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Abstract

AI research agents are demonstrating great potential to accelerate scientific progress
by automating the design, implementation, and training of machine learning mod-
els. We focus on methods for improving agents’ performance on MLE-bench, a
challenging benchmark where agents compete in Kaggle competitions to solve
real-world machine learning problems. We formalize AI research agents as search
policies that navigate a space of candidate solutions, iteratively modifying them
using operators. By designing and systematically varying different operator sets
and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is
critical for achieving high performance. Our best pairing of search strategy and
operator set achieves a state-of-the-art result on MLE-bench lite, increasing the
success rate of achieving a Kaggle medal from 39.6 % to 47.7 %. Our investigation
underscores the importance of jointly considering the search strategy, operator
design, and evaluation methodology in advancing automated machine learning.

1 Introduction
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Figure 1: AIRA agents use the AIRA-dojo envi-
ronment, AIRA operators, and search policies to
achieve SOTA performance on MLE-Bench lite.

Science is based on searching the open-ended
space of hypotheses and testing them in a con-
trolled experiment [27]. Recent breakthroughs
have resulted in artificial intelligence (AI) agents
that offer great potential to automate the scien-
tific discovery process [49, 42, 3]. A key obsta-
cle to improving research agents is that their de-
signs entangle several factors for performance,
making it difficult to pinpoint sources of im-
provement via controlled experiments at scale
(Fig. 7). These factors span algorithm design,
concrete implementation, and ability to leverage
compute, as performance gains accrue only if no
layer in the stack bottlenecks the benefits from
additional compute resources. This challenge is
exemplified in MLE-bench [4], a benchmark where AI agents compete in Kaggle competitions to
solve real-world machine learning (ML) problems. Notably, the state-of-the-art approach AIDE [23]
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Figure 2: Overview of AIRA. Given a problem specification, AIRA maintains a search graph whose
nodes are (partial) solutions. At each iteration, the agent (1) selects nodes via a selection policy, (2)
picks an operator via an operator policy and applies this operator to the node, and (3) scores the
resulting solution via a fitness function. Here, a greedy node-selection strategy applies the improve
operator to the highest-scoring node.

does not fully disentangle these performance factors, providing limited insight into which components
primarily drive the agent’s performance and where improvements are needed.

We start by formalizing the design of AI research agents as a search algorithm composed of
two components: The first one is the search policy which is used to navigate the space of candidate
solutions, and the second is the operators which iteratively modifies existing solutions to generate
new candidate solutions. In this framework (Fig. 2), AIDE is represented as a greedy search algorithm
that, at each step, applies one of its code operators (i.e., DRAFT, DEBUG, IMPROVE) to the current
best solution. This allows us to disentangle the effect of the search from that of the operators.

To assess alternative search algorithms, we develop more sophisticated agents performing Evolu-
tionary and Monte Carlo Tree Search (MCTS) [6, 24]. We empirically show that AIDE’s operators,
rather than the search algorithm, are a bottleneck to better performance.

Based on these findings, we design an improved set of operators and evaluate them when paired
with the above-mentioned search algorithms. Our best-performing agent achieves state-of-the-art
results on MLE-bench lite, increasing the rate of achieving a Kaggle medal from 39.6 % to 47.7 %.

Additionally, we investigate how the generalization gap—the difference between validation
and test scores—affects the agents’ performance. In ML engineering tasks, as in many real-
world use cases, an agent can access only proxy metrics (e.g. validation loss) to guide the search
process, while the final solution is evaluated on a held-out test set. Therefore, a gap between the
expected (validation) and actual (test) loss, could potentially mislead the search process. Indeed,
we find systematic overfitting: selecting the final solution in a search graph by its test—rather than
validation—score, would increase the medal rate by 9 to 13 % (absolute scale), depending on the
search algorithm. These findings highlight the importance of rigorous evaluation protocols during
search and regularization for robust and scalable scientific discovery.

Finally, to conduct experiments, we develop AI Research Agent dojo (AIRA-dojo), a framework
that provides a scalable and customizable environment for AI research agents. First, AIRA-dojo
exposes a robust and flexible interface to compute resources, which is essential for building effective
agents. The baseline, AIDE, implemented in AIRA-dojo achieves a performance increase of 10.68
% (absolute scale) over the reported results [4]. Second, AIRA-dojo enables users to experiment
with custom operators, search policies, evaluation methods, and tasks within a comparable setup.
This facilitates a rigorous scientific study of AI research automation. Our code is open-sourced at:
https://github.com/facebookresearch/aira-dojo.
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2 Research Agents as Search Algorithms
AI research agents typically approach machine learning problems by generating artifacts – codebases
designed to solve a given task. Executing these artifacts yields trained models, which are then
evaluated against a chosen performance metric. The agent iteratively refines its artifacts to improve
performance on this metric.

Previous research indicates that LLMs alone are insufficient to effectively solve such open-ended
tasks [32]. In particular, LLM performance significantly improves when augmented with external
tools [37], execution feedback [13], and solutions addressing context limitations. Therefore, devel-
oping high-quality models typically involves iterative experimentation, where insights from prior
experiments inform subsequent refinements. Recent advancements by Jiang et al. [23] demonstrate
state-of-the-art performance by conceptualizing this iterative experimentation as a tree search over
potential solutions.

In this section, we formalize and generalize this perspective by modeling research agents as graph-
based search algorithms. The proposed framework allows systematic exploration of alternative agent
design choices, providing insights into how different algorithms affect the exploration-exploitation
trade-off—a fundamental aspect of search [24, 44].

2.1 Graph–based Search Framework

We consider an agent that operates by searching a directed graph Gt = (Vt, Et) that evolves over
multiple iterations t = 0, 1, . . . , where each node v∈Vt ⊆ S represents an artifact belonging to the
set of all possible artifacts S , while each directed edge (vi, vj)∈Et represents a transformation from
vi to vj . The root v0 is the initial artifact that can represent an empty or starting artifact.

Definition 1 (Components of the Search Algorithm). A graph-based search algorithm is specified
by the tuple

(
F , πsel,O, πop, τ

)
:

• Fitness Function. F : S → [0; 1] is a function that estimates the value or quality of a node v ∈ Vt.
Since true fitness is typically not available, F is often a proxy measure of the value of the node.

• Selection Policy. πsel : 2
Vt →2Vt chooses a subset of nodes Ut ⊆ Vt on which to operate, typically

guided by a heuristic function h : Vt → R, which assigns a scalar estimate to each node. The
heuristic may be derived directly from the fitness function F , such as the upper confidence bounds
for trees (UCT) used in MCTS [24], or other custom heuristics tailored to the domain [5, 18].

• Operator Set. O = { oℓ : 2S → S}Lℓ=1 comprises L transformation functions that propose new
artifacts v = oℓ({vk}mk=1) ∈ S from one or more selected artifacts. In AIDE, examples include
DRAFT, DEBUG, and IMPROVE instantiated as prompt-based instructions to an LLM. Composite
operators (e.g. the result of applying a sequence of base operators) can also be used.

• Operator Policy. πop : O×Ut → O decides which operator to apply to the current node selection.
• Termination Rule. τ halts the search when a computational budget is exhausted, progress stalls, or

a fitness threshold is reached.

At each iteration, the agent selects existing promising artifacts, applies transformation operators, and
updates the search graph, propelling the discovery process forward. We discuss specific instantiations
of search algorithms in Sections 2.3, 4.2. In all our instantiations: 1 the termination criterion is
set as the wall-clock time or the maximum number of artifacts, whichever happens first; 2 the
fitness function F is defined for each node by the operator that generates or modifies it (i.e., F is not
global); 3 all operators are LLM-driven except for the MEMORY operator, which is defined by hand.

2.2 Operators

We define operators as high-level functions that take in existing artifacts and produce new ones. These
can range from simple rule-based parsers to LLM calls using prompting techniques [46, 53] or more
complex agents like Cursor [20].

This broad definition enables a unified comparison across search methods. A search algorithm can be
instantiated with any mix of LLM-based, tool-based, or nested search operators.

Building on the demonstrated effectiveness of AIDE [23], we adopt a similar operator set as introduced
in their framework, consisting of the following: 1 DRAFT initializes the search process by generating
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an initial population of candidate artifacts. 2 DEBUG attempts to identify and correct errors in
invalid artifacts. 3 IMPROVE refines valid artifacts to enhance their performance according to the
evaluation criteria. 4 MEMORY chooses how and where information from past artifacts is used
in subsequent operations. 5 Furthermore, we introduce CROSSOVER which recombines useful
elements from two artifacts to create a new candidate. Section 3 contains further details.

2.3 Re-casting AIDE in our Notation

AIDE [23] is an LLM-driven agent that frames problem-solving as a tree-search over Python scripts.
In the tuple (F , πsel,O, πop, τ) from Section 2.1 its components are:

Fitness & selection (F , πsel). For each node v, fitness is the mean 5-fold cross-validation (CV) score
F(v)∈ [0, 1]1. The selection policy is greedy with respect to F . This means at iteration t the agent
selects and operates on v⋆ = argmaxv∈Vt

F(v) but, with probability εbug
2, may instead revisit a

buggy node (F = 0) to aid recovery and maintain diversity.

Operator set OAIDE. The agent exposes three LLM operators {DRAFT, IMPROVE, DEBUG} and one
handcrafted operator MEMORY or as defined by Jiang et al. [23]—the SUMMARIZATION operator.
The operators are designed to output the following: DRAFT (3–5-sentence plan + fenced script that
trains, evaluates, and writes submission.csv); DEBUG (short diagnosis and repaired script given a
traceback); IMPROVE (Creating exactly one measurable change — feature, architecture, schedule, etc.
— in plan + code form); MEMORY (running summary of all previous designs, scores, and notes that
is appended to every DRAFT/IMPROVE prompt).

Operator policy πop. (a) Seeding: invoke DRAFT exactly nd times from the root v0; (b) Logging:
after every DRAFT or IMPROVE, call MEMORY; (c) Main loop: for the node chosen by πsel apply
IMPROVE if it is valid and at least nd drafts exist, if less than nd draft nodes exist, DRAFT is called,
otherwise apply DEBUG.

This combination of πsel, πop, and OAIDE defines the baseline agent we denote AIDEGREEDY (also
summarized in Section B). When the agent uses an alternative search policy while keeping OAIDE
unchanged, we write AIDEsearch_policy to identify change. For example, AIDEMCTS uses the AIDE
operator set and MCTS as the search policy.

3 Experiment Design

3.1 AIRA-dojo

An agent’s environment greatly influences its performance. To systematically study the space of
agentic policies (see Fig. 7), we introduce the AI Research Agent (AIRA) dojo—a scalable and
customizable framework for AI research agents. AIRA-dojo provides the environment in which
agents operate, along with abstractions for operators and policies as described in Section 2, and tasks
that define evaluation criteria for agent performance. Using these abstractions, we implement and
evaluate four search policies: MCTS, Evolutionary, Greedy, and our own implementation of AIDE.
We hope that AIRA-dojo’s scalability and customizability, together with the provided agent and task
implementations, will support and advance future research in the community.

The infrastructure design of AIRA-dojo was informed by several reliability and performance con-
straints, as discussed in more detail in Section G.

3.2 Environment

The environment defines the context in which agents operate.

Action Space. We use Jupyter notebooks to execute code from the agents. With this interface, agents
can execute arbitrary Python code, perform file reads and writes, and even use the shell via Jupyter
magic commands. The environment captures and returns the status, standard outputs, tracebacks for
debugging, and the code block execution time to the agents.

1In practice, CV scores are not necessarily bounded between zero and one; for example, RMSE is an
unbounded metric.

2εbug is set to 1.0 so as to mimic the hyperparameters used in MLE-bench by Chan et al. [4].
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Isolation. The environment enforces program-level constraints, such as total runtime limit, GPU
and CPU usage, memory, and storage, using Apptainer containers [26]. This ensures complete
isolation from host systems, preventing agents from affecting the host environment or other agents,
and mitigates risks from unintended actions or failures, such as data leakage or interference with other
processes. Furthermore, agents possess root-like privileges within their isolated containers, granting
them full control over their environment. This allows them not only to configure their environments
using standard package management tools such as pip, conda, but even apt-get install.

Superimage. A container image provides a base set of tools required for ML tasks. This image
includes pre-configured CUDA support, deep learning frameworks like PyTorch and TensorFlow,
and essential data science libraries. Each coding session starts from the original Superimage state
and can diverge based on the agent’s actions while isolating the state of the other agents.

Together, these design choices create a robust testbed that eliminates confounders at both the system
and implementation levels. This enables reproducible benchmarking and facilitates the development
of long-running agentic systems across thousands of parallel runs.

3.3 MLE-bench

MLE-bench [4] contains 75 Kaggle-sourced tasks for evaluating machine learning engineering agents.
We evaluate on MLE-bench lite – a curated subset of 22 tasks selected from the full benchmark –
allowing us to allocate more seeds per task and increase our confidence in our results.

Our experiments showed that existing methods exhibit high variance in this benchmark (see Section J).
In line with the benchmark guidelines, we assess each agent’s performance using the Medal Success
Rate. Specifically, for each task, agents earn a bronze, silver, or gold medal according to task-specific
percentile thresholds. We report the percentage of attempts in which an agent secures a medal.

3.4 Experimental Details

Environment. Each candidate agent is launched in a freshly initialized, sandboxed process in AIRA-
dojo. This guarantees that file systems and environment variables are isolated across evaluations, and
there is no cross-agent interference. Every sandbox is provisioned with a fixed hardware quota: 1
dedicated H200 GPU, 24 logical CPU cores, 100 GB of RAM, and 1 TB of additional scratch storage.
Internet access is permitted solely for fetching third-party packages and model checkpoints.

Time Constraints. In line with MLE-bench, the agent is allowed a 24-hour wall-clock window.
Within this period, each agent has a maximum runtime of 4 hours per code execution. We chose
to reduce this from the 9-hour limit used in MLE-bench after preliminary experiments showed no
difference in performance and a higher average number of valid nodes in the search trees.

LLMs. We conducted all the experiments with the full-sized DeepSeek R1 [7] model, with 128K-
token context window to ensure input coverage without truncation. Due to wall-clock constraints,
this choice was guided by both the model’s capabilities and applicable rate limits. In particular,
we selected DeepSeek R1 as the most capable open-source model available, which allowed us to
self-host inference servers and maintain high experimental throughput without encountering rate
limits. For the main results, we also evaluated o3 [35], one of the most capable closed-source models.
To ensure experiment validity and avoid hitting rate limits, we limited the number of parallel runs
when experimenting with o3. We always use GPT-4o [34] with Structured Outputs to parse code
execution outputs—extracting run success, summary text, and validation metric. For the figures,
we take [OAI] AIDE o1 artifacts from the MLE-bench [4] GitHub repository. To directly compare
with their results, we evaluated o1-preview, but only completed experiments for one agent before
deprecation. See Section E for details.

4 AIRA

4.1 Operators OAIRA

As part of AIRA-dojo, we propose a new operator set based on OAIDE, denoted OAIRA. To this end,
we focus on maintaining a cleaner context through better-scoped memory, and encouraging structured
reasoning and strategic diversity in ideation. The key differences are:
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1 Prompt-adaptive complexity. We introduce a dynamic complexity cue within the system prompt
in order to guide the complexity of artifacts generated by the DRAFT and IMPROVE operators.
The complexity is determined by the number of children, nc, of the node being processed:
complexity(nc) = “minimal” if nc < 2, “moderate” if 2 ≤ nc < 4, “advanced” if nc ≥ 5

For the DRAFT operator, this cue influences the complexity of the generated ideas. For the IM-
PROVE operator, it guides the complexity of the enhancements. This dynamic signal helps prevent
premature over-engineering by ensuring the agent provides simple solutions when appropriate,
while encouraging more thorough exploration when more advanced solutions may be necessary.

2 Scoped memory. We modify the MEMORY operator to extract different types of memories
depending on the operator used. Specifically, for DRAFT and IMPROVE, it retrieves only sibling
memories—the children of the artifact the agent is applying the operator to—thereby promoting
diversity. This prevents overloading the context and reduces behavior indicative of mode collapse.
Conversely, for DEBUG, it retrieves the entire ancestral memory of the artifact’s debug chain,
enabling review of prior fix attempts and avoiding “undo–redo” oscillations.

3 Think Tokens. For reasoning models, we use the operators’ system prompts to explicitly
encourage them to use thinking tokens for reasoning and reflection. These thoughts are stripped
from the final answer–remaining invisible to other operators (e.g., memory). On average, we
observe a 2× increase in completion tokens generated by the AIRA operator set (see Section F).

4.2 Agents

In this section, we introduce three agents that combine the operatorsOAIRA—proposed in Section 4.1—
with distinct search policies (see Appendix H for the rationale behind their selection). Each agent
uses the same proxy–fitness function F (5-fold CV) and the same termination criterion τ (based on
wall-clock time or artifact cap).

AIRAGREEDY. This agent employs greedy search (Section 2.3) using the OAIRA operator set. Any
performance improvement of AIRAGREEDY over AIDEGREEDY directly reflects the benefit of the
new operators, since the only difference between the two is the operator set.

AIRAMCTS. This agent uses Monte-Carlo Tree Search (MCTS) [24] with OAIRA operator set. Our
implementation of MCTS follows the canonical loop (selection, expansion, evaluation, and backup),
but omits simulated roll-outs: the leaf value of expanded nodes is the proxy fitness function F :

• Selection. From the root node v0, descend by selecting the node with the highest UCT score
πsel(v) = argmaxv∈Vt

hUCT(v) where hUCT(v | u) = Q(v) + c
√

logN(u)/(N(v) + ε), where
N(·) and Q(·) are the visit count and running mean fitness. Here, u is the parent of v.

• Expansion. Only leaves are expanded. The chosen operator fromOAIRA is applied n times, creating
n children. Buggy children enter an automatic DEBUG loop until fixed or the budget expires.

• Evaluation & backup. The leaf fitness is F(vℓ) is back-propagated to ancestors with the standard
incremental update of (N,Q).

AIRAEVO. The evolutionary agent keeps a population Vt of fixed size n and repeats:

• Parent selection: Select individuals with probability πsel(v) = F(v)/
∑

u∈Vt
F(u).

• Reproduction: With a fixed probability, apply IMPROVE; otherwise, apply CROSSOVER. Buggy
parents undergo DEBUG until they are either fixed or the debug attempt limit is reached.

• Replacement: Offspring replace the least-fit individuals in Vt.

For both AIRAMCTS and AIRAEVO, we normalize all fitness values using the minimum and
maximum values observed during the search process. This normalization ensures a consistent set
of hyperparameters throughout the search. To select the final solution, the AIRA and AIDE agents
return the one with the highest validation score.

5 Experiments and Results
5.1 Analyzing the Performance of the Current SoTA

The most effective search algorithms strike a balance between exploration and exploitation. In this
section, we analyze the exploration–exploitation trade-offs of AIDE, the current state-of-the-art
method, and then investigate how additional computation time increases its performance.
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Figure 3: Searching with AIDE’s operators. When limited to AIDE’s operator set OAIDE, agents
using more advances search policies (e.g., MCTS, evolutionary algorithms) gain no advantage,
underscoring the operator set as the bottleneck.
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Figure 4: a) AIDE’s performance profile over 24-hour search window. Perceived vs. actual medal
rate over 24 hours of AIDEGREEDY. The curves show the mean validation (agent-reported) and
held-out test medal rates across 20 seeds for all tasks. The widening band illustrates the generalization
gap, revealing how apparent gains on the validation set can mask overfitting and ultimately undermine
the search process. b) Performance profiles of all agents after 24-hour search window.

The three main factors that influence this balance are memory, the operator set, and the selection
policy. Memory structures prior knowledge—storing promising solutions and tracking which regions
of the solution space have been sampled—to inform subsequent decisions. This information can bias
the search toward exploration by encouraging diversity or toward exploitation by discouraging it.
Operators then apply controlled transformations to existing solutions: for instance, random mutations
introduce diversity, targeted refinements exploit known strengths, and recombinations merge features
from multiple candidates. Finally, the selection policy balances exploiting high-quality regions of
the solution space with exploring less-tested areas by determining how to allocate computational
resources. A non-greedy selection policy, such as in MCTS, periodically directs resources toward
branches that may appear suboptimal, with the goal of uncovering better solutions.

What is the effect of memory? To quantify the impact of the MEMORY operator, we conduct a
controlled ablation comparing the performance of AIDE with and without the MEMORY operator
enabled. As shown in Fig. 3, both variants achieve nearly identical mean medal rates. This suggests
that memory is not a driving factor behind AIDE’s strong performance. What is the effect of
exploration at the search level with AIDE’s operators? AIDE uses a selection policy that does not
explore and always greedily selects the most promising candidate. To evaluate the impact of the search
policy as a modulator of the exploration-exploitation tradeoff when searching using AIDE’s operators,
we replaced the operators in AIRAMCTS with that of AIDE and varied the UCT exploration constant
cUCT ∈ {0, 0.25, 0.75}. The cUCT, which controls exploration in MCTS, allows us to isolate the
effect of search-level exploration on downstream performance. The resulting medal rates (Fig. 3)
showed only marginal differences across all cUCT values, supporting our hypothesis that search-level
exploration is constrained by the interaction between the operator set and the search policy. We
observe the same limitation when performing the same operator replacement in AIRAEVO.

What is the performance profile of AIDE? To examine the improvement gains over time, we plot
AIDE’s anytime performance, which is the average medal rate achieved by the agent if the search was
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Figure 5: Medal rates on MLE-bench Lite. Performance is shown for three medal categories: any
medal, silver medals and above, and gold medals only. Error bars represent 95% confidence intervals
computed using stratified bootstrapping.

to terminate at time t. The results, summarized in Fig. 4a, suggest that while the agent’s perceived
performance (validation score) continues to improve over time, the true test performance plateaus,
even slightly decreases over time. These findings suggest that overfitting might be a fundamental
limitation to the agent’s performance. We further investigate this in Section 5.3.

5.2 AIRA Beyond Greedy

Based on the observation that search policies yield no performance gain with AIDE’s operators,
this section is divided into two parts: 1 assessing the effectiveness of our improved operators (see
Section 4.1), 2 examining their interplay with the more advanced search policies. The results are
summarized in Fig. 5, with a detailed breakdown of performance for each task in Section L.

Evaluating the environment. But first, we highlight the benefits from AIRA-dojo. Specifically, our
baseline agent implementation, AIDEGREEDY o1-preview, operating in the AIRA-dojo environ-
ment, improves the medal rate from 35.2 % to 45.9 % compared to the reported results [4]. This
corresponds to state-of-the-art performance with a relative improvement of 30 % in medal rate. It is
notable that AIDEGREEDY o1-preview, outperforms both AIDEGREEDY R1 and AIDEGREEDY
o3, despite o3 being the newest model in the series. While evaluating all agents with o1-preview
would have been informative, we were only able to complete the AIDEGREEDY experiment before
the model was discontinued.

Evaluating the operator sets. AIDEGREEDY and AIRAGREEDY employ the same search policy
but differ in their operator sets. Comparing their performance isolates the effect of the operators.
AIRAGREEDY outperforms AIDEGREEDY (45.5 % vs. 39.8 %), representing a 14 % relative
improvement and underscoring the importance of operators for performance.

Evaluating search policies. Equipped with an improved set of operators, we now explore whether
combining them with advanced search methods can further enhance performance. The results (Fig. 5)
show that for R1, AIRAMCTS achieves the best performance, achieving state-of-the-art performance
on MLE-bench Lite with an average medal rate of 47%. Both AIRAMCTS and AIRAGREEDY
achieve silver-or-above medal rates (≈ 36.5%), outperforming the baseline by 4.5 absolute points.
In terms of gold medals, AIRAGREEDY performs best, reaching 27%. For o3, AIRAMCTS and
AIRAGREEDY perform comparably in terms of any medal and silver-or-above medal rates, while
AIRAMCTS outperforms AIRAGREEDY in gold medals by 2.2 percentage points. Although agents
using R1 and o3 achieve similar overall medal rates, those using o3 perform better when considering
gold and silver-or-above medal rates. Specifically, AIRAMCTS increases the gold medal rate from
25.68 % with R1 to 30.91 % with o3, a relative increase of 20 %.

Collectively, what stands out is that all search policies combined with AIRA operators outperform
AIDEGREEDY. Furthermore, the rankings between agents using the AIRA operators with different
search strategies differs significantly from that observed in Section 5.1.

Finally, Fig. 4b shows the anytime performance of each agent over the 24-hour window defined by
MLE-bench. For conciseness, we will focus our discussion on performance with R1, as the results
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Figure 6: a) The validation–test metric mismatch. Results shown are for agents using R1. Bars
depict the absolute performance gap between three configurations: (i) using the validation metric for
both intermediate (search) and final (submission) node selection; (ii) using the validation metric only
for search and the test metric for selection; and (iii) using the test metric for both search and selection.
b) Bridging the validation–test gap. Medal rate achieved by two final node selection strategies as a
function of k: (i) randomly sampling k nodes and reporting the highest test score among them; (ii)
selecting the top k nodes by validation score and reporting the highest test score among those. As k
increases, the validation-based strategy closes the gap to the upper-bound performance given by the
best test score over the entire search graph.

with o3 follow a similar pattern. We observe that the rankings between agents change over time.
For example, at the 3-hour mark, the performance gap between AIRAGREEDY and AIRAMCTS is
notable. This gap narrows by the 10-hour mark, where all agents perform similarly. Meaningful
divergence in performance appears only after 19 hours. These trends reflect the interaction between
rankings and the resources provided, as shown in Figure 7.

We further examine the effect of extended compute time on performance by running experiments for
up to 5 days (Appendix C), showing that our agents continue to improve beyond the 24-hour period.
To illustrate differences in search behavior, Appendix M presents representative search trees from our
experiments for each agent, which may help clarify the strengths and weaknesses of each method.

5.3 The Generalization Gap: Searching with a Proxy Evaluation

Agents steer their search using the validation scores of candidate solutions, but ultimately, performance
is measured on a held-out test set. Due to finite sample effects, the validation score is not perfectly
predictive of performance on the test set—a discrepancy known as the generalization gap.

In this section, we measure the impact of this generalization gap on the agents’ performance. We
further quantify whether this impact is more detrimental during the intermediate node selection in the
search process or the final (submitted) node selection.

How large is the impact of the generalization gap on performance? We begin by comparing two
extremes: VAL/VAL—both intermediate and final node selection use the validation score (standard
practice); TEST/TEST—an oracle baseline using the true test score at both stages. As shown in
Fig. 6a, searching based on the test score instead of the validation score improves performance by
9.4 % and 12.4 % for AIRAMCTS and AIRAEVO. The gap is even higher for the agents using a
greedy search policy, reaching 15 % for AIRAGREEDY and 16.6 % for AIDEGREEDY. For the rest
of this section, we investigate the nature of this gap in performance and how to close it.

How much of the gap can be attributed to final node selection? To answer this question, we
consider the following two settings: VAL/VAL; and VAL/TEST—the intermediate node selection
uses the validation score, while the final node selection is made based on the test scores. The results
(Fig. 6a) indicate that by selecting the best node in a search graph constructed without privileged
access, i.e., based on validation signal, all agents achieve a performance boost of 9 to 13 absolute
points. Crucially, comparing VAL/TEST with TEST/TEST shows that oracle final-node selection
eliminates the gap between the standard (VAL/VAL) and oracle (TEST/TEST) settings for both
AIRAMCTS and AIRAEVO. Even for the agents implementing the simpler greedy policy, selecting
the best node in the final search graph closes more than 60 % of the gap. These findings highlight
robust final-node-selection strategies as a promising path to higher performance.

Bridging the gap through multiple submissions. A straightforward remedy is to hedge against
validation score noise by selecting multiple promising nodes. Specifically, among the top-k nodes
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ranked by validation score in the search graph, we report the test score of the best-performing one. As
a baseline, we repeat the process for a set of random-k nodes, and summarize the results in Fig. 6b.
We highlight the following observations: 1 the larger gap between top-k and random-k in agents
using non-greedy algorithms, AIRAEVO and AIRAMCTS, suggest greater diversity in their search
graphs; 2 with as little as 3 top-k submissions agents achieve an additional 10 % of performance;
3 the top validation nodes are informative of the best performing nodes.

6 Related Works

Scaling Search with LLMs. Integrating search with LLM-based generators has gained traction across
domains such as coding [1], math [52], and planning [16, 15]. In practice, increased test-time compute
through algorithms like best-of-N [45], beam search [16], MCTS [1, 15], and evolutionary search [39,
17] often improves performance beyond the architectural and size constraints of LLMs [41]. Our
results highlight that these performance gains depend critically on the interplay between search
components (see Section A)—an aspect that prior work has largely overlooked.

Automating ML Engineering and Scientific Discovery. Traditional approaches like AutoML [12,
43, 33] and Neural Architecture Search (NAS)[54, 29, 38] automate ML by searching over predefined,
expert-designed configuration spaces, often via brute-force or heuristic methods [2, 8, 28]. In contrast,
recent advances in LLMs enable more open-ended design. AIDE [23] treats ML engineering as LLM-
guided code optimization via tree search. AI Scientist v2 [49] extends this paradigm, automating
the entire research pipeline using agentic LLMs. Similar techniques have been applied to software
engineering [1], algorithm and reward design [39, 31, 11, 17, 7], and even natural sciences [3, 42].
Existing systems often combine search procedures, operators, and evaluation in ways that make it
challenging to understand which components drive performance improvements. To address this, we
separate these components and look at how each one—and their interactions—can be optimized
better. Concurrent work, R&D-Agent [51], which addresses the same problem setting, achieved
impressive results on MLE-Bench. Our results fall within their reported standard deviation. We note
that their experiments use at most 6 seeds, and as discussed in Section J, the limited number of seeds
may introduce variation in the conclusions. Finally, our approach differs from methods such as Agent
K [14], which uses long-term memory across multiple Kaggle competitions. In contrast, we focus on
addressing each competition independently.

AI Research Frameworks. Most existing benchmarks for machine learning or research engineering,
such as MLGym [32], RE-bench [48], and MLAgentBench [19], come with their own frameworks.
Our approach is most similar to Inspect [21], a framework which provides an abstraction that makes
minimal assumptions about the agent and evaluation design, clearly separating the two. This flexibility
in agent design is essential for enabling rigorous comparisons across a wide range of agents—from
simple LLM-based agents with tool access to scaffolds combining algorithmic and LLM-based
components—within the same environment. The environment plays a critical role in performance
(see Section 5.2). However, unlike Inspect, AIRA-dojo focuses strongly on long-running research
tasks, which influences our environment design choices. For example, prior work typically uses
Docker to containerize agents’ workspaces, but Docker is unsupported on most HPC clusters due to
its reliance on root privileges and lack of seamless integration with common HPC resource managers.
This limitation hinders scalability, addressed through our Apptainer (see Section 3.2).

7 Conclusion
We conceptualize the design of AI research agents as a combination of two axes: search policy and
operators. This formulation allowed us to perform a systematic investigation of the interplay between
the two, highlighting how the operator set can act as a bottleneck to performance improvements. Based
on this finding, we designed an enhanced operator set and constructed agents that combines these
operators with several search strategies: Greedy, Monte Carlo Tree Search (MCTS), or Evolutionary
Search. Our best-performing agent achieves a new state of the art on MLE-bench, increasing the
success rate of winning a Kaggle medal from 39.6 % to 47.7 %. Further, we analyzed the role of the
generalization gap in node evaluation. Our findings indicate systematic overfitting: selecting the final
solution from the search graph based on its test score instead of its validation score would increase
the medal rate by 9 to 13 % (absolute scale), depending on the search strategy. This highlights that
robust final-node selection is a promising avenue for improving performance.
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Appendix
A Preconditions for Scaling

Figure 7: Key factors dictating agent
performance and scalability as com-
pute resources increase.

The hierarchical diagram in Fig. 7 illustrates key insights
into the preconditions for improving agent performance
through additional compute. Agents benefit from scaling
search only when performance gains are not limited by the
environment in which the agent operates, the quality of
the evaluation signal guiding the search, the capability of
the operators performing the search, or the search policy
itself.

Specifically, if the agent is provided with 10× more com-
pute resources (e.g., 10 GPUs for 24 hours), the environ-
ment must allow the agent to effectively leverage these re-
sources. Without a sufficiently high-quality evaluation sig-
nal—the ability to accurately assess solution quality—the
direction of improvement will be unclear, which would undermine the search process. Finally, a
successful search requires capable operators that effectively perform their functions and a search
policy that allocates compute efficiently to the most promising regions of the search space and
appropriate operators.

Overall, this work underscores the importance of a strong foundation in algorithm design and
infrastructure to ensure that scaling search translates into downstream performance improvements.

B Re-Casting AIDE in our Notation

Section 2.3 shows how AIDE can be reformulated within our framework. Table 1 summarizes the
tuple that specifies the AIDE agent.

Table 1: Instantiation of the tuple
(
F , πsel,O, πop, τ

)
for AIDE.

Component AIDE choice

F 5-fold CV score
πsel Greedy + εbug exploration
O OAIDE
πop Fixed rule
τ Wall-clock or No. Node cap

C The Effect of Compute: Searching Beyond 24h

In our analysis of the agents’ anytime performance (see Section 5.2), we observe that their rankings
evolve over time, with significant differences in performance emerging only after 15 hours of
execution. For the experiments presented in the main paper, we adopt the experimental setup
proposed in the MLE-bench paper, where agents are given 24 hours to complete the task. However,
our aim is to develop agents capable of effectively utilizing computational resources well beyond the
24-hour limit, and thus, evaluating within this restricted timeframe offers only limited insights into
their potential long-term capabilities.

To examine the impact of access to computational resources, we conducted an experiment with the
same setup described in Section 5.2, extending the total runtime to 90 hours—nearly four days. The
results, summarized in Fig. 8, demonstrate a similar pattern, where notable differences in behavior
emerge after roughly 15 hours. Specifically, the performance of the AIRA agents (AIRAGREEDY and
AIRAMCTS) continues to improve, whereas the performance of AIDEGREEDY plateaus. Another
notable observation is that agents employing our proposed operators, AIRAGREEDY and AIRAMCTS,
exhibit comparable improvement profiles until around the 50-hour mark, at which point AIRAMCTS
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Figure 8: Medal achievement rates over a 90-hour search horizon. Each point represents the
mean percentage of medals earned across 10 independent runs per task on the MLE-bench lite suite.
Results are based on a complete replication of the baseline experiments and extended to 90 hours of
search.
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Figure 9: Test vs. Validation Medal Rates over 90 hours. Comparison of medal rates between
test and validation scores for up to 120 hours of runtime. Each subplot shows the medal rate if the
validation score matched the test score (potential performance) versus the actual medal rate given the
true test score, revealing the performance gap between validation and test performance.

begins to overfit and its performance subsequently deteriorates. Conversely, AIRAGREEDY continues
to improve, ultimately achieving a peak medal rate of approximately 53%. This peak represents
an absolute improvement of 6% over the highest performance attained with 24 hours of compute,
translating into a relative gain of 12%. However, the agent’s performance subsequently declines as
overfitting begins to manifest. We see in Fig. 9 that the validation performance continues to climb
higher and overfitting becomes more severe. Ultimately over the longer search horizon, we see
AIRAGREEDY and AIRAMCTS achieve a similar test-validation gap as AIDEGREEDY. This is
consistent with our findings in Section 5.3 and highlights a fundamental limitation that affects agents’
ability to operate effectively over much longer time horizons.fu

Overall, this analysis underscores the necessity of jointly considering search strategy, operator design,
and computational resource availability (see Fig. 7). Furthermore, it highlights the fundamental
impact of the generalization gap, identified and studied in Section 5.3.
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D Evaluation on the Full MLE-bench Set

To get a better estimate of performance, as well as the effect of task difficulty and recent, in this
section, we report the performance of agents on the full MLE-bench set of tasks. Specifically, we
focus on our greedy agent, AIRAGREEDY, using o3 as the backbone LLM. We also report the results
for AIDEGREEDY, the strongest version of the previous state-of-the-art agent, and for OpenAI’s
proprietary agents using o3 and gpt-5-thinking backbones, using their reported numbers. The average
performance and the confidence intervals are computed over 20 random seeds.

Table 2 reports the performance for the overall performance, the complexity-based splits suggested by
the MLE-bench paper [4], and the MLE-bench 30 split of interesting and diverse papers proposed in
the gpt-5 system card [36]. We achieve an overall medal rate of 31.6%, and outperform the baseline
on all splits. In all splits except from low, we achieve a relative increase of more than 100%. We
also observed a 7.3 point performance increase on the low split (from 47.7 to 55.0) by using high
reasoning effort and further improving the infrastructure (e.g., optimizing the file system and caching
models used in solutions to avoid rate-limiting errors).

Table 2: Medal rates (mean ± standard error) across agents. The results annotated with an asterix
are reproduced from prior work. For OpenAI o3 and GPT-5 Thinking, we report the values from the
system card (https://cdn.openai.com/gpt-5-system-card.pdf). For AIDE (o1-preview),
we use results from the MLE-Bench repository for all metrics, except for MLE-Bench-30, which
we compute from trajectories on the MLE-Bench leaderboard (https://github.com/openai/
mle-bench/).

Model All Low Medium High MLE-bench-30

OpenAI agent, o3, no browsing – – – – 6*
OpenAI agent, gpt-5-thinking, no browsing – – – – 8*
AIDE Greedy (o1-preview) 16.9 ± 1.1* 34.3 ± 2.4* 8.8 ± 1.1* 10.0 ± 1.9* 12.5 ± 0.8
(Ours) AIRA Greedy o3 31.6 ± 0.8 55.0 ± 1.5 22.0 ± 1.2 21.7 ± 1.1 25.8 ± 1.3

To provide a comprehensive view of performance, we report the per-task medal rate in Table 3

E Implementation Details

Our experiments were run on a single-agent setup powered by an NVIDIA H200 GPU, 24 CPU cores
of Intel(R) Xeon(R) Platinum 8488C, 100 GB of RAM, and an extra 1 TB of local-disk scratch space.
Each job had a hard wall-clock cap of 24 hours, an execution time limit of 4 hours, and a 5 min grace
period. We deployed full-sized DeepSeek-R1 model with sglang, and accessed via the litellm
API with generation parameters temperature=0.6 and top_p=0.95.

For experiments done with MCTS, we set num_children=5, and uct_c=0.25 unless stated oth-
erwise. For evolutionary search, we set the number of candidates_per_generation=5 for con-
sistency. For AIRAMCTS, AIRAEVO, and AIRAGREEDY, we limit a debug cycle to total of 10
nodes or 12 hours of total time spent debugging (whichever comes first), to prevent spending all the
resources on a single node.

E.1 MCTS Statistics and Backup

Each node v stores two running statistics: the visit count N(v) ∈ N and the empirical mean
fitness Q(v) ∈ R. When a freshly expanded leaf vℓ is evaluated, we initialize N(vℓ) = 1 and
Q(vℓ) = F(vℓ), where F is the proxy fitness used throughout the paper. The value F(vℓ) is then
back-propagated along the path P = (vℓ, . . . , v0) to the root:

∀u ∈ P : N(u) ← N(u) + 1, Q(u) ← Q(u) +
F(vℓ)−Q(u)

N(u)
.

This incremental update maintains the invariant Q(u) = 1
N(u)

∑N(u)
i=1 F(vi), i.e. Q(u) is always the

mean fitness of all leaf evaluations that have propagated through u. If a node is re-visited later, the
same update is applied, allowing Q to converge to the true expected value under continued exploration.
No simulated roll-outs are performed; the leaf value is taken directly from F .
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Table 3: Per-task performance, grouped by complexity.

Competition Name Bronze Medal Rate (%) Silver Medal Rate (%) Gold Medal Rate (%) Year MLE-bench-30

LOW COMPLEXITY
detecting-insults-in-social-commentary 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 2012
the-icml-2013-whale-challenge-right-whale-redux 100.0 ± 0.0 100.0 ± 0.0 85.0 ± 8.2 2013
mlsp-2013-birds 70.0 ± 10.5 45.0 ± 11.4 0.0 ± 0.0 2013 ✓
random-acts-of-pizza 40.0 ± 11.2 15.0 ± 8.2 0.0 ± 0.0 2015
denoising-dirty-documents 90.0 ± 6.9 90.0 ± 6.9 90.0 ± 6.9 2015
text-normalization-challenge-russian-language 65.0 ± 10.9 15.0 ± 8.2 0.0 ± 0.0 2017
dogs-vs-cats-redux-kernels-edition 90.0 ± 6.9 90.0 ± 6.9 90.0 ± 6.9 2017
spooky-author-identification 85.0 ± 8.2 85.0 ± 8.2 0.0 ± 0.0 2017 ✓
text-normalization-challenge-english-language 50.0 ± 11.5 35.0 ± 10.9 0.0 ± 0.0 2017
leaf-classification 45.0 ± 11.4 25.0 ± 9.9 5.0 ± 5.0 2017
jigsaw-toxic-comment-classification-challenge 30.0 ± 10.5 5.0 ± 5.0 0.0 ± 0.0 2018
new-york-city-taxi-fare-prediction 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2018 ✓
nomad2018-predict-transparent-conductors 75.0 ± 9.9 70.0 ± 10.5 50.0 ± 11.5 2018 ✓
dog-breed-identification 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2018
aerial-cactus-identification 95.0 ± 5.0 95.0 ± 5.0 95.0 ± 5.0 2019
aptos2019-blindness-detection 50.0 ± 11.5 40.0 ± 11.2 15.0 ± 8.2 2019 ✓
histopathologic-cancer-detection 95.0 ± 5.0 95.0 ± 5.0 95.0 ± 5.0 2019
siim-isic-melanoma-classification 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2020
plant-pathology-2020-fgvc7 95.0 ± 5.0 95.0 ± 5.0 95.0 ± 5.0 2020
ranzcr-clip-catheter-line-classification 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2021
tabular-playground-series-dec-2021 35.0 ± 10.9 35.0 ± 10.9 35.0 ± 10.9 2021
tabular-playground-series-may-2022 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2022

MEDIUM COMPLEXITY
facebook-recruiting-iii-keyword-extraction 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2013
multi-modal-gesture-recognition 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2013 ✓
billion-word-imputation 5.0 ± 5.0 5.0 ± 5.0 5.0 ± 5.0 2015 ✓
cdiscount-image-classification-challenge 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2017
statoil-iceberg-classifier-challenge 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2018
tensorflow-speech-recognition-challenge 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2018
tgs-salt-identification-challenge 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2018
whale-categorization-playground 35.0 ± 10.9 25.0 ± 9.9 0.0 ± 0.0 2018 ✓
champs-scalar-coupling 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2019 ✓
inaturalist-2019-fgvc6 55.0 ± 11.4 45.0 ± 11.4 5.0 ± 5.0 2019
jigsaw-unintended-bias-in-toxicity-classification 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2019 ✓
kuzushiji-recognition 15.0 ± 8.2 0.0 ± 0.0 0.0 ± 0.0 2019 ✓
freesound-audio-tagging-2019 30.0 ± 10.5 10.0 ± 6.9 0.0 ± 0.0 2019 ✓
tensorflow2-question-answering 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2020 ✓
imet-2020-fgvc7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2020 ✓
google-quest-challenge 95.0 ± 5.0 95.0 ± 5.0 45.0 ± 11.4 2020
herbarium-2020-fgvc7 70.0 ± 10.5 30.0 ± 10.5 0.0 ± 0.0 2020
osic-pulmonary-fibrosis-progression 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2020 ✓
tweet-sentiment-extraction 35.0 ± 10.9 35.0 ± 10.9 0.0 ± 0.0 2020 ✓
iwildcam-2020-fgvc7 60.0 ± 11.2 45.0 ± 11.4 20.0 ± 9.2 2020
alaska2-image-steganalysis 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2020
plant-pathology-2021-fgvc8 100.0 ± 0.0 100.0 ± 0.0 95.0 ± 5.0 2021 ✓
cassava-leaf-disease-classification 15.0 ± 8.2 10.0 ± 6.9 0.0 ± 0.0 2021 ✓
herbarium-2021-fgvc8 30.0 ± 10.5 0.0 ± 0.0 0.0 ± 0.0 2021
chaii-hindi-and-tamil-question-answering 5.0 ± 5.0 5.0 ± 5.0 0.0 ± 0.0 2021
seti-breakthrough-listen 65.0 ± 10.9 55.0 ± 11.4 45.0 ± 11.4 2021
hubmap-kidney-segmentation 5.0 ± 5.0 5.0 ± 5.0 5.0 ± 5.0 2021 ✓
hotel-id-2021-fgvc8 85.0 ± 8.2 40.0 ± 11.2 0.0 ± 0.0 2021 ✓
ventilator-pressure-prediction 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2021 ✓
AI4Code 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2022
us-patent-phrase-to-phrase-matching 55.0 ± 11.4 45.0 ± 11.4 15.0 ± 8.2 2022 ✓
uw-madison-gi-tract-image-segmentation 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2022 ✓
h-and-m-personalized-fashion-recommendations 10.0 ± 6.9 5.0 ± 5.0 0.0 ± 0.0 2022 ✓
herbarium-2022-fgvc9 5.0 ± 5.0 0.0 ± 0.0 0.0 ± 0.0 2022
petfinder-pawpularity-score 35.0 ± 10.9 30.0 ± 10.5 15.0 ± 8.2 2022 ✓
icecube-neutrinos-in-deep-ice 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2023
learning-agency-lab-automated-essay-scoring-2 25.0 ± 9.9 25.0 ± 9.9 25.0 ± 9.9 2024
lmsys-chatbot-arena 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2024

HIGH COMPLEXITY
iwildcam-2019-fgvc6 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 2019
3d-object-detection-for-autonomous-vehicles 25.0 ± 9.9 15.0 ± 8.2 0.0 ± 0.0 2019
stanford-covid-vaccine 65.0 ± 10.9 65.0 ± 10.9 65.0 ± 10.9 2020 ✓
bms-molecular-translation 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2021 ✓
vinbigdata-chest-xray-abnormalities-detection 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2021
predict-volcanic-eruptions-ingv-oe 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 2021
siim-covid19-detection 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2021
rsna-miccai-brain-tumor-radiogenomic-classification 30.0 ± 10.5 20.0 ± 9.2 5.0 ± 5.0 2021
rsna-2022-cervical-spine-fracture-detection 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2022
smartphone-decimeter-2022 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2022 ✓
rsna-breast-cancer-detection 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2023
google-research-identify-contrails-reduce-global-warming 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2023
nfl-player-contact-detection 5.0 ± 5.0 0.0 ± 0.0 0.0 ± 0.0 2023 ✓
vesuvius-challenge-ink-detection 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2023
hms-harmful-brain-activity-classification 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2024 ✓
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E.2 Draft

You are a Kaggle Grandmaster attending a high-stakes competition.
Carefully consider the task description, the size and format of the available data,

as well as the available compute resources.↪→
Your goal is to provide EXACTLY ONE IDEA AND ONE CODE IMPLEMENTATION of the idea,

different from those previously explored, that leverages the available resources
and is likely to lead to strong performance on the competition.

↪→
↪→
Be specific about each step of the proposed approach, including data processing and

feature engineering, the modeling and optimization method, as well as the
evaluation (USE 5-FOLD CROSS-VALIDATION).

↪→
↪→
You MUST PROVIDE a solution IDEA/PLAN in natural language and CODE in python that

DOES NOT INVOLVE any exploratory data analysis.↪→
# TASK DESCRIPTION
````
{{task_desc}}
````
# PREVIOUSLY EXPLORED IDEAS
````markdown
{{memory}}
````
# DATA OVERVIEW
````
{{data_overview}}
````
**CONSTRAINTS**:

- Be aware of the running time of the solution, it should complete within
{{execution_timeout}}↪→

- Prefer vectorized operations over Python loops when processing large datasets.
- Use `torch.optim.AdamW` (the recommended optimizer) instead of the deprecated

`AdamW` from `transformers`.↪→
- Replace the deprecated `early_stopping_rounds` argument in `lightgbm.train()`

with the `lightgbm.early_stopping(stopping_rounds=...)` callback.↪→
- If using `timm` models, remember not to prefix or suffix the model names with

datasets such as `cifar` as this was deprecated.↪→
- As much as possible, keep the stdout clean.

**DATA**: The data is already prepared and available in the read-only `./data`
directory. You should not unzip any files.↪→

**COMPUTE**: You have access to a Python environemnt with 1 NVIDIA H200 GPU(s) and
24 CPUs available, and the following packages installed: {{packages}}. If you
need to, feel free to use additional libraries that fit the problem.

↪→
↪→
Consider the previously explored ideas, and make sure the idea you propose considers

a DIFFERENT ASPECT OF THE SOLUTION, but keep the EVALUATION CONSISTENT.↪→
Brainstorm about possible approaches and WHY THEY ARE LIKELY TO BE EFFECTIVE AND

INCREASE THE PERFORMANCE for the given task, and the available data and compute
resources.

↪→
↪→
Remember, and this is important, the first idea should be simple and easy to

implement, while the last one should be more complex and sophisticated.↪→
{% if draft_complexity == 'simple' %}
In this iteration **focus on PROPOSING A SIMPLE IDEA:** one that can serve as a

SIMPLE YET EFFECTIVE BASELINE for the task. For example, consider battle-tested
methods or (potentially pre-trained) models that are known to work well for the
task at hand.

↪→
↪→
↪→
{% elif draft_complexity == 'normal' %}
In this iteration **focus on PROPOSING A MORE COMLPEX IDEA:** one that can beat the

previous baselines at the cost of some complexity and compute. For example,
consider leveraging more complex and/or larger (potentially pre-trained) models,
specialized feature engineering, or basic ensambling and/or hyper-parameter
optimization.

↪→
↪→
↪→
↪→
{% elif draft_complexity == 'complex' %}
In this iteration **focus on PROPOSING AN ADVANCED IDEA:** one that can beat the

previous baselines at the cost of some complexity and compute. For example,
consider using specialized (potentially pre-trained) models, leveraging advanced
feature engineering or data augmentiation strategies, advanced ensambling and/or
hyper-parameter optimization.

↪→
↪→
↪→
↪→
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{% endif %}
**RESPONSE FORMAT FOR IMPLEMENTATION**:
Provide a **SINGLE** Markdown code block (wrapped in ```) for the implementation

containing a **SELF-CONTAINED** Python script that:↪→
1. Implements the idea **END-TO-END**
2. **PRINTS THE 5-FOLD CROSS-VALIDATION** score of the evaluation metric
3. **SAVES THE TEST PREDICTIONS** in a `submission.csv` file in the current

directory↪→
Start by making sure you understand the task, the data and compute resources and the

idea. Then generate a detailed implementation plan that will structure and guide
you step-by-step through the implementation process. Make sure to reflect on the
plan to ensure that the implementation is efficient and faithful to the idea,
and that all the requirements (e.g., the evaluation score is printed, the
submission file follows the correct format and is saved in the correct location,
etc.) are satisfied.

↪→
↪→
↪→
↪→
↪→
↪→
For large datasets, avoid for loops and aim for efficient and fast data loading and

feature engineering.↪→
Format the proposed solution as follows:
# Idea to implement
<the proposed idea/plan>
```python
<the implementation of the proposed idea/plan>
```

E.3 Improve

# Introduction:
You are a Kaggle Grandmaster attending a high-stakes competition.
Carefully consider the task description, the size and format of the available data,

as well as the available compute resources.↪→
Your goal is to provide EXACTLY ONE IDEA AND ONE CODE IMPLEMENTATION of the idea,

different from those previously explored, that improves upon an existing
solution to the task.

↪→
↪→
Be specific about each step of the proposed improvement, including data processing

and feature engineering, the modeling and optimization method, as well as the
evaluation (USE 5-FOLD CROSS-VALIDATION).

↪→
↪→
You MUST PROVIDE an improvement IDEA/PLAN in natural language and CODE in python

that DOES NOT INVOLVE any exploratory data analysis.↪→
# TASK DESCRIPTION
````
{{task_desc}}
````
# PREVIOUS SOLUTION:
## Code:
{{prev_code}}
## Terminal Output:
{{prev_terminal_output}}
# PREVIOUSLY EXPLORED IMPROVEMENT IDEAS
````markdown
{{memory}}
````
# DATA OVERVIEW
````
{{data_overview}}
````
**CONSTRAINTS**:

- Be aware of the running time of the solution, it should complete within
{{execution_timeout}}↪→

- Prefer vectorized operations over Python loops when processing large datasets.
- Use `torch.optim.AdamW` (the recommended optimizer) instead of the deprecated

`AdamW` from `transformers`.↪→
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- Replace the deprecated `early_stopping_rounds` argument in `lightgbm.train()`
with the `lightgbm.early_stopping(stopping_rounds=...)` callback.↪→

- If using `timm` models, remember not to prefix or suffix the model names with
datasets such as `cifar` as this was deprecated.↪→

- As much as possible, keep the stdout clean.
**DATA**: The data is already prepared and available in the read-only `./data`

directory. You should not unzip any files.↪→
**COMPUTE**: You have access to a Python environemnt with 1 NVIDIA H200 GPU(s) and

24 CPUs available, and the following packages installed: {{packages}}. If you
need to, feel free to use additional libraries that fit the problem.

↪→
↪→
Consider the previously explored ideas, and make sure the improvement idea you

propose considers a DIFFERENT IMPROVEMENT OF THE SOLUTION, but keep the
EVALUATION CONSISTENT.

↪→
↪→
Brainstorm about possible improvements and WHY THEY ARE LIKELY TO BE EFFECTIVE AND

INCREASE THE PERFORMANCE for the given task, and the available data and compute
resources.

↪→
↪→
{% if improve_complexity == 'simple' %}
In this iteration, suggest a *minimal, low-risk* tweak that keeps the current

solution's core intact—no architecture overhauls or fundamental methodology
changes.

↪→
↪→
Think: a feature-engineering twist, a lightweight data-augmentation trick, or

hyperparameter changes.↪→
Check the MEMORY section first and avoid duplicating earlier ideas.
{% elif improve_complexity == 'normal' %}
In this iteration, propose a *moderate upgrade* that builds on the baseline without

deviating dramatically.↪→
Options include (but not limited to) hyper-parameter tuning, a small ensemble of

similar models, a sturdier preprocessing pipeline, feature engineering
improvements, and data augmentation.

↪→
↪→
Check the MEMORY section first and avoid duplicating earlier ideas.
{% elif improve_complexity == 'complex' %}
In this iteration, recommend a *substantial extension* that pushes the method's

boundaries while preserving its core logic.↪→
Consider advanced ensembling/stacking, fine-tuning specialized pre-trained models,

or exhaustive hyper-parameter searches.↪→
Check the MEMORY section first and avoid duplicating earlier ideas.
{% endif %}
**RESPONSE FORMAT FOR IMPLEMENTATION**:
Provide a **SINGLE** Markdown code block (wrapped in ```) containing a

**SELF-CONTAINED** Python script that:↪→
1. Implements the idea **END-TO-END**
2. **PRINTS THE 5-FOLD CROSS-VALIDATION** score of the evaluation metric
3. **SAVES THE TEST PREDICTIONS** in a `submission.csv` file in the current

directory↪→
Start by making sure you understand the task, the data and compute resources and the

idea. Then generate a detailed implementation plan that will structure and guide
you step-by-step through the implementation process. Make sure to reflect on the
plan to ensure that the implementation is efficient and faithful to the idea,
and that all the requirements (e.g., the evaluation score is printed, the
submission file follows the correct format and is saved in the correct location,
etc.) are satisfied.

↪→
↪→
↪→
↪→
↪→
↪→
For large datasets, avoid for loops and aim for efficient and fast data loading and

feature engineering.↪→
Format the proposed solution as follows:
# Improvement Idea to implement
<the proposed improvement idea/plan>
```python
<the implementation of the proposed improvement>
```
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E.4 Analysis

# Introduction:

You are a Kaggle grandmaster attending a competition.

You have written code to solve this task and now need to evaluate the output
of the code execution.

You should determine if there were any bugs as well as report the empirical
findings.

# Task Description:

{{task_desc}}

# Implementation:

{{code}}

# Execution output:

{{execution_output}}

E.5 Debug

# Introduction:
You are a Kaggle Grandmaster fixing code bugs in a high-stakes competition

solution.↪→

Carefully review the previous debugging attempts, the buggy code and its
terminal output in addition to the given task/data details, and
available compute resources.

↪→

↪→

You must not change the core idea or methodology of the solution, but only
fix the bugs in the code.↪→

# Task Description:
````markdown
{{task_desc}}
````
{% if memory %}
# Previous debugging attempts:
````markdown
{{memory}}
````
{% endif %}
# Buggy Implementation:
{{prev_buggy_code}}
# Execution Output (Error):
{{execution_output}}
# Data Overview:
````
{{data_overview}}
````
# Compute Environment:
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- GPU: 1 NVIDIA H200
- CPUs: 24
- Available Packages: {{packages}}
- Additional libraries allowed as needed.
# Instructions:
- **Do NOT** alter the core method or underlying idea. Only correct

existing bugs.↪→

- Outline your bug-fix plan clearly in 3-5 concise sentences.
- Provide a single, complete Python code block wrapped in markdown

(```python) that:↪→

- Implements the fix fully.
- Calculates and clearly prints the evaluation metric using a validation

set (use 5-FOLD CV if suitable).↪→

- Generates a `submission.csv` file with test set predictions stored in the
**current directory** (`./submission.csv`).↪→

- Is fully self-contained and executable as-is (The entire bug-free
solution is given).↪→

- **Important Reminders:**
- Absolutely do **NOT** skip any part of the code.
- Always ensure predictions on the provided unlabeled test set are saved in

`./submission.csv`. This is crucial for grading.↪→

# Other remarks
- Huggingface is set to OFFLINE mode by default. If you firmly believe that

the issue is not having the requested model in the cache, please set it
to ONLINE mode by setting both the environment variables
`HF_HUB_OFFLINE=0` and `TRANSFORMERS_OFFLINE=0` on top of your code, by
importing and using `os.environ[...] = ...`.

↪→

↪→

↪→

↪→

- Do not set/force Huggingface to OFFLINE mode as that will NOT fix any
issue.↪→

- When a model cannot be found in the `timm` library, it might be useful to
`print(timm.list_models())`.↪→

- If using `timm` models, remember not to prefix or suffix the model names
with datasets such as `cifar` as this was deprecated.↪→

Brainstorm about possible ways to fix the bug and WHY THEY ARE LIKELY TO
FIX THE BUG for the given implementation. Additionally, if any other
bugs further down the line are observed, please fix them as well.

↪→

↪→

Generate a bug-fix plan that will structure and guide your step-by-step
reasoning process. Reflect on it to make sure all the requirements are
satisfied.

↪→

↪→

Format the proposed bug-fix plan and code as follows:
# Bug Fix Plan
<bug-fix plan>
```python
<the fixed python code>
```

E.6 Crossover

CROSSOVER Operator For two or more valid artifacts, the Crossover operator performs a merge
of existing solutions. It specifically aims to create a solution drawing insights from the best aspects of
its parents, while also taking into account the shared task context (see Section 2.3) that informs and
guides the merging process. For each crossover operation, the two parent nodes are sampled from the
distribution of all nodes’ fitness scores.

# Introduction:
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You are a Kaggle Grandmaster attending a high-stakes competition.
Your goal is to combine two previously developed solutions to further

increase performance on the given task.↪→

Carefully consider the task description, the two provided solutions,
the available data, and compute resources.↪→

You need to devise a plan to merge or integrate these solutions and
then implement it.↪→

# TASK DESCRIPTION
```
{{task_desc}}
```

{% if memory %}
# PREVIOUSLY EXPLORED CROSSOVER/COMBINATION IDEAS
```markdown
{{memory}}
```
{% endif %}

# PREVIOUS SOLUTION 1:
## Code:
```python
{{prev_code1}}
```

# PREVIOUS SOLUTION 2:
## Code:
```python
{{prev_code2}}
```

# INSTRUCTIONS:

Your main task is to:
1. Propose a **Crossover Plan** in natural language explaining how to

combine Solution 1 and Solution 2.↪→

2. Provide a **Python Code Implementation** of this plan.

Consider any previously explored ideas from the MEMORY section.
Brainstorm how the two provided solutions can be effectively combined

and **WHY THIS CROSSOVER IS LIKELY TO BE EFFECTIVE** and increase
performance for the given task, data, and compute resources.

↪→

↪→

Aim for a consistent evaluation method (e.g., 5-FOLD CROSS-VALIDATION,
unless the task specifics dictate otherwise).↪→

**CONSTRAINTS**:
- Be aware of the running time of the solution, it should complete

within {{execution_timeout}}↪→

- Prefer vectorized operations over Python loops when processing large
datasets.↪→

- Use `torch.optim.AdamW` (the recommended optimizer) instead of the
deprecated `AdamW` from `transformers`.↪→

- Replace the deprecated `early_stopping_rounds` argument in
`lightgbm.train()` with the
`lightgbm.early_stopping(stopping_rounds=...)` callback.

↪→

↪→

- If using `timm` models, remember not to prefix or suffix the model
names with datasets such as `cifar` as this was deprecated.↪→
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- As much as possible, keep the stdout clean.

**DATA**: The data is already prepared and available in the read-only
`./data` directory. You should not unzip any files.↪→

**COMPUTE**: You have access to a Python environment with 1 NVIDIA H200
GPU(s) and 24 CPUs available, and the following packages installed:
{{packages}}. If you need to, feel free to use additional libraries
that fit the problem.

↪→

↪→

↪→

Start by making sure you understand the task, the provided solutions,
the data and compute resources, and your proposed crossover idea.
Then, generate a detailed internal implementation plan that will
structure and guide you step-by-step through the implementation
process. Make sure to reflect on the plan to ensure that the
implementation is efficient, faithful to the crossover idea, and
that all requirements (e.g., the evaluation score is printed, the
submission file follows the correct format and is saved in the
correct location, etc.) are satisfied.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

**RESPONSE FORMAT FOR IMPLEMENTATION**:
Provide a **SINGLE** Markdown code block (wrapped in ```) containing a

**SELF-CONTAINED** Python script that:↪→

1. Implements the idea **END-TO-END**
2. **PRINTS THE 5-FOLD CROSS-VALIDATION** score of the evaluation

metric↪→

3. **SAVES THE TEST PREDICTIONS** in a `submission.csv` file in the
current directory↪→

Format the proposed solution as follows:

# Crossover Plan
<Your proposed crossover plan/strategy>

```python
<the implementation of the crossover solution>
```

F Completion Tokens Per Method

In Fig. 10, we summarize each method’s average number of completion tokens per operator. The
analysis suggests that our changes to the operators (see Section 4.1) lead to substantially longer
thinking chains.

G Infrastructure Lessons

The infrastructure design of AIRA-dojo was informed by a few reliability and performance constraints:

1. LLM Service. As we scaled experiments, we observed that external LLM services slow
down, risking timeouts. While the exact rate limits are set by the API provider 3, their
existence nevertheless places an upper bound on the number of parallel actors and introduces
a point of failure. Self-hosting LLMs is therefore required for reliable scaling.

3https://platform.openai.com/docs/guides/rate-limits
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Figure 10: Number of completion tokens per operator for each agent. Each value is averaged
across the independent runs on the MLE-bench lite suite in the main experiments (see Section 5.2).

2. Environments. Early experiments resulted in agents corrupting Python environments e.g.,
via a pip install. Virtualization technology, such as containers, was therefore a natural
fit for state isolation.

3. Checkpointing. In line with prior work [22, 10, 25, 9], we observe that both hard (machine
failure, filesystem failures) and soft failures (slowdowns) are commonplace. Consider, for
example, 10 experiments, each with 100 agents and each running for 24 hours—that results
in 10 × 100 × 24 = 24000 hours of required uninterrupted uptime, which is significant
when compared to a Mean Time to Failures of ∼ 1000 hours per node [25]. We therefore
introduced checkpointing support to mitigate the effects.

H Rationale for Selection of Search Policies

To systematically evaluate search policies we selected three complementary approaches. AIDE’s
greedy tree-search policy serves as an efficient baseline that prioritizes exploitation. Monte Carlo
Tree Search (MCTS) extends this by allowing us to directly modulate the exploration-exploitation
tradeoff through a single parameter. In contrast, the evolutionary graph-based search policy leverages
population-based sampling and recombination, representing a fundamentally different strategy from
both greedy and tree-based methods.

I Limitations and Future Work

There are several important dimensions for performance that we leave for future work to explore.

Agentic operators. Our experiments suggest that the effectiveness of search is heavily dependent on
the capability of the operators. To manage complexity, in this work we experiment with LLM-based
operators. However, one could readily use full-fledged agents as operators. For example, a natural
extension would be to include an ideation agent as an operator [40], and to replace the implementation
and debugging operators with a SWE-Agent [30, 50].

Finetuning. LLMs are critical components of the operators. Future work could investigate supervised
fine-tuning or reinforcement learning as methods to enhance operator effectiveness.

Scaling the search. To maintain comparability with MLE-bench, we adopt the benchmark’s time (24-
hour limit) and compute constraints (1 GPU). However, solving challenging problems likely requires
substantially greater resources, and evaluating performance under these restrictions provides limited
insights (see Section C for an experiment extended to 120 hours—5 days). Studying the scaling
behavior of search policies and operators, and developing agents capable of effectively leveraging
more computational resources over longer time horizons, is an important direction for future research.

Data contamination. Finally, there is the issue of data contamination. It is possible that our results
are influenced by the presence of information related to the evaluated Kaggle tasks, or similar tasks,
within the LLM training data. Creating a continuous stream of fresh and novel tasks remains an
important research challenge [47].
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J Variance in the Performance Estimation

AI agent performance on complex benchmarks like MLE-bench exhibits substantial variance that
can severely impact the reliability of comparative evaluations. While MLE-bench’s official recom-
mendations suggest using at least 3 seeds for evaluation, this may be insufficient for reliable agent
rankings and performance estimation, particularly given that agents/LLMs can be quite high-variance
inherently.
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Figure 11: Potential algorithm rankings under different seed counts. This figure demonstrates how
the same algorithms could be ranked differently if fewer seeds were used, illustrating the instability
that results from estimating performance with insufficient samples. While confidence intervals
theoretically capture this uncertainty, researchers often underestimate how dramatically rankings can
shift with limited seeds. Each panel shows plausible alternative rankings that could emerge from the
same underlying algorithm performance distributions. We recommend using a minimum of 10 seeds
per task for moderate ranking stability, with 20 seeds preferred to avoid misleading conclusions about
relative algorithm performance.

Figure 11 demonstrates how dramatically agent rankings can shift with insufficient seed sampling.
Each run represents a sample from the underlying performance distribution (estimated from 20 seeds),
and with only a few seeds, observed performance differences may be statistical artifacts rather than
genuine capability differences. Given MLE-bench’s computational intensity—with 75 competitions
requiring substantial resources per run—most researchers face a critical trade-off. If options were to
evaluate on all 75 competitions with 3 seeds each or evaluate on 22 competitions with 10 seeds each,
the latter provides more reliable conclusions. While the former experimental setup offers broader
coverage, the individual competition results are unreliable, making it difficult to determine whether an
agent genuinely excels at specific types of ML engineering tasks. Thus, we prefer to enable confident
identification of an agent’s strengths and weaknesses across a representative subset of competitions.

For future work we recommend a minimum of 10 seeds per competition (with 20 seeds much more
preferred), stratified bootstrapping for confidence intervals rather than standard error estimates, and
a focus on competition subsets (e.g., MLE-bench Lite) with higher seed counts rather than full
evaluation with few seeds.
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Figure 12: Sources of performance variance across tasks and seeds. (a) Variance decomposition
shows that a substantial portion of the observed variance in agent performance arises from between-
task variability (across tasks). However, certain methods’ medal achievements are equally as variable
within a task. (b) Distribution of medal outcomes across tasks for each agent, showing how frequently
a method consistently performs well (always medals), consistently fails (never medals), or exhibits
inconsistent performance (sometimes medals). These figures underscore that agent evaluation on
MLE-bench is impacted both by stochasticity in task-level performance and by systematic variation
in task difficulty or agent specialization.

K Test-Validation Gap Results

In Fig. 4a, we present the performance profile of AIDEGREEDY. In Fig. 13, we show the performance
profiles of AIRAMCTS, AIRAEVO, and AIRAGREEDY. Compared to Fig. 4a, the agents using
AIRA operators display a smaller gap between test and validation scores.

L Per-Task Results

This section presents the non-aggregated, per-task results obtained from the MLE-bench Lite suite in
Section 5.2. The results are summarized in Fig. 14.

M Sample Search Trees

We present samples of search trees from various methods used in the
spooky-author-identification task, as shown in Figures 15 to 17. The colors of the
nodes indicate the validation scores, while the labels within the nodes display the test scores. We
represent medal-winning nodes with medal emojis and above-median ranking solutions (relative to
the human leaderboard) with an ok emoji. The nodes in red are buggy nodes.
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Figure 13: Perceived vs. actual medal rate over 24 hours of searching with the AIRA operators
using different search policies. The curves show the mean validation (agent-reported) and held-out
test medal rates across 20 seeds with R1 and 10 seeds o3 for all tasks. The widening band illustrates
the generalization gap, revealing how apparent gains on the validation set can mask overfitting and
ultimately undermine the search process.
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Figure 15: AIRAGREEDY
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Figure 16: AIRAEVO
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Figure 17: AIRAMCTS
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:

• Formalize AI agents as two axes, search policy and operators: Section 2
• Design an improved set of operators: Sections 2.2, 4.1 and 5.2
• Develop AIRA-dojo: Section 3.1
• How the generalization gap affects performance: Section 5.3

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section I is a dedicated Limitations section in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides a detailed description of the implementation of agents as
well as the key features of AIRA-dojo in sections 2, 3 and 4. A complete list of experimental
details is provided in the Appendix for reproducibility. We have made the AIRA-dojo
codebase publicly available at https://github.com/facebookresearch/aira-dojo.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: AIRA-dojo is open-sourced and available on https://github.com/
facebookresearch/aira-dojo.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: General experiment details are presented in Section 3. Specific details related
to each experiment are provided in Section 5. Our experiments do not involve any training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 95 % stratified bootstrap confidence intervals and repeat each
experiment using 10 different random seeds per task to ensure robustness and statistical
significance. For experiments claiming new state-of-the-art numbers on MLE-bench, specif-
ically in Fig. 1 and Fig. 5, we use 20 seeds per task to enhance reliability.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96 % CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 3.4 presents these experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the linked NeurIPS Code of Ethics and can confirm that the
research conducted in the paper conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite and credit to creators and original owners of all the assets used in the
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Section 3 describes the AIRA-dojo codebase, which is open-sourced at https:
//github.com/facebookresearch/aira-dojo.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

39

paperswithcode.com/datasets
https://github.com/facebookresearch/aira-dojo
https://github.com/facebookresearch/aira-dojo


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our method uses LLMs (some operators are LLM based), the implementation
of our agents did involve the use of LLMs in a original, important or non-standard way for
AI driven automated machine learning engineering, to tackle MLE-bench / Kaggle tasks.
However, we did not use any LLMs in the creation of the research ideas, hypotheses, or data
analysis.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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