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ABSTRACT

Graph Neural Networks (GNNs) are widespread in graph representation learning.
Random dropping approaches, notably DropEdge and DropMessage, claim to al-
leviate the key issues of overfitting and oversmoothing by randomly removing el-
ements of the graph representation. However, their effectiveness is largely unveri-
fied. In this work, we show empirically that they have a limited effect in reducing
oversmoothing at test time due to their training time exclusive nature. We show
that DropEdge in particular can be seen as a form of training data augmentation,
and its benefits to model generalization are not strictly related to oversmoothing,
suggesting that in practice, the precise link between oversmoothing and test time
performance is more nuanced. We additionally address the limitations of current
dropping methods by learning to drop, and propose a new information-theoretic
approach, which performs dropping during message passing by optimizing an in-
formation bottleneck.

1 INTRODUCTION

Graphs are pervasive in the real world, effectively representing complex relationships among various
entities across a multitude of domains such as social media (Fan et al., 2019), finance (Bi et al.,
2022), and biology Jumper et al. (2021). Graph neural networks (GNNs), as state-of-the-art tools
for graph representation learning, have garnered significant interest in recent years (Kipf & Welling,
2017; Hamilton et al., 2017; Veličković et al., 2018). At the core of GNNs lies a message-passing
schema, which allows each node to aggregate information from its neighboring nodes.

Despite rapid advances in GNNs, they still face critical challenges. In particular, oversmoothing oc-
curs when representations of different nodes in a GNN become indistinguishable, as they aggregate
information from neighbors recursively (Oono & Suzuki, 2020). This phenomenon hinders GNNs
from effectively modeling higher-order dependencies from multihop neighbors and makes them
more vulnerable to adversarial attacks (Li et al., 2018; Chen et al., 2019). Common approaches for
mitigating oversmoothing include adding regularization terms based on measures of oversmoothing
(Chen et al., 2019), and restricting the pairwise distances between nodes (Zhao & Akoglu, 2020).

Another widely used approach is based on the random dropping of information from the graph or its
representation. Prominent examples include DropEdge (Rong et al., 2020) and DropMessage (Fang
et al., 2023), which operate on the edge and message levels respectively. Notably, DropMessage has
been recently proposed as a generalization of DropEdge. However, the impact of these techniques
on oversmoothing and the precise link between their oversmoothing reduction and the benefits to
model performance have not been thoroughly investigated.

In this paper, we investigate the extent to which DropEdge and DropMessage are able to mitigate
oversmoothing. We show that at test time, both methods actually have a limited effect in reduci-
ung oversmoothing according to metrics such as Dirichlet energy and mean average distance. We
hypothesise that DropEdge has a similar effect to training with data augmentation and demonstrate
that its beneficial effects on model performance are highly conditional on the randomness used in
dropping. We also observe that enabling random dropping at test time will considerably reduce over-
smoothing, but this does not translate to improved performance, suggesting that minimizing over-
smoothing by itself is insufficient. This motivates Learn2Drop. In contrast to traditional dropping
mechanisms, which apply a uniform approach to information pruning and reduce oversmoothing in
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a deterministic manner, Learn2Drop learns a mask over the messages each node receives, enabling
test-time message dropping to be performed dynamically.

The foundation of Learn2Drop is rooted upon the information bottleneck principle (Tishby et al.,
2000). The bottleneck seeks a representation Z that is minimally informative about the input X ,
whilst simultaneously being maximally informative about the target Y . By balancing I(X,Z) and
I(Z, Y ), it allows task-irrelevant information to be discarded while preserving useful information,
allowing the GNN to focus on the most salient features of the data. In a sense, this potentially allows
the GNN to learn to reduce oversmoothing in an optimal way.

2 RELATED WORK

2.1 DROPOUT IN NEURAL NETWORKS

Dropout, as introduced by (Srivastava et al., 2014), stems from the notion that the random deacti-
vation of certain units during training equates to training an ensemble of networks. This process
effectively counters overfitting in various models, GNNs included. DropEdge (Rong et al., 2020)
adopts a different strategy by randomly omitting a subset of edges from the input graph prior to the
standard message-passing procedure. This operation only occurs during training. Given an input
graph G = (E, V ), they remove p|V | edges randomly, where p ∈ (0, 1) is a user-defined parameter.
The authors argue that this approach simultaneously addresses both overfitting and oversmoothing.
DropNode (Feng et al., 2020) is a similar approach, in which nodes are randomly removed, although
it does not specifically aim to address oversmoothing. DropMessage (Fang et al., 2023) is another
dropping approach in which elements of the message matrix are randomly dropped during training.

2.2 CURRENT UNDERSTANDING OF OVERSMOOTHING

Many earlier works on oversmoothing have proposed practical techniques to alleviate it (Chen et al.,
2019; Zhao & Akoglu, 2020; Rong et al., 2020; Chen et al., 2020). Recently there has been a greater
focus investigating the theoretical nature of oversmoothing. Oono & Suzuki (2020) performed an
asymptotic analysis, showing that node embeddings homogenize when the number of layers tends to
infinity. Wu et al. (2022) performed a non-asymptotic analysis, showing that oversmoothing occurs
when an undesirable mixing effect overcomes a desirable denoising effect. Keriven (2022) showed
that some smoothing but not too much can be desirable for linear GNNs, and that there exists a
number of layers which optimizes this tradeoff. A major limitation of the existing body of work
and an active area of research is the need of a formalized understanding of the relationship between
homogenized node representations and model generalization. Many prior works such as DropE-
dge typically assume a clear relationship between oversmoothing reduction and model performance
without formally justifying it. However, Keriven (2022) has made a step in this new direction, giving
a theoretical analysis based on risk minimization, although it is limited to linear GNNs.

3 RANDOM DROPOUT AND OVERSMOOTHING

The authors of DropEdge Rong et al. (2020) and DropMessage Fang et al. (2023) propose to directly
measure the amount of smoothing after applying each method. DropEdge (Rong et al., 2020) mea-
sures the difference in Euclidean distance between internal layers and the final layer. One criticism
is that it does not distinguish between nodes in the same layer. In contrast, DropMessage (Fang
et al., 2023) computes a metric over the nodes of the same layer, the mean average distance (MAD)
(Chen et al., 2019). Notably, both methods are applied exclusively during training, which raises
concerns regarding whether they can address oversmoothing at test time:

1. Generalization to unseen data: while these training-time interventions might help reduce
oversmoothing on the training data, their absence during the test phase can potentially lead
to inconsistent behaviour on the test data due to increased oversmoothing.

2. Model confidence: if the robustness against oversmoothing is only demonstrated during
training and not during testing, it reduces the overall confidence in the model’s reliability
across diverse environments.
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The distinction between training and testing time, and its implications on oversmoothing, remains
unaddressed in the aforementioned works. This oversight has prompted our investigation into the
effects of these random dropping methods on oversmoothing across both training and testing phases.

3.1 MEASURING SMOOTHING

One metric commonly used in the literature to empirically measure smoothing is mean average
distance (MAD) (Chen et al., 2019):

dMAD(X
ℓ) =

1

|V |
∑
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∑
j∈Ni
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Xℓ
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More recently many works have proposed metrics of smoothing based on the concept of Dirichlet
energy (Cai & Wang, 2020; Rusch et al., 2022) which is typically defined as

dDE(X
ℓ) =

1
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∑
i∈V

∑
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i −Xℓ

j ||22. (2)

This has the property that dDE(X
ℓ) = 0 if and only if all node representations are equal – in other

words, complete oversmoothing is equivalent to 0 Dirichlet energy, which has led to conceptually
cleaner proofs (Cai & Wang, 2020) in the theoretical analysis of oversmoothing. However, note that
the Dirichlet energy is sensitive to arbitrary scaling of embeddings. Observe that, by simply multi-
plying the embeddings by a constant greater than 1 after each layer, we are guaranteed to increase
this energy. In reality, this might not reflect any improvement in the ability of the model to general-
ize. For our study, this may be problematic as DropMessage and standard dropout, which scale the
embeddings – in the case of dropout with probability p it is common to scale with 1/(1− p). This
would ‘fix’ oversmoothing if a sufficiently high dropping probability is used compared to a model
that applies less dropping. This is less of a concern when observing the layer-wise exponential
convergence of embeddings within the same model.

Our experiments also aim to empirically compare the relative amount of oversmoothing suffered
by different GNNs. As we specifically investigate methods that inherently scale the embeddings,
we also consider using MAD, which has two known limitations: (i) complete oversmoothing (all
node representations being identical) does not equate to 0 MAD, and (ii) it is ineffective in the case
where node representations are scalars – nodes with the same sign but different magnitude cannot be
distinguished. However, it can still be shown that for multidimensional MAD, there exist constants
C1, C2 > 0 such that µMAD(X

ℓ) ≤ C1e
−C2ℓ for ℓ ∈ [0, N ]— it exhibits layer-wise exponential

convergence (Rusch et al., 2023). Although theoretically inconvenient, MAD still enables us to
make meaningful empirical comparisons on oversmoothing on models where the node embeddings
are high dimensional. Limitation (i) is not strictly a concern when we seek a comparison between
methods, rather than an absolute measure of oversmoothing that is theoretically sound.

3.2 OBSERVING THE EFFECT OF RANDOM DROPPING ON OVERSMOOTHING

We empirically observe oversmoothing in a model by measuring the amount of smoothing after each
layer. We compare a vanilla baseline with DropEdge and DropMessage by training models while
applying random dropping and evaluate the extent of oversmoothing in two scenarios: (i) with-
out applying any random dropping (simulating test-time inference), and (ii) with random dropping
applied (resembling a training forward pass).

Experimental setup. Using 128-layer deep GNNs of the GCN architecture (Kipf & Welling,
2017), we train models on node classification tasks with varying levels of homophily. In addi-
tion to the commonly-used citation networks Cora (McCallum et al., 2000), Citeseer (Giles et al.,
1998) and Pubmed (Sen et al., 2008), we use heterophilic datasets Wisconsin, Texas, Cornell (Craven
et al., 1998) and Chameleon (Pei et al., 2020). As baselines, we use a vanilla model trained with
skip connections (He et al., 2016), and also a model trained with dropout.
The results using Dirichlet energy are shown in Figure 1. We observe that at training time, DropEdge
can alleviate the amount of smoothing at some layers by a scaling factor – however, the trend is still
exponential: at layer ℓ the Dirichlet energy is O(C−ℓ) for some constant C. Layer-wise exponential
convergence is still occurring. DropMessage, in contrast, is able to completely nullify it at training
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Figure 1: Measuring oversmoothing in random dropping models, averaged over 5 runs.

time, although it appears the same can also be achieved by applying dropout on the node vectors at
each layer. Results using MAD are very similar, and given in A.3.

At test time, random dropping is not applied. Instead any improvement comes from the effect that
the dropping has during training. However, we observe from our experiments (included in Table
1 in Section 5.2 for ease of later comparison) that naively enabling DropEdge and DropMessage
at test time translates to poor accuracy and inconsistent model inference, despite the reduction of
oversmoothing, suggesting that the main benefits of these random dropping methods is not primarily
from oversmoothing reduction, or that oversmoothing reduction by itself is insufficient to guarantee
improved performance.

Discussion. During forward passes, DropEdge is able to mitigate the amount of oversmoothing,
but does not appear to prevent it. The amount of mitigation is greater at training time than test
time. DropMessage, in contrast, is able to stabilize the oversmoothing at training time, but has little
effect at test time. If the primary cause of oversmoothing is the recursive aggregation inherent in the
GNN’s structure, this issue will still manifest at test time – it will aggregate information across all
available edges without any dropping, which may lead to homogenized node representations.

We further note a close similarity between methods used outside the specific context of graphs.
For instance, DropEdge is methodologically similar to word dropout (Mikolov et al., 2013) used in
natural language processing and cutout (DeVries & Taylor, 2017) used in computer vision, both of
which are augmentation techniques that aim to prevent the model from overfitting on a specific input
feature. In addition, we note that DropMessage’s approach is effectively applying dropout between
the aggregate and update stages of message passing1. We observe that it has a similar effect on
oversmoothing compared to applying dropout on the node representations.

If their primary effect was only through introducing noise during training, then the two methods
would arguably be analogous to dropout and other similar approaches. Dropout aims to make neural
networks more robust by preventing over-reliance on any particular neuron during training, but it
does not drop out neurons at test time. Similarly, DropEdge/DropMessage can be seen as a way to
ensure that the GNN does not over-rely on any particular edge or message.

In conclusion, DropEdge and DropMessage exhibit nuanced effects on smoothing at training time
and are not applied at test time. They appear more aligned with robust training and overfitting
prevention than directly combating the oversmoothing phenomenon. This suggests that these tech-
niques, particularly DropEdge, might operate more as data augmentation. Their role in mitigating
oversmoothing could then be an indirect outcome of the models they assist in training – models that
are more robust and inherently resistant to oversmoothing. Further research is needed to explore the
primary versus secondary effects of these techniques.

3.3 THE IMPORTANCE OF RANDOMNESS

An important implication of our results is the possibility that DropEdge actually does not have a
significant effect in reducing oversmoothing. The overall behavior is still O(k−L). This is contrary

1This can be verified using the source code: https://github.com/zjunet/DropMessage/blob/master/src/layer.py
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to what is implied by the original work. We suspect that the reasons for DropEdge’s performance
improvements could lie elsewhere, and we investigate this.

We first recall that the authors of DropEdge use a specific definition of oversmoothing: they define
the concept of ϵ-smoothing, which occurs when all node representations lie within a distance ϵ from
a subspace. It can be shown that during a forward inference pass, dropping edges can increase the
layer at which (a relaxed version) of ϵ-smoothing occurs. This is stated as Theorem 1 in the work
by Rong et al. (2020), and we shall continue to refer to this theorem as the DropEdge theorem. The
DropEdge theorem does not make any assumption on how edges are removed, it only requires that
the number of edges in the perturbed graph be less than the original. Therefore, removing edges
in a completely deterministic manner would also satisfy the theorem, but it is unclear whether this
would lead to the same effects. This is the motivation for our next experiment.

Experiment. We perform an investigation in which we train a model Φ using a version of DropE-
dge where a proportion of the edges, controlled by parameter τ ∈ [0, 1], are sampled determin-
istically. That is, we set a predefined set of edges E ⊂ E such that |E| = ⌊p|E|⌋. During the
training of Φ, at each epoch we choose the edges F to drop by sampling from S = {E ′ | |E ′ ∩ E| ≥
⌊τ |E|⌋ ∧ |E ′| = ⌊p|E|⌋}. When τ = 0, the method is equivalent to standard DropEdge. When
τ = 1, the method is a fully deterministic version of DropEdge where the same edges are sampled
for all epochs. For different values of τ ∈ [0, 1] we observe the test accuracy of Φ and the MAD.

Remark 3.1. τ controls the mutual information between E and F
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Figure 2: Investigating the effects of stochasticity in DropEdge.

In order to obtain stable results, we train shallower models with 3 GCN layers and skip connections.
We repeat this experiment for multiple choices of the initial edge set E and measure the mean test
accuracy and MAD at each τ . Results using MAD and Dirichlet energy are shown in Figure 2. As
τ increases, the performance improvement from using DropEdge degrades. Although satisfying the
DropEdge theorem, for certain values of τ that are sufficiently large (typically after 0.9), the model
has worse test performance than not using DropEdge, while the amount of oversmoothing surpris-
ingly decreases according to MAD. Moreover, according to Dirichlet energy, there is no consistent
relationship between performance improvement and smoothing. For Pubmed the Dirichlet energy
tends to decrease as performance worsens, but for Citeseer there is an initial increase. This suggests:

• the performance improvement provided by DropEdge is highly sensitive to the amount of
random noise being injected into the sampling during each training epoch.

• the amount of oversmoothing at both training and test time is possibly related to the model’s
error on the training/test sets, and how it generalizes (i.e. whether we find good minima).
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As an additional check, we perform the same experiment but modifying the computation of MAD
and Dirichlet energy so that only pairs of nodes with different labels are considered. The motivation
is that smoothing across nodes with different labels is more problematic for performance, whereas
smoothing across nodes with the same label is desirable. The resulting trends are very similar
and shown in A.2 We can conclude that a GNN with reduced oversmoothing does not necessarily
generalize better, which challenges the preconception made in previous works (Rong et al., 2020; Li
et al., 2018; Chen et al., 2019) that less smoothing is strictly better.

4 LEARNING TO DROP

In Section 3 we highlighted several limitations of DropEdge and DropMessage. In summary, both
DropEdge and DropMessage operate only during training, and do not sufficiently address over-
smoothing on unseen data at test time. It is unclear whether oversmoothing is related to their effect
on model performance. Moreover, dropout on the message matrix (as in the case of DropMessage)
will stabilize both Dirichlet energy and MAD. However, doing this at test time will result in poor
model performance and unstable predictions.

To address these concerns, we propose learning to drop (Learn2Drop) in which we learn which
elements to drop rather than applying uniform treatment, and at test time choosing which elements
to drop based on experience. This will incorporate domain knowledge into the dropping process,
which may be advantageous over a pure adhoc approach where the dropping probability is fixed.
This can (i) allow the model to keep essential information while filtering out noise, which has been
previously observed to be a potential cause of oversmoothing (Chen et al., 2019), (ii) allow the
use of topological information, which can affect smoothing (Bodnar et al., 2022), and (iii) perform
dropping at test time in a more informed manner.

4.1 INFORMATION BOTTLENECK

Aligning with the motivation to preserve only critical information, we propose dropping messages
based on the information bottleneck (IB) principle (Tishby et al., 2000). This principle has been
previously adopted in neural networks for similar purposes, such as pruning less informative neurons
(Achille & Soatto, 2018) and enhancing robustness against adversarial attacks (Kolchinsky et al.,
2019). The overall idea is to seek a representation Z that is minimally informative about the input
X , whilst simultaneously being maximally informative about the target Y . This done by optimally
balancing the mutual information terms I(X,Z) and I(Z, Y ).

Recall that in message passing GNNs, at layer ℓ we obtain the next representation of node i, by
applying an aggregation function ⊕ on the messages passed from the nodes in its neighborhood Ni:

hℓ+1
i = ϕ

(
hℓ
i ,⊕j∈Ni

(
ψ
(
hℓ
i ,h

ℓ
j

) ))
. (3)

Here, ψ
(
hℓ
i ,h

ℓ
j

)
denotes the message that a node j passes to a node i. Let Mℓ ∈ R|E|×m be the

message matrix given to layer ℓ. It is formed by stacking all messages passed at layer ℓ, and each
row is a different message. Note that Mℓ, along with the adjacency matrix of the input graph, are
sufficient for obtaining the final output of the model. Thus, Mℓ can be viewed as some intermediate
representation. In this view, the layers 1, . . . , ℓ−1 of the message passing GNN can be treated as an
encoder, and the remainder of the model can be viewed as a decoder. Mℓ contains the information
necessary to make predictions about the target Y . This motivates us to apply the IB principle,
treating Mℓ as the optimal representation Z. We shall refer to Mℓ as Z for clarity.

Let ϕ be the parameters of the encoder and θ be the parameters of the decoder. We can write
the mutual information between the input X and the messages Z as I(X,Z;ϕ), and the mutual
information between the messages and the output Y as I(Z, Y ; θ). We can treat Z as a random
variable with distribution P(Z|X; θ). Following standard use of the IB principle, we obtain

max
θ,ϕ

I(Z, Y ; θ)− βI(X,Z;ϕ). (4)

Optimizing this objective will allow us to obtain minimal and sufficient representations of the input
graph. This objective is intractable. Following (Alemi et al., 2017; Wu et al., 2020; Miao et al.,
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2022), we use variational approximations: Pϕ to approximate the encoder, and Qθ to approximate
the decoder, and R(Z) to approximate the marginal distribution of Z. This yields the variational
bounds:

I(X,Z;ϕ) ≤ EX,ZKL(Pϕ(Z|X) || R(Z)) (5)
I(Z, Y ; θ) ≥ EZ,Y [logQθ(Y | Z)] +H(Y ) (6)

It can be shown using the standard derivation introduced by Alemi et al. (2017) that applying these
variational bounds results in the objective

max
θ,ϕ

E[logQθ(Y | Z)]− βE[KL(Pϕ(Z|X) || R(Z))]. (7)

Here, the first term is the expected negative log-likelihood. For classification tasks this is equivalent
to the cross entropy loss. The second term is harder to evaluate, and depends on the instantiation of
the encoder Pϕ.

4.2 INSTANTIATING THE DISTRIBUTIONS

We have a choice of distribution for the encoding of Z. Recall that our motivation is to optimize the
dropping of information from the messages. We can do this probabilistically. Specifically, we obtain
each element of every message by sampling from a spike and slab distribution (Ishwaran & Rao,
2005). Each distribution is parameterized by a value v and a sample probability p. The value v is
sampled with probability p, and 0 is sampled with probability 1−p. In the context of our method, we
consider each message element as a variable that can be either retained or discarded. This captures
the notion of allowing elements to be dropped. We choose the slab as a Delta function δ(x− l). The
parameters l and p for each distribution are learned during training.

Thus, sampling from Pϕ is equivalent to sampling from a set of spike-and-slab distributions, where
each distribution is parameterized by a different value in the original message matrix (prior to drop-
ping). In practice, for a message vector qij – the message passed from node j to i – we can obtain the
vector of probabilities by feeding the concatenated node representations [hℓ−1

i ||hℓ−1
j ] into an MLP.

The final message vector after dropping can be obtained using the Gumbel Sigmoid trick (Jang et al.,
2017) to allow the gradients to flow through the learned probabilities. Doing this for all messages
will compute the optimized representation Z.

We can define R(Z), the variational approximation of the marginal P (Z), by sampling each message
element qkij from set of spike and slab distributions sharing the same spike probability r ∈ [0, 1],
as well as the same uniform slab distribution Uniform(a, b) where a, b ∈ R. This gives R(Z) =∏
P (qkij) where P (qkij) = P(x) = p

b−a + (1− p)δ(x).

Now, computing the KL term in Equation 7 directly is intractable, as it requires a summation over
all possible Z. Instead, we note that since the elements of Z are independent given X , the joint
distribution P(Z | X) can be factorized into the product of the individual marginal distributions of
each element of Z. That is,

∏
P (vkij | X), where vkij refers to the k-th message element of the

message passed from j to i. The KL divergence then has the analytical form∑
(ij)∈E,k∈[m]

− (1− pkij) log
1− pkij
1− r

−
∫ ∞

−∞
pkijδ(x− lkij) log

pkijδ(x− lkij)

1/(b− a)
dx

=
∑

(ij)∈E,k∈[m]

− (1− pkij) log
1− pkij
1− r

− pkij log
pkij(b− a)

r
,

(8)

where pkij and lkij are the spike-and-slab parameters for each message element. This is sum of the
KL divergences of the marginal distributions of each message element.

5 EXPERIMENTS ON OVERSMOOTHING

In this section, we evaluate the effectiveness of Learn2Drop. We first show that Learn2Drop is
able to successfully mitigate oversmoothing at test time, whereas DropEdge and DropMessage are
unable to. We then evaluate the performance of Learn2Drop against previous dropping approaches
to investigate whether it helps model performance in practice.
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5.1 OVERSMOOTHING REDUCTION
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Figure 3: Oversmoothing comparison across six node classification datasets.

Using the same methodology as in 3.2 we measure the amount of test-time oversmoothing in models
trained using Learn2Drop. We evaluate two versions of Learn2Drop: one where dropping is per-
formed at every layer (denoted L2D) and another where dropping is only performed once every ten
layers (L2D*), since dropping at every layer for very deep GNNs may add unnecessary overhead.
The results using Dirichlet energy are shown in Figure 3, and corresponding results using MAD
are given in Appendix A.3. We observe that for each task, Learn2Drop results in a significant re-
duction in smoothing according to both metrics. Interestingly, from observing L2D*, we observe
that applying a single dropping layer is able to reset the Dirichlet energy. While for DropEdge and
DropMessage, there is an increase in oversmoothing at a super-linear rate, it is clear that Learn2Drop
keeps oversmoothing from changing beyond one order of magnitude.

5.2 MODEL PERFORMANCE

In prior work, it has been standard to perform an indirect evaluation on oversmoothing by training
very deep GNNs and showing that the usual performance degradation (compared to a shallow model)
is reduced (Rong et al., 2020). For instance, whereas a vanilla GCN would suffer a significant
reduction in performance on Cora if we were to use 64 layers instead of the usual 2 to 3 that typically
yields optimal performance, DropEdge may only suffer a moderate hit. However, as discussed
in Section 3.3, the effects of overfitting and oversmoothing are likely interlaced and difficult to
decouple. It is not evident from such observations whether the model is simply more resistant against
overfitting, or whether oversmoothing is actually reduced, especially since one of these may be the
indirect consequence of the other. Nevertheless, it may be beneficial to observe the performance of
models in such scenarios where a combination of issues is prevalent.

For each dataset, we train 3-layer, 32-layer, and 64-layer GCN models. We compare the test time
accuracy against both default and test-time enabled versions of DropEdge and DropMessage, as well
as an additional baseline where dropout with probability 0.5 is applied after each layer. Moreover,
in the context of evaluating oversmoothing, which purportedly occurs at deeper layers, we desire
a scenario where it is beneficial to use more layers. Following Zhao & Akoglu (2020) we opt for
using a ‘missing feature’ setting where 90% of the nodes have their feature vector initialized to 0.

The results shown in Table 1. Learn2Drop is able to successfully mitigate the performance degra-
dation when increasing the number of layers. Note that the test-time versions of DropEdge and
DropMessage (denoted with ∗), despite reducing oversmoothing, perform highly inconsistently re-
sulting in poor performance, and often fail to converge. To make this baseline more sensible, we
obtain each individual result by averaging 10 forward passes. Meanwhile, Learn2Drop consistently
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achieves higher test accuracy, perhaps as it learns the optimal way to drop. One can view this as a
mechanism that controls the amount of smoothing reduction by using the IB principle to optimally
make the tradeoff between signal and noise. However, we emphasize that this is merely a hypothesis.
On the contrary, it could be that the oversmoothing reduction is a side effect of the true mechanisms
underlying the performance improvement, which is what we have examined for DropEdge.

Here we focus on understanding the effect of various random dropping techniques on model perfor-
mance. Competing with the state-of-the-art techniques that address oversmoothing is not the objec-
tive. For completeness, we have included the recent method GraphCON (Rusch et al., 2022) which
has specifically been designed to combat oversmoothing and outperforms all dropping approaches.

L Cora Citeseer Cornell Chameleon Wisconsin Texas

3

Vanilla 64.2 ± 0.7 44.0 ± 1.1 45.4 ± 7.3 28.4 ± 1.2 46.3 ± 9.3 56.2 ± 6.7
DropEdge 66.0 ± 2.4 44.5 ± 1.4 44.3 ± 5.6 27.5 ± 2.5 46.3 ± 8.3 57.3 ± 5.5
Dropout 65.1 ± 3.3 46.2 ± 2.4 43.8 ± 5.2 29.3 ± 2.6 45.9 ± 8.9 55.7 ± 4.7

DropMessage 64.4 ± 2.4 48.0 ± 2.0 47.5 ± 5.3 27.9 ± 2.8 51.0 ± 4.6 56.6 ± 4.4
L2D 66.4 ± 1.3 49.1 ± 2.5 48.5 ± 4.7 30.2 ± 3.3 51.0 ± 2.4 56.4 ± 4.3

DropEdge* 58 .9 ± 4 .3 42 .3 ± 1 .3 42 .2 ± 4 .9 25 .7 ± 2 .9 44 .3 ± 6 .4 55 .7 ± 5 .3
DropMessage* 60 .3 ± 3 .0 43 .0 ± 1 .3 40 .5 ± 1 .9 23 .6 ± 3 .5 47 .1 ± 4 .6 37 .3 ± 21

GraphCon 68 .5 ± 3 .2 52 .1 ± 0 .9 53 .1 ± 2 .3 35 .2 ± 5 .3 53 .4 ± 2 .4 58 .5 ± 3 .1

32

Vanilla 70.5 ± 1.5 51.2 ± 1.4 44.3 ± 5.6 27.6 ± 2.6 49.4 ± 7.6 58.9 ± 5.5
DropEdge 68.6 ± 1.7 47.9 ± 1.7 40.0 ± 5.0 30.0 ± 2.2 46.3 ± 8.0 57.8 ± 5.3
Dropout 23.6 ± 7.6 22.3 ± 3.3 44.3 ± 5.6 20.4 ± 1.9 48.6 ± 8.1 57.8 ± 5.8

DropMessage 66.2 ± 1.7 50.5 ± 1.4 47.1 ± 7.2 28.3 ± 2.1 50.0 ± 4.5 57.3 ± 4.5
L2D 72.4 ± 2.5 52.3 ± 4.6 47.4 ± 6.4 30.5 ± 2.1 51.0 ± 2.7 59.8 ± 2.4

DropEdge* 62 .9 ± 3 .7 44 .8 ± 2 .8 44 .3 ± 6 .2 27 .9 ± 1 .7 40 .8 ± 5 .3 58 .4 ± 6 .2
DropMessage* 53 .2 ± 20 29 .4 ± 3 .2 16 .8 ± 3 .0 16 .4 ± 3 .3 21 .6 ± 11 14 .1 ± 6 .5

GraphCon 76 .6 ± 4 .6 53 .1 ± 1 .2 49 .3 ± 3 .2 33 .4 ± 4 .3 52 .3 ± 3 .4 59 .6 ± 3 .1

64

Vanilla 47.2 ± 14.3 48.3 ± 3.4 44.3 ± 5.6 27.6 ± 1.7 46.3 ± 7.2 58.4 ± 5.6
DropEdge 66.4 ± 4.0 45.7 ± 0.7 43.2 ± 5.9 27.4 ± 0.8 42.7 ± 3.1 55.7 ± 7.2
Dropout 18.3 ± 7.0 21.8 ± 2.4 44.3 ± 5.6 21.4 ± 1.4 47.8 ± 8.8 58.4 ± 5.6

DropMessage 65.2 ± 2.1 48.6 ± 1.5 45.8 ± 7.5 28.9 ± 2.6 50.0 ± 3.3 55.9 ± 5.6
L2D 69.3 ± 3.6 50.5 ± 2.6 47.3 ± 4.7 28.7 ± 1.4 49.0 ± 1.7 59.3 ± 1.5

DropEdge* 29 .7 ± 5 .0 29 .0 ± 4 .9 44 .3 ± 6 .2 27 .0 ± 0 .7 47 .1 ± 8 .0 56 .2 ± 5 .2
DropMessage* 16 .7 ± 7 .1 23 .8 ± 6 .1 18 .9 ± 9 .2 17 .3 ± 1 .9 20 .8 ± 10 20 .0 ± 21

GraphCon 71 .4 ± 3 .4 53 .3 ± 1 .2 50 .5 ± 2 .2 33 .6 ± 3 .7 56 .3 ± 3 .6 59 .6 ± 5 .6

Table 1: Comparison of test accuracy for different models and datasets with different backbone
models, averaged over 5 runs. The highest accuracy across random dropping approaches is boldened.

6 CONCLUSION

In summary, we investigate the relationship between random dropping approaches and their ability
to reduce oversmoothing. Specifically, while DropEdge introduces a degree of robustness, its direct
impact on addressing oversmoothing at test time appears limited. We hypothesize that its effects
are similar to data augmentation and support this with empirical results. DropMessage has a more
pronounced effect but is still a training phase technique. In response to the the difficulty in directly
applying dropping methods at test time, we present Learn2Drop, which decides which parts of the
message matrix to keep or discard based on the information’s relevance. This approach allows us
to leverage the effect of dropping at test time in a more informed manner. Learn2Drop, like many
previous methods, reduce oversmoothing while improving performance. However, this is not a
guarantee that the performance improvement is a consequence of this oversmoothing reduction.

Our work provides novel emprical results that align with (Keriven, 2022)’s theoretical analysis, sug-
gesting that always seeking to minimize oversmoothing is not optimal. An important takeaway from
our work is that in practice, oversmoothing reduction will not strictly boost a GNN’s performance
– it is trivial to minimize oversmoothing by dropping messages randomly at test time. We have ob-
served that a GNN with little oversmoothing does not guarantee optimal performance, and a GNN
that experiences less oversmoothing is not necessarily more accurate. There is perhaps a general
misconception that reducing oversmoothing is always desirable because many of the earlier meth-
ods proposed to tackle oversmoothing also implicitly introduce some form of regularization. We
hope that future research can shed more clarity on this.
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A ADDITIONAL RESULTS

A.1 SMOOTHING OF DROPEDGE AND DROPMESSAGE
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Figure 4: Full oversmoothing comparison using mean average distance.

A.2 DROPEDGE OVERSMOOTHING VS TEST ACCURACY
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Figure 5: Oversmoothing and test accuracy relationship when DropEdge is applied. Oversmoothing
here is calculated on only node pairs with different labels.
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A.3 LEARN2DROP OVERSMOOTHING
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Figure 6: Oversmoothing comparison across six node classification datasets, using MAD.

B EXPERIMENTAL SETUP

We provide details of the model architectures and parameter settings for each of our experiments.
All of our experiments were conducted using a V100 GPU on a Colab Pro+ subscription.

B.1 EXPERIMENTS IN SECTION 3.3 (OVERSMOOTHING VS MODEL PERFORMANCE)

For this experiment, we train shallow 3-layer GNNs on Cora, Citeseer and Pubmed using the GCN
architecture provided by torch-geometric2. The Adam optimizer from pytorch is used for
all experiments in this work. The train-validation-test splits are the ones defined by setting the
public parameter in torch-geometric. The DropEdge probability is fixed at 0.5.

Parameter Cora Citeseer Pubmed
Learning Rate 0.003 0.005 0.003

Training Epochs 2000 2000 2000
Early Stopping 150 150 150

Embedding Size 32 32 32
Number of Layers 3 3 3

Table 2: Training and Implementation Details for GNNs on Different Datasets

B.2 EXPERIMENTS IN SECTION 5.1 (OVERSMOOTHING ANALYSIS)

In this section we mainly focus on observing oversmoothing for individual models rather than strictly
comparing them. There is no rigourous grid search of parameters. The same settings are used across
all methods for the same dataset. 0.5 is used as the dropping probability for both DropMessage and
DropEdge.

2https://pytorch-geometric.readthedocs.io/en/latest/
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Parameter Cora Citeseer Cornell Chameleon Wisconsin Texas
Learning Rate 0.01 0.005 0.002 3e-5 2e-5 5e-5

Training Epochs 2000 2000 2000 3500 500 500
Early Stopping 150 150 150 450 150 150

Embedding Size 32 32 32 32 32 32
Number of Layers 128 128 128 128 128 128

Table 3: Training details for GNNs

B.3 EXPERIMENTS IN SECTION 5.2 (MODEL PERFORMANCE)

In these experiments we attempt to compare model performance across different randrom dropping
methods. As such, we perform a grid search on the learning rate. The ranges of this search are
specified in the table and the search space is logarithmic. The same settings are used across all
methods for the same dataset.

Parameter Cora 3 Citeseer 3 Cornell 3 Chameleon 3 Wisconsin 3 Texas 3
Learning Rate 2e-4 to 1e-6 2e-4 to 1e-6 2e-4 to 1e-6 1e-5 to 1e-6 1e-5 to 1e-6 2e-5 to 2e-6

Training Epochs 2000 2000 2000 3500 500 500
Early Stopping 150 150 150 450 150 150

Embedding Size 32 32 32 32 32 32

Table 4: 3 layer models

Parameter Cora 32 Citeseer 32 Cornell 32 Chameleon 32 Wisconsin 32 Texas 32
Learning Rate 2e-4 to 1e-6 2e-4 to 1e-6 2e-4 to 1e-6 1e-5 to 1e-6 1e-5 to 1e-6 2e-5 to 2e-6

Training Epochs 4000 4000 4000 4500 5500 5500
Early Stopping 550 550 550 1450 1450 1450

Embedding Size 32 32 32 32 32 32

Table 5: 32 layer models

Parameter Cora 64 Citeseer 64 Cornell 64 Chameleon 64 Wisconsin 64 Texas 64
Learning Rate 1e-3 to 2e-5 1e-3 to 2e-5 2e-4 to 2e-5 9e-4 to 9e-6 9e-4 to 9e-6 9e-4 to 9e-6

Training Epochs 4000 4000 4000 4500 5500 5500
Early Stopping 550 550 550 1450 1450 1450

Embedding Size 32 32 32 32 32 32

Table 6: 64 layer models

Moreover, there are method-specific parameters obtained using grid search.

Parameter Start End Search Space
DropEdge p 0.2 0.8 Linear

DropMessage p 0.2 0.8 Linear
L2D β 0 100 Logarithmic

Table 7: Parameter Search Ranges
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