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Abstract

The training of over-parameterized neural networks has received much study
in recent literature. An important consideration is the regularization of over-
parameterized networks due to their highly nonconvex and nonlinear geometry. In
this paper, we study noise injection algorithms, which can regularize the Hessian
of the loss, leading to regions with flat loss surfaces. Specifically, by injecting
isotropic Gaussian noise into the weight matrices of a neural network, we can
obtain an approximately unbiased estimate of the trace of the Hessian. However,
naively implementing the noise injection via adding noise to the weight matrices
before backpropagation presents limited empirical improvements. To address this
limitation, we design a two-point estimate of the Hessian penalty, which injects
noise into the weight matrices along both positive and negative directions of the
random noise. In particular, this two-point estimate eliminates the variance of
the first-order Taylor’s expansion term on the Hessian. We show a PAC-Bayes
generalization bound that depends on the trace of the Hessian (and the radius of
the weight space), which can be measured from data. We conduct a detailed experi-
mental study to validate our approach and show that it can effectively regularize
the Hessian and improve generalization. First, our algorithm can outperform prior
approaches on sharpness-reduced training, delivering up to a 2.4% test accuracy
increase for fine-tuning ResNets on six image classification datasets. Moreover,
the trace of the Hessian reduces by 15.8%, and the largest eigenvalue is reduced
by 9.7% with our approach. We also find that the regularization of the Hessian
can be combined with alternative regularization methods, such as weight decay
and data augmentation, leading to stronger regularization. Second, our approach
remains highly effective for improving generalization in pretraining multimodal
CLIP models and chain-of-thought fine-tuning.

1 Introduction

The loss landscape and its geometry properties are a recurring theme in the study of neural networks
(Keskar et al., 2017; Hochreiter and Schmidhuber, 1997). Recently, the design of training methods
such as sharpness-aware minimization and stochastic weight averaging has led to empirical advances
in a wide variety of settings (Izmailov et al., 2018; Foret et al., 2021; Wortsman et al., 2022). The
theoretical study of these training methods has also been explored (Andriushchenko and Flammarion,
2022). For instance, recent work shows that sharpness-aware minimization (Foret et al., 2021) has an
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Figure 1: An illustration of one update step in our algorithm. At each iteration i, we sample a random
variable Ui from a zero-mean distribution P (e.g., an isotropic Gaussian with variance σ2), where σ is
a hyper-parameter that controls the strength of the noise injection (hence the regularization). We query
the gradient of f , at f(Wi +Ui), and f(Wi −Ui), and take their average. This results in a two-point
noise injection scheme, whose computation cost is the same as sharpness-aware minimization (Foret
et al., 2021), and twice the cost of running SGD. Notice that in practice, we can also implement an
extension of this algorithm, which samples multiple Us. For details, see Algorithm 1.

implicit bias to flat surface regions by penalizing the largest eigenvalue of the loss Hessian matrix
(Wen et al., 2023; Bartlett et al., 2023). In this paper, we study methods that can provide explicit
regularization of the trace of the Hessian, and we will show provable generalization guarantees of our
methods. More formally, given an input function f : Rd → R that represents the empirical risk of
a neural network and a d-dimensional distribution P with mean zero, we consider minimizing the
noise-perturbed function

F (W ) := E
U∼P

[f(W + U)] . (1)

Minimizing this perturbed function can improve the resilience of the neural network to noise injection,
leading to flatter loss surfaces and improved regularization (Nagarajan and Kolter, 2020). By
analyzing the perturbed loss of a fine-tuned model, one can identify a measure of the sharpness of
loss surfaces based on the trace of the Hessian (Ju et al., 2022, 2023). We remark that the minimization
problem of the form (1) traces back to earlier works on randomized smoothing (Duchi et al., 2012),
which have provided a detailed study of convergence rates for nonsmooth stochastic optimization.
Our work differs from this line of literature in that we focus on evaluating the regularization effect of
penalizing the Hessian trace upon neural network training.

Although noise injection algorithms can be theoretically motivated as improving generalization
(and stability), its practical implication is not evident (Hinton and Van Camp, 1993; An, 1996;
Graves, 2011). To motivate our study, we begin by running several empirical studies to compare
the performance of (standard) SGD and weight-perturbed SGD (WP-SGD), which first injects
random noise into the weight matrices of a neural network before computing its gradient in SGD. As
mentioned above, this would provide a randomized smoothing effect to the loss surface (Duchi et al.,
2012). We will fine-tune (pretrained) ResNets on three image classification tasks for this empirical
study. To ensure the robustness of the analysis, we also vary the distribution of P and the variance
of U . Our overall finding is that WP-SGD (or randomized smoothing) does not offer clear benefits
over SGD, which is also consistent with recent studies of weight noise injection (Orvieto et al., 2023;
Dauphin et al., 2024) (see Section 2.2, Table 2 for the complete results). However, we hypothesize
that these results may be due to the randomness of the noise injection (upon the Hessian penalty term)
rather than the ineffectiveness of regularizing the Hessian trace.

Our approach to mitigate the randomness of the noise injection on the Hessian penalty involves two
parts. First, we retrieve the gradient at W − U to cancel out the first-order expansion term of W + U
(recall that U is a random sample from P). Meanwhile, the second-order expansion term remains the
same after this cancellation. We term this modification a two-point noise injection scheme, which is
reminiscent of two-point gradient estimates in zeroth-order optimization (Duchi et al., 2015). The
difference in our setting is that this two-point averaging cancels out the first-order gradient term,
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Table 1: Comparison between our approach (NSO) and SAM (Foret et al., 2021), based on inductive
bias, generalization guarantee, and convergence rate. In particular, the inductive bias of SAM is based
on the results of Wen et al. (2023). The list of notations used in the table is explained as follows.
∇2ℓ refers to the Hessian matrix of the loss function ℓ. λ1[·] and Tr[·] refer to the largest eigenvalue
and the trace of an input matrix. α refers to the trace norm, taken over the maximum of the entire
hypothesis space and data distribution (including unseen test data). r is the radius of the fine-tuning
region measured in ℓ2 distance. n is the number of samples in the training dataset. T is the total
number of iterations run by our algorithm.

Approach Inductive Bias Generalization Guarantee Convergence Rate

Sharpness-Aware Minimization (SAM) λ1[∇2ℓ] - -

Noise Stability Optimization (NSO) Tr[∇2ℓ]
√

αr2

n (Theorem 2.1) Θ
(

1√
T

)
(Section 4)

thereby eliminating its variance on the Hessian penalty. Second, we sample multiple perturbations
U1, U2, . . . , Uk at each epoch and take their averaged two-point (noise-injected) gradients. See Figure
1 for an illustration of one step.

A primary advantage of our approach compared to prior sharpness minimization algorithms is that
our approach can provide an approximately unbiased estimate of the Hessian trace. We empirically
validate this claim across three real-world settings (see Figure 2, Section 2.2 for an illustration). By
utilizing this property, we show a PAC-Bayes bound that depends on the trace of the Hessian and the
radius of the weight hypothesis space. We briefly describe this result, leaving a formal statement to
Theorem 2.1. Let α be an upper bound on the trace of the Hessian measured within the hypothesis
space and the data distribution (in practice, one may take this as the union of training and testing data).
Let r be the radius of the hypothesis space, measured in ℓ2 distance. Suppose there are n empirical

samples from an unknown distribution. We show a generalization bound that scales as O
(√

αr2

n

)
.

Our proof utilizes a linear PAC-Bayes bound (Catoni, 2007; McAllester, 2013; Alquier, 2021), and
we optimize the variance of the prior and posterior distributions to derive the result. A detailed proof
sketch is presented in Section 2.3.

Next, we validate our approach with a detailed empirical study. First, we compare our approach
with four prior approaches for the setting of fine-tuning pretrained ResNets, including sharpness-
aware minimization (Foret et al., 2021), tested on six image classification datasets. We show that
our algorithm can reduce the trace and the largest eigenvalue of the loss Hessian matrix by 15.8%
and 9.7%, respectively. Our approach also improves test accuracy by 2.4%. Second, we extend
our approach to pretraining and chain-of-thought fine-tuning. The details can be found in Section
3.4. Overall, our algorithm can consistently provide better regularization of Hessian and improved
test accuracy across these different settings and datasets. Some of these empirical results are not
completely explained by our theory, and we discuss the limitations in Section 7.

In summary, the contributions of this paper are three-fold. First, we present an algorithm that can
explicitly regularize the Hessian trace and show a PAC-Bayes generalization bound that could be
measured from data. Second, we conduct experiments on multiple settings to validate our approach
by comparing downstream performance and Hessian statistics with prior sharpness minimization
algorithms and alternative regularization methods. Third, we analyze the convergence of our algorithm
using stochastic optimization techniques. In Table 1, we highlight the key aspects of our approach
compared to prior approaches.

Organization: The rest of this paper is organized as follows. In Section 2, we will present our
approach. We will start by presenting the motivating experiments. Then, we describe our algorithm
and a PAC-Bayes bound that depends on the Hessian. In Section 3, we present our experiments for
validating the proposed approach. Section 4 presents an analysis of the convergence rate. Section
5 provides a case study of the regularization effect of the Hessian trace in the over-parameterized
matrix sensing problem. In Section 6, we discuss the related works. Finally, in Section 7, we state the
conclusion and the limitations of this work. We provide complete proof of our theoretical results in
Appendix A-B. We provide additional experimental details in Appendix C.
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2 Our Approach

In this section, we present our approach. First, to set up the stage, we will study the straightforward
implementation of noise injection by directly adding noise to the weight matrices of the neural network
before computing the gradients in backpropagation. We term this procedure weight-perturbed SGD
(or WP-SGD in short), also known as randomized smoothing (Duchi et al., 2012). We will compare
the empirical performance of these two approaches to evaluate the effect of noise injection. Then,
we describe our algorithm and provide empirical measurements of the trace of the Hessian, along
with the actual perturbation gaps observed in practice. Finally, we show a PAC-Bayes generalization
bound that depends on trace of the Hessian, which can be measured from data to compare methods.

2.1 Motivating Experiments

We compare the results from running WP-SGD to standard SGD. We choose the setting of fine-tuning
pretrained foundation models, as overfitting is a common problem for this setting (Wortsman et al.,
2022), and strong regularization is needed (Li and Zhang, 2021; Ju et al., 2022). We will fine-
tune a pretrained ResNet-34 on several image classification datasets, including aircraft recognition
(Aircraft) (Maji et al., 2013), indoor scene recognition (Caltech-256) (Griffin et al., 2007), and
medical image classification (retina images for diabetic retinopathy classification) (Pachade et al.,
2021). To implement WP-SGD, we sample a random vector from P and add it to the model weights
at each iteration before computing the gradient. We set P as the isotropic Gaussian and adjust its
standard deviation between 0.008, 0.01, and 0.012 via cross-validation.

We report our results in Table 2, which indicate that the performance gap is less than 0.5%, ≈ 0.75
standard deviations based on five independent runs. Furthermore, varying P does not change the
results. In particular, we test four types of P , including Gaussian, Laplace, uniform, and Binomial.
We adjust standard deviations between 0.008, 0.01, and 0.012 via cross-validation. We find that using
Laplace and uniform distributions achieves a performance comparable to that of Gaussian. However,
using Binomial results in worse results.

Table 2: Comparing the outcome of running WP-SGD to standard SGD across four different P ,
measured over three image classification datasets. Recall that WP-SGD refers to normal weight
perturbation (without the paired perturbation). To be concise, we have included the results of running
our approach (i.e., NSO). All results and their standard deviations are based on five independent runs.

Aircraft Indoor Retina Disease
P Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

SGD None 100.0% ± 0.0 59.8% ± 0.7 100.0% ± 0.0 76.0% ± 0.4 100.0% ± 0.0 61.7% ± 0.8

WP-SGD Gaussian 98.4% ± 0.2 60.4% ± 0.1 99.0% ± 0.3 76.3% ± 0.0 100.0% ± 0.0 62.3% ± 0.5
WP-SGD Laplace 98.3% ± 0.1 60.3% ± 0.3 98.9% ± 0.1 76.4% ± 0.3 100.0% ± 0.0 62.0% ± 0.1
WP-SGD Uniform 98.6% ± 0.3 60.3% ± 0.5 98.6% ± 0.3 76.6% ± 0.1 100.0% ± 0.0 62.3% ± 0.0
WP-SGD Binomial 19.6% ± 0.1 11.3% ± 0.1 18.2% ± 0.9 10.7% ± 0.1 58.1% ± 0.1 57.1% ± 0.0

NSO Gaussian 95.8% ± 0.4 62.3% ± 0.3 95.7% ± 0.2 77.4% ± 0.3 100.0% ± 0.0 66.6% ± 0.7
NSO Laplace 96.5% ± 0.3 61.9% ± 0.3 96.1% ± 0.3 77.1% ± 0.1 100.0% ± 0.0 65.9% ± 0.1
NSO Uniform 96.4% ± 0.4 61.9% ± 0.5 96.4% ± 0.2 76.8% ± 0.2 100.0% ± 0.0 65.7% ± 0.1
NSO Binomial 20.1% ± 0.1 14.3% ± 0.3 22.8% ± 0.1 17.9% ± 0.2 59.2% ± 0.1 57.8% ± 0.1

2.2 Description of Our Algorithm

In our approach, we make two modifications to WP-SGD. First, we add the perturbation from both
the positive and negative directions during the noise injection, as shown in line 5. Second, we average
over multiple noise injections to reduce the variance from noise injection, as described in line 7. As
for the first modification, recall that P is a symmetric distribution. We use Taylor’s expansion on
both f(W + U) and f(W − U) as follows:

f(W + U) = f(W ) + ⟨U,∇f(W )⟩+ 1

2
U⊤∇2f(W )U +O(∥Σ∥ 3

2
2
), (2)

f(W − U) = f(W )− ⟨U,∇f(W )⟩+ 1

2
U⊤∇2f(W )U +O(∥Σ∥ 3

2
2
). (3)
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We have that E [U ] = 0, and E
[
UU⊤] = Σ. Thus, by taking the average of equations (2) and (3)

E
U∼P

[
1

2
(f(W + U) + f(W − U))

]
= F (W ) = f(W ) +

1

2
⟨Σ,∇2f(W )⟩+O

(
∥Σ∥

3
2
2

)
. (4)

We can see that the two-point estimate eliminates the first-order gradient term, potentially reducing
its variance in estimating the Hessian term. The second modification reduces the variance of the
stochastic gradient, using the fact that each perturbation is independent of the others. The entire
procedure is summarized in Algorithm 1. As a remark, two-point gradient estimators are commonly
used in zeroth-order optimization (Duchi et al., 2015). However, their use in designing flat minima
optimizers has not been explored much.

Algorithm 1 Noise stability optimization (NSO) for regularizing the Hessian of neural networks
Input: Initialization W0 ∈ Rd, a function f : Rd → R
Require: An estimator g : Rd → Rd that for any W , returns g(W ) s.t. E [g(W )] = ∇f(W )
Parameters: # perturbations k, # epochs T , step sizes η0, . . . , ηT−1

1: for i = 0, 1, . . . , T − 1 do
2: /* Compute the two-point averaged stochastic gradient for each independent noise injec-

tion */

3: for j = 0, 1, . . . , k − 1 do
4: U

(j)
i ← sampled independently from P

5: G
(j)
i ← g

(
Wi + U

(j)
i

)
+ g
(
Wi − U

(j)
i

)
6: end for
7: Wi+1 ←Wi − ηi

(
1
2k

∑k
j=1 G

(j)
i

)
8: end for

Measurements of the Hessian trace and the perturbation gap: Next, we provide several exam-
ples to measure the approximation quality of equation (4). Following the experimental setup of
Appendix 2.1, we will fine-tune a foundation model on a downstream task. After training, we will set
W as the model weight at the last epoch for all the measurements.

To measure equation (4), we then add U to W , where U is sampled from an isotropic Gaussian. We
will measure f(W + U)− f(W ), averaged over 100 independent samples of U , and we measure
this and∇2f(W ) by taking the average over the training dataset.

The results are shown in Figure 2. We can see that ∇2f provides an accurate approximation to
F (W )− f(W ) for various values of σ. In particular, the approximation error of equation (4) using
the Hessian trace is less than 3%. As a remark, the range of σ2 differs across architectures because
of the differing scales of their weights. More details about the neural network architectures can be
found in Appendix C.
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Figure 2: Illustration of the approximation quality of equation (4). We report all measurements based
on the network weight at the last epoch of fine-tuning. We can see that the perturbation gap (i.e.,
F (W )− f(W ) in equation (4)) and σ2

2 Tr[∇2f(W )] are at the same order. Recall that σ refers to
the standard deviation of the Gaussian noise injected into the weight matrices. More specifically, σ
will decide the strength of noise injection or the strength of regularization on the Hessian trace.
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2.3 Generalization Guarantee and Proof Sketch

Concretely, suppose we have a pretrained model in the fine-tuning setting. This can be viewed as
our prior belief of the target hypothesis in PAC-Bayes analysis. Once we have learned a model
(though fine-tuning), we can view this as the posterior in PAC-Bayes analysis. Let D ⊆ X × Y be an
unknown data distribution, supported on the feature space X and the label space Y . Given n random
samples (x1, y1), (x2, y2), . . . , (xn, yn) drawn fromD, the empirical loss (measured by loss function
ℓ) applied to a model fW (with W ∈ Rp) is:

L̂(W ) =
1

n

n∑
i=1

ℓ(fW (xi), yi).

The population loss is L(W ) = E(x,y)∼D [ℓ(fW (x), y)] . It is sufficient to think that the empirical
loss is less than the population loss, and the goal is to bound the gap between L̂(W ) and L(W ) from
above (Shalev-Shwartz and Ben-David, 2014).

Let W be any learned hypothesis within the hypothesis space, denoted as H. Our generalization
bound will apply uniformly to W within the hypothesis space. We state our result, including the
required assumptions, as follows.

Theorem 2.1. Assume that the loss function ℓ is bounded between 0 and C for a fixed constant
C > 0 on the data distribution D. Suppose ℓ(fW (·), ·) is twice-differentiable in W and the Hessian
matrix ∇2[ℓ(fW (·), ·)] is Lipschitz continuous within the hypothesis space. Suppose for any W inH,
the trace norm of the Hessian is less than α:

α := max
W∈H

max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
, (5)

and the ℓ2-norm of W is at most r for any W ∈ H. Then, for any W inH, with probability at least
1− δ for any δ > 0, the following must hold, for any ϵ close to zero:

L(W ) ≤ (1 + ϵ)L̂(W ) + (1 + ϵ)

√
Cαr2

n
+O

(
n− 3

4 log(δ−1)
)
. (6)

Proof Sketch: We provide a high-level illustration of the proof of Theorem 2.1. Let Q denote
the posterior distribution. Specifically, we consider Q as being centered at the learned hypothe-
sis W (which could be anywhere within the hypothesis space), given by a Gaussian distribution
N (W,σ2 Idp), where Idp denotes the p by p identity matrix. Given a sample U ∼ N (0, σ2 Idp), let
the perturbed loss be given by

ℓQ(fW (x), y) = E
U
[ℓ(fW+U (x), y)] . (7)

Then, let L̂Q(W ) be the averaged value of ℓQ(fW (·), ·), taken over n empirical samples from the
training dataset. Likewise, let LQ(W ) be the population average of ℓQ(fW (·), ·), in expectation over
an unseen data sample from the underlying data distribution.

Having introduced the notations, we start with the linear PAC-Bayes bound (Catoni, 2007; McAllester,
2013; Alquier, 2021) (see Theorem A.1 for reference), stated as follows, which holds with probability
1− δ for any δ ∈ (0, 1) and β ∈ (0, 1):

LQ(W ) ≤ 1

β
L̂Q(W ) +

C(KL(Q||P) + log(δ−1))

2β(1− β)n
, (8)

where P refers to the prior distribution, C refers to the upper bound on the loss value ℓ. For analyzing
fine-tuning, we view P as centered at the pretrained model, with covariance matrix σ2 Idp. By
Taylor’s expansion of ℓQ (see Lemma A.4 for the precise statement), we show that:

LQ(W ) = L(W ) +
σ2

2
E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
+O(σ3) (9)

L̂Q(W ) = L̂(W ) +
σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
+O(σ3). (10)
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Since the Hessian operator is Lipschitz continuous by the assumption of Theorem 2.1, we can bound
the gap between the above two quantities with ϵ-covering arguments (see Lemma A.5 for the precise
statement). By plugging in these results back to the PAC-Bayes bound of equation (8), after some
calculation, we can get:

L(W ) ≤ 1

β
L̂(W ) +

σ2(1− β)α

2β
+

Cr2/2σ2

2β(1− β)n
+O

(
σ3 +

σ2√p√
n

+
log(δ−1)

n

)
. (11)

In particular, the above uses the fact that the ℓ2-norm of W is less than r for any W ∈ H (the KL
divergence is discussed in Proposition A.2). By choosing σ2 and β to minimize equation (11), we
will obtain equation (6). This summarizes the high-level proof idea. The complete proof can be found
in Appendix A.1.

3 Experiments

We now turn to empirical validations of our algorithm. First, we apply our approach to fine-
tune pretrained ResNets on various image classification datasets. We find that NSO can more
significantly regularize the Hessian of the loss surface, resulting in reductions in the trace and the
largest eigenvalue by 15.8% and 9.7%, respectively. After controlling computation costs, it can
outperform four sharpness-reducing methods by up to 2.4%. In addition, we justify our algorithm
design through detailed ablation analysis. We also show that our approach is compatible with
alternative regularization techniques, including distance-based regularization and data augmentation,
and combining these methods with our approach leads to more significant regularization and test
performance. Second, we show similar results for pretraining and chain-of-thought fine-tuning. The
experiment code for reproducing our empirical findings can be found online at: https://github.
com/VirtuosoResearch/Noise-stability-optimization.

3.1 Comparison with Sharpness Minimization Methods

We now compare Algorithm 1 with five sharpness-reducing training methods, including sharpness-
aware minimization (SAM) (Foret et al., 2021), unnormalized SAM (USAM) (Agarwala and Dauphin,
2023), adaptive variants of SAM (ASAM), and random SAM (RSAM) (Liu et al., 2022). During
the comparison, we control for the same amount of computation (for Algorithm 1, we will set the
number of sampled injections k as 1). Thus, all the methods under consideration will use twice
the computation of SGD. For NSO, we sample perturbation from an isotropic Gaussian distribution
and adjust σ between 0.008, 0.01, and 0.012. For SAM, we adjust the ℓ2 norm of the perturbation
between 0.01, 0.02, and 0.05. For each method, we run it with both momentum and weight decay.
We ensure that all the training methods are carefully adjusted. See Appendix C for the details.

3.1.1 Empirical Findings

In Table 3, we report the comparison between NSO, SGD, SAM, unnormalized SAM (USAM), and
adaptive SAM (ASAM). We find that our approach reduces the trace of Hessian by 15.8% on average.
The largest eigenvalue of the Hessian is also reduced by 9.7%. This finding is intriguing since SAM
has been motivated by a min-max problem. As for test accuracy, our approach can provide up to 2.4%
lift, with an average improvement of 1.2%.

Figure 3 illustrates the measurements between SGD, WP-SGD, and NSO. Curiously, we find that the
trace of the Hessian also decreases for SGD, possibly due to implicit norm control of SGD. While
both WP-SGD and NSO reduce the trace of the Hessian, our approach penalizes the Hessian more.
Besides, the generalization gap and the test loss are consistently lower during NSO training.

As a remark, the regularization effect of noise injection should be orthogonal to training methods such
as momentum, weight decay, learning rate scheduling, etc. To this end, we performed comparisons
without using either momentum or weight decay. Our approach can again reduce the trace of the
Hessian by 17.7% compared to the five sharpness-reducing methods on average, with up to 1.8%
higher test accuracy.
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Table 3: Comparison between our approach (NSO) with SGD, sharpness-aware minimization (SAM),
unnormalized SAM (USAM), and adaptive SAM (ASAM). We fine-tune the ResNet-34 network on
six image classification datasets and report the test accuracy and the trace of Hessian using the model
in the last epoch of training. The results are averaged over five random seeds.

CIFAR-10 CIFAR-100 Aircrafts Caltech-256 Indoor Retina

Basic
Statistics

# Training 45,000 45,000 3,334 7,680 4,824 1,396
# Validation 5,000 5,000 3,333 5,120 536 248
# Test 10,000 10,000 3,333 5,120 1,340 250
# Classes 10 100 100 256 67 5

Trace
(↓)

SGD 4128 ± 83 13188 ± 221 5471 ± 65 3674 ± 95 3629 ± 61 28607 ± 226
SAM 2429 ± 87 9227 ± 286 4499 ± 70 3285 ± 95 3159 ± 75 15444 ± 173
USAM 2352 ± 61 7382 ± 222 4298 ± 94 3174 ± 52 3072 ± 51 12068 ± 246
ASAM 2445 ± 63 9960 ± 313 4475 ± 69 3339 ± 78 3014 ± 53 14155 ± 136
NSO 1728 ± 79 5244 ± 89 3678 ± 83 2958 ± 77 2737 ± 90 10970 ± 146

Test Acc.
(↑)

SGD 96.1% ± 0.1 82.8% ± 0.1 60.5% ± 0.7 80.0% ± 0.1 76.7% ± 0.4 62.2% ± 0.8
SAM 97.0% ± 0.2 84.0% ± 0.4 62.3% ± 0.3 77.0% ± 0.4 77.2% ± 0.3 65.0% ± 0.3
USAM 96.9% ± 0.2 83.7% ± 0.2 61.9% ± 0.3 76.9% ± 0.2 76.7% ± 0.3 64.7% ± 0.1
ASAM 97.1% ± 0.1 84.2% ± 0.3 62.4% ± 0.5 77.3% ± 0.2 77.2% ± 0.2 65.2% ± 0.3
NSO 97.6% ± 0.4 84.9% ± 0.3 63.2% ± 0.3 78.1% ± 0.5 78.2% ± 0.3 67.0% ± 0.4
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Figure 3: Comparison between SGD, WP-SGD, and NSO for fine-tuning ResNet-34 and BERT-Base,
respectively, on an image and a text classification dataset. We evaluate the test loss, the trace of the
Hessian, and the generalization gap for the trained model at each epoch. For WP-SGD and NSO, we
sample noise from isotropic Gaussian with standard deviation σ = 0.01 in both settings.

3.1.2 Ablation Analysis

Next, we conduct ablation studies of two modifications in our approach: the use of negative perturba-
tions and the sampling of multiple perturbations.

Comparing using negative cancellation or not after controlling computation costs: Recall that
our algorithm uses negative perturbations to zero out the first-order term in Taylor’s expansion of
F (W ). We validate this by comparing the performance between using or not using the negative
perturbation. We control for the same amount of computation costs to ensure a fair comparison. In
particular, we sample two independent perturbations and take their averaged stochastic gradient. We
find that using the negative perturbation achieves a 3.6% improvement in test accuracy (on average)
over not using the negative perturbation, i.e., randomized smoothing.

As discussed in Section 2.2, our intuition on why NSO can be expected to generalize better than
randomized smoothing is that it can better regularize the Hessian. In particular, even though, in
theory, the expectation of f(W +U) and 1

2 (f(W +U)+f(W −U)) over U are both equal to F (W ).
However, the two-point scheme cancels out the gradient expansion term compared to randomized
smoothing at every epoch. More precisely, we believe that the improved regularization from our
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approach stems from its better estimate of the Hessian penalty term. As illustrated in Figure 3, NSO
consistently reduces the trace of the Hessian and achieves lower generalization errors compared to
randomized smoothing throughout model training. At the end of the training, NSO yields 10.6%
smaller trace of the Hessian on average than randomized smoothing.

Increasing the number of noise injections k: Recall that increasing the number of perturbations
k can reduce the variance of the estimated gradient. Thus, we consider increasing k in NSO and
compare that with a specific implementation of WP-SGD that uses the same amount of computation.
Using k = 2 perturbations improves the test accuracy by 1.2% on average compared to k = 1.

Varying the learning rate and the number of epochs. We provide a detailed comparison between
NSO and WP-SGD when varying the learning rate and the number of epochs. The learning rate
is varied between 0.0001, 0.0002, 0.0005, 0.001, 0.002, and 0.005. The number of epochs is varied
between 10, 20, 30, 40, 50, and 60. We report the test loss from running an image classification task
in Figure 4.
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Figure 4: Results of varying the learning rate and the number of epochs for running our approach and
WP-SGD. We report the test loss from the last epoch and average the results over five random seeds.

Remark 3.1 (Noise variance scheduling as k increases). A natural question is whether one can
gradually increase or decrease the regularization strength by σ during training, similar to learning
rate scheduling. To facilitate this discussion, we test two schedules for adjusting σ. The first schedule
is to increase σ to a specified value at a linear rate. The second schedule exponentially increases σ
to reach a specified value. Our preliminary experiments show that neither schedule offers significant
performance improvements over using a constant noise variance. One might also consider other
scheduling schemes; we leave this to future work.

3.2 Detailed Comparison with Sharpness-Aware Minimization (SAM)

Varying the radius of SAM: We provide a detailed comparison to SAM by varying the per-
turbation radius of SAM (denoted as ρ). To illustrate this comparison, we vary ρ between
0.001, 0.002, 0.005, 0.01, 0.02, and 0.05. We report both the validation accuracy and the trace
of the Hessian for SAM and unnormalized SAM on an image classification dataset. We present the
results in Table 4. We observe that using a smaller ρ (i.e., less than 0.01) results in worse results.
Thus, we choose ρ between 0.01, 0.02, and 0.05 in our experiments.

Table 4: Results of varying the perturbation radius of SAM (denoted as ρ) and unnormalized SAM.
We report both the test accuracy and the trace of the Hessian based on the model trained at the last
epoch. We report the averaged results and their standard deviations across five random seeds.

ρ 0.001 0.002 0.005 0.01 0.02 0.05

Trace
(↓)

SAM 4920 ± 158 4347 ± 166 4016 ± 80 3918 ± 94 3159 ± 75 3028 ± 78
Unnormalized SAM 4352 ± 169 3990 ± 70 3723 ± 87 3427 ± 57 3072 ± 51 3048 ± 22

Test Accuracy
(↑)

SAM 73.6 ± 0.2 74.4 ± 0.4 74.8 ± 0.6 75.2 ± 0.3 76.6 ± 0.5 73.8 ± 0.7
Unnormalized SAM 74.1 ± 0.1 74.1 ± 0.7 74.7 ± 0.5 74.6 ± 0.3 76.3 ± 0.3 73.1 ± 0.6

Varying the batch size of SAM: Next, we measure the sensitivity of our approach concerning the
batch size. In particular, we vary the batch size between 8, 16, 32, and 64 for fine-tuning ResNet-34
on two image classification datasets. The results are shown in the leftmost two panels of Figure 5.
We use the same number of epochs for each batch size configuration to ensure a fair comparison.
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On the indoor dataset, our approach is less sensitive to different batch sizes than SAM. Across all
the batch sizes and datasets, our approach consistently provides a more robust regularization of the
Hessian compared to SAM. The best results are achieved when the batch size is 32. Thus, we use this
particular setting in our experiments.
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Figure 5: Results of varying the batch size of our approach and SAM ran on two image classification
datasets (indoor scene recognition and Aircraft detection). We report the test loss and the trace
of Hessian using the model from the last epoch of training. The results are averaged over five
random seeds. The regularization provided by noise injection can be combined with distance-based
regularization and data augmentation to reduce the test loss and the Hessian trace.

3.3 Combining Algorithm 1 with Alternative Regularization Methods

In this section, we show that the regularization of the Hessian can serve as a complement to existing,
alternative regularization methods. To validate this, we combine our training approach with data
augmentation and distance-based regularization (Gouk et al., 2022). In particular, the latter approach
has been used to regularize fine-tuning algorithms. We use a popular scheme for data augmentation
that applies random horizontal flipping and random cropping sequentially to each training image. As
for distance-based regularization, we penalize the ℓ2 distance between the fine-tuned model and the
pretrained initialization.

The results are shown in Figure 5 within the two rightmost panels. Combining our approach with
each regularization method further reduces the trace of the loss Hessian matrix by 13.6% (on average).
This further leads to 16.3% lower test loss of the fine-tuned network, suggesting that our approach
can be used on top of these preexisting regularization methods.

3.4 Applying Algorithm 1 to Pretraining and Fine-tuning

We apply our approach to pretraining randomly initialized models by replacing SGD to train con-
trastive language-image (CLIP) models on a dataset of image-caption pairs. In particular, we use the
Conceptual Caption dataset, which contains 3.3 million image caption pairs. Each caption briefly
describes the corresponding image, with ten tokens on average. We use a 12-layer Vision Transformer
as the image encoder and a 12-layer GPT-2 transformer as the text encoder. We train the encoders
jointly to maximize the cosine similarity between the embedding of image caption pairs following
the protocol of Radford et al. (2021).

Table 5 presents the results. For each algorithm, we evaluate the trace of the loss Hessian and recall
scores (of the top-10 scored images in retrieving images from texts) on the development set. The
results show that our approach can reduce the trace of the Hessian by 17% compared to both SAM
and SGD. In addition, our approach achieves 1.4% higher recall scores in image retrieval.

10



Lastly, we apply our algorithm to fine-tuning pretrained language models on chain-of-thought
reasoning datasets. The task is to generate the reasoning process, i.e., a chain of thoughts and the
answer for a given commonsense reasoning question. We fine-tune pretrained GPT-2 models on two
question-answering datasets: Commonsense QA and Strategy QA. Table 5 shows that our approach
can yield 25% lower trace values than SAM and SGD. In addition, we can obtain 5.3% higher test
accuracy.

Table 5: Results for pretraining CLIP the Conceptual Caption and chain-of-thought fine-tuning on
Commonsense/Strategy QA. We report the recall score of image retrieval/test accuracy and trace/λ1

using the model at the last epoch. We report the averaged results and standard deviations over five
random seeds.

Conceptual Caption Trace (↓) λ1 (↓) Recall@10 (↑)

SGD 220 ± 24 41 ± 2.8 36.1% ± 0.3
SAM 144 ± 20 30 ± 1.1 36.9% ± 0.4
NSO 119 ± 34 22 ± 1.2 37.5% ± 0.3

CommonsenseQA Trace (↓) λ1 (↓) Test Accuracy (↑)

SGD 372 ± 34 19 ± 0.8 27.7% ± 1.8
SAM 288 ± 15 15 ± 0.3 32.7% ± 1.4
NSO 208 ± 31 13 ± 0.6 39.2% ± 1.4

StrategyQA Trace (↓) λ1 (↓) Test Accuracy (↑)

SGD 294 ± 13 44 ± 1.5 68.9% ± 1.0
SAM 249 ± 33 42 ± 2.6 71.1% ± 1.2
NSO 193 ± 31 33 ± 1.8 75.2% ± 1.2

4 Convergence Rates

We now study the convergence of Algorithm 1. Recall that our algorithm minimizes f(W ) plus a
regularization term on the Hessian trace. As is typical with regularization, the penalty is usually small
relative to the loss value. Thus, we aim to find a stationary point of F (W ) instead of f(W ) because
otherwise, we would not have the desired regularization. We state the convergence to an approximate
stationary point such that ∥∇F (W )∥ is small, building on the following gradient oracle assumption
(see, e.g., Ghadimi and Lan (2013); Duchi et al. (2015)).

Assumption 4.1. Given a random seed z, let gz : Rd → Rd be a continuous function that gives
an unbiased estimate of the gradient: Ez [gz(W )] = ∇f(W ), for any W ∈ Rd. Additionally, the

variance is bounded in the sense that Ez

[
∥gz(W )−∇f(W )∥2

]
≤ σ2.

To help understand the above assumption, suppose there is a dataset of size n. Then, in SGD, the
stochastic gradient would be an unbiased estimate of the gradient of the entire dataset. As for the
variance of the gradient estimator, we note that as long as the ℓ2 norm of the gradient remains
bounded, which will always hold in practice, then the last equation of the above assumption will hold.
We now state an upper bound on the convergence rate of Algorithm 1.
Proposition 4.2. Suppose Assumption 4.1 holds. Let P be a distribution that is symmetric at zero and
let H(P) = E[∥U∥2]. Let C and D be fixed, positive constants. Let W0 ∈ Rd denote an arbitrary
initialization. Suppose F (W0)−minW∈Rd F (W ) ≤ D2, and ∇f is C-Lipschitz continuous. There
exists a fixed learning rate η < C−1 such that if we run Algorithm 1 with ηi = η for all i for T steps,
the algorithm returns Wt (where t is a random integer between 1, 2, . . . , T ), such that in expectation
over the randomness of Wt:

E
[
∥∇F (Wt)∥2

]
≤
√

2CD2(σ2 + C2H(P))
kT

+
2CD2

T
. (12)

As a remark, existing sharpness-reducing methods such as SAM seem to suffer from oscillation around
the local basin (Bartlett et al., 2023). Thus, the convergence behavior of SAM seems challenging to
analyze for nonconvex functions. By contrast, our algorithm is amenable to stochastic optimization
techniques. Our proof slightly extends the proof of Theorem 2.1, Ghadimi and Lan (2013), to tackle
noise injection and other variations. For details, see Appendix B.1.
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Lower bounds: Next, we construct an example to match the rate of equation (12), essentially
showing that this is tight under the same set of assumptions. We use an example from the work of
Drori and Shamir (2020). The difference is that we have to deal with the perturbations added to
the objective. For t = 0, 1, . . . , d − 1, let et ∈ Rd be the basis vector in dimension d, whose t-th
coordinate is 1, while the remaining coordinates are all zero. Let f : Rd → R be defined as

f(W ) =
1

2G
⟨W, e0⟩2 +

T−1∑
i=0

hi(⟨W, ei+1⟩), (13)

where hi is a piece-wise quadratic function parameterized by αi, defined as follow:

hi(x) =



Cα2
i

4 |x| ≤ αi,

−C
(
|x|−αi

)2
2 +

Cα2
i

4 αi ≤ |x| ≤ 3
2αi,

C
(
|x|−2αi

)2
2

3
2αi ≤ |x| ≤ 2αi,

0 2αi ≤ |x|.

One can verify that for each piece above,∇hi is C-Lipschitz. As a result, provided that G ≤ C−1,
∇f is C-Lipschitz, based on the definition of f in equation (13).

The stochastic function F requires setting the perturbation distribution P . We set P by truncating
an isotropic Gaussian N(0, σ2 Idd) so that the i-th coordinate is at most 2−1αi−1, for i = 1, . . . , T .
Additionally, we set the initialization W0 to satisfy ⟨W0, ei⟩ = 0 for any i ≥ 1 while ⟨W0, e0⟩ ̸= 0.
Finally, we choose the gradient oracle to satisfy that the i-th step’s gradient noise ξi = ⟨ξi, ei+1⟩ei+1,
which means that ξi is along the direction of the basis vector ei+1. In particular, this implies only
coordinate i+ 1 is updated in step i, as long as ⟨ξi, ei+1⟩ ≤ 2−1αi. With this construction, we state
the lower bound below.

Theorem 4.3. Let the learning rates η0, . . . , ηT−1 be at most C−1. Let D > 0 be a fixed value.
When either

∑T−1
i=0 ηi ≲

√
kT , or ηi = η < C−1 for any epoch i, then for the above construction,

the following must hold

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T . (14)

We remark that the above construction requires T ≤ d. Notice that this is purely for technical
reasons. We briefly illustrate the key steps of the proof. At step i, the gradient noise ξi plus the
perturbation noise is less than 2−1αi +2−1αi = αi at coordinate i+1 (by triangle inequality). Thus,
h′
i(⟨Wt, ei+1⟩) = 0, which holds for all prior update steps. This implies

∇f(Wi) = G−1⟨Wi, e0⟩.

Recall that F (W0) ≤ D2. This condition imposes how large the αi’s can be. In particular, we will
set αi = 2ηiσ/

√
k in the proof. Then, based on the definition of f(W0),

hi(⟨W0, ei+1⟩) =
Cα2

i

4
, since ⟨W0 + U, ei+1⟩ ≤ αi.

In Lemma B.3, we then argue that the learning rates in this case must satisfy
∑T−1

i=0 ηi ≤ O(
√
T ).

When the learning rate is fixed and at least Ω(T−1/2), we construct a piece-wise quadratic function
(similar to equation (13)), now with a fixed α. This is described in Lemma B.4. In this case, the
gradient noise grows by 1−C−1η up to T steps. We then carefully set α to lower bound the norm of
the gradient. Combining these two cases, we conclude the proof of Theorem 4.3. For details, see
Appendix B.2. As is typical in lower-bound constructions, our result holds for a specific instance
(with a particular learning rate range).

The proof can also be extended to adaptive learning rate schedules. Notice that the above construction
holds for arbitrary learning rates defined as a function of previous iterates. Then, we set the width of
each function ht, αt, proportional to ηt > 0, for any ηt that may depend on previous iterates, as long
as they satisfy the constraint that

∑T−1
i=0 ηi ≤ O(

√
T ).
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Extension: We can show a similar lower bound for the momentum update rule. Recall this is
defined as

Mi+1 = µMi − ηiGi, and Wi+1 = Wi +Mi+1, (15)

for i = 0, 1, . . . , T − 1, where Gi is the specific gradient at step i. To handle this case, we will need a
more fine-grained control on the gradient, so we consider a quadratic function as f(W ) = C

2 ∥W∥
2
.

We leave the result and its proof to Appendix B.3.

Remark 4.4. The novelty of our results lies in analyzing sharpness minimization using techniques
from stochastic optimization. This appears to be new, and we hope our work can inspire further
studies, such as designing accelerated sharpness minimization methods.

5 Regularization Effect of Hessian Trace in Over-Parameterized Matrix
Sensing

Before proceeding, let us give an example of the regularization effect of penalizing the Hessian
trace. We consider the matrix sensing problem, whose generalization properties are particularly
well-understood in the nonconvex factorization setting (Li et al., 2018). Let there be an unknown,
rank-r positive semi-definite matrix X⋆ = U⋆U⋆⊤ ∈ Rd×d. The input consists of a list of d by d
Gaussian measurement matrix A1, A2, . . . , An. The labels are given by yi = ⟨Ai, X

⋆⟩, for every
i = 1, 2, . . . n. The empirical loss is

L̂(W ) =
1

2n

n∑
i=1

(
⟨Ai,WW⊤⟩ − yi

)2
, where W ∈ Rd×d. (16)

When the loss reaches near zero (which implies the gradient also reaches near zero), it is known that
multiple local minimum solutions exist (Li et al., 2018), and the Hessian becomes

1

n

n∑
i=1

∥AiW∥2F ≈ d ∥W∥2F = d
∥∥WW⊤∥∥

⋆
.

By prior results (Recht et al., 2010), among all X = WW⊤ such that L̂(W ) = 0, X⋆ has the lowest
nuclear norm. Thus, the regularization placed on L̂(W ) is similar to nuclear norm regularization
after interpolating the training dataset. We formalize this discussion and state the result below.

Proposition 5.1. In the setting above, for any W that satisfies L̂(W ) = 0, the following must hold
with high probability:

Tr
[
∇2[L̂(U⋆)]

]
≤ Tr

[
∇2[L̂(W )]

]
+O(n− 1

2 ). (17)

A similar statement holds if the trace operator is replaced by λ1 in equation (17). To see this, we look
at the quadratic form of the Hessian to find the maximum eigenvalue. Let u be a d2 dimension vector
with length equal to one, ∥u∥ = 1. One can derive that:

λ1[∇2L̂(W )] = max
u∈Rd2 :∥u∥=1

u⊤∇2L̂(W )u = max
u∈Rd2 :∥u∥=1

1

n

n∑
i=1

⟨AiW,u⟩2 ≥ 1

d2n

n∑
i=1

∥AiW∥2F .

The last step is by setting u = d−11d2 , whose length is equal to one. The proof of Proposition 5.1
can be found in Appendix A.2.

Simulation: We conduct a numerical simulation to compare algorithmic behaviors. We generate a
low-rank matrix U⋆ ∈ Rd×r from the isotropic Gaussian. We set d = 100 and r = 5. Then, we test
three algorithms: gradient descent (GD), weight-perturbed gradient descent (WP-GD), and Algorithm
1 (NSO). In particular, we will implement the full gradient update rather than using the stochastic
updates. We use an initialization U0 ∈ Rd×d where each matrix entry is sampled independently from
standard Gaussian N (0, 1).

Recall that WP-GD and NSO require setting σ. We choose this hyperparameter σ between
0.001, 0.002, 0.004, 0.008, 0.0016. NSO additionally requires setting the number of sampled pertur-
bations k. We set k = 1 for faster computing. As for the learning rate, we choose a fixed η for each
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run and vary its value between 0.001, 0.0025, 0.005, and 0.01. We find that setting η as either 0.005
or 0.01 would be too large, leading the loss values to explode. Hence, we report the results for setting
η as 0.0025 or 0.001.

Our findings are illustrated in Figure 6.

• We see that all three algorithms can reduce the training MSE to near zero, as shown in
Figure 6a. From the trends, we can see that the training loss has fully converged for all
cases.

• GD suffers from overfitting to training data, while both WP-GD and NSO can generalize to
the validation samples. Moreover, NSO reduces this validation loss further in Figure 6b.

• Finally, we can see in Figure 6c that our algorithm can indeed produce a more accurate
estimate of the ground truth matrix X⋆, as measured by the Frobenius norm distance between
WiW

⊤
i and X⋆.

• The results for varying learning rates can be found in the bottom panel from Figure 6d to 6f.
The comparative results remain consistent.
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Figure 6: Comparing the training loss, validation loss, and the normalized Frobenius norm distance,

i.e.,
∥WiW

⊤
i −X⋆∥2

F

∥X⋆∥2
F

, between GD, our approach (NSO), and weight-perturbed (WP) GD (which
computes the full gradient as opposed to the stochastic gradient). For the top panel, the learning rate
is fixed at 0.0025 for all the runs. For the bottom panel, the learning rate is set at 0.0001. σ is set as
0.008 for WP-GD and NSO. Also, we trained sufficiently long until the loss curves fully converged.

6 Discussions and Related Work

Using noise injection during neural network training has appeared in very early studies of machine
learning research (Hinton and Van Camp, 1993; An, 1996). Graves (2011) test a variety of variational
inference approaches with different prior and posterior distributions with recurrent neural networks.
Cohen et al. (2019) examine the use of randomized smoothing (with different smoothing distributions)
against different ℓp adversaries for certified robustness. Camuto et al. (2020) propose a layer-wise
regularization scheme motivated by adaptation patterns of weights through deeper layers. Yang
et al. (2020) show how to turn any classifier that classifies well under Gaussian noise into a new
classifier robust to adversarial perturbation under the ℓ2 norm. One of the implications of their work
is that smoothing with Gaussian noise naturally confers adversarial robustness in the ℓ2 norm. Bisla
et al. (2022) conduct an extensive empirical study to explore the connection between sharpness and
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generalization for training neural networks. Orvieto et al. (2023) analyze Taylor’s expansion of the
stochastic objective after noise injection, examining the induced regularization in various neural
network training settings, and find that layer-wise perturbation can improve generalization.

There is also a line of work on Hessian and sharpness in the edge of stability regime during gradient
descent dynamics (Cohen et al., 2021). In particular, the edge of stability refers to scenarios where
the learning rate goes out of bounds beyond the Lipschitz continuity of a function, which is inversely
proportional to the largest eigenvalue of the Hessian matrix. Long and Bartlett (2024) identify the
edge of stability regime for the SAM algorithm, highlighting the differences of these regimes between
SAM and gradient descent. Agarwala and Dauphin (2023) present a detailed study of the gradient
dynamics of SAM, documenting various respects of this algorithm. They first analyze the full-batch
gradient descent with unnormalized SAM in a quadratic regression model. This analysis suggests
that at initialization, full-batch SAM presents limited suppression of the largest eigenvalue of the
Hessian matrix. They also show that as the batch size decreases, the regularization of SAM becomes
stronger. This work underscores the intricate dynamics of SAM due to its connection to the min-max
problem, which is computationally intractable (Daskalakis et al., 2021). Dauphin et al. (2024) provide
an in-depth comparison between SAM and weight noise by examining the structure of the Hessian
during training. Our results in Section 2.1, which show that weight noise remains ineffective (for
fine-tuning), are consistent with the findings of this work. Wu et al. (2020) study the structure of the
Hessian and conduct experiments on how the Hessian structure changes based on architecture and the
training method.

Randomized smoothing has been studied in stochastic optimization under various contexts, for
instance, estimating gradients in zeroth-order optimization (Duchi et al., 2015), and for nonsmooth
convex optimization problems (Duchi et al., 2012). In particular, Duchi et al. (2012) analyze the
convergence rates of stochastic optimization algorithms and examine a convolution-based smoothing
technique for nonsmooth stochastic optimization problems by drawing stochastic gradient samples
from the smoothed problem with an appropriate choice of smoothing density. They show that with
the ability to issue several queries to the stochastic oracle, the original problem can be solved with
faster convergence rates than a simple stochastic oracle. Besides, recent research has investigated the
query complexity of finding stationary points of nonconvex functions (Carmon et al., 2020; Arjevani
et al., 2023). These results provide a fine-grained characterization of the complexity of iterative
methods under different orders of gradient oracles.

The findings from our work suggest several avenues that seem ripe for future work. Can recent
advancements in optimization be used to design better noise injection algorithms with faster con-
vergence? Can we better understand the effect of noise injection on the Hessian during training
(e.g., in tensor regression where saddle points are known to exist (Li et al., 2020))? In particular, our
work highlights the need for more accurate measurements to understand the learning mechanisms of
complex models.

7 Conclusion and Limitations

This paper examines the regularization and generalization effects of noise-injection methods for
training neural networks. The study begins by noting that a straightforward implementation of
injecting noise into weight matrices (of a neural network) before computing the gradient in SGD
does not perform well in practice. Thus, an alternative, two-point noise injection scheme is proposed
and is shown to be effective through extensive experiments. In particular, this new algorithm can
be used to regularize the Hessian and improve generalization. The results are tested on fine-tuning,
pretraining, and instruction tuning. As a complement, a PAC-Bayes generalization bound is provided
to support the rationale of this approach. Finally, this paper presents a detailed convergence analysis
of the proposed algorithm.

In Theorem 2.1, we have shown that the generalization error of a training algorithm can be bounded
by the trace of the Hessian of the loss matrix, scaled by the distance of the hypothesis space. Notice
that this result applies to both Algorithm 1 (NSO) and the naive noise injection algorithm (WP-SGD).
As shown in Figure 3, this result can provide a descriptive measure to explain different algorithms.
Since the Hessian measurements can be used on both algorithms, they can only distinguish one from
another after taking the measurements from the data. Thus, our generalization theory should be
interpreted with this data-dependent lens in mind. We hope future work could work on addressing
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such limitations, along with designing more principled optimization algorithms for training neural
networks.
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A Omitted Proofs from Section 2

We state a few standard notations. Given two matrices X,Y having the same dimension, let ⟨X,Y ⟩ =
Tr[X⊤Y ] denote the matrix inner product of X and Y . Let ∥X∥2 denote the spectral norm (largest
singular value) of X , and let ∥X∥F denote the Frobenius norm of X . We use the big-O notation
f(x) = O(g(x)) to indicate that there exists a fixed constant C independent of x such that f(x) ≤
C · g(x) for large enough x.

A.1 Proof of the PAC-Bayes Bound

We will use the following PAC-Bayes bound. For reference, see, e.g., Theorem 2, McAllester (2013).
Theorem A.1. Suppose the loss function ℓ(fW (x), y) lies in a bounded range [0, C] given any x ∈ X
with label y. For any β ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1− δ, the following holds:

LQ(W ) ≤ 1

β
L̂Q(W ) +

C
(
KL(Q||P) + log 1

δ

)
2β(1− β)n

. (18)

This result provides flexibility in setting β. Our results will set β to balance the perturbation error of
Q and the KL divergence between P and Q. We will need the KL divergence between the prior P
and the posterior Q in the PAC-Bayesian analysis. This is stated in the following result.
Proposition A.2. Suppose P = N(X,Σ) and Q = N(Y,Σ) are both Gaussian distributions with
mean vectors given by X ∈ Rp, Y ∈ Rp, and population covariance matrix Σ ∈ Rp×p. The KL
divergence between P and Q is equal to

KL(Q||P) = 1

2
(X − Y )⊤Σ−1(X − Y ).

Specifically, if Σ = σ2 Idp, then the above simplifies to

KL(Q||P) = ∥X − Y ∥22
2σ2

.

We will use Taylor’s expansion on the perturbed loss. This is stated precisely as follows.
Claim A.3. Let fW be twice-differentiable, parameterized by weight vector W ∈ Rp. Let U ∈ Rp

be another vector with dimension p. For any W and U , the following identity holds

ℓ(fW+U (x), y) = ℓ(fW (x), y) + U⊤∇ℓ(fW (x), y) + U⊤[∇2ℓ(fW (x), y)]U +R2(ℓ(fW (x), y)),

where R2(ℓ(fW (x), y))) is a second-order error term in Taylor’s expansion.

Proof. The proof follows by the fact that ℓ ◦ fW is twice-differentiable. Let η ∈ Rp be a vector with
the same dimension as W and U from the mean value theorem. There must exist an η between W
and U +W such that the following equality holds:

R2(ℓ(fW (x), y)) = U⊤
(
∇2[ℓ(fη(x), y)]−∇2[ℓ(fW (x), y)]

)
U.

This completes the proof of the claim.

We provide Taylor’s expansion of ℓQ − ℓ based on the above.
Lemma A.4. In the setting of Theorem 2.1, suppose each parameter is perturbed by an independent
noise drawn from N(0, σ2). Let ℓQ(fW (x), y) be the perturbed loss with noise perturbation injection
vector on W . There exist some fixed value C1 that do not grow with n and 1/δ such that∣∣∣∣ℓQ(fW (x), y)− ℓ(fW (x), y)− 1

2
σ2 Tr

[
∇2[ℓ(fW (x), y)]

]∣∣∣∣ ≤ C1σ
3.

Proof. We take the expectation over U for both sides of the equation in Claim A.3. The result
becomes

E
U
[ℓ(fW+U (x), y)] = E

U

[
ℓ(fW (x), y) + U⊤∇ℓ(fW (x), y) + U⊤∇2[ℓ(fW (x), y)]U +R2(ℓ(fW (x), y))

]
.
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Then, we use the perturbation distribution Q on EU [ℓ(fW+U (x), y)], and get

ℓQ(fW (x), y)

=E
U
[ℓ(fW (x), y)] + E

U

[
U⊤∇ℓ(fW (x), y)

]
+ E

U

[
U⊤∇2[ℓ(fW (x), y)]U

]
+ E

U
[R2(ℓ(fW (x), y))] .

Since E[U ] = 0, the first-order term will be zero in expectation. The second-order term becomes
equal to

E
U

[
U⊤[∇2ℓ(fW (x), y)]U

]
= σ2 Tr

[
∇2[ℓ(fW (x), y)]

]
. (19)

The expectation of the error term R2(ℓ(fW (x), y)) be

E
U
[R2(ℓ(fW (x), y))] = E

U

[
U⊤(∇2[ℓ(fη(x), y)]−∇2[ℓ(fW (x), y)]

)
U
]

≤ E
U

[
∥U∥22 ·

∥∥∇2[ℓ(fη(x), y)]−∇2[ℓ(fW (x), y)]
∥∥
F

]
≲ E

U

[
∥U∥22 · C1∥U∥2

]
≲ C1σ

3.

Thus, the proof is complete.

The last piece we will need is the uniform convergence of the Hessian operator. The result uses the
fact that the Hessian matrix is Lipschitz continuous.

Lemma A.5. In the setting of Theorem 2.1, there exist some fixed values C2, C3 that do not grow
with n and 1/δ, such that with probability at least 1− δ for any δ > 0, over the randomness of the n
training examples, we have∥∥∥∥∥ 1n

n∑
i=1

∇2[ℓ(fW (xi), yi)]− E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤ C2

√
log(C3n/δ)√

n
. (20)

The proof will be deferred to Section A.1.2. With these results ready, we will provide proof of the
Hessian-based generalization bound.

A.1.1 Proof of Theorem 2.1

Proof of Theorem 2.1. First, we separate the gap of L(W ) and 1
β L̂(W ) into three parts:

L(W )− 1

β
L̂(W ) = L(W )− LQ(W ) + LQ(W )− 1

β
L̂Q(W ) +

1

β
L̂Q(W )− 1

β
L̂(W ).

By Lemma A.4, we can bound the difference between L(W ) and LQ(W ) by the Hessian trace plus
an error:

L(W )− 1

β
L̂(W ) ≤− E

(x,y)∼D

[
σ2

2
Tr
[
∇2[ℓ(fW (x), y)]

]]
+ C1σ

3 +
(
LQ(W )− 1

β
L̂Q(W )

)
+

1

β

( 1
n

n∑
i=1

σ2

2
Tr
[
∇2[ℓ(fW (xi), yi)]

]
+ C1σ

3
)
.

After re-arranging the terms, we can get the following:

L(W )− 1

β
L̂(W ) ≤− E

(x,y)∼D

[
σ2

2
Tr
[
∇2[ℓ(fW (x), y)]

]]
+

1

nβ

n∑
i=1

σ2

2
Tr
[
∇2[ℓ(fW (xi), yi)]

]
︸ ︷︷ ︸

E1

+
1 + β

β
C1σ

3 + LQ(W )− 1

β
L̂Q(W )︸ ︷︷ ︸

E2

. (21)
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We will examine E1 by separating it into two parts:

E1 =
1

β

(
1

n

n∑
i=1

σ2

2
Tr
[
∇2[ℓ(fŴ (xi), yi)]

]
− E

(x,y)∼D

[
σ2

2
Tr
[
∇2[ℓ(fW (x), y)]

]])
(22)

+
1− β

β

σ2

2
E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y)

]]
. (23)

We can use the uniform convergence result of Lemma A.5 to bound equation (22), leading to:

σ2

2β

(
1

n

n∑
i=1

Tr
[
∇2ℓ(fW (xi), yi)

]
− E

(x,y)∼D

[
Tr
[
∇2ℓ(fW (x), y))

]])

≤σ2

2β
· √p ·

∥∥∥∥∥ 1n
n∑

i=1

∇2[ℓ(fW (xi), yi)]− E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

(by Cauchy-Schwarz)

≤σ2√p · C2

√
log(C3n/δ)

2β
√
n

. (24)

In particular, the second step also uses the fact that the Hessian matrix is a symmetric p by p matrix.
As for equation (23), we recall that

α := max
(x,y)∼D

Tr
[
∇2ℓ(fW (x), y)

]
.

Combined with equation (24), we have shown that

E1 ≤
σ2√p · C2

√
log(C3n/δ)

2β
√
n

+
1− β

β

σ2

2
· α. (25)

As for E2, we will use the PAC-Bayes bound of Theorem A.1. In particular, we set the prior
distribution P as the distribution of U and the posterior distribution Q as the distribution of W + U .
Thus,

E2 ≤
C
(
KL(Q||P) + log 1

δ

)
2β(1− β)n

≤
C
(

∥W∥2
2

2σ2 + log 1
δ

)
2β(1− β)n

≤ C( r2

2σ2 + log δ−1)

2β(1− β)n
. (26)

The last step is because ∥W∥2 ≤ r by the assumption of the hypothesis space. Combining equations
(21), (25), (26), we claim that with probability at least 1− 2δ, the following must be true:

L(W )− 1

β
L̂(W ) ≤ σ2√p · C2

√
log(C3n/δ)

2β
√
n

+
1− β

β

σ2

2
α+

1 + β

β
C1σ

3 +
C( r2

2σ2 + log 1
δ )

2β(1− β)n
.

(27)

Thus, we will now choose σ and β ∈ (0, 1) to minimize the term above. In particular, we will set σ as

σ2 =
r

1− β

√
C

αn
. (28)

By plugging in σ to equation (27) and re-arranging terms, the gap between L(W ) and L̂(W )
β becomes:

L(W )− 1

β
L̂(W ) ≤ 1

β

√
Cαr2

n
+

C2

√
2p log(C3n/δ)

2β
√
n

σ2 +
1 + β

β
C1σ

3 +
C

2β(1− β)n
log

1

δ
.

Let β be a fixed value close to 1 and independent of N and δ−1, and let ϵ = (1− β)/β. We get

L(W ) ≤ (1 + ϵ)L̂(W ) + (1 + ϵ)

√
Cαr2

n
+ ξ, where

ξ =
C2

√
2p log(C3n/δ)

2β
√
n

σ2 +
(
1 +

1

β

)
C1σ

3 +
C

2β(1− β)n
log

1

δ
.

Notice that ξ is of order O(n− 3
4 + n− 3

4 + log(δ−1)n−1) ≤ O(log(δ−1)n− 3
4 ). Therefore, we have

finished the proof of equation (6).
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Remark A.6. We highlight two key aspects of our results. The first is that our PAC-Bayes bound
is non-vacuous, meaning that it matches the scale of empirically observed gaps when measured
in practice; this is based on the trace measurements in Figures 2 and 3. The second is that this
non-vacuous bound has practical implications, meaning that we can utilize this bound to design
optimization algorithms that improve generalization.

These are non-trivial to achieve. To give some context, prior work has provided a PAC-Bayes margin
bound for multi-layer neural networks, which depends on the product of the spectral norm of the
network layers (Neyshabur et al., 2018). While this paper provides important insights regarding the
generalization of deep networks, the bound is vacuous when measured in practice. Arora et al. (2018)
provide another data-dependent PAC-Bayes bound based on compression techniques. Their work
started with an experiment in which they injected noise into the network layers and showed that deep
nets can absorb the noise after retraining. However, their bound remains orders of magnitude higher
than the actual generalization errors observed in practice.

In contrast, our bound matches the scale of empirically observed gaps. To achieve this, we start from
the line of work on data-dependent PAC-Bayes bounds. We build on the line of work on distance from
the initialization (Nagarajan and Kolter, 2020), which is ideal for understanding fine-tuning (Li and
Zhang, 2021). Our key breakthrough is to connect noise stability in PAC-Bayes bound with the loss
Hessian matrix (cf. equations (9) and (10)). Then, we can measure the Hessian of loss landscapes
from data.

We additionally note that few existing works have considered using PAC-Bayes bounds to design
algorithms. The reason is that for new algorithm designs, we need to connect the PAC-Bayes bound
with data in a non-vacuous way. The work of Dziugaite and Roy (2017) has provided a computational
framework to achieve non-vacuous generalization bounds. Instead, our result provides an analytical
expression that can be leveraged in algorithm design. To operationalize the design, we utilize the
explicit dependence of our result on the Hessian to design the regularization scheme.

Remark A.7. When f is strongly convex, the lowest eigenvalue of the Hessian is bounded from below.
Once the algorithm reaches the global minimizer, our result from Theorem 6 can be used to provide a
generalization bound based on the trace of the Hessian. Notice that the noise injection will add some
bias to this minimizer, leading to a sub-optimal empirical loss. To remedy this issue, one can place
the regularization of Hessian as a constraint, similar to how ℓ2-regularization can be implemented as
a constraint.

A.1.2 Proof of Lemma A.5

In this section, we provide the proof of Lemma A.5, which shows the uniform convergence of the
loss Hessian.

Proof of Lemma A.5. Let C, ϵ > 0, and let S = {W ∈ Rp : ∥W∥2 ≤ C}. There exists an ϵ-

cover of S with respect to the ℓ2-norm at most max
((

3C
ϵ

)p
, 1
)

elements; see, e.g., Example 5.8

(Wainwright, 2019). Let T ⊆ S denote the set of this cover. Recall that the Hessian∇2[ℓ(fW (x), y)]
is C1-Lipschitz for all (W + U) ∈ S,W ∈ S. Then we have∥∥∇2[ℓ(fW+U (x), y)]−∇2[ℓ(fW (x), y)]

∥∥
F
≤ C1 ∥U∥2 .

For parameters δ, ϵ > 0, let N be the ϵ-cover of S with respect to the ℓ2-norm. Define the event

E =
{
∀W ∈ T,

∥∥∥∥∥ 1n
n∑

i=1

∇2[ℓ(fW (xi), yi)]− E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤ δ
}
.

By the matrix Bernstein inequality, we have

Pr[E] ≥ 1− 4 · |N | · p · exp
(
−nδ2

2α2

)
.
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Next, for any W ∈ S, we can pick some W + U ∈ T such that ∥U∥2 ≤ ϵ. We have∥∥∥∥ E
(x,y)∼D

[
∇2[ℓ(fW+U (x), y)]

]
− E

(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥
F

≤ C1 ∥U∥2 ≤ C1ϵ∥∥∥∥∥∥ 1n
n∑

j=1

∇2[ℓ(fW+U (xj), yj)]−
1

n

n∑
j=1

∇2[ℓ(fW (xj), yj)]

∥∥∥∥∥∥
F

≤ C1 ∥U∥2 ≤ C1ϵ.

Therefore, for any W ∈ S, we obtain:∥∥∥∥∥∥ 1n
n∑

j=1

∇2[ℓ(fW (xj), yj)]− E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤ 2C1ϵ+ δ.

We will also set the value of δ and ϵ. First, set ϵ = δ/(2C1) so that conditional on E,∥∥∥∥∥∥ 1n
n∑

j=1

∇2[ℓ(fW (xj), yj)]− E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤ 2δ.

The event E happens with a probability of at least:

1− 4|T |p · exp
(
−nδ2

2α2

)
= 1− 4p · exp

(
log |T | − nδ2

2α2

)
.

We have log |T | ≤ p log(3B/ϵ) = p log(6CC1/δ). If we set

δ =

√
4pα2 log(3τCC1n/α)

n

so that log(3τCC1n/α) ≥ 1 (because n ≥ eα
3C1

and τ ≥ 1), then we get

p log(6CC1/δ)− nδ2/(2α2) =p log

(
6CC1

√
n√

4pα2 log(3τCC1n/α)

)
− 2p log (3τCC1n/α)

=p log

(
3CC1

√
n

α
√
p log(3τCC1n/α)

)
− 2p log (3τCC1n/α)

≤p log (3τCC1n/α)− 2p log (3τCC1n/α)
(τ ≥ 1, log(3τCC1n/α) ≥ 1)

=− p log (3τCC1n/α) ≤ −p log(eτ). (3CC1n/α ≥ e)

Therefore, with a probability greater than

1− 4|N |p · exp(−nδ2/(2α2)) ≥ 1− 4p(eτ)−p,

the following estimate holds:∥∥∥∥∥∥ 1n
n∑

j=1

∇2[ℓ(fW (xj), yj)]− E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥∥
F

≤
√

16pα2 log(3τCC1n/α)

n
.

Denote δ′ = 4p(eτ)−p, C2 = 4α
√
p, and C3 = 12pCC1/(eα). With probability greater than 1− δ′,

the final result is:∥∥∥∥∥ 1n
n∑

i=1

∇2[ℓ(fW (xi), yi)]− E
(x,y)∼D

[
∇2[ℓ(fW (x), y)]

]∥∥∥∥∥
F

≤ C2

√
log(C3n/δ′)

n
.

This completes the proof of Lemma A.5.
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A.2 Proof of Proposition 5.1

Proof of Proposition 5.1. We can calculate the gradient as

∇L̂(W ) =
1

n

n∑
i=1

(⟨Ai,WW⊤⟩ − yi)AiW. (29)

For a particular entry Wj,k of W , for any 1 ≤ j, k ≤ d, the derivative of the gradient with respect to
Wj,k is

1

n

n∑
i=1

(
[AiW ]j,kAiW +

(
⟨Ai,WW⊤⟩ − yi

)∂(AiW )

∂Wj,k

)
. (30)

When L̂(W ) is zero, the second term of equation (30) above must be zero, because ⟨Ai,WW⊤⟩ is
equal to yi, for any i = 1, . . . , n.

We use the assumption that Ai is a random Gaussian matrix, in which every entry is drawn from
a normal distribution with mean zero and variance one. Notice that the expectation of ∥AiW∥2F
satisfies:

E
[
∥AiW∥2F

]
= E

[
Tr
[
W⊤A⊤

i AiW
]]

= Tr
[
W⊤(d · Idd×d)W

⊤] = d · Tr
[
W⊤W

]
= d ∥W∥2F .

Thus, by concentration inequality for χ2 random variables (e.g., Wainwright (2019, equation (2.19))),
the following holds for any 0 < ϵ < 1,

Pr

[∣∣∣∣∣ 1n
n∑

i=1

∥AiW∥2F − d ∥W∥2F

∣∣∣∣∣ ≥ ϵd ∥W∥2F

]
≤ 2 exp

(
−nϵ2

8

)
. (31)

This implies that ϵ must be smaller than O(n−1/2) with high probability. As a result, the average of
∥AiW∥2F must be d ∥W∥2F plus some deviation error that scales with n−1/2 times the expectation.

By Theorem 3.2, Recht et al. (2010), the minimum Frobenius norm (∥W∥2
F

) solution that satisfies
L̂(W ) = 0 (for Gaussian random matrices) is precisely U⋆. Thus, we conclude that equation (17)
holds.

B Omitted Proofs from Section 4

B.1 Proof of Proposition 4.2

Recall that each iteration involves two sources of randomness stemming from gz and {U (j)
i }kj=1,

respectively. Let us define

δi =
1

2k

k∑
j=1

(
∇f
(
Wi + U

(j)
i

)
+∇f

(
Wi − U

(j)
i

))
−∇F (Wi),

ξi =
1

2k

k∑
j=1

(
G

(j)
i −∇f

(
Wi + U

(j)
i

)
−∇f

(
Wi − U

(j)
i

))
,

for i = 0, . . . , T − 1. One can see that both δi and ξi have mean zero. The former is by the symmetry
of P . The latter is because gz is unbiased under Assumption 4.1. The following result gives their
variance.

Lemma B.1. In the setting of Proposition 4.2, for any i = 1, . . . , T , we have

E
[
∥ξi∥2

]
≤ σ2

k
and E

[
∥δi∥2

]
≤ C2H(P)

k
. (32)

The last step uses smoothness to show that ∥∇F (Wt)∥ keeps reducing.
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Proof. Let us bound the variance of δi and ξi for i = 0, 1, . . . , T − 1. First, we see that

E
U1

i ,...,U
k
i

[
∥δi∥2

]
= E

U1
i ,...,U

k
i


∥∥∥∥∥∥ 1

2k

k∑
j=1

(
∇f(Wi + U j

i ) +∇f(Wi − U j
i )− 2∇F (Wi)

)∥∥∥∥∥∥
2


=
1

k2

k∑
j=1

E
Uj

i

[∥∥∥∥12(∇f(Wi + U j
i ) +∇f(Wi − U j

i )− 2∇F (Wi)
)∥∥∥∥2

]
(33)

=
1

k
E
U1

i

[∥∥∥∥12(∇f(Wi + U1
i ) +∇f(Wi − U1

i )
)
−∇F (Wi)

∥∥∥∥2
]

(34)

where in the second line we use that U j1
i and U j2

i are independent when j1 ̸= j2, in the last line we
use fact that U1

i , . . . , U
k
i are identically distributed. In the second step, we use the fact that for two

independent random variables U, V , and any continuous functions h(U), g(V ), h(U) and g(V ) are
still independent (recall that f is continuous since it is twice-differentiable). We include a short proof
of this fact for completeness. If U and V are independent, we have Pr[U ∈ A, V ∈ B] = Pr[U ∈
A] · Pr[V ∈ B], for any A,B ∈ Borel(R). Thus, if h and g are continuous functions, we obtain

Pr[h(U) ∈ A, g(V ) ∈ B] =Pr[U ∈ h−1(A), V ∈ g−1(B)]

=Pr[U ∈ h−1(A)] · Pr[V ∈ g−1(B)] = Pr[h(U) ∈ A] · Pr[g(V ) ∈ B].

Thus, we have shown that

E
[
∥δi∥2

]
=

1

k
E

U∼P

[∥∥∥∥12(∇f(Wi + U) + f(Wi − U)
)
−∇F (Wi)

∥∥∥∥2
]
. (35)

Next, we deal with the variance of the two-point stochastic gradient. We will show that

E
U

[∥∥∥∥12(∇f(W + U) +∇f(W − U)
)
−∇F (W )

∥∥∥∥2
]
≤ C2H(P). (36)

We mainly use the Lipschitz continuity of the gradient of F . The left-hand side of equation (36) is
equal to

E
U

[∥∥∥∥12(∇f(W + U)−∇F (W )
)
+

1

2

(
∇f(W − U)−∇F (W )

)∥∥∥∥2
]

≤E
U

[
1

2
∥∇f(W + U)−∇F (W )∥2 + 1

2
∥∇f(W − U)−∇F (W )∥2

]
(by Cauchy-Schwartz)

=
1

2
E
U

[
∥∇f(W + U)−∇F (W )∥2

]
(by symmetry of P since it has mean zero)

=
1

2
E
U

[∥∥∥∥ E
U ′∼P

[∇f(W + U)−∇f(W + U ′)]

∥∥∥∥2
]

≤1

2
E
U

[
E

U ′∼P

[
∥∇f(W + U)−∇f(W + U ′)∥2

]]
≤1

2
E

U,U ′

[
C2 ∥U − U ′∥2

]
=

1

2
C2 E

U,U ′

[
∥U∥2 + ∥U ′∥2

]
= C2H(P) (by equation (38))

As for the variance of ξi, we note that U (1)
i , . . . , U

(j)
i are all independent from each other. Therefore,

E{
U

(j)
i ,z

(j)
i

}k

j=1

[
∥ξi∥2

]
=

1

4k
E
U,z

[
∥gz(W + U)−∇f(W + U) + gz(W − U)− f(W − U)∥2

]
≤ 1

2k
E
U,z

[
∥gz(W + U)−∇f(W + U)∥2 + ∥gz(W − U)−∇f(W − U)∥2

]
≤σ2

k
.
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The first step uses the fact that both gz(·) and f(·) are continuous functions The second step above
uses Cauchy-Schwartz inequality. The last step uses the variance bound of gz(·), Thus, the proof is
finished.

In the next step, we use a result from Theorem 2.1, Ghadimi and Lan (2013). Our proof follows from
their work, but we deal with some extra technical details related to the noise injection.
Lemma B.2 (Slightly adapted from Theorem 2.1, Ghadimi and Lan (2013)). In the setting of Propo-
sition 4.2, for any η0, · · · , ηT−1 less than C−1 and a random variable according to a distribution
Pr[t = j] =

ηj∑T−1
i=0 ηi

, for any j = 0, . . . , T − 1, the following holds:

E
[
∥∇F (Wt)∥2

]
≤ 2C∑T−1

i=0 ηi
D2 +

C
∑T−1

i=0 η2i
(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
∑T−1

i=0 ηi
. (37)

Proof. First, let us show that ∇F is C-Lipschitz continuous. To see this, we apply the Lipschitz
condition of the gradient inside the expectation of F (W ). For any W1,W2 ∈ Rd, by definition,

∥∇F (W1)−∇F (W2)∥ =
∥∥∥∥∇ E

U∼P
[f(W1 + U)]−∇ E

U∼P
[f(W2 + U)]

∥∥∥∥
=

∥∥∥∥ E
U∼P

[∇f(W1 + U)−∇f(W2 + U)]

∥∥∥∥
≤ E

U∼P
[∥∇f(W1 + U)−∇f(W2 + U)∥] ≤ C ∥W1 −W2∥ .

Since ∇F (W ) is C-Lipschitz continuous, we have the following domination inequality:

|F (W2)− F (W1)− ⟨∇F (W1),W2 −W1⟩| ≤
C

2
∥W2 −W1∥2 . (38)

Based on the above inequality, we have

F (Wi+1) ≤F (Wi) + ⟨∇F (Wi),Wi+1 −Wi⟩+
C

2
η2i

∥∥∥∥12(∇f(Wi + Ui) +∇f(Wi − Ui)
)
+ ξi

∥∥∥∥2
=F (Wi)− ηi⟨∇F (Wi), δi + ξi +∇F (Wi)⟩+

Cη2i
2
∥δi + ξi +∇F (Wi)∥2

=F (Wi)−
(
ηi −

Cη2i
2

)
∥∇F (Wi)∥2 −

(
ηi − Cη2i

)
⟨∇F (Wi), δi + ξi⟩+

Cη2i
2
∥δi + ξi∥2 .

Summing up the above inequalities for i = 0, 1, . . . , T − 1, we obtain
T−1∑
i=0

F (Wi+1) ≤
T−1∑
i=0

F (Wi)−
T−1∑
i=0

(
ηi −

Cη2i
2

)
∥∇F (Wi)∥2

−
T−1∑
i=0

(
ηi − Cη2i

)
⟨∇F (Wi), δi + ξi⟩+

T−1∑
i=0

Cη2i
2
∥δi + ξi∥2 ,

which implies that
T−1∑
i=0

(
ηi −

Cη2i
2

)
∥∇F (Wi)∥2 (39)

≤F (W0)− F (WT )−
T−1∑
i=0

(
ηi − Cη2i

)
⟨∇F (Wi), δi + ξi⟩+

C

2

T−1∑
i=0

η2i ∥δi + ξi∥2

≤D2 −
T−1∑
i=0

(
ηi − Cη2i

)
⟨∇F (Wi), δi + ξi⟩+

C

2

T−1∑
i=0

η2i ∥δi + ξi∥2 . (40)

where in the last step, we use the fact that

F (W0)− F (WT ) ≤ F (W0)− min
W∈Rd

F (W ) ≤ D2.
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For any t = 0, 1, . . . , T − 1, notice that as long as 0 < ηt ≤ 1
C , then ηt ≤ 2ηt − Cη2t . Hence, we

have

1

2

T−1∑
t=0

ηt ∥∇F (Wt)∥2 ≤
T−1∑
t=0

(
ηt −

Cη2t
2

)
∥∇F (Wt)∥2 ,

which implies that

1

2

T−1∑
i=0

ηi ∥∇F (Wi)∥2 ≤ D2 −
T−1∑
i=0

(
ηi − Cη2i

)
⟨∇F (Wi), δi + ξi⟩+

C

2

T−1∑
i=0

η2i ∥δi + ξi∥2 .

(41)

Additionally, since Ut is drawn from a distribution with mean zero. Hence, by symmetry, we get that

E
Ut

[δt] =
1

2
E
Ut

[∇f(Wt − Ut)−∇f(Wt + Ut)] = 0. (42)

Thus, if we take the expectation over U0, U1, . . . , UT−1, ξ0, ξ1, . . . , ξT−1, then
E [⟨∇F (Wi), δi + ξi⟩] = 0. Recall that t is a random variable whose probability mass is
specified in Lemma B.2. We can write equation (41) equivalently as (below, we take expectation over
all the random variables along the update since Wt is a function of the previous gradient updates, for
each t = 0, 1, . . . , T − 1, recalling that Pr[t = i] = ηi∑T−1

j=0 ηj
)

E
t; U0,...,UT−1,ξ0,ξ1,...,ξT−1

[
∥∇F (Wt)∥2

]
=

∑T−1
i=0 ηi E

[
∥∇F (Wi)∥2

]
∑T−1

i=0 ηi

≤
2D2 + C

∑T−1
i=0 η2i E

[
∥δi + ξi∥2

]
∑T−1

i=0 ηi

=
2D2 + C

∑T−1
i=0 η2i

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
∑T−1

i=0 ηi
.

where we use the fact that δi and ξi are independent for any i. Hence, equation (37) is proved.

Based on the above result, we now finish the proof of Proposition 4.2.

Proof of Proposition 4.2. Let the step sizes be a fixed η for all epochs. Thus, equation (37) becomes

E
[
∥∇F (Wt)∥2

]
≤ 2

Tη
D2 +

Cη

T

T−1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
. (43)

By Lemma B.1,
T−1∑
i=0

(
E
[
∥δi∥2

]
+ E

[
∥ξi∥2

] )
≤ T · σ

2 + C2H(P)
k

. (44)

For simplicity, let us denote ∆ = σ2+C2H(P)
k . The proof is divided into two cases.

Case 1: ∆ is large. More precisely, suppose that ∆ ≥ 2CD2/T . Then, minimizing over η above
leads us to the following upper bound on the right-hand side of equation (43):√

2CD2∆

T
, (45)

which is obtained by setting η =
√

2D2

C∆T . One can verify that this step size is less than 1
C since ∆ is

at least 2CD2. Thus, we conclude that equation (43) must be less than√
2CD2∆

T
=

√
2CD2(σ2 + C2H(P)))

kT
. (46)
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Case 2: ∆ is small. In this case, suppose ∆ < 2CD2/T . Then, the right-hand side of equation
(43) must be less than

2D2

Tη
+

2C2D2η

T
≤ 2CD2

T
. (47)

Thus, combining equations (46) and (47), we have completed the proof of equation (12).

B.2 Proof of Theorem 4.3

Recall our construction from Section 4 as follows. Let et be the basis vector for the t-th dimension,
for t = 0, 1, . . . , T − 1. Define f(W ) as

f(W ) =
1

2G
⟨W, e0⟩2 +

T−1∑
i=0

hi(⟨W, ei+1⟩),

where hi a quadratic function parameterized by αi, defined as follow:

hi(x) =


Cα2

i

4 |x| ≤ αi

−C(|x|−αi)
2

2 +
Cα2

i

4 αi ≤ |x| ≤ 3
2αi

C(|x|−2αi)
2

2
3
2αi ≤ |x| ≤ 2αi

0 2αi ≤ |x|.

For technical reasons, we define a truncated perturbation distribution P . Given a sample U from
a d-dimensional isotropic Gaussian N(0, Idd), we truncate the i-th coordinate of U so that Ũi =
min(Ui, ai), for some fixed ai > 0 that we will specify below, for all i = 0, 1, . . . , d − 1. Let P
denote the distribution of Ũ . The proof of Theorem 4.3 is divided into two cases. First, we examine
the case when the averaged learning rate is O(T−1/2).

Lemma B.3. In the setting of Theorem 4.3, suppose the learning rates satisfy that
∑T−1

i=0 ηi ≤√
D2kT
2σ2C , consider the function f(W ) constructed in equation (13), we have

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT
.

Proof. We start by defining a gradient oracle by choosing the noise vectors {ξt}T−1
t=0 to be independent

random variables such that

ξt = ⟨ξt, et+1⟩et+1 and |⟨ξt, et+1⟩| ≤
σ√
k
, (48)

where et+1 is a basis vector whose (t+ 1)-th entry is one and otherwise is zero. In other words, only
the (t+ 1)-th coordinate of ξt is nonzero. Otherwise, the rest of the vector remains zero. We use ξ̄t
to denote the averaged noise variable as

ξ̄t =
1

k

k∑
i=1

ξ
(i)
t ,

where ξ
(i)
t is defined following the condition specified in equation (48). Thus, we can also conclude

that

|⟨ξ̄t, et+1⟩| ≤
σ√
k
.

We consider the objective function f(W ) : Rd → R defined above (see also equation (13), Section
4), with

αi =
2ηiσ√

k
, for i = 0, 1, . . . , T. (49)
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We will analyze the dynamics of Algorithm 1 with the objective function f(W ) and the starting point
W0 = D

√
G · e0, where G = max

{
C−1, 2

∑T−1
i=0 ηi

}
. For the first iteration, we have

W1 = W0 − η0

(1
2

k∑
i=1

(
∇f(W0 + U

(i)
0 ) +∇f(W0 − U

(i)
0 )
)
+ ξ̄0

)
= (1− η0G

−1)W0 − η0ξ̄0,

where U is a random draw from the truncated distribution P with ⟨U, ei⟩ = min{Pi, ai} for
ai =

ηi−1σ√
k

. Next, from the construction of h1, we get

1

2

(
∇f(W1 + U) +∇f(W1 − U)

)
=G−1⟨W1, e0⟩e0 +

1

2

(
h′
0

(
η0⟨ξ̄0, e1⟩+ ⟨U, e1⟩

)
e1 + h′

0

(
η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩

)
e1

)
.

Here, using the fact that α0 = 2η0σ√
k

from equation (49) above, and the truncation of U , which implies
|⟨U, e1⟩| ≤ η0σ√

k
, and ⟨ξ̄0, e1⟩ ≤ σ√

k
, we obtain∣∣η0⟨ξ̄0, e1⟩+ ⟨U, e1⟩∣∣ ≤ 2η0σ√

k
= α0, and similarly

∣∣η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩∣∣ ≤ 2η0σ√
k

= α0,

which implies that

h′
0(η0⟨ξ̄0, e1⟩+ ⟨U, e1⟩) = h′

0(η0⟨ξ̄0, e1⟩ − ⟨U, e1⟩) = 0.

This is the first update. Then, in the next iteration,

W2 = W1 − η1

(
G−1⟨W1, e0⟩+ ξ̄1

)
= −(1− η1G

−1)(1− η0G
−1)W0 − η0ξ̄0 − η1ξ̄1.

Similarly, we use the fact that αi = 2ηiσ√
k

and the fact that |⟨U, ei+1⟩| ≤ ηiσ√
k

, which renders the
gradient as zero similar to the above reasoning. This holds for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose we have that

Wt = W0

t−1∏
i=0

(
1− ηiG

−1
)
−

t−1∑
i=0

ηiξ̄i.

Then by induction, at the (t+ 1)-th iteration, we must have

Wt+1 = Wt − ηt

(
G−1⟨Wt, e0⟩+ ξ̄t

)
= W0

t∏
i=0

(
1− ηiG

−1
)
−

t∑
i=0

ηiξ̄i. (50)

Next, from the definition of ht above, we have that

F (W0)− min
W∈Rd

F (W ) = F (W0) (the minimum can be attained at zero)

=
1

2G
(D
√
G)2 +

T−1∑
i=0

C

4

(2ηiσ√
k

)2
(since ⟨W0 + U, ei+1⟩ ≤ αi)

The above must be at most D2, which implies that we should set the learning rates to satisfy (after
some calculation)

1

T

( T−1∑
i=0

ηi

)2
≤

T−1∑
i=0

η2i ≤
kD2

2Cσ2
. (51)
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We note that for all z ∈ [0, 1], 1 − z
2 ≥ exp(log z

2 ). Thus, applying this to the right-hand side of
equation (50), we obtain that for any t,

t∏
i=0

(
1− ηiG

−1
)
≥ 1

2
, (52)

where we recall that G = max{C−1, 2
∑T−1

i=0 ηi}. Our calculation so far shows that for all the hi

except h0, the algorithm has not moved at all from its initialization at W0 under the above gradient
noise. We thus conclude that

min
1≤i≤T

∥∇F (Wi)∥2 = min
1≤i≤T

(
G−1⟨W0, e0⟩

)2
(by the construction of F (·))

≥ 1

4
G−2(D

√
G)2 (by equations (50) and (52))

=
D2

4
min

{
C,

1

2
∑T−1

i=0 ηi

}
(recall the definition of G above)

≥ D2

4
min

{
C,

√
2Cσ2

2D
√
kT

}
≥ D

√
Cσ2

32kT
. (by equation (51))

In the first step, we use the fact that ⟨ξ̄i, e0⟩ = 0, for all 0 = 1, 2, . . . , T − 1. Thus, we have proved
that equation (14) holds for Wi for any i = 1, 2, . . . , T . The proof of Lemma B.3 is finished.

Next, let us consider another case of the lower bound.

Lemma B.4. In the setting of Theorem 4.3, suppose the learning rates satisfy that
∑T−1

i=0 ηi ≥√
D2kT
2σ2C and ηi = η for some fixed η ≤ C−1. Then, consider the function from equation (13), we

have that min1≤t≤T E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32kT .

Proof. We define the functions g, parametrized by a fixed, positive constants α = 1−ρT

1−ρ · 2cησ, as
follows:

g(x) =

 −
C
2 x

2 + C
4 α

2 |x| ≤ α
2 ,

C
2 (|x| − α)2 α

2 ≤ |x| ≤ α,
0 α ≤ |x|.

One can verify that ∇g is C-Lipschitz continuous, but g is not twice-differentiable. We also consider
a chain-like function:

f(W ) = g(⟨W, e0⟩) +
d−1∑
t=0

C

2
⟨W, et+1⟩2. (53)

From the definition of f , its gradient is C-Lipschitz continuous. Similar to equation (48), we define
an adversarial gradient oracle by choosing the noise vectors {ξt}T−1

t=0 to be independent random
variables such that

ξt = ⟨ξt, et+1⟩,E
[
⟨ξt, et+1⟩2

]
= σ2, and |⟨ξt, et+1⟩| ≤ cσ,

where c is a fixed constant. We use ξ̄t to denote the averaged noise variable as

ξ̄t =

k∑
i=1

ξ
(i)
t .

Suppose {ξ(i)t }ki=1 are i.i.d. random variables for any t, we have

|⟨ξ̄t, et+1⟩| ≤ cσ and E
[∥∥ξ̄t∥∥2] ≤ σ2

k
. (54)

Next, we analyze the dynamics of Algorithm 1 with the objective function f(W ) and the starting

point W0 =
∑d

i=1

√
D2

Cd · ei. In this case, by setting ηi = η for all i = 0, 1, . . . , T − 1. Recall that
η < C−1. Denote by ρ = Cη, which is strictly less than one.
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Since ht is an even function, its derivative h′
t is odd. For the first iteration, we have

W1 = W0 − η
(1
2

(
∇f(W0 + U) +∇f(W0 − U)

)
+ ξ̄0

)
= (1− Cη)W0 − ηξ̄0.

where U is a truncate distribution of P ∼ N(0, Idd) with ⟨U, e0⟩ = min{P0, a0} and a0 = cησ.

Using the fact that α = 1−ρT

1−ρ · 2cησ, |⟨U, e0⟩| ≤ cησ, and ⟨ξ̄0, e0⟩ ≤ cσ, we have

g′(η⟨ξ̄0, e0⟩+ ⟨U, e0⟩) + g′(η⟨ξ̄0, e0⟩ − ⟨U, e0⟩) = −2Cη⟨ξ̄0, e0⟩.
Then, in the next iteration,

W2 = W1 − η
(
C

d∑
i=1

⟨W1, ei⟩ − Cηξ̄0 + ξ̄1

)
= (1− Cη)2W0 − (1− Cη)ηξ̄0 − ηξ̄1.

Similarly, we use the fact that α = 1−ρT

1−ρ · 2cησ and the fact that |⟨U, e0⟩| ≤ cησ, which renders the
gradient as g′(x) = −Cx, for any i = 1, 2, . . . , T − 1.

At the t-th iteration, suppose that

Wt = (1− Cη)tW0 −
t−1∑
i=0

(1− Cη)t−1−iηξ̄i.

Then by induction, at the (t+ 1)-th iteration, we have

Wt+1 = Wt − η
(
C

d∑
i=1

⟨Wt, ei⟩ − C

t−1∑
i=0

(1− Cη)t−1−iηξ̄i + ξ̄t

)
= (1− Cη)t+1W0 −

t∑
i=0

(1− Cη)t−1−iηξ̄i. (55)

Next, from the definition of F above, we have that

F (W0)− min
W∈Rd

F (W ) = F (W0) =
dC

2

(√D2

Cd

)2
+

C

4

(2(1− ρT )cησ

(1− ρ)

)2
,

(since ⟨W0 + U, e0⟩ ≤ α)

which must be at most D2. Thus, we must have (after some calculation)

c2 ≤ D2(1− ρ)2

2σ2ρ2(1− ρT )2
.

We conclude that

min
1≤i≤T

E
[
∥∇F (Wi)∥2

]
= min

1≤i≤T
E

 d∑
j=1

C2⟨Wi, ej⟩2 + C2⟨Wi, e0⟩2


= min
1≤i≤T

(
dC2(1− ρ)2t

(√D2

Cd

)2
+

σ2

k
· ρ2

t∑
i=0

(1− ρ)2(t−1−i)
)

≥ min
1≤i≤T

(
CD2(1− ρ)2t +

σ2

k

ρ

2− ρ

(
1− (1− ρ)2t

))
≥ min

{
CD2,

σ2

k

ρ

2− ρ

}
≥ σ2

k
C

√
kD2

2Tσ2C

1

2− C
√

kD2

2Tσ2C

≥ D

√
Cσ2

16k · T .

(after some calculation)

Thus, we have proved this lemma.

Taking both Lemma B.3 and B.4 together, we thus conclude the proof of Theorem 4.3.
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B.3 Proof of momentum lower bound

In this section, we prove the following result.
Theorem B.5. There exists a quadratic function f such that for the iterates W1, . . . ,WT generated

by equation (15), we must have: min1≤t≤T E
[
∥∇F (Wt)∥2

]
≥ O

(
D
√

Cσ2

k·T
)
.

We will focus on a perturbation distribution P equal to the isotropic Gaussian distribution for this
result. In this case, we know that F (W ) = f(W ) + d. For the quadratic function f(W ) = C

2 ∥W∥
2,

its gradient is C-Lipschitz continuous. We set the initialization W0 ∈ Rd such that

F (W0)− min
W∈Rd

F (W ) = D2.

This condition can be met when we set W0 as a vector whose Euclidean norm is equal to

D

√√√√2max
{
C−1, 2

T−1∑
i=0

ηi

}
.

The case when µ = 0. We begin by considering the case when µ = 0. In this case, the update
reduces to SGD, and the iterate Wt+1 evolves as follows:

Wt+1 =
(
1− Cηt

)
Wt − ηtξ̄t, (56)

where we denote ξ̄t as the averaged noise k−1
∑k

j=1 ξ
(j)
t , and the noise perturbation U

(j)
t cancelled

out between the plus and minus perturbations. The case when µ > 0 builds on this simpler case, as
we will describe below.

The key observation is that the gradient noise sequence ξ̄1, ξ̄2, . . . , ξ̄T forms a martingale sequence:

• For any i = 1, 2, . . . , T , conditioned on the previous random variables ξ(j)i′ for any i′ < i
and any j = 1, 2, . . . , k, the expectation of ξ̄i is equal to zero.

• In addition, the variance of ξ̄i is equal to k−1σ2, since conditional on the previous random
variables, the ξ

(j)
i s are all independent from each other.

The martingale property allows us to characterize the SGD path of ∥Wt∥2, as shown in the following
result.
Lemma B.6. In the setting of Theorem B.5, for any step sizes η0, . . . , ηT−1 less than C−1, and any
t = 1, . . . , T , the expected gradient of Wt, E

[
∥∇F (Wt)∥2

]
, is equal to

2CD2
t−1∏
j=0

(
1− Cηj

)2
+

Cσ2

k

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− Cηj

)2
.

Proof. By iterating over equation (56), we can get

Wt = W0

t−1∏
j=0

(
1− Cηj

)
−

t−1∑
i=0

ηiξ̄i

t−1∏
j=i+1

(
1− Cηj

)
.

Meanwhile,

∇F (Wt) = CWt ⇒ ∥∇F (Wt)∥2 = C2 ∥Wt∥2 .
Thus, by squaring the norm of Wt and taking the expectation, we can get

E
[
∥∇F (Wt)∥2

]
= C2 ∥W0∥2

t−1∏
j=0

(
1− Cηj

)2
+ C2

t−1∑
i=0

E
[∣∣∣∣∣∣ηiξ̄i t−1∏

j=i+1

(
1− Cηj

)∣∣∣∣∣∣2]. (57)
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Above, we use martingale property a), which says the expectation of ξ̄i is equal to zero for all i. In
addition, based on property b), equation (57) is equal to

C2
t−1∑
i=0

η2i

 t−1∏
j=i+1

(
1− Cηj

)2
E
[∥∥ξ̄i∥∥2]

 =
C2σ2

k

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− Cηj

)2
.

To see this, based on the martingale property of ξ̄ again, the cross terms between ξ̄i and ξ̄j for different
i, j are equal to zero in expectation:

E
[
⟨ξ̄i, ξ̄j⟩|ξ̄j

]
= 0, for all 1 ≤ j < i ≤ T.

Additionally, the second moment of ξ̄i satisfies:

E
[∥∥ξ̄i∥∥2] = σ2

k
, for any i = 1, . . . , T.

Lastly, let W0 be a vector such that

∥W0∥ = D
√
2C−1 ⇒ F (W0)− min

W∈Rd
F (W ) ≤ D2.

Setting ∥W0∥ = D
√
2C−1 in equation (57) leads to

E
[
∥∇F (Wt)∥2

]
= 2CD2

t−1∏
j=0

(
1− Cηj

)2
+

C2σ2

k

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− Cηj

)2
.

Thus, we conclude the proof of this result.

We now present the proof for the case when
∑T−1

i=0 ηi ≤ O(
√
T ). For this result, we will use the

following quadratic function:

f(W ) =
1

2κ
∥W∥2 , where κ = max{C−1, 2

T−1∑
i=0

ηi}, (58)

Lemma B.7. Consider f given in equation (58) above. For any step sizes η0, . . . , ηT−1 less than
C−1, the following holds for the stochastic objective F :

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2max{C−1, 2
∑T−1

i=0 ηi}
.

Proof. The norm of the gradient of F (W ) is equal to

∥∇F (W )∥ = 1

κ
∥W∥ . (59)

Following the update rule in NSO, similar to equation (56), Wt evolves as follows:

Wt+1 =

(
1− ηt

κ

)
Wt − ηtξ̄t, (60)

where ξ̄t has variance equal to σ2/k, according to the proof of Lemma B.6. By iterating equation
(60) from the initialization, we can get a closed-form equation for W (1)

t , for any t = 1, 2, . . . , T :

Wt = W0

t−1∏
j=0

(
1− ηj

κ

)
−

t−1∑
k=0

ηkξk

t−1∏
j=k+1

(
1− ηj

κ

)
. (61)
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Following equation (59), we can show that ∥∇F (W )∥2 = κ−2 ∥Wt∥2 . Thus, in expectation,

E
[
∥∇F (Wt)∥2

]
= κ−2 E

[
∥Wt∥2

]
= κ−2 ∥W0∥2

t−1∏
j=0

(
1− κ−1ηj

)2
+ κ−2

t−1∑
i=0

E


ηiξ̄i

t−1∏
j=i+1

(
1− κ−1ηj

)2


= κ−2 ∥W0∥2
t−1∏
j=0

(
1− κ−1ηj

)2
+ κ−2

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− κ−1ηj

)2
E
[∥∥ξ̄i∥∥2]

= 2D2κ−1
t−1∏
j=0

(
1− κ−1ηj

)2
+

σ2κ−2

k

t−1∑
i=0

η2i

t−1∏
j=i+1

(
1− κ−1ηj

)2
, (62)

where we use the definition of initialization W0 and the variance of ξ̄i in the last step. In order to
tackle equation (62), we note that for all z ∈ [0, 1],

1− z

2
≥ exp

(
log

1

2
· z
)
. (63)

Hence, applying equation (63) to the right-hand side of equation (62), we obtain that for any
i = 0, 1, . . . , t− 1,

t−1∏
j=i

(
1− ηj

max{C−1, 2
∑T−1

j=i ηi}

)
≥ exp

(
log

1

2
·
t−1∑
j=i

ηj

max{(2C)−1,
∑T−1

i=0 ηi}

)
≥ 1

2
.

Thus, equation (62) must be at least

E
[
∥∇F (Wt)∥2

]
≥ 2D2κ−1

4
+

σ2κ−2

k

t−1∑
i=0

η2i
4
. (64)

The above result holds for any t = 1, 2, . . . , T . Therefore, we conclude that

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D2

2max{C−1, 2
∑T−1

i=0 ηi}
.

Thus, the proof of Lemma B.7 is finished.

Next, we consider the other case, which is when the learning rates are fixed.
Lemma B.8. There exists convex quadratic functions f such that for any gradient oracle satisfying
Assumption 4.1 and any distribution P with mean zero, if ηi = η < C−1 for any i = 1, . . . , T , or if∑T−1

i=0 ηi ≲
√
T , then the following must hold:

min
1≤t≤T

E
[
∥∇F (Wt)∥2

]
≥ D

√
Cσ2

32k · T . (65)

Proof. By Lemma B.7, there exists a function such that the left-hand side of equation (65) is at least

D2

2max{C−1, 2
∑T−1

i=0 ηi}
≥ CD2

2max{1, 2x−1
√
T}

=
D2x

4
√
T
, (66)

which holds if
∑T−1

i=0 ηi ≤
√
Tx−1 for any fixed x > 0.

On the other hand, if
∑T−1

i=0 ηi ≥ x−1
√
T and ηi = η for a fixed η, then η > x−1/

√
T . By setting

ηi = η for all i in Lemma B.6, the left-hand side of equation (65) is equal to

min
1≤t≤T

(
2CD2(1− Cη)2t +

C2σ2

k

t−1∑
k=0

η2(1− Cη)2(t−k−1)
)
.
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Recall that η < C−1. Thus, ρ = Cη must be less than one. With some calculations, we can simplify
the above to

min
1≤t≤T

(
2CD2(1− ρ)2t +

σ2ρ2

k

1− (1− ρ)2t

1− (1− ρ)2

)
= min

1≤t≤T

(
σ2ρ

k(2− ρ)
+ (1− ρ)2t

(
2CD2 − σ2ρ

k(2− ρ)

))
. (67)

If 2CD2 < σ2ρ
k(2−ρ) , the above is the smallest when t = 1. In this case, equation (67) is equal to

2CD2(1− ρ)2 +
σ2ρ2

k
≥ 1

1
2CD2 + k

σ2

= O(1).

If 2CD2 ≥ σ2ρ
k(2−ρ) , the above is the smallest when t = T . In this case, equation (67) is at least

σ2ρ

k(2− ρ)
≥ σ2ρ

2k
≥ σ2Cx−1

2k
· 1√

T
. (68)

To conclude the proof, we set x so that the right-hand side of equations (66) and (68) match each
other. This leads to

x =

√
2σ2C

kD2
.

Thus, by combining the conclusions from both equations (66) and (68) with this value of x, we finally
conclude that if

∑T−1
i=0 ηi ≤

√
Tx−1, or for all i = 0, . . . , T − 1, ηi = η < C−1, then in both cases,

there exists a function f such that equation (65) holds. This completes the proof of Lemma B.8.

The case when µ > 0. In this case, since the update of Wt also depends on the momentum update,
it becomes significantly more involved. One can verify that the update from step t to step t+ 1 is
based on

Xu =

[
1− Cηt µ
Cηt µ

]
. (69)

Our analysis examines the eigenvalues of the matrix XuX
⊤
u and the first entry in the corresponding

eigenvectors. Particularly, we show that the two entries are bounded away from zero. Then, we apply
the Hölder’s inequality to reduce the case of µ > 0 to the case of µ = 0, Lemma B.8 in particular.

Proof. First, consider a quadratic function

f(W ) =
1

2C
∥W∥2 .

Clearly, f(W ) is C-Lipschitz continuous. Further, F (W ) = f(W ) + d, for P being the isotropic
Gaussian. Let W0 be a vector whose Euclidean norm equals D

√
2C. Thus,

F (W0)− min
W∈Rd

F (W ) = D2.

As for the dynamic of momentum SGD, recall that

Mt+1 = µMt − ηtGt and Wt+1 = Wt +Mt+1.

We consider the case where ηt = η for all steps t. In this case, we can write the above update into a
matrix notation as follows:[

Wt+1

Mt+1

]
=

[
1− Cη µ
−Cη µ

] [
Wt

Mt

]
+ Cη

[
ξ̄t
ξ̄t

]
.

Let Xµ = [1 − Cη, µ;−Cη, µ] denote the 2 by 2 matrix (that depends on µ) above. Similar to
Lemma B.6, we can apply the above iterative update to obtain the formula for Wt+1 as:[

Wt+1

Mt+1

]
= Xt

u

[
W0

M0

]
+

t∑
i=0

CηXt−i
u

[
ξ̄i
ξ̄i

]
. (70)
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By multiplying both sides by the vector e1 = [1, 0]⊤, and then taking the Euclidean norm of the
vector (notice that this now only evolves that Wt+1 vector on the left, and the Wt vector on the right),
we now obtain that, in expectation over the randomness of the ξ̄i’s, the following holds:

E
[
∥Wt+1∥2

]
= 2CD2(e⊤1 X

t
ue1)

2 +
C2η2σ2

k

t∑
i=0

∥∥e⊤1 Xi
ue
∥∥2 . (71)

Above, similar to Lemma B.6, we have set the length of W0 appropriately so that its size is equal to
D
√
2C−1, which has led to the CD2 term above. Recall that M0 is equal to zero in the beginning.

To get the first term above, we follow this calculation:∥∥∥∥e⊤1 Xt
µ

[
W0

M0

]∥∥∥∥2 = Tr

[
e⊤1 X

t
µ

[
W0

M0

] [
W0

M0

]⊤
Xt

µ
⊤
e1

]

= Tr

[
e⊤1 X

t
µ

[
CD2 0
0 0

]
Xt

µ
⊤
e1

]
= 2CD2(e⊤1 X

t
µe1)

2.

We use e = [1, 1]⊤ to denote the vector of ones. Now, we focus on the 2 by 2 matrix Xu (recall this
is the coefficient matrix on the right side of equation (70)). Let its singular values be denoted as
λ1 and λ2. In addition, to deal with equation (71), let α1 and α2 denote the first entry of Xu’s left
singular vectors, corresponding to a and b, respectively. Thus, we can write

(e⊤1 X
i
µe)

2 = α2
1λ

2i
1 + α2

2λ
2i
2 . (72)

Now, one can verify that λ2
1 and λ2

2 are the roots of the following quadratic equation over x:

x2 − ((1− Cη)2 + (Cη)2 + 2µ2)x+ µ2 = 0. (73)

This can be checked by first taking Xu times X⊤
u , then using the definition of the eigenvalues by

calculating the determinant of XuX
⊤
u − x Id = 0. Thus, we have that λ1 and λ2 are equal to:

λ1, λ2 =
(1− Cη)2 + (Cη)2 + 2µ2 ±

√
((1− Cη)2 + (Cη)2 + 2µ2)2 − 4µ2

2
. (74)

Now, α2
1 (and α2

2, respectively) satisfies that:

α2
1 =

−Cη(1− Cη) + µ2

(1− Cη)2 + µ2 − λ1 +−Cη(1− Cη) + µ2
. (75)

By enumerating the possible values of Cη between 0 and 1, one can verify that for a fixed value of µ,
α2
1 and α2

2 are both bounded below from zero. Therefore, we can claim that from equation (72),

α2
1λ

2i
1 + α2

2λ
2i
2 ≳ λ2i

1 + λ2i
2 . (76)

By the Hölder’s inequality,

(λ2i
1 + λ2i

2 )
1
2i (1 + 1)1−

1
2i ≥ λ1 + λ2 = (1− Cη)2 + (Cη)2 + 2µ2 (77)

≥ (1− Cη)2 + (Cη)2, (78)

which implies that

λ2i
1 + λ2i

2 ≥
((1− Cη)2 + (Cη)2)i

2(2i−1)
. (79)

Now, we consider two cases. If Cη < 1/2, then the above is greater than (1− Cη)2i, which holds
for any i = 0, 1, . . . , T − 1. By way of reduction, we can follow the proof of Lemma B.8 to complete
this proof. If Cη > 1/2, then the above is greater than (Cη)2i. Again by following the proof steps in
Lemma B.8, we can show that

T
min
t=1

E
[
∥Wt∥2

]
≳ D

√
Cσ2

k · T .

This completes the proof of Theorem B.5.
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C Experiment Details

We describe the setup for Figure 2, ran on (1) a two-layer Multi-Layer Perceptron (MLP) trained on
the MNIST digit classification dataset, (2) a twelve-layer BERT-Base model trained on the MRPC
sentence classification dataset from the GLUE benchmark and (3) a two-layer Graph Convolutional
Network (GCN) trained on the COLLAB node classification dataset. We set both MLP and GCN
with a hidden dimension of 128 for model architectures and initialize them randomly. We initialize
the BERT model from pretrained BERT-Base-Uncased. We train each model on the provided training
set for the training process until the training loss is close to zero. Specifically, we train the MLP,
BERT, and GCN models for 30, 10, and 100 epochs. We use the model of the last epoch to measure
the error in the approximation. We do this for 100 times and again measure the perturbed loss ℓQ on
the training set. We take the gap between ℓQ and ℓ. Our measurements show that the error between
the actual gap and the Hessian approximation is within 3%.

In Table 6, we report additional comparisons between our approach and several baselines, including
label smoothing (LS), random SAM (RSAM), and Bayesian SAM (BSAM). We report the test
accuracy and the trace of the Hessian for the model weights at the last epoch of training on six
image classification datasets. We observe that NSO also further reduces the trace of the Hessian and
improves the test accuracy over the baselines. The largest eigenvalue reduces by 9.7%.

Table 6: Comparison between our approach (NSO), label smoothing (LS), random-SAM (RSAM),
and Bayesian SAM (BSAM). Also included is the largest eigenvalue of the Hessian.

CIFAR-10 CIFAR-100 Aircraft Caltech-256 Indoor Retina

Trace
(↓)

LS 2690 ± 85 10669 ± 363 5699 ± 72 3482 ± 85 3650 ± 82 17681 ± 193
RSAM 2379 ± 89 9762 ± 422 4665 ± 95 3224 ± 97 3425 ± 70 16950 ± 257
BSAM 2768 ± 54 9787 ± 465 4750 ± 55 3498 ± 38 3162 ± 73 16238 ± 286
NSO 1728 ± 79 5244 ± 89 3678 ± 83 2958 ± 77 2737 ± 90 10970 ± 146

Test
Acc
(↑)

LS 96.9% ± 0.1 83.8% ± 0.1 59.0% ± 0.2 76.6% ± 0.2 76.5% ± 0.3 64.2% ± 0.7
RSAM 96.8% ± 0.1 84.0% ± 0.1 60.9% ± 0.4 76.4% ± 0.1 76.8% ± 0.5 65.9% ± 0.3
BSAM 96.9% ± 0.1 83.9% ± 0.2 61.0% ± 0.3 76.8% ± 0.3 76.4% ± 0.3 65.4% ± 0.2
NSO 97.6% ± 0.4 84.9% ± 0.3 63.2% ± 0.3 78.1% ± 0.5 78.2% ± 0.3 67.0% ± 0.4

λ1

(↓)

SGD 1442 ± 63 4639 ± 95 1152 ± 40 1064 ± 44 1087 ± 56 8276 ± 91
LS 1311 ± 81 3051 ± 95 1144 ± 88 893 ± 79 764 ± 75 4296 ± 74
SAM 1326 ± 72 2625 ± 91 890 ± 90 948 ± 95 887 ± 53 4033 ± 52
USAM 1245 ± 43 2299 ± 98 592 ± 32 782 ± 38 755 ± 58 3893 ± 55
ASAM 1383 ± 73 2638 ± 86 615 ± 95 795 ± 72 697 ± 36 3925 ± 56
RSAM 1356 ± 69 2901 ± 121 895 ± 74 779 ± 68 988 ± 65 4537 ± 58
BSAM 1375 ± 86 2788 ± 177 972 ± 79 843 ± 97 939 ± 73 4123 ± 87
NSO 1070 ± 74 2059 ± 45 579 ± 59 643 ± 57 639 ± 72 3681 ± 66

Finally, we report the hyper-parameters for the experiments in Section 3. These include a learning
rate of 0.0002, momentum of 0.99, weight decay of 0.0001, batch size of 32, and training epochs of
60. We reduce the learning rate by 0.1 every 20 epochs. We choose these hyper-parameters based
on a grid search on the validation split. The range in which we conduct a grid search is as follows:
Learning rate: 0.005, 0.002, 0.001, 0.0005, 0.0002, and 0.0001; Momentum: 0.9, 0.95, 0.99; Weight
decay: 0.01, 0.001, 0.0001; Epochs: 20, 40, and 60; Batch size: 16, 32, and 64.

Each baseline method may have its own set of hyper-parameters, which are adjusted via a grid search.
For label smoothing, we choose the weight of the loss calculated from the incorrect labels between
0.1, 0.2, and 0.3; For SAM and BSAM, we choose the ℓ2 norm of the perturbation between 0.01,
0.02, and 0.05; For ASAM, we choose the ℓ2 norm of the perturbation for the weights between 0.5,
1.0, and 2.0; For RSAM, we choose the ℓ2 norm of the perturbation between 0.01, 0.02, and 0.05 and
the standard deviation for sampling perturbation between 0.008, 0.01, and 0.012.
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