ã)(s, a) + γEs′∼P (·|s,a)
∑

a′∈A

πQ⋆(r)(s′, a′)
∂Q⋆

s′,a′

∂rs̃,ã
,

where the last step follows from πQ⋆(r)(s′, a′) = exp(Q⋆(s′, a′, r)/τ)/Z(s′) = exp(Q⋆
s′,a′(r)/τ)/Z(s′).

For any given (s̃, ã) ∈ S × A, equation 10 is in the form of the standard Bellman equation for state-action
value functions. This implies that the partial derivatives{

∂Q⋆
s,a

∂rs̃,ã

∣∣∣ s ∈ S, a ∈ A

}
can be computed using any method for solving the Bellman equation. The partial derivative of Q⋆

s,a with
respect to the reward rs̃,ã can be interpreted as the discounted number of visiting state-action pair (s̃, ã)
under the entropy-regularized optimal policy πQ⋆(r) after taking the action a in the state s. If a state-action
pair is visited more frequently, then the optimal state-action value function is more sensitive to the changes
in the reward for the state-action pair. Moreover, the derivative with respect to the current state-action pair
is also influenced by the derivative with respect to future state-action pairs under πQ⋆(r).

Algorithm 1 describes the gradient ascent method.

Algorithm 1 Incentive design given P2’s reward
1: procedure Gradient-based incentive design given P2’s reward
2: Initialize x0, η, δ0 > 0; ▷ η is the step size, δ0 is a termination threshold and is close to 0.
3: k ← 0;
4: Solve P2’s optimal state-action value function of Q⋆(R2(x0));
5: J0

1 ← J(x0);
6: δ ←∞;
7: while δ ≥ δ0 do
8: Calculate the gradient DJ(xk);
9: xk+1 ← ProjR|S×A|

+
(xk + ηDJ(xk)); ▷ Projection to non-negative orthant.

10: Jk+1 ← J(xk+1);
11: δ ← |Jk+1 − Jk|;
12: k ← k + 1;
13: end while
14: return xk.
15: end procedure

Next, we will conduct the convergence analysis of our algorithm given known P2’s reward.
Proposition 3. The total derivative DJ of the objective function J is Lipschitz continuous: There exists
L > 0 such that for all x1, x2,

∥DJ(x1)−DJ(x2)∥ ≤ L∥x1 − x2∥.

6

Under review as submission to TMLR

Proof. See Appendix A.2.

Theorem 1. When η ≤ 1/L, Algorithm 1 converges asymptotically to a stationary point of J as k →∞.

Complexity analysis for per-step gradient computation For each state-action pair (s, a), the com-
plexity to calculate ∂Q⋆

∂rs,a
is O(|S|2|A|) because it is equivalent to policy evaluation. Consider the reward

function with side payment defined as a linear combination of P2’s original reward and side payment,
R2(s, a, x) = R̄2(s, a) + x(s, a), for each (s, a) ∈ S × A. Suppose that only a subset Z ⊆ S × A of state-
action pairs are allocated with nonzero side payments, that is, x(s, a) ≥ 0 for (s, a) ∈ Z and x(s, a) = 0 for
(s, a) /∈ Z, then the time complexity to calculate DQ⋆(R2(x)) · DR2(x) is O(|Z| · |S|2|A|). This analysis
informs that in practice, the leader may need to constrain the number of state-action pairs to be allocated
with side payment to reduce the complexity in calculating the gradient terms, instead of allocating side
payment to every state-action pair.

In the general case of reward with side payment, for each (s, a) ∈ S × A, R2(s, a, x) = R̄2(s, a) + f(x, s, a).
Let x ∈ RK

+ be a K-dimensional vector. Thus, the term DR2(x) is a dense square matrix of size (|S||A|×K).
The term DQ⋆(R2(x)) is a dense square matrix of size (|S||A|)2 and is computed with a time complexity of
O(|S|2|A| × |S||A|) because ∂Q⋆

∂rs,a
is to be computed for each (s, a) ∈ S × A. Thus, the time complexity of

calculating DQ⋆(R2(x)) ·DR2(x) in the general case is given by O(K|S|2|A|2 + |S|3|A|2).

3.2 Calculate gradient with unknown P2’s reward

In the previous section, we discuss how to use a gradient-based algorithm to find an optimal side payment
that maximizes P1’s total payoff. However, the method assumes that P2’s reward function is known to
P1. In this section, we show that the proposed gradient-based algorithm can be extended to the design of
adaptive incentive when P2’s reward is unknown. In this setting, at the beginning of the interaction, P1
has incomplete information about P2’s reward function R2. Instead, P1 can observe P2’s decisions (in the
form of state-action trajectories) under any side payment chosen by P1. P1 is allowed to interact with P2
repeatedly by choosing different side payments, through which P1 aims to eventually find a near-optimal
side payment. The term adaptive incentive design is analogous to adaptive control, because the algorithm
adapts to the unknown reward of P2 and optimizes the side payment through interactions.

Our approach is to estimate the derivative DJ using the trajectories generated by P2. First, it can be seen
from equation 7 that both DR2(x) and Dh(x) are independent of P2’s reward function and can be computed
as before. For DJ1(Q⋆(R2(x))), recall the following sample-based approximation of DJ1:

DJ1(θ) = Eπθ
[R1(ρ)∇ log πθ(ρ)] ≈ 1

|X|

N∑
i=1

R1(ρi)∇ log πθ(ρi) = 1
|X|

N∑
i=1

R1(ρi)
∑

(s,a)∈ρi

∇ log πθ(s, a), (13)

where X = {ρi | i = 1, . . . , N} is a set of sampled trajectories under πθ for θ = Q⋆(R2(x)). However,
because P1 has no information about P2’s original reward R2, given a side payment x, P1 cannot solve P2’s
entropy-regularized optimal policy and thus cannot directly compute the gradient ∇ log πθ(ρ).

In order to calculate the gradient term in equation 13 without knowing the exact policy, we estimate a policy
from the sampled trajectories. If a state-action pair (s, a) appears in ρi ∈ X for some i, then we need to
compute ∇ log πθ(s, a). A simple maximum-likelihood estimator for πθ is π̂θ(s, a) = N(s,a)

N(s) , where N(s, a) is
the number of times that (s, a) appears in X and N(s) ≜

∑
a∈A N(s, a). The estimated policy π̂θ can be

used to approximate ∇ log πθ(s, a) based on equation 9: ∂ log πθ(s,a)
∂θs,a

= 1
τ (1− πθ(s, a)) ≈ 1

τ (1− π̂θ(s, a)), and
∂ log πθ(s,a)

∂θs,a′
= − 1

τ πθ(s, a′) ≈ − 1
τ π̂θ(s, a′). If a state s does not appear in any trajectory in X, then N(s) = 0,

and there is no information to estimate π(s, a) for any a ∈ A. However, given the policy gradient estimate
DJ1(θ) is computed from the sampled trajectory, then the term ∇ log πθ(s, a) will not appear in the gradient
estimate for unseen state s.

We also need to find the gradient DQ⋆(R2(x)). For this step, we need to estimate ∂Q⋆

∂rs̃,ã
for each (s̃, ã) where

∂R2(x)s̃,ã

∂xs′,a′
̸= 0 for any s′, a′. This step of calculating ∂Q⋆

s,a

∂rs̃,ã
is equivalent to a data-driven off-policy evaluation

7

Under review as submission to TMLR

given the reward function r(s, a) = 1 if (s, a) = (s̃, ã) and r(s, a) = 0 otherwise. So, we can use Monte Carlo
policy evaluation (Precup, 2000) to construct an unbiased estimator DQ⋆(R2(x)) of DQ⋆(R2(x)).

To make sure that the estimated gradient is unbiased, that is,

E
(

DJ1(Q⋆(R2(x))) ·DQ⋆(R2(x))
)

= DJ1(Q⋆(R2(x))) ·DQ⋆(R2(x)),

we use two different samples X1 and X2 to estimate the value of DJ1(Q⋆(R2(x))) and DQ⋆(R2(x)) respec-
tively. This operation ensures that two estimates are uncorrelated.

Algorithm 2 Adaptive incentive design without knowing P2’s reward
1: procedure Adaptive incentive design without knowing P2’s reward()
2: Initialize x0, η, δ0 > 0; ▷ η is the step size, δ0 is a termination threshold and is close to 0.
3: k ← 0;
4: Collect two sets of P2’s trajectories X1

0 , X2
0 given P2’s best response to R2(x0);

5: J0
1 ← 1

|X1
0 ∪X2

0 |
∑

ρ∈X1
0 ∪X2

0
R1(ρ)− h(x0);

6: δ ←∞;
7: while δ ≥ δ0 do
8: Estimate DJ(Q⋆(R2(xk))) from X1

k ;
9: Estimate DQ⋆(R2(xk)) using Monte Carlo policy evaluation from X2

k ;
10: DJ(xk)← DJ1(Q⋆(R2(xk))) ·DQ⋆(R2(xk)) ·DR2(xk)−Dh(xk);
11: xk+1 ← ProjR|S×A|

+
(xk + ηDJ(xk)) ▷ Projection to non-negative orthant.

12: Collect new trajectories X1
k+1, X2

k+1 given P2’s best response to R2(xk+1);
13: Xk+1 ← X1

k+1 ∪X2
k+1;

14: Jk+1
1 ← 1

|Xk+1|
∑

ρ∈Xk+1
R1(ρ)− h(xk+1);

15: δ ← |Jk+1
1 − Jk

1 |;
16: k ← k + 1;
17: end while
18: return xk

19: end procedure

Algorithm 2 describes an adaptive incentive design without knowing P2’s reward function. At the k-th
iteration, P1 employs a side payment xk and observes two sets X1

k , X2
k of sampled trajectories from P2’s

best response given R2(xk). The gradient DJ(xk) of the objective function is estimated from the two sets
of samples and then used to compute the updated side payment xk+1. The algorithm terminates once P1’s
value does not change more than δ0 between two consecutive iterations.

Next, we show that without knowing the follower’s reward function, our algorithm still converges to a local
optimal solution.
Proposition 4. The gradient estimate DJ(x) is unbiased.
Theorem 2. Let (xk)k∈N be a sequence of side payments generated by adaptive incentive design in Algo-
rithm 2. With the step size η =

√
2

L
√

T
, we have that

min
k=0,...,T −1

E∥DJ(xk)∥2 ≤
2
√

2L(sup
x∈R|S×A|

+
J(x)− J(x0))

√
T

.

Equivalently, for a given ϵ > 0, it requires T = O(ϵ−2) iterations to ensure mink=0,...,T −1 E∥DJ(xk)∥2 ≤ ϵ.

4 Incentive-invariant reward shaping

Our proposed adaptive incentive design requires no knowledge or learning of P2’s reward function. An
alternative approach is to learn P2’s reward function from data, and then apply the incentive design with the

8

Under review as submission to TMLR

known P2’s reward case. Let’s refer the second method as reward learning-based incentive design. However,
there can be multiple reward functions that are consistent with the data, for example, two reward functions
may induce exactly the same optimal policy; in that case, no amount of data can distinguish them. These
two reward functions are known as policy invariant.

For the reward-learning-based incentive design, we are interested in the following question, given two reward
functions R2 and R†

2 that are policy-invariant to each other, are these two rewards also incentive-invariant?
That is, the optimal incentive design x with respect to P2 with a reward function R2 is also optimal incentive
design for P2 whose reward function is R†

2?

First, we consider a class of policy-invariant reward functions defined by potential-based reward shaping
(Skalse et al., 2023; Ng et al., 1999).
Definition 1 (Potential shaping). A potential function is a function ϕ : S → R, where ϕ(s) = 0 if s is a
sink/absorbing state. Let R2 and R†

2 be reward functions. The R†
2 is produced by a ϕ-potential-based reward

shaping of R2 if
R†

2(s, a) = R2(s, a) + γEs′∼P (·|s,a)ϕ(s′)− ϕ(s).

For simplicity, let F (s, a) = γEs′∼P (·|s,a)ϕ(s′)− ϕ(s) be the shaping reward function.

The following results are shown in Skalse et al. (2023) and paraphrased.
Theorem 3. Skalse et al. (2023) Given an MDP M = ⟨S, A, P, µ, γ, R⟩ and a temperature parameter τ , the
entropy-regulated policy π determines R up to potential-based reward shaping.

In other words, if R†
2 is a ϕ-potential-based reward shaping of R2, then an entropy-regulated optimal policy

π with respect to R2 is also entropy-regulated optimal policy given the reward function R†
2.

Next, we prove the following theorem.
Theorem 4. Given an MDP M and a temperature parameter τ , the leader’s reward function R1 and side
payment cost function h, if P2 selects an entropy-regulated optimal policy given reward R2(x) for any side
payment x, then the optimal incentive design x⋆ for P2 with reward R2 is optimal for P2 with reward R†

2.

The above incentive-invariance condition holds when P2 selects the entropy-regulated optimal policy given
the reward function. However, the result naturally generalizes to the case when P2 selects a maximal
supportive optimal policy with respect to the reward function. An optimal policy is maximally supportive if
it takes all optimal actions with positive probability. The maximally supportive optimal policy is not unique.
Corollary 1. Given an MDP M and a temperature parameter τ , the leader’s reward function R1 and side
payment cost function h, if P2 selects a maximally supportive optimal policy given the reward R2(x) for any
incentive design x and always break the tie in the favor for P1 (formal definition in the proof), then the
optimal incentive design x⋆ for P2 with reward R2 is optimal for P2 with reward R†

2.

5 Experiments

We illustrate the proposed methods with two sets of examples, one is a probabilistic graph-based MDP and
another is a stochastic gridworld. For all case studies, the workstation used is powered by Intel i7-11700K
and 32GB RAM. In experiments, we constrain the leader to allocate a subset of state-action pairs with
side-payments. This constraint is to reduce the computation for gradient calculation (recall the complexity
analysis in Section 3.1) and can be removed if more powerful GPUs are used.

5.1 An MDP Example

We consider first a small MDP in which the follower has four actions {“a”,“b”,“c”,“d”}. For clarity,
the graph in Fig. 1 only shows the transition given action a where a thick (resp. thin) arrow repre-
sents a high (resp. low) transition probability, self-loops are omitted. For example, P (0, “a”) = {1 :
0.7, 2 : 0.1, 3 : 0.1, 4 : 0.1}. Once the follower enters states {10, 11, 12}, the follower enters the “Sink”

9

Under review as submission to TMLR

0.1 0.2 0.3 0.4 0.5
c

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Va
lu
e

Total payoff J
|| ⃗x||1
V1⃗π)
V2⃗π)

(a) Model-based result in small MDP.

0 50 100 150 200
Iterations

0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38

J V
al

ue

150 160 170 180 190 200

0.370

0.375

0.380

Model based
Sample size: 20
Sample size: 100
Sample size: 200

(b) Model-free solution results in small MDP.

state with probability 1 by taking any actions. The follower only receives a reward of 1 when he vis-
its state 10. The leader only obtains a reward of 1 when the follower visits state 11. The discounting
factor γ is 0.95 in this example. In order to incentivize the follower to visit state 11, the leader offers
side-payment to the follower if the follower visits state 11 and takes action a, which means the domain
of variable x is confined to X = {x | x(s, a) = 0,∀(s, a) ̸= (11, a), x(11, a) ≥ 0}. The follower’s re-
ward with the side-payment is simply the sum R2(s, a, x) = R2(s, a) + x(s, a), for all (s, a) ∈ S × A.

0start

2

3

1

4

5

6

7

8

9

10

12

11

Sink

Figure 1: Illustrating the graph of a
small MDP.

We consider the cost function of making side-payment in the
form of h(x) = c∥x∥1. We conduct the experiment for c ∈
{0.1, 0.2, 0.3, 0.4, 0.5}. Figure 2a shows the result of the leader’s total
payoff(J(ν, x, π)), the leader’s expected value(V1(π)), the follower’s
expected value (V2(π)) given the follower’s best response policy and
the reward R2(·, x), and the value of ∥x∥1. When the leader does
not offer any side-payment, the leader’s expected value is 0.152, and
the follower’s expected value is 0.531. In this case, the follower visits
11 due to the probabilistic outcomes of the policy.

It is observed that when c ∈ {0.1, 0.2, 0.3}, the leader’s side-payment
policies h(x) are similar, where x(11, “a”) ≈ 1.33. These similar
side-payment policies result in similar best response policies from
the follower, and thus the similar value V1(π) ≈ 0.648 for the leader.
However, the total payoff of the leader decreases due to the increasing cost of side-payment. As c increases
to 0.4, the leader’s side-payment policy is x(11, “a”) = 0.108, and the corresponding leader’s value V1(π) is
0.198, and the total payoff J is 0.155.

If the leader’s side-payment policy given c = 0.4 is x(11, “a”) ≈ 1.33 (used when c = 0.3), the total payoff
J is 0.127, which indicates the cost of side-payment outweighs the benefit to the total payoff. Finally, when
c increases to 0.5, the leader does not offer any incentive. As c ranges from 0.1 to 0.5, the follower’s value
V2(π) given the best response policy π to reward R2(·, x) decreases due to the decrease in the side-payment.
When c = 0.4, the follower’s value is 0.543. When c = 0.5, the leader stops offering any side-payment and the
follower’s expected value is the lowest 0.531, recovering the original follower’s value without any incentives.

Next, we consider the scenario, when the follower’s reward is unknown to the leader. We fix c to be 0.2.
Figure 2b shows the value of leader’s total payoff converges over iterations, given different trajectory sample
sizes used in the gradient estimates. Our result shows that in the first 150 iterations, the convergence trend
is stable in all three cases, compared to the model-based approach. After 150 iterations, oscillations are
observed with a small sample size (20). After 200 iterations, the algorithm converges for all three cases with
different sample sizes. The result indicates that the leader can obtain the optimal incentive design without
estimating the follower’s true reward function.

10

Under review as submission to TMLR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
c

0
1
2
3
4
5
6
7
8
9

10
Va

lu
e

Total payoff J
|| ⃗x||1
V1⃗π)
V2⃗π)

(a) Model-based result in gridworld, given the leader as-
signs side payment at ((0, 3), “N”).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
c

0

1

2

3

4

5

6

7

8

9

Va
lu
e

Total payoff J
|| ⃗x||1
V1⃗π)
V1⃗π)

(b) Model-based result in gridworld, given the leader as-
signs side-payment at {(1, 4), (4, 5)} × A.

5.2 Gridworld Example

In the second example, we consider a robot motion planning problem in a stochastic gridworld. Consider
a six by six gridworld in Figure 3. The robot aims to reach a set of goal states while maximizing its
payoff. The robot can move in four compass directions. Given an action, say, “N”, the robot enters the
intended cell with 1 − 2α probability and enters the neighboring cells, which are west and east cells with
α probability. In our experiments, α is selected to be 0.1. Each state is identified by its coordinates (i, j),
denoting the state at row i and column j. The robot’s task is to reach one of the green or blue cells.
Entering a green cell yields a reward of 10, while entering a blue cell results in a reward of 8. The process
terminates once the robot enters one of these blue or green cells. Upon entering the states with fire, the
robot incurs a punishment of −5. The leader only receives a reward of 10 when the robot enters a blue
cell. Thus, the leader is to incentivize the robot to visit the blue cells. The discounting factor γ is 0.95.

Figure 3: A 6× 6 gridworld.

We first conduct the experiment on the model-based case. The cost
function of making side-payment is in the form of h(x) = c∥x∥1.
Assume the leader can incentivize the robot with side-payment x,
constrained by x ∈ X = {x | x(s, a) = 0,∀(s, a) ̸= ((0, 3), “N”) and
x((0, 3), “N”) ≥ 0}. The experiment results under various c values
are shown in Figure 4a. When c is less than 1.1, the side-payment
value and the leader’s value slowly decrease with the increase of the
c. However, when c reaches 1.1, the leader opts for a strategy of
assigning 0 side payment to the state-action pair ((0, 3), “N”). If
the leader were to maintain the same side-payment policy as the
policy when c equals 1.0, the resulting total payoff J is negative.
That indicates placing side-payment at state ((0, 3), “N”) becomes
disadvantageous for the leader’s overall payoff when c = 1.1.

We also conduct the experiment under a different constraint set
X ′ = {x | x(s, a) = 0,∀s /∈ {(1, 4), (4, 5)}, x(s, a) ≥ 0, for (s, a) ∈
{(1, 4), (4, 5)} × A}. Our intuition is that the robot selects to reach
a cell where it obtains the highest reward. Thus assigning side-payment to other states only incurs a cost
to the leader’s total payoff J . Given the environment, it costs less side-payment to attract the robot to
(1, 4), compared to (4, 5). As shown in Figure 4b, for 0.1 ≤ c ≤ 0.7, the leader achieves a higher expected
value compared to the result when the leader allocates side-payment to ((0, 3), “N”). But the leader also
allocates more resources, so a higher leader’s expected value V1(π) does not necessarily mean a higher value
for the total payoff J . In particular, when c increases to 0.8, the leader assigns 0 side payment, resulting
in the leader’s value approaching 0. But in the previous case with the constraint set X , the leader can still
allocate side-payment to incentivize the follower, which leads to a total payoff J = 0.814 when c = 0.8. These

11

Under review as submission to TMLR

0 50 100 150 200
Iterations

2.00

2.05

2.10

2.15

2.20

2.25
J V

al
ue

140 160 180 200

2.22

2.23

2.24

Model based
Sample size: 20
Sample size: 100
Sample size: 200

(a) Model-free solution convergence trend in gridworld,
given the leader assigns side payment at ((0, 3), “N”).

0 50 100 150 200
Iterations

3.68

3.72

3.76

J V
al
ue

140 160 180 200

3.780

3.785

Model based
Sample size: 20
Sample size: 100
Sample size: 200

(b) Model-free solution convergence trend in gridworld,
given the leader assigns side-payment at {(1, 4), (4, 5)}×A.

two sets of experiments indicate the significance of the state-action pairs chosen by the leader for allocating
side-payments.

Next, we look into the model-free scenarios. Let us fix c to be 0.3 and assume the leader allocates side-
payments to ((0, 3), “N”). We conduct the experiments with different trajectory sample sizes and illustrate
the results in Figure 5a. As depicted, the results of the gradient-ascent algorithm for different sample sizes
are similar in the initial 100 iterations. However, after 100 iterations, noticeable oscillations are observed,
particularly when the sample size is 20. The oscillations also exist when the sample size is 100 but not that
significant. When the sample size is 200, the convergence result over iterations is close to the model-based
scenario. The final converged side-payment policies are similar with model-based methods across all cases.

Similar experiments are conducted given c = 0.3 and the leader allocates side-payment to {(1, 4), (4, 5)}×A.
We show the results in Figure 5b and the results of the value versus iterations are similar to the previous
cases. Due to the property of stochastic gradient ascent, a larger sample size corresponds to a more stable
convergence.

6 Conclusion

We develop a gradient-based method for designing an optimal incentive policy that aims to motivate the
follower to choose policies in favor of the leader. The gradient-based incentive design hinges upon computing
the gradient of the follower’s policy parameters with respect to the leader’s incentive decision variables. We
show that if the follower uses an entropy-regulated optimal policy, then the exact gradient can be computed
in polynomial time. In addition, the gradient can be estimated from the sampled trajectories generated by
the follower’s response. As a result, our method naturally provides an adaptive incentive design method
where the leader can iteratively update his incentive policy upon observing sampled runs from the follower’s
policy, without the need to infer the follower’s reward function. At last, we also show that the optimal
incentive policies can be the same for two different followers’ reward functions, provided that the two reward
functions are related through a policy-invariant reward shaping. We experimentally validate the proposed
method and discuss the stability of the convergence given various sample sizes used in gradient estimation.

The limitations of the method would be that if the leader has the flexibility to provide incentive for any state-
action pair, then it is computationally expensive to solve the optimal incentive policy. To improve efficiency,
we could restrict the size of leader’s incentive decision variables by selecting a subset of state-action pairs
for allocating side-payments. Experiment results show that the leader’s value varies given different sets
of selected state-action pairs. How to optimally determine the subsets of state-action pairs for efficient
computation is an important topic. Another interesting direction is to robustifying the incentive design
with respect to uncertainty in the follower’s parameters, for example, the bounded rationality temperature
parameter τ can be unknown and belong to a given range. It is an open question if the incentive design can
be robust to small variations in these parameters.

12

Under review as submission to TMLR

References
Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy gradient

methods: Optimality, approximation, and distribution shift. The Journal of Machine Learning Research,
22(1):4431–4506, 2021.

Tansu Alpcan, Lacra Pavel, and Nem Stefanovic. A control theoretic approach to noncooperative game
design. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference, pp. 8575–8580. IEEE, 2009.

Susan Athey and John Roberts. Organizational design: Decision rights and incentive contracts. American
economic review, 91(2):200–205, 2001.

Jorge Barrera and Alfredo Garcia. Dynamic incentives for congestion control. IEEE Transactions on Auto-
matic Control, 60(2):299–310, 2014.

Souradip Chakraborty, Amrit Singh Bedi, Alec Koppel, Dinesh Manocha, Huazheng Wang, Furong Huang,
and Mengdi Wang. Aligning agent policy with externalities: Reward design via bilevel rl. arXiv preprint
arXiv:2308.02585, 2023.

Siyu Chen, Donglin Yang, Jiayang Li, Senmiao Wang, Zhuoran Yang, and Zhaoran Wang. Adaptive Model
Design for Markov Decision Process. In Proceedings of the 39th International Conference on Machine
Learning, pp. 3679–3700. PMLR, June 2022. URL https://proceedings.mlr.press/v162/chen22ab.
html. ISSN: 2640-3498.

Keith Conrad. Equivalence of norms. Expository Paper, University of Connecticut, Storrs, heruntergeladen
von, 17(2018), 2018.

Donya G Dobakhshari and Vijay Gupta. Optimal contract design for incentive-based demand response. In
2016 American Control Conference (ACC), pp. 3219–3224. IEEE, 2016.

Dmitriy Drusvyatskiy and Lin Xiao. Stochastic Optimization with Decision-Dependent Distributions. Math-
ematics of Operations Research, 48(2):954–998, May 2023. ISSN 0364-765X. doi: 10.1287/moor.2022.1287.
URL https://pubsonline.informs.org/doi/full/10.1287/moor.2022.1287. Publisher: INFORMS.

David Easley and Arpita Ghosh. Incentives, gamification, and game theory: an economic approach to badge
design. ACM Transactions on Economics and Computation (TEAC), 4(3):1–26, 2016.

Tom Everitt, Marcus Hutter, Ramana Kumar, and Victoria Krakovna. Reward tampering problems and
solutions in reinforcement learning: A causal influence diagram perspective. Synthese, 198(Suppl 27):
6435–6467, 2021.

Y Ho and D Teneketzis. On the interactions of incentive and information structures. IEEE Transactions on
Automatic Control, 29(7):647–650, 1984.

Yu-Chi Ho, P Luh, and Ramal Muralidharan. Information structure, stackelberg games, and incentive
controllability. IEEE Transactions on Automatic Control, 26(2):454–460, 1981.

Emir Kamenica. Behavioral economics and psychology of incentives. Annu. Rev. Econ., 4(1):427–452, 2012.

Yuqing Li, Bingyu Shen, Jinbei Zhang, Xiaoying Gan, Jingchao Wang, and Xinbing Wang. Offloading
in hcns: Congestion-aware network selection and user incentive design. IEEE Transactions on Wireless
Communications, 16(10):6479–6492, 2017.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between value and
policy based reinforcement learning. Advances in neural information processing systems, 30, 2017.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

13

https://proceedings.mlr.press/v162/chen22ab.html
https://proceedings.mlr.press/v162/chen22ab.html
https://pubsonline.informs.org/doi/full/10.1287/moor.2022.1287

Under review as submission to TMLR

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty
Publication Series, pp. 80, 2000.

Lillian J Ratliff and Tanner Fiez. Adaptive incentive design. IEEE Transactions on Automatic Control, 66
(8):3871–3878, 2020.

Yagiz Savas, Vijay Gupta, Melkior Ornik, Lillian J. Ratliff, and Ufuk Topcu. Incentive Design for Temporal
Logic Objectives. In 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 2251–2258, De-
cember 2019. doi: 10.1109/CDC40024.2019.9029287. URL https://ieeexplore.ieee.org/abstract/
document/9029287. ISSN: 2576-2370.

Yagiz Savas, Vijay Gupta, and Ufuk Topcu. On the Complexity of Sequential Incentive Design. IEEE
Transactions on Automatic Control, 67(11):5809–5824, November 2022. ISSN 0018-9286, 1558-2523, 2334-
3303. doi: 10.1109/TAC.2021.3124191. URL https://ieeexplore.ieee.org/document/9599543/.

Paul Seabright. Managing local commons: theoretical issues in incentive design. Journal of economic
perspectives, 7(4):113–134, 1993.

Marwaan Simaan and Jose B Cruz Jr. On the stackelberg strategy in nonzero-sum games. Journal of
Optimization Theory and Applications, 11(5):533–555, 1973.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing reward
gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Joar Max Viktor Skalse, Matthew Farrugia-Roberts, Stuart Russell, Alessandro Abate, and Adam Gleave.
Invariance in Policy Optimisation and Partial Identifiability in Reward Learning. In Proceedings of the
40th International Conference on Machine Learning, pp. 32033–32058. PMLR, July 2023. URL https:
//proceedings.mlr.press/v202/skalse23a.html. ISSN: 2640-3498.

Killian Wood and Emiliano Dall’Anese. Stochastic saddle point problems with decision-dependent distribu-
tions. SIAM Journal on Optimization, 33(3):1943–1967, 2023.

Haoqi Zhang and David Parkes. Value-based policy teaching with active indirect elicitation. In Proceedings
of the 23rd national conference on Artificial intelligence - Volume 1, AAAI’08, pp. 208–214, Chicago,
Illinois, July 2008. AAAI Press. ISBN 978-1-57735-368-3.

Haoqi Zhang, Yiling Chen, and David Parkes. A general approach to environment design with one agent. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI’09, pp. 2002–2008,
San Francisco, CA, USA, July 2009. Morgan Kaufmann Publishers Inc.

Xinyang Zhou, Emiliano Dall’Anese, Lijun Chen, and Andrea Simonetto. An incentive-based online opti-
mization framework for distribution grids. IEEE transactions on Automatic Control, 63(7):2019–2031,
2017.

A Derivations and Proofs

A.1 Derivation of policy gradient

The detailed derivation of policy gradient in equation 9 in Proposition 1.

Recall that ∂ log πθ(s,a)
∂θs̃,ã

= 0 if s ̸= s̃ and

∂ log πθ(s, a)
∂θs,a

=
∂ log exp(θs,a

τ)
∂θs,a

−
∂ log

∑
a′∈A exp(θs,a′

τ)
∂θs,a

= 1
τ
− 1∑

a′∈A exp(θs,a′

τ)
∂ exp(θs,a

τ)
∂θs,a

= 1
τ

(1− πθ(s, a))

(14)

14

https://ieeexplore.ieee.org/abstract/document/9029287
https://ieeexplore.ieee.org/abstract/document/9029287
https://ieeexplore.ieee.org/document/9599543/
https://proceedings.mlr.press/v202/skalse23a.html
https://proceedings.mlr.press/v202/skalse23a.html

Under review as submission to TMLR

and
∂ log πθ(s, a)

∂θs,a′
= 1

τ
(0− πθ(s, a′)) (15)

A.2 Proof of Proposition 3

To show that J(x) is smooth (Proposition 3), we first prove the following properties:
Proposition 5. Consider V (·, θ) : S → R the value function of a softmax policy with parameter θ. For any
s ∈ S, the value function V (s, ·) is Lipschitz continuous, which is

∥V (s, θ1)− V (s, θ2)∥ ≤ Lc∥θ1 − θ2∥.

where Lc is the Lipschitz constant.

Proof. Using the policy gradient with softmax policy, ∂V (s,θ)
∂θs,a

= 1
1−γ dπθ

µ (s)πθ(s, a)Aπθ (s, a), where dπθ
µ (s) =

(1− γ)
∑∞

t=0 γtP πθ (st = s|s0 ∼ µ) is the discounted state visitation distribution. Thus,

∥∇θV (s, θ)∥ = ∥ 1
1− γ

dπθ
µ (s)πθ(s, a)Aπθ (s, a)∥ (16)

= 1
1− γ

√∑
s,a

(dπθ
µ (s)πθ(s, a)Aπθ (s, a))2 (17)

≤ |maxs,a Aπθ (s, a)|
1− γ

∥(dπθ
µ (s)πθ(s, a))∥2 (18)

≤ |maxs,a Aπθ (s, a)|
1− γ

∥(dπθ
µ (s)πθ(s, a))∥1 (19)

≤ |Rmax|
1− γ

, (20)

where the last step is because ∥(dπθ
µ (s)πθ(s, a))∥1 = ∥dπθ

µ (s)∥1 ≤ 1. |Rmax| is the maximum possible value
of the reward function.

Let Lc = |Rmax|
1−γ , we have

∥V (s, θ1)− V (s, θ2)∥ ≤ Lc∥θ1 − θ2∥, ∀s ∈ S.

Proposition 6. The function J1(θ) ≜ V1(µ, θ) is Lθ-smooth, that is,

∥∇θJ(θ)−∇θJ(θ′)∥ ≤ Lθ∥θ − θ′∥2,

where Lθ is a Lipschitz constant.

The proof of Proposition 6 is based on Lemma 55 in Agarwal et al. (2021) by setting the coefficient before
the barrier function to 0. Thus, we omit the detailed proof here.
Proposition 7. Let Q⋆(R2(x)) be the entropy-regulated optimal state-action value function in the MDP
M(x), it holds that Q⋆(R2(x)) is Lipschitz continuous in x, that is,

∥Q⋆(R2(x1))−Q⋆(R2(x2))∥ ≤ Lx∥x1 − x2∥.

where Lx is the Lipschitz constant.

Proof. For notational convenience and clarity, let Q⋆(x) ≜ Q⋆(R2(x)).

First, we start from the infinity norm term ∥Q⋆(x1) − Q⋆(x2)∥∞, it is noted that ∥Q⋆(x1) − Q⋆(x2)∥∞ =
maxs,a|Q⋆(s, a, x1)−Q⋆(s, a, x2)|.

15

Under review as submission to TMLR

By the definition of entropy-regularized state-action value function,

Q⋆(s, a, x) = EπQ⋆(x)

[∞∑
t=0

γtR2(St, At; x)− τ log πQ⋆(x)(St, At)
∣∣∣S0 = s, A0 = a

]
,

Thus,

Q⋆(s, a, x1)−Q⋆(s, a, x2)

=EπQ⋆(x1)

[∞∑
t=0

γtR2(St, At; x1)− τ log πQ⋆(x1)(St, At)
∣∣∣S0 = s, A0 = a

]

− EπQ⋆(x2)

[∞∑
t=0

γtR2(St, At; x2)− τ log πQ⋆(x2)(St, At)
∣∣∣S0 = s, A0 = a

]

=EπQ⋆(x1)

[∞∑
t=0

γtR2(St, At; x1)− τ log πQ⋆(x1)(St, At)
∣∣∣S0 = s, A0 = a

]

− EπQ⋆(x1)

[∞∑
t=0

γtR2(St, At; x2)− τ log πQ⋆(x1)(St, At)
∣∣∣S0 = s, A0 = a

]

+ EπQ⋆(x1)

[∞∑
t=0

γtR2(St, At; x2)− τ log πQ⋆(x1)(St, At)
∣∣∣S0 = s, A0 = a

]

− EπQ⋆(x2)

[∞∑
t=0

γtR2(St, At; x2)− τ log πQ⋆(x2)(St, At)
∣∣∣S0 = s, A0 = a

]
(i)
≤ EπQ⋆(x1)

[∞∑
t=0

γtR2(St, At; x1)− τ log πQ⋆(x1)(St, At)
∣∣∣S0 = s, A0 = a

]

− EπQ⋆(x1)

[∞∑
t=0

γtR2(St, At; x2)− τ log πQ⋆(x1)(St, At)
∣∣∣S0 = s, A0 = a

]

=EπQ⋆(x1)

[∞∑
t=0

γt (R2(St, At; x1)−R2(St, At; x2))
∣∣∣S0 = s, A0 = a

]

≤ EπQ⋆(x1)

(∞∑
t=0

γt max
s′,a′
|x1(s′, a′)− x2(s′, a′)|

)

= 1
1− γ

∥x1 − x2∥∞,

where inequality (i) is because πQ⋆(x2) is optimal w.r.t. the reward function R2(x2).

Due to the equivalence of norms Conrad (2018), on the finite dimension C, for all x ∈ C, B∥x∥∞ ≤ ∥x∥1 ≤
B′∥x∥∞ where B, B′ are two constants. We can rewrite the infinity norm case we used above to 1-norm
case. Thus, we have ∥Q⋆(R2(x1))−Q⋆(R2(x2))∥ ≤ Lx∥x1 − x2∥.

Remark 2. Proposition 7 holds for a more general case when for any state-action pair (s, a) ∈ S × A, the
reward function R2(s, a, x) = R2(s, a) + g(s, a, x) for any Lipschitz continuous function g(·).
Proposition 8. DQ⋆(R2(x)) ·DR2(x) is Lipschitz continuous with respect to x, which means

∥DQ⋆(R2(x1)) ·DR2(x1)−DQ⋆(R2(x2)) ·DR2(x2)∥ ≤ Lβ∥x1 − x2∥.

where Lβ is the Lipschitz constant.

Proof. By Proposition 2, it is noted that

∂Q⋆(s, a, r)
∂r(s̃, ã) = EπQ⋆(r)

(∞∑
t=0

γtr̂s̃,ã(St, At)
∣∣∣S0 = s, A0 = a

)
= Qr̂s̃,ã(s, a, πQ⋆(r)),

16

Under review as submission to TMLR

where Qr̂s̃,ã(·πQ⋆(r)) is the state-action value function given the policy πQ⋆(r) and reward function r̂s̃,ã defined
by r̂s̃,ã(s, a) = 1s̃,ã(s, a). Thus

∥DQ⋆(R2(x1))−DQ⋆(R2(x2))∥ = ∥Qr̂s̃,ã(πQ⋆(R2(x1)))−Qr̂s̃,ã(πQ⋆(R2(x2)))∥ (21)
≤ Lc∥Q⋆(R2(x1))−Q⋆(R2(x2))∥. (22)

Equation 22 is derived based on Proposition 5 where the Lipschitz constant Lc = 1
1−γ . This is because the

reward function is an indicator function and Rmax = 1 and the entropy-regularized optimal policy πQ⋆(R2(x))
has a softmax parameterization with a policy parameter Q⋆(R2(x)).

Combining equation 22 with Proposition 7, we have ∥DQ⋆(R2(x1))−DQ⋆(R2(x2))∥ ≤ LcLx∥x1 − x2∥.

Since R2(x) is a linear combination of the original follower’s reward function R2 and a Lipschitz continuous
function f of x. Let f be Lipschitz continuous with a Lipschitz constant Lf , then we have DR2(x) ≤ Lf . In
a special case when R2(x) = R2 + Lf ·x, then Dr(x) = Lf . Thus, ∥DQ⋆(R2(x1)) ·DR2(x1)−DQ⋆(R2(x2)) ·
DR2(x2)∥ ≤ Lf LcLx∥x1 − x2∥. The proof is completed by letting Lβ = Lf LcLx.

In the next, we show a general result and the Lipschitz continuity of the term DJ1(Q⋆(R2(x))) ·DQ⋆(R2(x)) ·
DR2(x) can be derived by letting f(x) = DJ1(Q⋆(R2(x))) and g(x) = DQ⋆(R2(x)) ·DR2(x).
Lemma 1. Let f : X → Rm×n and g : X → Rn be two Lipschitz continuous functions with ∥f(x)∥ ≤ f and
∥g(x)∥ ≤ g for all x ∈ X . Then f · g is Lipschitz continuous.

Proof. Since f and g are Lipschitz continuous, there exist Lf and Lg such that that ∥f(x) − f(x′)∥ ≤
Lf∥x− x′∥ and ∥g(x)− g(x′)∥ ≤ Lg∥x− x′∥ for all x, x′ ∈ X . For any x, x′ ∈ X , one can obtain

∥f(x)g(x)− f(x′)g(x′)∥
= ∥f(x)g(x)− f(x′)g(x) + f(x′)g(x)− f(x′)g(x′)∥
≤ ∥f(x)g(x)− f(x′)g(x)∥+ ∥f(x′)g(x)− f(x′)g(x′)∥
≤ ∥f(x)− f(x′)∥∥g(x)∥+ ∥f(x′)∥∥g(x)− g(x′)∥
≤ gLf∥x− x′∥+ fLg∥x− x′∥
= (gLf + fLg)∥x− x′∥,

which implies that f · g is Lipschitz continuous.

Finally, we are ready to prove Proposition 3.

Proof. Function J(x) is non-concave but differentiable in our setting. Its total derivative DJ(x) is Lipschitz
continuous because

1) Dh(x) is Lipschitz-continuous due to the assumption of h(x) (see Problem 1).

2) DJ1(Q⋆(R2(x))) is a Lipschitz continuous function and upper bounded by Rmax

1−γ (Proposition 5);

3) DQ⋆(R2(x)) · DR2(x) is a Lipschitz continuous function (Proposition 8). Furthermore, because
∥DQ⋆(R2(x))∥∞ is the norm of state-action value vector given policy πQ⋆(R2(x)) and indicator reward
functions, it is upper bounded by 1. ∥DR2(x)∥∞ ≤ Lf given R2(s, a, x) = R̄2 + f(s, a, x) where f is
Lf -Lipschitz continuous. Thus, ∥DQ⋆(R2(x)) ·DR2(x)∥ is upper bounded.

4) DJ1(Q⋆(R2(x))) ·DQ⋆(R2(x)) ·DR2(x) is Lipschitz continuous due to the aforementioned properties 2)
and 3) and Lemma 1, where f(x) is DJ1(Q⋆(R2(x))) and g(x) is DQ⋆(R2(x)) ·DR2(x).

17

Under review as submission to TMLR

A.3 Proof of Theorem 1

Proof. Given the update rule we used in our algorithm xk+1 = ProjR|S×A|
+

(xk + η∇J(x)). We want to show
as k → ∞, xk converges to a critical point. Following the Taylor expansion of function J around xk, for a
sufficient small step size η, we have

J(xk+1)− J(xk) ≥ η∥∇J(xk)∥2 − Lη2

2 ∥∇J(xk)∥2 (23)

= (1− Lη

2)η∥∇J(xk)∥2. (24)

Using η ≤ 1
L , we have (1 − Lη

2) ≥ 1
2 . Thus we have J(xk+1) − J(xk) ≥ η

2∥∇J(xk)∥2. Which means
J(xk+1) − J(xk) is always positive. Moreover, function J(·) is bounded due to the value function of the
leader V µ

1 (θ) is bounded. Therefore the function J(x) is monotonically increasing and bounded. Due to the
Bolzano-Weierstrass Theorem, every bounded sequence of real numbers has a convergent subsequence thus,
the gradient-based method converges to a local optimal point of the function J(x).

A.4 Proof of Theorem 2

Proof. Consider the estimated gradient from the observed P2’s trajectories:

DJ(x) = DJ1(Q⋆(R2(xt))) ·DQ⋆(R2(xt)) ·DR2(xt)−Dh(xt)

First, the term DJ1(Q⋆(R2(xt))) is the estimated policy gradient with respect to P1’s reward function. For
notational convenience, let θ ≜ Q⋆(R2(xt)) be the entropy-regularized state-action value function.

Since P2’s reward function is unknown, we replace the exact gradient term ∇ log πθ(ρ) in equation 8 with
the approximated gradient ∇ log π̂θ(ρ). The bias of the estimator is

E
(

DJ1(θ)−DJ1(θ)
)

(25)

=E
(∫

πθ(ρ)R1(ρ)∇ log πθ(ρ)dρ−
∫

πθ(ρ)R1(ρ)∇ log π̂θ(ρ)dρ

)
=E

(∫
πθ(ρ)R1(ρ) (∇ log πθ(ρ)−∇ log π̂θ(ρ)) dρ

)

=E
∫

πθ(ρ)R1(ρ)

 |ρ|∑
i=0

(∇ log πθ(si, ai)−∇ log π̂(si, ai))

 dρ

=
∫

πθ(ρ)R1(ρ)

 |ρ|∑
i=0

E (∇ log πθ(si, ai)−∇ log π̂(si, ai))

 dρ

=0

The last step is due to the π̂(s, a) is the unbiased estimator of π(s, a). To see why this is the case, consider
those non-zero elements in ∇ log πθ(si, ai), from equation 9, we have

E
(

∂ log πθ(s, a)
∂θs,a

− ∂ log π̂θ(s, a)
∂θs,a

)
= E (π̂θ(s, a)− πθ(s, a)) = 0.

So, E (∇ log πθ(si, ai)−∇ log π̂(si, ai)) = 0, and we have our last step equals to 0.

For the second term DQ⋆(R2(xt)), based on Proposition 8, DQ⋆(R2(xt)) is the policy evaluation of the
indicator reward function r̂s,a(s′, a′) = 1(s,a)(s′, a′) with respect to the policy πQ⋆ . We use a Monte Carlo
policy evaluation for computing DQ⋆(R2(xt)) from sampled trajectory (Precup, 2000), because it is known
to be an unbiased estimator of DQ⋆(R2(xt)).

18

Under review as submission to TMLR

Next, consider the product term DJ1(Q⋆(R2(xt))) · DQ⋆(R2(xt)). Given that both DJ1(Q⋆(R2(xt)) and
DQ⋆(R2(xt)) are unbiased estimates for DJ1(Q⋆(R2(xt)) and DQ⋆(R2(xt)) based on our aforementioned
analysis. We select two independent samples to estimate DJ1(Q⋆(R2(xt)) and DQ⋆(R2(xt)). By doing so,
the covariance between these two estimates to be 0. Hence, we arrive at the conclusion that DJ(x) is a
unbiased estimator of DJ(x).

A.5 Proof of Theorem 4

Proof. Given P2’s reward R2, denote by BR(R2) the entropy-regularized optimal policy (best response)
of P2, which is unique. Suppose x⋆ is an optimal incentive when P2’s reward is R2. This implies
maxπ=BR(R2(x⋆)) J(x⋆, π) ≥ maxπ=BR(R2(x)) J(x, π) for all x.

Slightly abusing notation, we refer to R2, F, R†
2 by their vector representations. Since F is a potential-based

reward shaping for R2, by definition it is also a potential-based reward shaping for R2(x), for any x. Due
to Theorem 3, we have BR(R2(x)) = BR(R2(x) + F) = BR(R†

2(x)) for any x (including x⋆). Thus, it follows
that maxπ=BR(R†

2(x⋆)) J(x⋆, π) ≥ maxπ=BR(R†
2(x)) J(x, π) for all x, which implies that x⋆ is also an optimal

incentive design when P2’s reward is R†
2 = R2 + F .

A.6 Proof of Corollary 1

First, the following result is proven in Skalse et al. (2023).
Theorem 5. (Skalse et al., 2023) Given an MDP M = ⟨S, A, P, µ, γ, R⟩ and a temperature parameter τ ,
the maximally supportive optimal policy π determines R up to potential-based reward shaping.

Proof. The proof is similar to that of Theorem 4. With a few changes to handle the non-uniqueness in P2’s
maximally supportive optimal policy. Given P2’s reward R2, denote by BRMS(R2) the set of maximally
supportive optimal policies (best responses) of P2. Suppose x⋆ is an optimal incentive when P2’s reward is
R2. This implies that when P2 breaks the tie in favor of P1, that is, P2 selects π ∈ BRMS(R2(x⋆)) that
maximizes P1’s value J(x⋆, π), then maxπ∈BRMS(R2(x⋆)) J(x⋆, π) ≥ maxπ∈BRMS(R2(x)) J(x, π) for all x.

Since F is a potential-based reward shaping for R2, by definition it is also a potential-based reward shaping
for R2 + x, for any x. Due to Theorem 3, we have BRMS(R2(x)) = BRMS(R2(x) + F) = BRMS(R†

2(x)) for
any x (including x⋆). Thus, it follows that maxπ∈BRMS(R†

2(x⋆)) J(x⋆, π) ≥ maxπ∈BRMS(R†
2(x)) J(x, π) for all x,

which implies that x⋆ is also an optimal incentive design when P2’s reward is R†
2.

19

	Introduction
	Preliminaries and Problem Formulation
	Main Results
	Computing the total gradient with known P2's reward
	Calculate gradient with unknown P2's reward

	Incentive-invariant reward shaping
	Experiments
	An MDP Example
	Gridworld Example

	Conclusion
	Derivations and Proofs
	Derivation of policy gradient
	Proof of Proposition 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4
	Proof of Corollary 1

