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Abstract

Large language models (LLMs) have achieved001
promising results in sentiment analysis through002
the in-context learning (ICL) paradigm. How-003
ever, their ability to distinguish subtle senti-004
ments still remains a challenge. Inspired by005
the human ability to adjust understanding via006
feedback, this paper enhances ICL by incorpo-007
rating prior predictions and feedback, aiming008
to rectify sentiment misinterpretation of LLMs.009
Specifically, the proposed framework consists010
of three steps: (1) acquiring prior predictions of011
LLMs, (2) devising predictive feedback based012
on correctness, and (3) leveraging a feedback-013
driven prompt to refine sentiment understand-014
ing. Experimental results across nine sentiment015
analysis datasets demonstrate the superiority of016
our framework over conventional ICL methods,017
with an average F1 improvement of 5.95%.018

1 Introduction019

Sentiment analysis aims to detect subjective opin-020

ions within texts automatically (Medhat et al.,021

2014), covering tasks such as sentiment classifica-022

tion, aspect-based sentiment analysis, and emotion023

detection (Zhang et al., 2018).024

Previous research proposed many supervised025

methods for sentiment analysis (Xu et al., 2019;026

Li et al., 2021a). To avoid their reliance on large027

amounts of human-annotated data, some studies at-028

tempted to use limited data to recognize sentiment029

yet obtained mediocre results. With the advent030

of large language models (LLMs) (Brown et al.,031

2020; Touvron et al., 2023a), studies have revealed032

that LLMs can yield promising performance on033

sentiment analysis via in-context learning (ICL)034

paradigm (Li et al., 2023; Wang et al., 2023), which035

utilizes only few-shot input-label pairs selected036

from a candidate example pool.037

Despite achieving favorable results, the conven-038

tional ICL paradigm still faces a concerning lim-039

itation. Namely, through the provided examples,040

(a) Rest dataset. (b) TwEmo dataset.

Figure 1: Normalized confusion matrices on two senti-
ment analysis datasets. Results are from ChatGPT.

LLMs fail to differentiate subtle sentiments effec- 041

tively. Consequently, they would predict plausi- 042

ble yet incorrect sentiment labels. As depicted in 043

Figure 1a, although LLMs can clearly distinguish 044

between positive and negative polarities, they often 045

mistakenly categorize neutral into others. In addi- 046

tion, as shown in Figure 1b, LLMs frequently mis- 047

label fine-grained sentiments as relevant but wrong 048

labels, such as joy and optimism, stemming from 049

their incapacity to understand nuanced sentiments 050

with similar contexts. 051

Inspired by the human learning process, where 052

individuals initially make plans based on prior 053

knowledge and adjust their understanding through 054

actual feedback (Bélanger, 2011), we propose to 055

integrate feedback on prior predictions into ICL, 056

aiming to rectify sentiment misunderstandings of 057

LLMs. Specifically, our framework first yields 058

prior predictions for each candidate example us- 059

ing traditional ICL. We then categorize examples 060

into two sub-pools based on correctness and exploit 061

feedback to illustrate differences between prior pre- 062

dictions and human annotations. Finally, during in- 063

ferring, we select relevant examples from each sub- 064

pool and utilize a specific feedback-driven prompt 065

to wrap input, label, prediction, and feedback. Un- 066

like conventional ICL, where LLMs only see cor- 067

rect labels, our framework effectively directs LLMs 068

to adjust their sentiment understanding and reason- 069
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LLM

Step 1: Prior Prediction Acquisition Step 2: Predictive Feedback Design Step 3: Test Sample Inference

𝒚𝟏
ᇱ : positive (√)

𝒚𝟐
ᇱ : negative (√)

𝒚𝟑
ᇱ : positive (×)

Correct Examples
𝒆𝟏: <Input, Label (positive), Prediction (positive)> √

Wrong Examples

… …

… …

Feedback on Correctness: You are correct! …

(Task Instruction)
Recognize the sentiment of the sen-
tence. Here are some examples:

(Examples with Feedback)
< Input, Prediction, Label, Feedback 

on correctness (or errors) >

(Test Input)
Sentence: The greatest and deadliest 
magic trick I've ever seen. You won’t 
regret watching David Blaine.

Label: 

neutral

Candidate Example Pool

Input: Looking forward to Celebrity Juice tonight.
Label: positive 𝒆𝟏

Input: School on Monday! I don't want!!!! :(. 
Label: negative 𝒆𝟐

Input: The sound of Sunday with Katy Perry –
Roar #webradio #internetradio

Label: neutral 𝒆𝟑

Prior 
Prediction

… …

… …

𝒆𝟐: <Input, Label (negative), Prediction (negative)> √

𝒆𝟑: <Input, Label (neutral), Prediction (positive)>×

Feedback on Errors: You are wrong! …
LLM

Figure 2: Overview of our framework.

ing to align more closely with label perception070

through prediction and feedback.071

Experimental results on nine sentiment analy-072

sis datasets show that our framework outperforms073

existing ICL baselines by 5.95% in average F1. Fur-074

ther discussions indicate its effectiveness and ro-075

bustness. Moreover, when extended to other tasks,076

our framework also yields competitive results.077

2 Preliminary078

Sentiment analysis aims to predict the sentiment079

label y′ of an input text x. Here, different tasks080

may have different label spaces C and inputs1. In081

ICL paradigm, given an input x and k-shot in-082

context examples {(xi, yi)}ki=1 retrieved from a083

pre-defined candidate pool P (its size is relatively084

small), a frozen LLM M is used to predict y′.085

y′ = argmax
y∈C

M(y|(x1, y1), ...(xk, yk), x) (1)086

Here, we ignore the task instruction and example087

template for simplicity. Meanwhile, we employ a088

constrained decoding strategy to avoid redundant089

and irrelevant outputs, ensuring only label words090

within C can be generated.091

3 The proposed Framework092

As shown in Figure 2, our framework consists of093

three steps: 1) prior prediction acquisition, 2) pre-094

dictive feedback design, and 3) test sample infer-095

ence. Below is a detailed description of each step.096

Step 1: Prior Prediction Acquisition. This step097

focuses on acquiring the prior prediction y′i on each098

candidate example xi for subsequent feedback pro-099

vision. To this end, examples from P are treated as100

1For example, aspect sentiment classification task needs to
consider the effect of aspects on labels (Pontiki et al., 2014).

inference targets. Following the traditional ICL, we 101

randomly select other four input-label pairs from 102

the candidate pool as demonstrations2, which are 103

then combined with task instructions to prompt 104

LLMs for predictions (see Appendix A for more 105

details). We refer to these predictions as prior 106

predictions because they serve to reflect the prior 107

sentiment understanding of LLMs. 108

Step 2: Predictive Feedback Design. The cor- 109

rectness of the prior predictions directly indicates 110

whether LLMs can accurately grasp the sentiment 111

of the corresponding examples. To elicit self- 112

adjustments of LLMs in understanding and rea- 113

soning, we first classify the examples into two sub- 114

pools, Pc and Pw, where the former includes cor- 115

rectly classified examples, and the latter contains 116

wrong ones. We then provide each sub-pool with 117

feedback in the natural language form: 118

feedback on Pc: You are correct! Stay deter- 119

mined and keep moving forward. 120

feedback on Pw: You are wrong! Make sure 121

your prediction is accurate. 122

Step 3: Test Sample Inference. To complete 123

the inference for the given test input, we first re- 124

trieve k/2 examples from each candidate sub-pool3. 125

In addition, we develop a feedback-driven prompt 126

template to wrap the input, prediction, label, and 127

feedback of each selected example into a quadru- 128

ple. Subsequently, These quadruples are organized 129

by Pw examples before Pc ones and sorted by de- 130

scending relevance. Finally, the test sentence is 131

wrapped in the standard example template, with 132

the label position left blank for prediction. 133

2The reason for selecting four is to strike a trade-off be-
tween contextual richness and computational efficiency.

3Our framework is retrieval-mode agnostic so any example
retrieval technique can be employed here.
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Method Sentiment Classification Aspect Sentiment Classification Emotion Detection

SST-2 TwSenti Poem Finance Rest Laptop Twitter EmoC TwEmo

BERT-FT† 84.69 54.54 72.55 89.41 64.59 69.03 56.40 47.73 62.53

Random 89.82 55.27 55.08 75.34 68.77 73.02 54.95 45.20 47.77
+ Ours 91.65+1.83 60.33+5.06 64.37+9.29 78.64+3.30 71.16+2.39 72.80-0.22 57.64+2.69 52.50+7.30 60.91+13.14

BM25 90.26 55.35 49.99 56.13 68.99 70.29 50.99 44.89 48.44
+ Ours 91.85+1.59 59.20+3.85 61.27+11.28 66.94+10.81 71.76+2.77 71.67+1.38 56.22+5.23 51.63+6.73 62.88+14.44

SBERT 87.96 50.13 47.41 47.12 68.21 65.72 50.60 46.28 48.58
+ Ours 91.57+3.61 55.08+4.95 56.42+9.01 58.21+11.09 71.29+3.08 69.56+3.84 56.07+5.47 50.30+4.02 61.22+12.64

MMR 89.64 50.80 49.74 54.51 68.30 66.72 51.07 43.72 49.94
+ Ours 92.65+3.01 56.84+6.04 63.38+13.64 59.85+5.34 69.76+1.46 69.23+2.51 55.57+4.50 49.31+5.59 61.74+11.80

K-Means 88.74 56.26 51.39 76.14 71.01 73.68 55.20 45.71 46.93
+ Ours 92.23+3.49 61.32+5.06 68.70+17.31 78.44+2.30 71.10+0.09 73.11-0.57 57.78+2.58 53.72+8.01 61.89+14.96

Table 1: Main results in F1% (see Acc% results in Appendix C.1). Fine-tuning methods are marked by †.

4 Experiments134

4.1 Experimental Setup135

Dataset. We conduct experiments across three136

sentiment analysis tasks using nine distinct datasets,137

including Sentiment Classification (SC): SST-138

2 (Socher et al., 2013), TwSenti (Rosenthal et al.,139

2017), Poem (Sheng and Uthus, 2020), and Fi-140

nance (Malo et al., 2014); Aspect Sentiment Clas-141

sification (ASC): Rest and Laptop (Pontiki et al.,142

2014), and Twitter (Dong et al., 2014); Emotion143

Detection (ED): EmoC (Chatterjee et al., 2019)144

and TwEmo (Barbieri et al., 2020). Detailed statis-145

tics are listed in Appendix B.1.146

Baseline. To evaluate the effectiveness of the147

proposed framework, We combine it with vari-148

ous training-free example retrieval baselines for149

comparison, including Random, BM25 (Robert-150

son et al., 2009), SBERT (Reimers and Gurevych,151

2019), MMR (Ye et al., 2023), and K-152

Means (Zhang et al., 2023). Furthermore, we intro-153

duce BERT-FT, where BERT-base model is fine-154

tuned directly on candidate pool examples. See155

Appendix B.2 for their specific settings.156

Implementation Details. We utilize Llama-2-157

13B-Chat (Touvron et al., 2023b) as the backbone158

LLM due to its moderate scale and excellent ICL159

performance. We set the number of in-context ex-160

amples to 4. The candidate pool is formed by sam-161

pling 300 label-balanced examples from each train-162

ing set. We experiment with three different random163

seeds and present the average outcomes. All exper-164

iments are conducted with NVIDIA RTX A6000165

GPU. More details are shown in Appendix B.3.166

4.2 Main Results 167

Results shown in Table 1 indicate that our frame- 168

work substantially enhances baseline performance 169

across nearly all datasets. For instance, augment- 170

ing K-means with our framework results in an av- 171

erage F1 increase of 5.91%, exhibiting its superi- 172

ority. Meanwhile, compared with BERT-FT, our 173

approach demonstrates outstanding performance 174

on the majority of datasets, highlighting its efficacy 175

in resource-limited and training-free scenarios. 176

Additionally, our framework notably excels in 177

the ED task, where subtle sentiment detection is 178

critical. Comparatively, ASC involves more com- 179

plex aspect-based contextual understanding, con- 180

straining our framework’s effectiveness in this task. 181

4.3 Ablation Study 182

We perform the ablation study to explore the effect 183

of each component. Results are shown in Table 2. 184

When removing task instructions (Inst), we see per- 185

formance drops except for Rest, indicating its insen- 186

sitivity to instructions with information-rich inputs. 187

Additionally, both the removal of labels (Label) and 188

Inst Label Pred Feed Poem Rest TwEmo

✓ ✓ ✓ ✓ 68.70 71.10 61.89

✗ ✓ ✓ ✓ 55.97 71.70 61.13
✓ ✗ ✓ ✓ 51.47 67.05 52.78
✓ ✓ ✗ ✓ 59.47 69.94 48.53
✓ ✓ R ✓ 67.00 70.14 60.71
✓ ✓ Z ✓ 64.71 70.18 60.91
✓ ✓ ✓ ✗ 63.46 70.49 60.02

Table 2: Ablation study based on K-Means (see more in
Appendix C.2). We apply other sources of Pred includ-
ing random errors (R) and zero-shot prompting (Z).
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Conventional In-context Learning In-context Learning w/ Prediction Feedback

Prompt Task Instruction: . . . Examples: {(xi, yi)} Task Instruction: . . . Examples: {(xi, y
′
i, yi, fd)}

Input @user Wishing you well sir... you are an extremely straightforward and jovial person...

Output optimism (✗) joy (✓)

Reason

The sentence conveys a positive and uplifting message.
The use of the word "jovial" suggests a lighthearted
and cheerful tone, which is consistent with the label
"optimism". Additionally, the phrase "wishing you
well" implies good intentions and a positive attitude
towards the recipient, further supporting the label
"optimism".

The sentence is addressed to a specific user and ex-
presses well-wishes, which suggests a positive and
friendly tone. The description of the user as "extremely
straightforward and jovial" further reinforces the posi-
tive sentiment. Based on the examples and feedback
provided, the label "joy" best captures the emotion
of the sentence.

Table 3: Case study of conventional ICL and our framework. More cases are shown in Appendix C.4.

prior predictions (Pred) cause a notable decline, by189

averages of 10.13% and 7.92%, respectively, high-190

lighting the significance of their combination in191

our framework. Besides, employing alternative pre-192

diction sources or excluding feedback (Feed) also193

leads to a slight decrease.194

4.4 Discussions4195

Effect on Subtle Sentiments. To demonstrate196

the impact of our framework on subtle sentiments,197

we visualize the prediction distributions as depicted198

in Figure 3. We can observe an obvious change of199

distribution in neutral, whose correct rate increases200

by 32%, while the other two categories are rela-201

tively stable. These results suggest that integrating202

predictive feedback could make more accurate dis-203

tinctions between subtle sentiments.

Figure 3: Normalized confusion matrices for the Poem
dataset: K-Means (left) and K-Means+Ours (right).

204

Task Generalization. To demonstrate that our205

framework is not confined to adjusting sentiment206

understanding of LLMs, we conduct experiments207

on other three datasets: P-Stance (Li et al., 2021b)208

for Stance Detection, TwIrony (Van Hee et al.,209

2018) for Irony Detection, and MNLI (Wang et al.,210

2019) for NLI. Results are illustrated in Table 4.211

4We present more analyses in Appendix D, including The
Sensitivity of Feedback Prompt, Impact of the Ratio of Error
Examples, Impact of the Quantity of Examples, Impact of the
Order of Examples, and Language Model Generalization.

Method P-Stance TwIrony MNLI

Random 70.94 62.29 49.63
+ Ours 73.31+2.37 65.44+3.15 55.21+5.58

BM25 72.23 60.06 50.68
+ Ours 72.98+0.75 64.29+4.23 56.65+5.97

K-Means 71.17 61.47 50.60
+ Ours 73.60+2.43 65.72+4.25 55.09+4.49

Table 4: Results of task generalization (F1%).

Notably, the enhancements with our framework are 212

also evident on these datasets, with F1 increasing 213

up to 4.25% for TwIrony and 5.97% for MNLI. 214

These suggest that the adaptability of prediction 215

feedback can extend to a broader scope of language 216

understanding tasks. 217

Case Study. To gain a deeper insight into the ad- 218

vantages of our framework, we conduct the case 219

study on LLM’s output and explanation, which is 220

illustrated in Table 3. In this case, our framework 221

outputs joy instead of the plausible yet incorrect 222

optimism, and offers a more fitting explanation that 223

aligns with the implied emotion of input. There- 224

fore, it proves that our framework promotes self- 225

adjustment of the LLM in sentiment analysis, refin- 226

ing both output and reasoning accuracy. 227

5 Conclusion 228

In this paper, we propose a novel ICL framework 229

that utilizes prediction feedback akin to human 230

learning. It improves ICL by incorporating both 231

prior predictions and corresponding feedback into 232

examples, tackling the difficulties LLMs encounter 233

when identifying subtle sentiments. Experiments 234

across various datasets confirm the advantage of 235

our framework compared to traditional ICL, as well 236

as its potential for broader applications. 237
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Limitations238

Although our research significantly enhances the239

performance of conventional ICL and provides in-240

depth analyses about the adjustment for sentiment241

understanding in LLMs, the inner working mecha-242

nisms of the framework remain elusive due to the243

black-box nature of language models. Besides, our244

research primarily focuses on sentiment analysis245

and other text classification tasks in NLU, leaving246

more complex realms of language comprehension247

and generation unexplored, such as text summa-248

rization and commonsense generation. We aim to249

broaden the scope of our framework in future re-250

search, delving into more profound insights and251

wider applicability.252

References253

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke254
Zettlemoyer, and Marjan Ghazvininejad. 2023. In-255
context examples selection for machine translation.256
In Findings of ACL, pages 8857–8873.257

Francesco Barbieri, Jose Camacho-Collados, Luis Es-258
pinosa Anke, and Leonardo Neves. 2020. TweetEval:259
Unified benchmark and comparative evaluation for260
tweet classification. In Findings of EMNLP, pages261
1644–1650.262

Paul Bélanger. 2011. Theories in adult learning and263
education. Verlag Barbara Budrich.264

Tom Brown, Benjamin Mann, Nick Ryder, Melanie265
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind266
Neelakantan, Pranav Shyam, Girish Sastry, Amanda267
Askell, et al. 2020. Language models are few-shot268
learners. Advances in NIPS, 33:1877–1901.269

Ankush Chatterjee, Kedhar Nath Narahari, Meghana270
Joshi, and Puneet Agrawal. 2019. SemEval-2019271
task 3: EmoContext contextual emotion detection in272
text. In Proceedings of SemEval, pages 39–48.273

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and274
Kristina Toutanova. 2019. BERT: Pre-training of275
deep bidirectional transformers for language under-276
standing. In Proceedings of NAACL-HLT, pages277
4171–4186.278

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming279
Zhou, and Ke Xu. 2014. Adaptive recursive neu-280
ral network for target-dependent Twitter sentiment281
classification. In Proceedings of ACL, pages 49–54.282

Caoyun Fan, Jidong Tian, Yitian Li, Hao He, and Yaohui283
Jin. 2023. Comparable demonstrations are important284
in in-context learning: A novel perspective on demon-285
stration selection. arXiv preprint arXiv:2312.07476.286

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 287
sch, Chris Bamford, Devendra Singh Chaplot, Diego 288
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 289
laume Lample, Lucile Saulnier, et al. 2023. Mistral 290
7b. 291

Ruifan Li, Hao Chen, Fangxiang Feng, Zhanyu Ma, 292
Xiaojie Wang, and Eduard Hovy. 2021a. Dual graph 293
convolutional networks for aspect-based sentiment 294
analysis. In Proceedings of ACL, pages 6319–6329. 295

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei 296
Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang, and 297
Xipeng Qiu. 2023. Unified demonstration retriever 298
for in-context learning. In Proceedings of ACL, pages 299
4644–4668. 300

Yingjie Li, Tiberiu Sosea, Aditya Sawant, Ajith Ja- 301
yaraman Nair, Diana Inkpen, and Cornelia Caragea. 302
2021b. P-stance: A large dataset for stance detection 303
in political domain. In Findings of ACL-IJCNLP, 304
pages 2355–2365. 305

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wal- 306
lenius, and Pyry Takala. 2014. Good debt or bad 307
debt: Detecting semantic orientations in economic 308
texts. Journal of ASIS&T, 4(65):782–796. 309

Walaa Medhat, Ahmed Hassan, and Hoda Korashy. 310
2014. Sentiment analysis algorithms and applica- 311
tions: A survey. Ain Shams engineering journal, 312
5(4):1093–1113. 313

OpenAI. 2023. Gpt-4 technical report. CoRR, 314
abs/2303.08774. 315

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 316
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 317
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 318
2022. Training language models to follow instruc- 319
tions with human feedback. Advances in NIPS, 320
35:27730–27744. 321

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har- 322
ris Papageorgiou, Ion Androutsopoulos, and Suresh 323
Manandhar. 2014. SemEval-2014 task 4: Aspect 324
based sentiment analysis. In Proceedings of SemEval, 325
pages 27–35. 326

Nils Reimers and Iryna Gurevych. 2019. Sentence- 327
BERT: Sentence embeddings using Siamese BERT- 328
networks. In Proceedings of EMNLP-IJCNLP, pages 329
3982–3992. 330

Stephen Robertson, Hugo Zaragoza, et al. 2009. The 331
probabilistic relevance framework: Bm25 and be- 332
yond. Foundations and Trends® in Information Re- 333
trieval, 3(4):333–389. 334

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017. 335
SemEval-2017 task 4: Sentiment analysis in Twitter. 336
In Proceedings of SemEval, pages 502–518. 337

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. 338
2022. Learning to retrieve prompts for in-context 339
learning. In Proceedings of NAACL-HLT, pages 340
2655–2671. 341

5

https://doi.org/10.18653/v1/2023.findings-acl.564
https://doi.org/10.18653/v1/2023.findings-acl.564
https://doi.org/10.18653/v1/2023.findings-acl.564
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
"https://library.oapen.org/bitstream/handle/20.500.12657/29454/1/9783866496828.pdf"
"https://library.oapen.org/bitstream/handle/20.500.12657/29454/1/9783866496828.pdf"
"https://library.oapen.org/bitstream/handle/20.500.12657/29454/1/9783866496828.pdf"
"https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf"
"https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf"
"https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf"
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/P14-2009
https://doi.org/10.3115/v1/P14-2009
https://doi.org/10.3115/v1/P14-2009
https://doi.org/10.3115/v1/P14-2009
https://doi.org/10.3115/v1/P14-2009
"https://arxiv.org/pdf/2312.07476.pdf"
"https://arxiv.org/pdf/2312.07476.pdf"
"https://arxiv.org/pdf/2312.07476.pdf"
"https://arxiv.org/pdf/2312.07476.pdf"
"https://arxiv.org/pdf/2312.07476.pdf"
"https://arxiv.org/pdf/2310.06825.pdf"
"https://arxiv.org/pdf/2310.06825.pdf"
"https://arxiv.org/pdf/2310.06825.pdf"
"https://aclanthology.org/2021.acl-long.494.pdf"
"https://aclanthology.org/2021.acl-long.494.pdf"
"https://aclanthology.org/2021.acl-long.494.pdf"
"https://aclanthology.org/2021.acl-long.494.pdf"
"https://aclanthology.org/2021.acl-long.494.pdf"
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2021.findings-acl.208
https://doi.org/10.18653/v1/2021.findings-acl.208
https://doi.org/10.18653/v1/2021.findings-acl.208
"https://arxiv.org/pdf/1307.5336.pdf
"https://arxiv.org/pdf/1307.5336.pdf
"https://arxiv.org/pdf/1307.5336.pdf
"https://arxiv.org/pdf/1307.5336.pdf
"https://arxiv.org/pdf/1307.5336.pdf
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
http://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.3115/v1/S14-2004
https://doi.org/10.3115/v1/S14-2004
https://doi.org/10.3115/v1/S14-2004
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
"https://www.nowpublishers.com/article/Details/INR-019"
"https://www.nowpublishers.com/article/Details/INR-019"
"https://www.nowpublishers.com/article/Details/INR-019"
"https://www.nowpublishers.com/article/Details/INR-019"
"https://www.nowpublishers.com/article/Details/INR-019"
https://aclanthology.org/S17-2088
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191


Emily Sheng and David Uthus. 2020. Investigating342
societal biases in a poetry composition system. In343
Proceedings of Workshop on Gender Bias, pages 93–344
106.345

Richard Socher, Alex Perelygin, Jean Wu, Jason346
Chuang, Christopher D. Manning, Andrew Ng, and347
Christopher Potts. 2013. Recursive deep models for348
semantic compositionality over a sentiment treebank.349
In Proceedings of EMNLP, pages 1631–1642.350

Youwei Song, Jiahai Wang, Tao Jiang, Zhiyue Liu, and351
Yanghui Rao. 2019. Attentional encoder network for352
targeted sentiment classification. In ICANN.353

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier354
Martinet, Marie-Anne Lachaux, Timothée Lacroix,355
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal356
Azhar, et al. 2023a. Llama: Open and effi-357
cient foundation language models. arXiv preprint358
arXiv:2302.13971.359

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-360
bert, Amjad Almahairi, Yasmine Babaei, Nikolay361
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti362
Bhosale, et al. 2023b. Llama 2: Open founda-363
tion and fine-tuned chat models. arXiv preprint364
arXiv:2307.09288.365

Cynthia Van Hee, Els Lefever, and Véronique Hoste.366
2018. SemEval-2018 task 3: Irony detection in En-367
glish tweets. In Proceedings of SemEval, pages 39–368
50.369

Alex Wang, Amanpreet Singh, Julian Michael, Felix370
Hill, Omer Levy, and Samuel R. Bowman. 2019.371
GLUE: A multi-task benchmark and analysis plat-372
form for natural language understanding. In ICLR.373

Zengzhi Wang, Qiming Xie, Zixiang Ding, Yi Feng,374
and Rui Xia. 2023. Is chatgpt a good sentiment375
analyzer? a preliminary study. arXiv preprint376
arXiv:2304.04339.377

Hu Xu, Bing Liu, Lei Shu, and Philip Yu. 2019. BERT378
post-training for review reading comprehension and379
aspect-based sentiment analysis. In Proceedings of380
NAACL-HLT, pages 2324–2335.381

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Veselin Stoy-382
anov, Greg Durrett, and Ramakanth Pasunuru. 2023.383
Complementary explanations for effective in-context384
learning. In Findings of ACL, pages 4469–4484.385

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep386
learning for sentiment analysis: A survey. WIREs:387
DMKD, 8(4):e1253.388

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-389
berger, and Yoav Artzi. 2019. Bertscore: Evaluating390
text generation with bert. In ICLR.391

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex392
Smola. 2023. Automatic chain of thought prompting393
in large language models. In ICLR.394

6

https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://api.semanticscholar.org/CorpusID:67855317
https://api.semanticscholar.org/CorpusID:67855317
https://api.semanticscholar.org/CorpusID:67855317
"https://arxiv.org/pdf/2302.13971.pdf"
"https://arxiv.org/pdf/2302.13971.pdf"
"https://arxiv.org/pdf/2302.13971.pdf"
"https://arxiv.org/pdf/2307.09288.pdf"
"https://arxiv.org/pdf/2307.09288.pdf"
"https://arxiv.org/pdf/2307.09288.pdf"
https://doi.org/10.18653/v1/S18-1005
https://doi.org/10.18653/v1/S18-1005
https://doi.org/10.18653/v1/S18-1005
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
"https://arxiv.org/pdf/2304.04339.pdf"
"https://arxiv.org/pdf/2304.04339.pdf"
"https://arxiv.org/pdf/2304.04339.pdf"
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.18653/v1/2023.findings-acl.273
"https://wires.onlinelibrary.wiley.com/doi/am-pdf/10.1002/widm.1253?ref=https%3A%2F%2Fgithubhelp.com"
"https://wires.onlinelibrary.wiley.com/doi/am-pdf/10.1002/widm.1253?ref=https%3A%2F%2Fgithubhelp.com"
"https://wires.onlinelibrary.wiley.com/doi/am-pdf/10.1002/widm.1253?ref=https%3A%2F%2Fgithubhelp.com"
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr


Appendix for “Improving In-Context395

Learning with Prediction Feedback for396

Sentiment Analysis”397

We organize the appendix into four sections:398

• Prompts used in the proposed framework are pre-399

sented in Appendix A;400

• Additional details of datasets, baselines, and im-401

plementation are presented in Appendix B;402

• Additional experimental results in different set-403

tings, such as more metrics, baselines, and404

datasets are presented in Appendix C; and405

• More discussions about the proposed framework406

are presented in Appendix D.407

A Prompt Design408

We present the task instructions and prompt tem-409

plates utilized in our framework for each task in410

Table 14. Besides, for conventional ICL, the exam-411

ples and test input are wrapped in the template that412

removes prediction and feedback, and the format-413

ting word "Correct Label:" is replaced by "Label:".414

We divide the feedback prompt into two parts,415

namely, Feedback on Correctness and Feedback416

for Analysis, abbreviated as FC and FA. Two man-417

ually designed feedback prompts are illustrated in418

Table 13 for further discussion (see D.1).419

To generate explanations for the case study (in420

Section 4.4), we structure the input as instruc-421

tive forms to stimulate interaction5 and employ422

prompts: Provide the correct label for the follow-423

ing sample and explain your answer based on the424

above examples (and feedback).425

B Detailed Settings of Experiments426

B.1 Dataset and Metrics427

We provide detailed statistics of each investigated428

dataset by listing its associated task type, number of429

samples, number of classes, and labels, as summa-430

rized in Table 12. When establishing the candidate431

pool, we select instances only from the training set.432

Additionally, for the Finance dataset in which no433

standard split is provided, we randomly partition434

the dev set and the test set each at a rate of 20%435

of the total samples. For the MNLI dataset that436

does not offer publicly available test set labels, we437

employ the dev set for evaluation.438

Across all sentiment analysis datasets utilized in439

this study, we uniformly apply two metrics for eval-440

5https://github.com/huggingface/blog/blob/
main/llama2.md

uation: Accuracy (Acc) and F1 score (F1). Specifi- 441

cally, we calculate the binary-F1 score for SST-2 442

and the macro-F1 score for all others. In the sce- 443

nario of task generalization, we use binary-F1 for 444

binary classification tasks, such as P-Stance and 445

TwIrony, and macro-F1 for the MNLI dataset. 446

B.2 Baseline Details 447

(1) Random randomly selects k-shot examples 448

from the candidate pool for each test sample. (2) 449

BM25 (Robertson et al., 2009) assesses relevance 450

through keyword overlap and sentence length, used 451

by (Agrawal et al., 2023). (3) SBERT (Reimers 452

and Gurevych, 2019) is a semantic-based retrieval 453

method, where we use “paraphrase-mpnet-basev2” 454

following (Li et al., 2023). (4) MMR (Ye et al., 455

2023) leverages BERTScore (Zhang et al., 2019) 456

with maximal-marginal relevance for complemen- 457

tary example selection. (5) K-Means (Zhang et al., 458

2023) performs k-means clustering to divide each 459

dataset into four clusters. We then select examples 460

randomly from each cluster. (6) BERT-FT (Devlin 461

et al., 2019) fine-tunes “bert-base-uncased” using 462

the candidate pool examples. 463

B.3 More Implementation Details 464

Due to limited computational resources, our assess- 465

ments are restricted to a test subset of 2,000 exam- 466

ples across the tasks: TwSenti, EmoC, P-Stance, 467

and MNLI. Additionally, to accelerate inference, 468

we load LLMs using fp16 precision. During the 469

generation, we directly use the label words for each 470

class as the verbalizer, as illustrated in Table 12. In 471

instances where label words are tokenized into mul- 472

tiple subtokens, we only utilize the first subword 473

as the label word for prediction (e.g., using ’optim’ 474

as the label for ’optimism’). 475

C Additional Results 476

C.1 Main Results in Accuracy 477

For a more comprehensive comparison with the 478

performance of baseline methods, we show addi- 479

tional main results in Acc, as shown in Table 5. 480

Contrary to previous studies (Rubin et al., 2022; 481

Li et al., 2023), we find that semantic similarity 482

retrievals like SBERT negatively impact the per- 483

formance. We suppose it is due to the demonstra- 484

tion bias when solving simple sentiment analysis 485

tasks (Fan et al., 2023) and the lack of example 486

complementarity (Ye et al., 2023). 487
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Method Sentiment Classification Aspect Sentiment Classification Emotion Detection

SST-2 TwSenti Poem Finance Rest Laptop Twitter EmoC TwEmo

BERT-FT† 85.02 54.87 75.64 90.80 73.19 74.37 56.31 65.12 65.87

Random 89.64 55.13 55.77 75.28 79.80 77.27 54.00 69.05 52.99
+ Ours 91.40+1.76 60.37+5.24 69.23+13.46 78.44+3.16 81.23+1.43 77.27+0.00 56.74+2.74 74.97+5.92 66.26+13.27

BM25 90.06 55.15 49.68 53.13 80.25 75.05 50.05 71.23 52.69
+ Ours 91.70+1.64 59.20+4.05 66.03+16.35 64.46+11.33 81.83+1.58 76.11+1.06 55.20+5.15 75.95+4.72 66.92+14.23

SBERT 87.65 49.98 47.76 44.44 78.08 69.57 49.76 72.33 50.88
+ Ours 91.32+3.67 55.57+5.59 62.82+15.06 54.67+10.23 80.28+2.20 74.31+4.74 55.30+5.54 78.37+6.04 64.34+13.46

MMR 89.45 50.55 50.00 51.29 78.37 71.04 50.00 70.48 53.51
+ Ours 92.49+3.04 56.98+6.43 67.95+17.95 56.36+5.07 79.95+1.58 74.00+2.96 54.53+4.53 76.28+5.80 65.63+12.12

K-Means 88.65 56.12 50.96 75.86 81.47 77.85 54.38 72.48 52.69
+ Ours 92.09+3.44 61.37+5.25 72.44+21.48 78.15+2.29 81.23-0.24 77.69-0.16 56.84+2.46 76.55+4.07 66.96+14.27

Table 5: Main results in Acc%. Fine-tuning methods are marked by †.

C.2 Ablation results on more baselines488

To comprehensively analyze the significance of489

each component within our framework, we conduct490

more ablation studies on two competitive baselines:491

Random and BM25. We report the results in Ta-492

bles 6 and 7, respectively.493

Inst Label Pred Feed Poem Rest TwEmo

✓ ✓ ✓ ✓ 64.37 71.16 60.91

✗ ✓ ✓ ✓ 54.43 71.18 60.13
✓ ✗ ✓ ✓ 52.93 67.45 51.63
✓ ✓ ✗ ✓ 59.10 70.59 47.40
✓ ✓ R ✓ 63.35 69.21 60.66
✓ ✓ Z ✓ 64.08 68.58 60.76
✓ ✓ ✓ ✗ 61.32 70.54 60.13

Table 6: Ablation study based on Random.

Inst Label Pred Feed Poem Rest TwEmo

✓ ✓ ✓ ✓ 61.27 71.76 62.88

✗ ✓ ✓ ✓ 53.86 71.73 61.80
✓ ✗ ✓ ✓ 50.42 67.74 51.95
✓ ✓ ✗ ✓ 52.45 70.05 50.32
✓ ✓ R ✓ 60.07 70.18 62.64
✓ ✓ Z ✓ 61.09 69.82 62.02
✓ ✓ ✓ ✗ 54.68 70.84 62.03

Table 7: Ablation study based on BM25.

C.3 Effect on Subtle Sentiments for More494

Datasets495

To further illustrate how our framework corrects496

subtle sentiment understanding of the LLM and497

aligns predictions more closely with true labels, we498

visualize the improved prediction distributions on499

more datasets. The results are shown in Figure 4.500

(a) Normalized confusion matrices for the Rest
dataset: BM25 (left) and BM25+Ours (right).

(b) Normalized confusion matrices for the TwEmo
dataset: BM25 (left) and BM25+Ours (right).

(c) Normalized confusion matrices for the EmoC
dataset: K-Means (left) and K-Means+Ours (right).

Figure 4: Effect on subtle sentiments on three datasets.

C.4 More Case Studies 501

We contrast the outputs and reasoning of conven- 502

tional ICL and the proposed framework on addi- 503

tional cases, as illustrated in Table 8. Observations 504

reveal that incorporating prior predictions and feed- 505

back into examples not only corrects the sentiment 506

labels but also yields more aligned explanations 507

with human understandings. 508
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Conventional In-context Learning In-context Learning w/ Prediction Feedback (Ours)

Prompt Task Instruction: . . . Examples: {(xi, yi)} Task Instruction: . . . Examples: {(xi, y
′
i, yi, fd)}

Input they beached their galley on the shore, and sought

Output positive (✗) neutral (✓)

Reason

The sentence has a sense of adventure and exploration,
with the use of the word "beached" which implies a suc-
cessful landing, and the word "sought" which implies
a deliberate and purposeful action. The overall tone
of the sentence is optimistic and confident, which
aligns with the positive label.

The sentence does not convey a positive or negative
sentiment. In this sentence, the word "beached" is
used in the sense of landing on the shore, which is a
neutral action. Additionally, the word "sought" does
not convey any strong emotions or opinions, and is
also a neutral word. Therefore, the overall sentiment
of the sentence is neutral.

Input Another friend had to ask 3 times for parmesan cheese . What is the sentiment polarity of the aspect parmesan
cheese ?

Output negative (✗) neutral (✓)

Reason

The sentence implies that the friend had to request the
parmesan cheese multiple times, which suggests that
the restaurant had issues with providing the cheese
or that the staff was not attentive to the customer’s re-
quests. This negative experience with the parmesan
cheese is evident in the sentence, and therefore, the
sentiment polarity of the aspect "parmesan cheese"
is negative.

The sentence does not convey any strong emo-
tions, either positive or negative, towards the aspect
"parmesan cheese". The fact that the friend had to
ask three times for it suggests that there may have been
some inconvenience or delay in receiving the cheese,
but it does not convey any strong emotions or opin-
ions about the cheese itself. Therefore, the sentiment
polarity of the aspect "parmesan cheese" is neutral.

Input my wife did we all marry the same woman loudlycryingface

Output angry (✗) sad (✓)

Reason

The sentence expresses a strong emotion, with the use
of "loudly crying face" indicating that the speaker is
upset or angry about something related to their wife.
The sentence structure and word choice also suggest a
sense of frustration or disbelief, which are common
characteristics of an angry emotion.

The sentence expresses a sense of disappointment
and disbelief, as the speaker seems to be questioning
how they all ended up married to the same woman.
The use of the word "loudlycryingface" also suggests
that the speaker is emotional and possibly upset.
The tone is introspective and melancholic, which is
consistent with the emotion of sadness.

Table 8: More case studies of conventional ICL and our framework.

D More Discussions509

D.1 The Sensitivity of Feedback Prompt510

To investigate the sensitivity of feedback design,511

we leverage the two hand-crafted feedback prompts512

shown in Table 13 and experiment with four com-513

binations. As presented in Table 9, we find that on514

both datasets, the average variance in performance515

is within a 1% margin. These results indicate that516

the performance is not highly sensitive to different517

feedback prompts.

Combination Rest TwEmo

Acc F1 Acc F1

FC-1+FA-1 81.83 71.76 66.92 62.88

FC-1+FA-2 82.31+0.48 72.51+0.75 67.00+0.08 62.86-0.02
FC-2+FA-1 82.22+0.39 71.71-0.05 68.30+1.38 64.20+1.32
FC-2+FA-1 82.10+0.27 72.08+0.32 67.98+1.06 63.93+1.05

Table 9: Results of different feedback (BM25+Ours).

518

D.2 Impact of the Ratio of Error Examples 519

To consider the effect of the erroneous example, we 520

fix k at 8, and vary the number of examples selected 521

from Pw: 0, k/4, k/2, 3k/4, and k. The results 522

are presented in Figure 5. We find that the frame- 523

work tends to underperform with no error examples 524

in the TwEmo dataset and an excess (8/8) in the 525

Rest dataset. As the quantity of error examples 526

increases, the performance initially rises and then 527

declines, indicating that a relative balance of error 528

to correct examples is beneficial in our predictive 529

feedback approach. 530

Figure 5: Impact of the ratio of error examples.
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D.3 Impact of the Quantity of Examples531

To analyze the effect of the example quantity, we532

perform experiments varying the number of exam-533

ples (k = 2, 4, 6, 8, 12), as depicted in Figure 6.534

First, we observe a consistent progressive trend535

of F1 as the number of examples increases. Sec-536

ond, our method generally yields significant perfor-537

mance gains on both datasets compared to the base-538

lines, except for the 12-shot scenario on TwEmo.539

This suggests the proposed framework can posi-540

tively influence the LLM to understand and analyze541

sentiment within an optimal context length.542

Figure 6: Effect of the quantity of in-context examples.

D.4 Impact of the Order of Examples543

To investigate the impact of example ordering, we544

first categorize three strategies: prioritizing wrong545

examples (wrong first), prioritizing correct exam-546

ples (correct first), and alternating between the two.547

We then subject each strategy to both ascending548

and descending orders based on retrieval scores.549

On this basis, we experiment with five additional550

permutations, as shown in Table 10. We find that551

the performance of Rest remains stable regardless552

of permutations, with a negligible standard devi-553

ation of 0.51 in F1. Conversely, on TwEmo, de-554

scending ordering generally outperforms ascending555

ones, while the effect is more stable across differ-556

ent strategies. These findings suggest that although557

our framework is robust against the variability of558

Type Sort Rest TwEmo

Acc F1 Acc F1

Wrong First Desc‡ 81.83 71.76 66.92 62.88
Asc 81.35 71.12 65.94 62.18

Correct First Desc 81.77 70.04 66.97 62.57
Asc 82.08 70.77 65.47 60.90

Alternating Desc 81.74 71.05 66.71 63.11
Asc 82.10 70.83 66.60 62.11

Table 10: Effect of the order of examples (BM25+Ours).
Desc means descending order and Asc means ascending
order. The standard setting is marked by ‡.

ordering strategy, the consideration of specific ar- 559

rangement methods can also be important. 560

D.5 Language Model Generalization 561

To thoroughly assess the effectiveness and gener- 562

alizability of our framework, we conduct model 563

generalization experiments across various LLMs. 564

Specifically, we select three capable and promi- 565

nent models: Mistral-7B-inst (Mistral-7B-instruct- 566

v0.2) (Jiang et al., 2023), GPT-3.5 Turbo (gpt-3.5- 567

turbo-0301) (Ouyang et al., 2022), and GPT-4 (gpt- 568

4-0613) (OpenAI, 2023). Our experiments com- 569

pare the performance variation of three methods 570

(Random, BM25, and K-means), with an exception 571

for GPT-4 where only K-means is utilized due to 572

API cost considerations. Additionally, we explore 573

the effect of supervised learning with the BERT- 574

base model. Here, FT (All) denotes fine-tuning on 575

a complete dataset, while FT (CP) indicates fine- 576

tuning using just a candidate pool, similar to the 577

scenario in the ICL approach. 578

The results illustrated in Table 11 show that in- 579

corporating our framework consistently enhances 580

the performance of ICL, illustrating its general- 581

izability. This is particularly evident with GPT- 582

3.5 Turbo, where the average F1 improvement is 583

4.72%. Notably, when applied to LLMs with ad- 584

vanced language understanding, our framework sig- 585

nificantly surpasses the supervised method in sim- 586

ilar resource settings. For instance, by leveraging 587

GPT-3.5 Turbo on TwEmo, we observe a 9.59% 588

increase in F1 over FT (CP). Furthermore, using 589

prediction feedback on the Rest dataset, GPT-3.5 590

Turbo even outperforms fine-tuning BERT on the 591

full training set, and GPT-4 demonstrates more sub- 592

stantial improvements. These results highlight the 593

effectiveness of the proposed framework. 594
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Language Model Method
Rest TwEmo

Acc F1 Acc F1

BERT-base
† FT (ALL)† 84.46* 76.98* 81.28 77.84

FT (CP)† 73.19 64.59 65.87 62.53

Mistral-7B-inst

Random 81.19 73.66 76.00 66.30
+ Ours 83.78+2.59 75.05+1.39 76.53+0.53 68.50+2.20

BM25 80.25 72.03 75.37 68.47
+ Ours 83.07+2.82 73.47+1.44 76.07+0.70 69.74+1.27

K-Means 81.68 73.64 75.55 66.07
+ Ours 82.93+1.25 74.08+0.44 76.88+1.33 68.04+1.97

GPT-3.5 Turbo

Random 83.32 68.46 73.92 69.97
+ Ours 85.17+1.85 77.87+9.41 75.79+1.87 72.11+2.14

BM25 83.87 70.15 72.41 68.17
+ Ours 82.13-1.74 74.34+4.19 75.21+2.80 71.19+3.02

K-Means 84.23 70.15 73.56 69.68
+ Ours 85.22+0.99 77.29+7.14 75.89+2.33 72.12+2.44

GPT-4
K-Means 88.83 81.90 82.13 77.80
+ Ours 89.45+0.62 82.29+0.39 82.27+0.14 78.10+0.30

Table 11: Results of language model generalization. Fine-tuning approaches are marked by †. Results with * are
from (Song et al., 2019). The best scores across all methods are in bold.

Task Dataset Train Dev Test Classes Labels

SST-2 6,920 872 1,821 2 positive, negative
Sentiment TwSenti 45,615 2,000 12,284 3 positive, negative, neutral

Classification Poem 843 105 104 3 positive, negative, neutral
Finance 1,358 453 453 3 positive, negative, neutral

Aspect Rest 3,608 454 1,119 3 positive, negative, neutral
Sentiment Laptop 2,282 283 682 3 positive, negative, neutral

Classification Twitter 6,248 - 692 3 positive, negative, neutral

Emotion Detection
EmoC 30,160 - 5,509 4 happy, sad, angry, others

TwEmo 3,257 374 1,421 4 anger, joy, optimism, sadness

Stance Detection P-Stance 17,756 2,282 2,207 2 favor, against
Irony Detection TwIrony 2,862 955 784 2 irony, non-irony

NLI MNLI 263,789 3,000 9,796 3 entailment, contradiction, neutral

Table 12: The statistics of investigated datasets.

Feedback on correct examples Feedback on wrong examples

FC-1 You are correct! You are wrong!
FA-1 Make sure your prediction is accurate. Stay determined and keep moving forward.

FC-2 The answer is accurate. The answer is incorrect.
FA-2 Please keep up the good work. Please adjust to ensure the prediction is correct.

Table 13: Different feedback prompts. FC denotes feedback on correctness and FA denotes feedback for analysis.
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Task In-context Learning Prompts

SC

Instruction: Recognize the sentiment of the sentence. Here are some examples:
Examples: . . .

Sentence: text xi
Prediction: prior prediction y′i
Correct Label: label yi
feedback on correct (or wrong) examples
. . .

Test Input: Sentence: text x
Correct Label:

ASC

Instruction: Recognize the sentiment polarity for the given aspect term in the sentence.
Here are some examples:
Examples: . . .

Sentence: text xi What is the sentiment polarity of the aspect aspect ?
Prediction: prior prediction y′i
Correct Label: label yi
feedback on correct (or wrong) examples
. . .

Test Input: Sentence: text x What is the sentiment polarity of the aspect aspect ?
Correct Label:

ED

Instruction: Recognize the emotion of the sentence. Here are some examples:
Examples: Same as SC
Test Input: Sentence: text x

Correct Label:

Stance
Detection

Instruction: Recognize the stance of the sentence to the given target. Here are some
examples:
Examples: . . .

Sentence: text xi What is the attitude of sentence toward target target ?
Prediction: prior prediction y′i
Correct Label: label yi
feedback on correct (or wrong) examples
. . .

Test Input: Sentence: text x What is the attitude of sentence toward target target ?
Correct Label:

Irony
Detection

Instruction: Determine whether the sentence is ironic or not. Here are some examples:
Examples: Same as SC
Test Input: Sentence: text x

Correct Label:

NLI

Instruction: Recognize textual entailment between the 2 texts. Here are some examples:
Examples: . . .

Premise: text1 xi1
Hypothesis: text2 xi2
Prediction: prior prediction y′i
Correct Label: label yi
feedback on correct (or wrong) examples
. . .

Test Input: Premise: text1 xtest1
Hypothesis: text2 xtest2
Correct Label:

Table 14: The prompt and format of in-context learning for each task.
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