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Abstract
Deep Operator Networks are an increasingly popular paradigm for solving regression in
infinite dimensions and hence solve families of PDEs in one shot. In this work, we aim to
establish a first-of-its-kind data-dependent lowerbound on the size of DeepONets required
for them to be able to reduce empirical error on noisy data. In particular, we show that for
low training errors to be obtained on n data points it is necessary that the common output
dimension of the branch and the trunk net be scaling as Ω ( 4

√
n).

This inspires our experiments with DeepONets solving the advection-diffusion-reaction PDE,
where we demonstrate the possibility that at a fixed model size, to leverage increase in this
common output dimension and get monotonic lowering of training error, the size of the
training data might necessarily need to scale at least quadratically with it.

1 Introduction
Data-driven approaches to analyze, model, and optimize complex physical systems are becoming more
popular as Machine Learning (ML) methodologies are gaining prominence. Dynamic behaviour of such
systems is frequently characterized using systems of Partial Differential Equations (PDEs). A large body of
literature exists for using analytical or computational techniques to solve these equations under a variety
of situations, such as various domain geometries, input parameters, and initial and boundary conditions.
Very often one wants to solve a “parametric” family of PDEs i.e have a mechanism of quickly obtaining
new solutons to the PDE upon variation of some parameter in the PDE like say the viscosity in a fluid
dynamics model. This is tantamount to obtaining a mapping between the space of possible parameters and
the corresponding solutions to the PDE. The cost of doing this task with conventional tools such as finite
element methods (Brenner & Carstensen, 2004) is enormous since distinct simulations must be run for each
unique value of the parameter, be it domain geometry or some input or boundary value. Fortuitously, in
recent times there have risen a host of ML methods under the umbrella of “operator learning” to achieve
this with more attractive speed-accuracy trade-offs than conventional methods, (Ray et al., 2023)

As reviewed in (Ray et al., 2023), we recognize that operator learning is itself a part of the larger program
of rapidly increasing interest, “physics informed machine learning” (Karniadakis et al., 2021). This program
encompasses all the techniques that are being developed to utilize machine learning methods, in particular
neural networks, for the numerical solution of dynamics of physical systems, often described as differential
equations. Notable methodologies that fall under this ambit are, Physics Informed Neural Nets (Raissi &
Karniadakis, 2018), DeepONet (Lu et al., 2019), Fourier Neural Operator (Li et al., 2020b), Wavelet Neural
Operator (Tripura & Chakraborty, 2022), Convolutional Neural Operators (Raonic et al., 2023) etc.

Physics-Informed Neural Networks (PINNs) have emerged as a notable approach when there is one specific
PDE of interest that needs to be solved. To the best of our knowledge some of the earliest proposals of
∗A part of the work was done while the author was at the Jadavpur University
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this were made in, (Dissanayake & Phan-Thien, 1994; Lagaris et al., 1998; 2000). The modern avatar of
this idea and the naming of PINNs happened in (Raissi et al., 2019). This learning framework involves
minimizing the residual of the underlying partial differential equation (PDE) within the class of neural
networks. Notably, PINNs are by definition an unsupervised learning method and hence they can solve
PDEs with no need for knowing any sample solutions. They have demonstrated significant efficacy and
computational efficiency in approximating solutions to PDEs, as evidenced by (Raissi et al., 2018), (Lu
et al., 2021), (Mao et al., 2020), (Pang et al., 2019), (Yang et al., 2021), (Jagtap & Karniadakis, 2021),
(Jagtap et al., 2020), (Bai et al., 2021), A detailed review of this field can be seen at, (Cuomo et al., 2022).

As opposed to the question being solved by PINNs, Deep Operator Networks train a pair of nets in tandem to
learn a (possibly nonlinear) operator mapping between infinite-dimensional Banach spaces - which de-facto
then becomes a way to solve a family of parameteric PDEs in “one-shot”. Its shallow version was proposed
in (Chen & Chen, 1995b) and more recently its deeper versions were investigated in (Lu et al., 2019) and its
theoretical foundations laid in (Lanthaler et al., 2022a).

Till date numerous variants of DeepONet models (Park et al., 2023), (Liu & Cai, 2021), (Hadorn, 2022),
(Almeida et al., 2022), (Lin et al., 2022), (Xu et al., 2022), (Tan & Chen, 2022), (Zhang et al., 2022),
(Goswami et al., 2022) have been proposed and this training process takes place offline within a predetermined
input space. As a result, the inference phase is rapid because no additional training is needed as long as the
new conditions fall within the input space that was used during training.

Other such neural operators like FNO (Li et al., 2020b), WNO[(Tripura & Chakraborty, 2022) enable effi-
cient and accurate solutions to complex mathematical problems, opening up new possibilities for scientific
computing and data-driven modeling. They have shown promise in various scientific and engineering appli-
cations including physics simulations (Choubineh et al., 2023), (Gopakumar et al., 2023), (Li et al., 2022b),
(Lehmann et al., 2023), (Li et al., 2022a), image processing (Johnny et al., 2022), (Tripura et al., 2023), and
weather-modelling (Kurth et al., 2022), (Pathak et al., 2022).

A deep mystery with neural nets is the effect of their size on their performance. On one hand, we know
from various experiments as well as theory that the asymptotically wide nets are significantly weaker than
actual neural nets and they have very different training dynamics than what is true for practically relevant
nets. But, it is also known that there are specific ranges of overparametrization at which the neural net
performs better than at any lower size. Modern learning architectures exploit this possibility and they are
almost always designed with a large number of training parameters than the size of the training set. It seems
to be surprisingly easy to find overparametrized architectures which generalize well. This contradicts the
traditional understanding of the trade-off between approximation and generalization, which suggests that
the generalization error initially decreases but then increases due to overfitting as the number of parameters
increases (forming a U-shaped curve). However, recent research has revealed a puzzling non-monotonic
dependency on model size of the generalization error at the empirical risk minimum of neural networks.
This curious pattern is referred to as the “double-descent” curve,(Belkin et al., 2019). Some of the current
authors had pointed out (Gopalani & Mukherjee, 2021), that the nature of this double-descent curve might
be milder (and hence the classical region exists for much large range of model sizes) for DeepONets - which
is the focus of this current study.

It is worth noting that this phenomenon has been observed in decision trees and random features and in
various kinds of deep neural networks such as ResNets, CNNs, and Transformers (Nakkiran et al., 2021).
Also, various theoretical approaches have been suggested towards deriving the double-descent risk curve,
(Belkin et al., 2018a), (Belkin et al., 2018b), (Deng et al., 2022), (Kini & Thrampoulidis, 2020).

In recent times, many kinds of generalization bounds for neural nets have also been derived, like those based
on Rademacher complexity (Sellke, 2023), (Golowich et al., 2018), (Bartlett et al., 2017) which are uniform
convergence bounds independent of the trained predictor or results as in (Li et al., 2020a) and (Muthukumar
& Sulam, 2023) which have developed data-dependent non-uniform bounds. These help explain how the
generalization error of deep neural nets might not explicitly scale with the size of the nets. Some of the
current authors had previously shown (Gopalani et al., 2022) the first-of-its-kind Rademacher complexity
bounds for DeepONets which does not explicitly scale with the width (and hence the number of trainable

2



Published in Transactions on Machine Learning Research (02/2024)

parameters) of the nets involved. Despite all these efforts, to the best of our knowledge, it has generally
remained unclear as to how one might explain the necessity for overparameterization for good performance
in any such neural system.

In light of this, a key advancement was made in, (Bubeck & Sellke, 2023). They showed, that with high
probability over sampling n training data in d dimensions, if there has to exist a neural net f of depth D and
p parameters such that it has empirical squared-loss error below a measure of the noise in the labels then it
must be true that, Lip(f) ≥ Ω̃ (

√
nd
Dp
). This can be interpreted as an indicator of why large models might be

necessary to get low training error on real world data. Building on this work, we prove the following result
(stated informally) for the specific instance of operator learning as we consider,

Theorem 1.1 (Informal Statement of Theorem 4.2). Suppose one considers a DeepONet function class at
a fixed bound on the weights and the total number of parameters and both the branch and the trunk nets
ending in a layer of sigmoid gates. Then with high probability over sampling a n−sized training data set, if
this class has to have a predictor which can achieve empirical training error below a label noise dependent
threshold, then necessarily the common output dimension of the branch and the trunk must be lower bounded
as Ω ( 4

√
n). And notably, the prefactors suppressed by Ω scale inversely with the bound on the weights and

the size of the model.

Thus, to the best of our knowledge, our result here makes a first-of-its-kind progress with explaining the size
requirement for DeepONets and in particular how that is related to the available size of the training data.
Further, motivated by the above, we shall give experiments to demonstrate that at a fixed model size, for
DeepONets to leverage an increase in the size of the common output dimension of branch and trunk, the
size of the training data might need to be scaled at least quadratically with that.

The proof in (Bubeck & Sellke, 2023) critically uses the Lipschitzness condition of the predictors to leverage
isoperimetry of the data distribution. And that is a fundamental mismatch with the setup of operator
learning - since DeepONets are not Lipschitz functions. Thus our work embarks on a program to look for
an analogous insight as in (Bubeck & Sellke, 2023) that applies to DeepONets.

1.1 The Formal Setup of DeepONets
We recall the formal setup of DeepONets (Ryck & Mishra, 2022). Given T > 0 and D ⊂ Rd compact, consider
functions u ∶ [0, T ] ×D → Rk, for k ≥ 1, that solve the following time-dependent PDE,

La(u)(t, x) = 0 and u(x, 0) = u0 ∀(t, x) ∈ [0, T ] ×D .

This abstracts out the use case of wanting to find the time evolution of k dimensional vector fields on d
dimensional space and them being governed by a specific P.D.E. Further, let H be the function space of PDE
solutions of the above. Define a function space Y s.t u0 ∈ Y ⊂ L2(D) i.e the space of initial conditions and
then the differential operator above can be chosen to map as, La ∶ H → L2([0, T ] ×D) and these operators
are indexed by a function a ∈ Z ⊂ L2(D).

Corresponding to the above we have the solution operator G ∶ X → H ∶ f ↦ u, where f ∈ {u0, a} X ∈ {Y,Z}
– where the two choices correspond to the two natural settings one might consider, that of wanting to solve
the PDE for various initial conditions at a fixed differential operator or solve for a fixed initial condition at
different parameter values for the differential operator.

The DeepONet architecture as shown in Figure 1 consists of two nets, namely a Branch Net and a Trunk Net.
The former is denoted by NB that maps Rd1 → Rq - which in use will take as input a d1 point discretization
of a real valued function f as a vector, s = (f(x1), f(x2), ..., f(xd1)) corresponding to some arbitrary choice
of “sensor points” {xj ∣ 1 ≤ j ≤ d1} ⊂ D. The Trunk Net, denoted by NT, maps Rd2 → Rq which takes as
input any point in the domain of the functions in the solution space of the PDE. (In the context of the above
PDE we would have d2 = 1 + d). Note that in above q is an arbitrary constant. Then the DeepONet with
parameters θ (inclusive of both its nets) can be defined as the following map,
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Gθ

⎛
⎜⎜
⎝

f ((x1) , f (x2) ,⋯, f (xd1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s

⎞
⎟⎟
⎠
(p) ∶= ⟨NB(s),NT(p)⟩ . (1)

One would often want to constraint p ∈ U where U compact domain in Rd2 . Given the
setup as described above, the objective of a DeepONet is to approximate the value G(f)(p) by
Gθ (f (x1) , f (x2) ,⋯, f (xd1)) (p).

Figure 1: A Sketch of the DeepONet Architecture

Review of the Universal Approximation Property of DeepONets An universal approximation
theorem for shallow DeepONets was established in (Chen & Chen, 1995a). A more general version of it was
established in (Lanthaler et al., 2022b) which we shall now briefly review.

Consider two compact domains, D ⊂ Rd and U ⊂ Rn, and two compact subsets of infinite dimensional
Banach spaces, K1 ⊂ C(D) and K2 ⊂ C(U), where C(D) represents the collection of all continuous functions
defined on the domain D and similarly for C(U). We then define a (possibly nonlinear) continuous operator
G ∶K1 →K2.

Theorem 1.2. (Restatement of a key result from (Lanthaler et al., 2022b) on Generalised Universal Ap-
proximation for Operators). Let µ ∈ P(C(D)) be a probability measure on C(D). Assume that the mapping
G ∶ C(D) → L2(U) is Borel measurable and satisfies G ∈ L2(µ). Then, for any positive value ε, there exists
an operator G̃ ∶ C(D) → L2(U) (a DeepONet composed with a discretization map for functions in C(D)),
such that

∥G − G̃∥L2(µ) = (∫
C(D)

∥G(u) − G̃(u)∥2L2(U)dµ(u))
1/2
< ε

In other words, G̃ can approximate the original operator G arbitrarily close in the L2(µ)-norm with respect to
the measure µ. The above approximation guarantee between DeepONets and solution operators of differential
equations (G) clearly motivates the use of DeepONets for solving differential equations.
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2 Related Works
In (Lanthaler et al., 2022b) the authors have defined the DeepONet approximation error as follows,

Ê = (∫
C(D)

∫
U
∣G(u)(y) −N (u)(y)∣2 dy dµ(u))

1/2
,

where the DeepONet approximates the underlying operator G ∶ C(D) → C(U) and µ being as defined
previously and u a fixed finite grid discretization of u. To the best of our knowledge, the following is the
only DeepONet size lowerbound proven previously,

Theorem 2.1. Let µ ∈ P (L2(T)). Let u ↦ G(u) denote the operator, mapping initial data u(x) to the
solution at time t = π/2,for the Burgers’ PDE (Hon & Mao, 1998). Then there exists a universal constant
C > 0 (depending only on µ, but independent of the neural network architecture), such that the DeepONet
approximation error Ê is,

Ê ⩾ C
√

q

where, q is the common output dimension of the branch and the trunk net.

Firstly, from above it does not seem possible to infer any relationship between the size of the neural architec-
ture required for any specified level of performance and the amount of training data that is available to use.
And that is a key connection that is being established in our work. Secondly, the above lowerbound is in
the setting where there is no noise in the training labels - while our bound specifically targets to understand
how the architecture is constrained when trying to get the empirical error to be below a measure of noise
in the labels i.e our setup is that of solving PDEs in a supervised way while accounting for uncertainty in
data. Thirdly, and most critically, the lower bound above is specific to Burger’s PDE, while our theorem is
PDE-independent.

Organization Starting in the next section we shall give the formal setup of our theory. In Section 4 we
shall give the full statement of our theorem. In Section 5 we shall state all the intermediate lemmas that
we need and their proofs. In Section 6 we give the proof of our main theorem. Motivated by the theoretical
results, in Section 7 we give an experimental demonstration revealing a property of DeepONets about how
much training data is required to leverage any increase in the common output dimension of the branch and
the trunk. We conclude in Section 8 delineating some open questions.

3 Our Setup
In this section, we will give all the definitions about the training data and the function spaces that we shall
need to state our main results. As a specific illustration of the definitions, we will also give an explicit
example of a DeepONet loss function.

Definition 1. Training Datasets
Let (yi, (si, pi)) be i.i.d. sampled input-output pairs from a distribution on [−B, B]×D ×U where D and U
are compact subsets of Rd1 and Rd2 respectively and we define the conditional random variable g(si, pi) ∶=
E[y ∣ (si, pi)].

Definition 2. Branch Functions & Trunk Functions

B ∶= {Bw a function with ≤ dB parameters ∣ Bw ∶ Rd1 → Rq, Lip(Bw) ≤ LB & ∥w∥2 ≤WB & ∥Bw∥∞ ≤ C}

T ∶= {Tw a function with ≤ dT parameters ∣ Tw ∶ Rd2 → Rq, Lip(Tw) ≤ LT & ∥w∥2 ≤WT & ∥Tw∥∞ ≤ C}

The functions in the set B shall be called the “Branch Functions” and the functions in the set T would be
called the “Trunk Functions”.
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The bound of C in the above definitions abstracts out the model of the branch and the trunk functions being
nets having a layer of bounded activation functions in their output layer - while they can have any other
activation (like ReLU) in the previous layers.

Definition 3. DeepONets
Given the function classes in Definition 2, we define the corresponding class of DeepONets as,

H ∶= {hwb,wt = h(wb,wt) ∣ Rd1 ×Rd2 ∋ (s, p)↦ hwb,wt(s, p) ∶= ⟨Bwb
(s), Twt(p)⟩ ∈ R, Bwb

∈ B & Twt ∈ T }

Further, note that ∀θ > 0 ∃ a “θ-cover” of this function space Hθ such that, ∀hwb,wt ∈H, ∃h(w
b, θ

2
,w

t, θ
2
) ∈Hθ

s.t ∥wb −wb, θ
2
∥ ≤ θ

2 and ∥wt −wt, θ
2
∥ ≤ θ

2 and wb, θ
2

and wt, θ
2

being elements of the θ
2 covering space of the

set of branch and trunk weights respectively.

It’s easy to see how the above definition of H includes functions representable by the architecture given in
Figure 1. Now we recall the following result about neural nets from (Bubeck & Sellke, 2023).

Lemma 3.1. Let fw be a neural network of depth D, mapping into R with the vector of parameters being
w ∈ Rp and all the parameters being bounded in magnitude by W i.e the set of neural networks parametrized
by w ∈ [−W, W ]p. Let Q be the maximum number of matrix or bias terms that are tied to a single parameter
wa for some a ∈ [p]. Corresponding to it we define, B(w) ∶=∏j∈[D]max (∥Wj∥op , 1), where Wj is the matrix
in the jth−layer of the net.

Let x ∈ Rd such that ∥x∥ ≤ R, and w1, w2 ∈ Rp such that B (w1) , B (w2) ≤ B̄. Then one has

∣fw1(x) − fw2(x)∣ ≤ B̄2QR
√

p ∥w1 −w2∥ .

Moreover for any w ∈ [−W, W ]p with W ≥ 1, one has, B(w) ≤ (W
√

pQ)D.

In light of the above, we define J as follows,

Definition 4 (Defining J). Given any two valid weight vectors w1 and w2 for a “branch function” B we
assume to have the following inequality for some fixed J > 0,

sup
s∈D
∥Bw1(s) −Bw2(s)∥∞ ≤ J ⋅ ∥w1 −w2∥

And similarly for the trunk functions over the compact domain U .

One can see that the above inequality is easy to satisfy if the space of inputs to the branch or the trunk is
bounded. Thus invocation of this inequality implicitly constraints the support of the data distribution.

An Example of a DeepONet Loss To put the above definitions in context, let us consider an explicit
example of using a DeepONet to solve the forced pendulum PDE, R2 ∋ d(y,v)

dt
= (v,−k ⋅ sin(y)+ f(t)) ∈ R2 at

different forcings f at a given initial condition. Corresponding to this, the training data a DeepONet would
need would be 3−tuples of the form, (xB(f), xT , y), where xB(f) is a discretization of a forcing function f
onto a grid of “sensor points”, y ∈ R is the angular position of the pendulum at time t = xT for f . Typically
y is a standard O.D.E. solver’s approximate solution. It’s clear that here y being an angle is bounded, as
was the setup in Definition 1.

Referring to Figure 1, we note that s⃗ = xB(f), a d1 point discretization of a forcing function f would be
the input to the branch net, p⃗ = xT ∈ Rd2 = R, would be the trunk input i.e the time instant where we have
the location (y) of the pendulum. Then the output of the architecture in Figure 1 is the evaluation of the
following inner-product, Rd1 ×Rd2 ∋ (s⃗, p⃗)↦ DeepONet(s⃗, p⃗) ∶= ⟨Branch−Net(s⃗), Trunk−Net(p⃗)⟩. And given
n such data as above, the ℓ2 empirical loss would be, L ∶= 1

2n ∑
n
i=1 (yi −DeepONet(xB(fi), xT,i))2. This
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empirical loss when minimized would yield a trained architecture of form as in Figure 1, which when queried
for new forcing functions and time instants would yield accurate estimates of the corresponding pendulum
locations.

4 The Main Theorem
In the setup of the definitions given above, now we can state our main result as follows,

Theorem 4.1. ∀δ ∈ (0, 1) and an arbitrary positive constant ϵ > 0 and for C ≥ 1 (from Definition 2), if with
probability at least 1− δ with respect to the sampling of the data {(yi, (si, pi)) ∣ i = 1, . . . , n}, ∃ hwb,wt ∈H s.t

1
n

n

∑
i=1
(yi − hwb,wt(si, pi))2 ≤ σ2 − ϵ (1 + C ⋅ J ⋅ (B + 2 ⋅ C2))

then,

q ≥ n
1
4 ⋅
⎛
⎜⎜⎜
⎝

ϵ2

288 ⋅B2 ⋅
1

ln(( 4⋅min{dB ,dT }2

ϵ
)

dB+dT

⋅ (WB

√
dB)

dB ⋅ (WT

√
dT )

dT + 2) + ln( 2
1−δ
)

⎞
⎟⎟⎟
⎠

1
4

(2)

where σ2 ∶= 1
n ∑

n
i=1 E [(yi − g (si, pi))2] and g(s, p) = E [y ∣ (s, p)].

The proof of the above can be seen in Section 6. Note that the lowerbound proven here for q is a necessary
(and not a sufficient) condition for the required high probability (over data sampling) of the existence of a
DeepONet with empirical risk below the threshold given above. For further insight, we now specialize our
Theorem 4.1 to using C = 1 – which then encompasses the case that we shall do experiments with, that of
having DeepONets whose branch and trunk nets end in a sigmoid gate. Also, towards the following weakened
bound – for a more intuitive presentation – we assume a common upperbound of W on the 2−norm of the
parameter vector for the branch and the trunk net and define s ∶= dB + dT as the upperbound on the total
number of parameters in the predictor being trained.

Theorem 4.2. (Lowerbounds for DeepONets Whose Branch and Trunk End in Sigmoid Gates)
Let C = 1 and constants W and s be bounds on the norms of the weights of the branch and the trunk and
the total number of trainable parameters respectively. Then ∀δ ∈ (0, 1), and any arbitrary positive constant
ϵ > 0 if with probability at least 1 − δ with respect to the sampling of the data {(yi, (si, pi)) ∣ i = 1, . . . , n},
∃ hwb,wt ∈H s.t,

1
n

n

∑
i=1
(yi − hwb,wt(si, pi))2 ≤ σ2 − ϵ (1 + J ⋅ (B + 2))

then,

q ≥ n
1
4 ⋅
⎛
⎜
⎝

ϵ2

288 ⋅B2 ⋅
1

ln(2 + e−s⋅α′ ⋅ ( 4⋅min{dB ,dT }2

ϵ
⋅W√s)

s
) + ln( 2

1−δ
)

⎞
⎟
⎠

1
4

(3)

where σ2 ∶= 1
n ∑

n
i=1 E [(yi − g (si, pi))2] and g(s, p) = E [y ∣ (s, p)] and if the branch net has α−fraction of the

training parameters then α′ = α
2 ln 1

α
+ 1−α

2 ln 1
1−α

.

To interpret the above theorem consider a sequence of DeepONet training being done for fixed training data
(and hence a fixed n) and on different architectures – but having the same weight bound and the same
number of parameters and the same q, the common output dimension of the branch and the trunk functions.
Now we can see how the above theorem reveals a largeness requirement for DeepONets - that if there has to
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exist an architecture which can get the training error below a certain label-noise dependent threshold then
necessarily the branch/trunk output dimension q has to be Ω((training−data−size)

1
4 ).

Later, in Section 7, we shall conduct an experimental study motivated by the above and reveal something
more than what the above theorem guarantees. We will see that over a sequence of training being done on
different DeepONet architectures (and a fixed PDE) having nearly the same number of parameters, one can
get monotonic improvement in performance upon increasing training data size n if it is accompanied by an
increase in q s.t q√

n
is nearly constant. We also show that a slightly smaller rate of growth for n for the

same sequence of qs would break this monotonicity. Thus it reveals a “scaling law” for DeepONets - which
is not yet within the ambit of our theoretical analysis.

5 Lemmas Towards Proving Theorem 4.1
Lemma 5.1. For any space X with Euclidean metric, we denote as N(θ, X) the covering number of it at
scale θ. Further recall from Definition 2, that dB and dT are the total number of parameters in any function
in the sets B and T respectively. Let WB ⊆ RdB , WT ⊆ RdT and WH =WB ×WT denote the sets of allowed
weights of B, T , and H (Definition 3), respectively. Then the following three bounds hold for any θ > 0,

N(θ,WB) ≤
⎛
⎝

2WB

√
dB

θ

⎞
⎠

dB

N(θ,WT ) ≤
⎛
⎝

2WT

√
dT

θ

⎞
⎠

dT

N(θ,WH) ≤ N(θ/2,WB) ⋅N(θ/2,WT )

The proof of the above Lemma is given in Section 5.1.1

Lemma 5.2. We recall the definition of H from Definition 3, B as given in Defintion 1 & J from Definiton
4. Further for any h and any training data of the form as given in Theorem 4.1, we denote the corresponding
empirical risk as, R̂(h) ∶= 1

n ∑
n
i=1(yi − h(si, pi))2. Then, ∀θ > 0 we have,

R̂(h(w
b, θ

2
,w

t, θ
2
)) ≤ R̂(h(wb,wt)) + qCJθ ⋅ (B + 2qC2)

and wb, θ
2

and wt, θ
2

be s.t. ∥wb −wb, θ
2
∥ ≤ θ

2 and ∥wt −wt, θ
2
∥ ≤ θ

2 .

Thus we see that it is quantifiable as to how much is the increment in the empirical risk when for a given
training data a DeepONet is replaced by another with weights within a distance of θ from the original - and
that this increment is parametric in θ. The proof of the above lemma is given in Section 5.1.2.

Lemma 5.3. We recall the definition of Hθ from Definition 3; dB, dT , WB, WT , C & q from Defintion 2
and B as given in Defintion 1. Then ∀θ > 0, and for zi ∶= yi − g (si, pi);

P(∃ h(w
b, θ

2
,w

t, θ
2
) ∈Hθ ∣

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ≥

θ

4
)

≤ 22(dB+dT )+1

θ(dB+dT )
⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

⋅ exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 )

+ 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 )

The proof of the above lemma is given in Section 5.1.3

8
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Lemma 5.4. We continue in the same setup as in the previous lemma and further recall the definition of σ
as in Theorem 4.1. Then ∀θ > 0

P(∃ hwb,wt ∈H ∣
1
n

n

∑
i=1
(yi − hwb,wt(si, pi))2 ≤ σ2 − θ) ≤ 2 exp(− nθ2

288B2 )+P(∃ hwb,wt ∈H ∣
1
n

n

∑
i=1

h (si, pi) zi ⩾
θ

4
)

The above lemma reveals an intimate connection between the empirical error of DeepONets and the corre-
lation of its output with label noise. The proof of the above lemma is given in Section 5.1.4

5.1 Proofs of the Lemmas
In the following sections we give the proofs of the above listed lemmas.

5.1.1 Proof of Lemma 5.1
Proof. The first two equations are standard results, Example 27.1 of (Shalev-Shwartz & Ben-David, 2014)

Further define d(x, y) = ∣∣x − y∣∣2. Then, let S ⊂ RdB be a witness for N(θ/2,WB), that is, for all wb ∈WB,
there is some s ∈ S such that d(wb, s) ≤ θ/2. Similarly, let P ⊂ RdT be a witness for N(θ/2,WT ). Then for
all wb ∈WB, wt ∈WT , there exist a corresponding cover point s ∈ S and p ∈ P . And since (wb, wt) ∈WH:

d((wb, wt), (s, p)) ≤ d((wb, wt), (s, wt)) + d((s, wt), (s, p)) (by triangle inequality)
= d(wb, s) + d(wt, p) (under d ∼ l2-norm)
≤ θ (by definition of S and P )

Hence, S × T is an θ-cover of WH.

5.1.2 Proof of Lemma 5.2
Proof. Given an θ > 0 and a h(wb,wt) ∈ H, let wb, θ

2
and wt, θ

2
be s.t. ∥wb −wb, θ

2
∥ ≤ θ

2 and ∥wt −wt, θ
2
∥ ≤ θ

2 .
Then from the definition of J in Definition 4, the following inequalities hold,

sup
s
∥Bwb

(s) −Bw
b, θ

2
(s)∥

∞
≤ J.

θ

2
and sup

p
∥Twt(p) − Tw

t, θ
2
(p)∥

∞
≤ J.

θ

2

Further, we can simplify as follows, for any valid (s, p) input to the function hwb,wt = ⟨Bwb
, Twt⟩ and

similarly for hw
b, θ

2
,w

t, θ
2

.

∣⟨Bwb
(s), Twt(p)⟩ − ⟨Bw

b, θ
2
(s), Twt, θ

2
(p)⟩∣

=∣⟨Bwb
(s), Twt(p)⟩ − ⟨Bwb

(s), Tw
t, θ

2
(p)⟩ + ⟨Bwb

(s), Tw
t, θ

2
(p)⟩ − ⟨Bw

b, θ
2
(s), Tw

t, θ
2
(p)⟩∣

≤∣⟨Bwb
(s), Twt(p) − Tw

t, θ
2
(p)⟩∣ + ∣⟨Tw

t, θ
2
(p), Bwb

(s) −Bw
b, θ

2
(s)⟩∣

To upperbound the above we recall (a) the definition of C from Definitions 2 and (b) that for any two
q−dimensional vectors a and b we have, ∣⟨a, b⟩∣ ≤ ∑q

i=1 ∣ai∣∣bi∣ ≤ (maxi=1,...,q ∣bi∣)∑q
i=1 ∣ai∣. Thus we have,

∀(s, p), ∣⟨Bwb
(s), Twt

(p)⟩ − ⟨Bw
b, θ

2
(s), Twt, θ

2
(p)⟩∣ ≤ 2 ⋅ (Jθ

2
⋅ q ⋅ C) (4)

Ô⇒ ∀(s, p), ∣hwb,wt(s, p) − hw
b, θ

2
,w

t, θ
2
(s, p)∣ ≤ q ⋅ C ⋅ Jθ (5)

9
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Define, r1,i ∶= (yi − h(w
b, θ

2
,w

t, θ
2
)(si, pi)) and r2,i ∶= (yi − h(wb,wt)(si, pi))

Now,

r2
1,i − r2

2,i = (h(wb, θ
2

,w
t, θ

2
)(si, pi)2 − h(wb,wt)(si, pi)2) + 2yi (h(wb,wt)(si, pi) − h(w

b, θ
2

,w
t, θ

2
)(si, pi))

≤ (∣h(wb,wt)(si, pi) − h(w
b, θ

2
,w

t, θ
2
)(si, pi)∣) (h(wb,wt)(si, pi) + h(w

b, θ
2

,w
t, θ

2
)(si, pi)) + 2 ⋅B ⋅ q ⋅ C ⋅ Jθ

≤ (h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi)) ⋅ q ⋅ C ⋅ Jθ +B ⋅ q ⋅ C ⋅ Jθ

≤ q ⋅ C ⋅ Jθ ⋅ ((h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi) +B)

Averaging the above over all training data we get,

1
n

n

∑
i=1

r2
1,i ≤

1
n

n

∑
i=1

r2
2,i +

1
n

n

∑
i=1

q ⋅ C ⋅ Jθ ⋅ ((h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi)) +B) (6)

Using Cauchy-Schwarz over the inner-product in the definition of h, we get,

∣h(wb,wt)(si, pi)∣ ≤
√

qC ⋅√qC ≤ q ⋅ C2 Ô⇒ ((h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi))) ≤ 2q ⋅ C2 (7)

Substituting the above into equation 6 and invoking the definition of R̂,

R̂(h(w
b, θ

2
,w

t, θ
2
)) ≤ R̂(h(wb,wt)) +

1
n

n

∑
i=1

q ⋅ C ⋅ Jθ ⋅ ((h(wb,wt)(si, pi) + h(w
b, θ

2
,w

t, θ
2
)(si, pi)) +B)

≤ R̂(h(wb,wt)) + (q ⋅ C ⋅ Jθ ⋅B) + (q ⋅ C ⋅ Jθ) ⋅ (2q ⋅ C2)
≤ R̂(h(wb,wt)) + qCJθ ⋅ (B + 2qC2)

The above is what we set out to prove.

5.1.3 Proof of Lemma 5.3
Proof. Recall that for each data i, we had defined the random variable, zi ∶= yi − g (si, pi). Since g(s, p) =
E[y ∣ (s, p)], we can note that E[zi] = 0. Further,

z2
i = (yi − g (si, pi))2 ≤ y2

i − 2 ⋅ yi ⋅ g(si, pi) + g(si, pi)2 ≤ 4B2 (8)

Recall from equation 7. that ∣h(w
b, θ

2
,w

t, θ
2
)(si, pi)∣ ≤ q ⋅ C2

For each data i, we further define the random variable, Yθ,i ∶= ((h(w
b, θ

2
,w

t, θ
2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi)

Now note that,

10



Published in Transactions on Machine Learning Research (02/2024)

E[Yθ,i] = E [(h(w
b, θ

2
,w

t, θ
2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi]

= E [h(w
b, θ

2
,w

t, θ
2
) (si, pi) ⋅ yi] −E [h(w

b, θ
2

,w
t, θ

2
) (si, pi) ⋅ g (si, pi)]

Next, we use the tower property of conditional expectation to expand the first term,

E [h(w
b, θ

2
,w

t, θ
2
) (si, pi) ⋅ yi] = E [E[h(w

b, θ
2

,w
t, θ

2
) (si, pi) yi ∣ (si, pi)]] = E[h(w

b, θ
2

,w
t, θ

2
) (si, pi)E [y ∣ (si, pi)]]

= E [h(w
b, θ

2
,w

t, θ
2
) (si, pi) ⋅ g (si, pi)]

Substituting this back into the previous equation, we get,

E[Yθ,i] = 0

Further,

∣Yθ,i∣ = ∣h(w
b, θ

2
,w

t, θ
2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)]∣ ⋅ ∣zi∣ ≤ (∣h(w

b, θ
2

,w
t, θ

2
)(si, pi)∣ + ∣E[h(w

b, θ
2

,w
t, θ

2
)]∣) ⋅ 2B

≤ 4 ⋅ C2 ⋅B ⋅ q

Applying Hoeffding’s inequality 1 on Yθ,i, we will get,

P( 1
n

n

∑
i=1
((h(w

b, θ
2

,w
t, θ

2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi) ≥ t) ≤ exp(− 2nt2

(8 ⋅B ⋅ qC2)2 ) (9)

We choose t = θ
8 to get,

P(∣ 1
n

n

∑
i=1
((h(w

b, θ
2

,w
t, θ

2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi)∣ ≥

θ

8
) ≤ 2 ⋅ exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 )

We define two events,
1

Theorem 5.5. (Hoeffding’s inequality). Let Z1, . . . , Zn be independent bounded random variables with Zi ∈ [a, b] for all i,
where −∞ < a ≤ b <∞. Then

P( 1
n

n

∑
i=1
(Zi − E [Zi]) ≥ t) ≤ exp(− 2nt2

(b − a)2
)

and

P( 1
n

n

∑
i=1
(Zi − E [Zi]) ≤ −t) ≤ exp(− 2nt2

(b − a)2
)

for all t ≥ 0.

11
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E5 ∶= {∣
1
n

n

∑
i=1

zi∣ ≥
θ

8 ⋅ qC2} & E6 ∶= {∃ h(w
b, θ

2
,w

t, θ
2
) ∈Hθ ∣

1
n

n

∑
i=1

E[h(w
b, θ

2
,w

t, θ
2
)]zi ≥

θ

8
}

Recalling the bound on the h function we have, 1
q⋅C2 ⋅ ∣E[h(w

b, θ
2

,w
t, θ

2
)]∣ ∈ [0, 1], we have that if Ec

5 happens
then for such a sample of {zi, i = 1, . . . , n},

∀h(w
b, θ

2
,w

t, θ
2
) ∈Hθ,

θ

8 ⋅ qC2 > ∣
1
n

n

∑
i=1

zi∣ ≥
1

q ⋅ C2 ⋅ ∣E[h(wb, θ
2

,w
t, θ

2
)]∣ ∣

1
n

n

∑
i=1

zi∣ ≥
1

n ⋅ qC2

n

∑
i=1

E[h(w
b, θ

2
,w

t, θ
2
)]zi

Hence Ec
5 Ô⇒ Ec

6 and hence P (E6) ≤ P (E5) i.e

P(∃ h(w
b, θ

2
,w

t, θ
2
) ∈H ∣

1
n

n

∑
i=1

E[h(w
b, θ

2
,w

t, θ
2
)]zi ≥

θ

8
) ≤ P(∣ 1

n

n

∑
i=1

zi∣ ≥
θ

8 ⋅ q ⋅ C2 ) (10)

Recalling that (∣zi∣ ≤ 2B), by Hoeffding’s inequality we have,

P(∣ 1
n

n

∑
i=1

zi∣ ≥
θ

8 ⋅ q ⋅ C2 ) ≤ 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 ) (11)

Now we define three events E7,E8 and E9 as follows,

E7 ∶= {∀ h(w
b, θ

2
,w

t, θ
2
) ∈Hθ,

1
n

n

∑
i=1
(h(w

b, θ
2

,w
t, θ

2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)]) zi ≤

θ

8
}

E8 ∶= {∀ h(w
b, θ

2
,w

t, θ
2
) ∈Hθ,

1
n

n

∑
i=1

E[h(w
b, θ

2
,w

t, θ
2
)]zi ≤

θ

8
}

E9 ∶= {∀ h(w
b, θ

2
,w

t, θ
2
) ∈Hθ,

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ≤

θ

4
}

Observe that, if E7 and E8 hold then E9 will also hold.

Hence,
P(E7 ∩E8) ≤ P(E9) Ô⇒ P(Ec

9) ≤ P(Ec
7) + P(Ec

8)

Thus, we can invoke equations 10 and 11 to get,

P(∃h(w
b, θ

2
,w

t, θ
2
) ∈Hθ ∣

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ≥

θ

4
)

12
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≤ P(∃h(w
b, θ

2
,w

t, θ
2
) ∈Hθ ∣

1
n
∣

n

∑
i=1
(h(w

b, θ
2

,w
t, θ

2
) (si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)]) zi∣ ≥

θ

8
) + P(∣ 1

n

n

∑
i=1

zi∣ ≥
θ

8 ⋅ q ⋅ C2 )

≤ P
⎛
⎜⎜
⎝

⋃
h(w

b, θ
2

,w
t, θ

2
)∈Hθ

{ 1
n
∣

n

∑
i=1
(h(w

b, θ
2

,w
t, θ

2
)(si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi∣ ≥

θ

8
}
⎞
⎟⎟
⎠
+ 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 )

≤ ∑
h(w

b, θ
2

,w
t, θ

2
)∈Hθ

P( 1
n
∣

n

∑
i=1
(h(w

b, θ
2

,w
t, θ

2
)(si, pi) −E[h(w

b, θ
2

,w
t, θ

2
)])zi∣ ≥

θ

8
) + 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 )

Hence,

P(∃h(w
b, θ

2
,w

t, θ
2
) ∈Hθ ∣

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ≥

θ

4
)

≤ 22(dB+dT )

θ(dB+dT )
⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

⋅ 2 ⋅ exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 )

+ 2 exp( −nθ2

83 ⋅B2 ⋅ q2 ⋅ C4 )

And the above is what we set out to prove.

5.1.4 Proof of Lemma 5.4
Proof. Recall the definition of zi from the previous proof and and from the assumptions in Theorem 4.2 we
have, 1

n ∑
n
i=1 E [z2

i ] = σ2. Recalling that zi ∈ [−2B, 2B] and they are i.i.d. we can invoke Hoeffding’s Lemma
5.5 (with t = θ

6 , b = 2B, a = −2B) to get,

P( 1
n

n

∑
i=1

z2
i ≤ σ2 − θ

6
) ≤ exp(− nθ2

288B2 ) (12)

Further note that, zi ⋅ g (si, pi) is i.i.d with mean 0 since E [zi ∣ (si, pi)] = 0 and ∣zi ⋅ g (si, pi)∣ ≤ 2B
Applying Hoeffding’s inequality again,

P( 1
n

n

∑
i=1

zig (si, pi) ≤ −
θ

6
) ≤ exp(− nθ2

288B2 ) (13)

Given a hwb,wt ∈H, we define the following vector random variables,

Z ∶= 1√
n
(z1, z2,⋯, zn) (14)

G = 1√
n
(g (s1, p1) , g (s2, p2) ,⋯, g (sn, pn)) (15)

F = 1√
n
(hwb,wt (s1, p1) , hwb,wt (s2, p2) ,⋯, hwb,wt (sn, pn)) (16)

13
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Note that,

∥G +Z − F ∥2 = ∥ 1√
n
(g (s1, p1) ,⋯, g (sn, pn)) +

1√
n
(z1, . . . , zn) −

1√
n
(hwb,wt(s1, p1),⋯ hwb,wt (sn, pn)) ∥2

(17)

Recalling that zi ∶= yi − g (si, pi) and the definition of the empirical risk of the predictor, R̂(hwb,wt) ∶=
1
n ∑

n
i=1(yi − hwb,wt(si, pi))2, we realize that,

∥Z +G − F ∥2 = R̂(hwb,wt)

Suppose, ∥Z∥2 ⩾ σ2 − θ
6 and ⟨Z, G⟩ ⩾ − θ

6 . Then we have,

∥Z +G − F ∥2 = ∥Z∥2 + 2⟨Z, G − F ⟩ + ∥G − F ∥2 = ∥Z∥2 + 2⟨Z, G⟩ − 2⟨Z, F ⟩ + ∥G − F ∥2

≥ σ2 − θ

6
− 2θ

6
− 2⟨Z, F ⟩ ≥ σ2 − θ

2
− 2⟨Z, F ⟩.

If further we have, ∥Z +G − F ∥2 ≤ σ2 − θ then we have from above, ⟨F, Z⟩ ≥ θ
4

Motivated by the above, we define the following 4 events, namely Ei, i = 1, . . . , 4

E1 ∶= {∥Z∥2 ≥ σ2 − θ

6
} , E2 ∶= {⟨Z, G⟩ ≥ −θ

6
} , E3 ∶= {∃ hwb,wt ∈H ∣ R̂ ≤ σ2 − θ} & E4 ∶= {∃ hwb,wt ∈H ∣ ⟨F, Z⟩ ≥ θ

4
}

Thus our above argument can be summarized to say that if the events E1, E2 and E3 hold, then E4 will
also hold. This we can write as, P(E1 ∩E2 ∩E3) ≤ P(E4). This implies, P(E4) ≥ 1 − P((E1 ∩E2 ∩E3)c).
But, by union bounding, P (Ec

1 ∪Ec
2 ∪Ec

3) ≤ P(Ec
1) + P(Ec

2) + P(Ec
3) ≤ 3 − (P(E1) + P(E2) + P(E3)). Hence

combining we have, P(E4) ≥ −2 + (P(E1) + P(E2) + P(E3))

From equations 12 and 13 we obtain, that, (1 − P(E1)) ≤ exp (− nθ2

288B2 ) and similarly for (1 − P(E2)).

Thus substituting in above we get,

P(E3) ≤ 2 exp(− nθ2

288B2 ) + P(E4)

Thus we have proven what we had set out to prove,

6 Proof of the (Main)Theorem 4.1

A careful study of the proof of Lemma 5.4 would reveal that it can as well be invoked on Hθ.

And by doing so we get,

14
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P(∃h(w
b, θ

2
,w

t, θ
2
) ∈Hθ ∣

1
n

n

∑
i=1
(yi − h(w

b, θ
2

,w
t, θ

2
)(si, pi))

2
≤ σ2 − θ)

≤ 2 exp(− nθ2

288 ⋅B2 ) + P(∃h(wb, θ
2

,w
t, θ

2
) ∈Hθ ∣

1
n

n

∑
i=1

h(w
b, θ

2
,w

t, θ
2
) (si, pi) zi ⩾

θ

4
)

Using Lemma 5.3,

≤ 2 exp(− nθ2

288 ⋅B2 ) +
22(dB+dT )+1

θ(dB+dT )
⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

⋅ exp(− 2nθ2

84 ⋅ (B ⋅ qC2)2 )

+ 2 exp(− nθ2

83 ⋅ (B ⋅ q ⋅ C2)2 )

(18)

Invoking Lemma 5.2 at θ = ϵ
q2 and recalling that the q ≥ 1 (by definition) we have,

R̂(h(wb, ϵ
2⋅q2

,wt, ϵ
2⋅q2
)) ≤ R̂(h(wb,wt)) + C ⋅ J ⋅ ϵ ⋅ (B + 2 ⋅ C2) (19)

With respect to random sampling of the training data we define two events E1 (corresponding to the function
class H) and E2 (corresponding to the ϵ

2q2−cover of H),

E1 ∶= {∃h(wb,wt) ∈H ∣ R̂(h(wb,wt)) ≤ σ2 − ϵ − C ⋅ J ⋅ ϵ ⋅ (B + 2 ⋅ C2)}

E2 ∶= {∃h(wb, ϵ
2⋅q2

,wt, ϵ
2⋅q2
) ∈Hθ ∣ R̂(h(wb, ϵ

2⋅q2
,wt, ϵ

2⋅q2
)) ≤ σ2 − ϵ}

Thus if E1 is true, we can invoke the above inequality to get,

R̂(h(wb, ϵ
2⋅q2

,wt, ϵ
2⋅q2
)) ≤ R̂(h(wb,wt)) + C ⋅ J ⋅ ϵ ⋅ (B + 2 ⋅ C2) ≤ σ2 − ϵ − C ⋅ J ⋅ ϵ ⋅ (B + 2 ⋅ C2) + C ⋅ J ⋅ ϵ ⋅ (B + 2 ⋅ C2)

≤ σ2 − ϵ

Thus we observe that, E1 Ô⇒ E2 and thus P(E1) ≤ P(E2) we can invoke equation 18 to get,

P

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∃ h(wb,wt) ∈H ∣
1
n

n

∑
i=1
(yi − hwb,wt(si, pi))2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R̂(h(wb,wt))

≤ σ2 − ϵ (1 + C ⋅ J ⋅ (B + 2 ⋅ C2))

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

≤ P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∃ h(wb, ϵ
2⋅q2

,wt, ϵ
2⋅q2
) ∈H ϵ

q2 ∣
1
n

n

∑
i=1
(yi − h(wb, ϵ

2⋅q2
,wt, ϵ

2⋅q2
)(si, pi))

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R̂(h(wb, ϵ

2⋅q2
,wt, ϵ

2⋅q2
))

≤ σ2 − ϵ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≤ 2 exp(− nϵ2

288 ⋅B2 ⋅ q4 ) +
22(dB+dT )+1

( ϵ
q2 )
(dB+dT )

⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

⋅ exp(− 2nϵ2

84 ⋅ (B ⋅ qC2)2 ⋅ q4 ) (20)

+ 2 exp(− nϵ2

83 ⋅B2 ⋅ q6 ⋅ C4 )

Hence if the required probability has to be at least 1 − δ, it’s necessary that we have,
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(1 − δ) ≤2 exp(− nϵ2

288 ⋅B2 ⋅ q4 ) +
22(dB+dT )+1

( ϵ
q2 )
(dB+dT )

⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

⋅ exp(− 2nϵ2

84 ⋅B2 ⋅ q6 ⋅ C4 )

+ 2 exp(− nϵ2

83 ⋅B2 ⋅ q6 ⋅ C4 )

Note that, nϵ2

83⋅B2⋅q6⋅C4 > 2nϵ2

84⋅B2⋅q6⋅C4 . Further recalling that q,C ≥ 1 we have, nϵ2

288⋅B2⋅q4 > nϵ2

83⋅B2⋅q6⋅C4 . Thus
a necessary condition to satisfy the above inequality is obtained by weakening the above inequality by
replacing all the three exponentials in there with the smallest of them,

1 − δ ≤ 2 ⋅ exp( −nϵ2

288 ⋅B2 ⋅ q4 ) ⋅
⎛
⎝
(4q2

ϵ
)

dB+dT

⋅ (WB

√
dB)

dB

⋅ (WT

√
dT )

dT

+ 2
⎞
⎠

And the necessary condition above leads to the lower bound,

q ≥ n
1
4 ⋅
⎛
⎜⎜⎜
⎝

ϵ2

288 ⋅B2 ⋅
1

ln(( 4q2

ϵ
)

dB+dT

⋅ (WB

√
dB)

dB ⋅ (WT

√
dT )

dT + 2) + ln( 2
1−δ
)

⎞
⎟⎟⎟
⎠

1
4

(21)

The claimed lower bound in the theorem statement follows by further weakening the inequality above recalling
that by definition we have, q ≤min{dB , dT }.

7 The Experiment Set-up
In this section, we shall demonstrate that at a fixed number of total parameters, increasing the output
dimension(q) and increasing the training data as q2 can cause a monotonic decrease in the training error of
a DeepONet.

The advection-diffusion-reaction P.D.E. (Rahaman et al., 2022) (referred as the ADR PDE from here on)
plays a crucial role in modeling various physical, chemical, and biological processes - and that shall be our
example for the experimental studies. More specifically, given a function f this PDE is specified as follows,

∂u

∂t
=D

∂2u

∂x2 + ku2 + f(x), x ∈ [0, 1], t ∈ [0, 1] (22)

with zero initial and boundary conditions, and for our preliminary experiments we shall use D = 0.01 as the
diffusion coefficient, and k = 0.01 as the reaction rate. We use DeepONets to learn the operator G mapping
from f(x) to the PDE solution u(x, t). In this case the operator Gθ will map the source terms f(x) to the
PDE solution u(x, t). Given a choice of m sensor points, we shall denote a discretization of f onto the sensor
points as the vector f ∈ Rm. Recalling the DeepONet operator loss, we realize that minimizing that is trying
to induce, Gθ(f(x, t)) ≈ G(f(x, t)).
For sampling f we have considered the Gaussian random field(GRF) distribution. Here we have used the
mean-zero GRF, f ∼ G (0, kl (x1, x2)) where the covariance kernel kl (x1, x2) = exp (− ∥x1 − x2∥2 /2l2) is the
radial-basis function (RBF) kernel with a length-scale parameter l > 0. For our experiments we have taken
l = 10−3. After sampling f from the chosen function spaces, we solve the PDE by a second-order finite
difference method to obtain the reference solutions.

For n training data samples, the ℓ2 empirical loss being minimized is, L̂DeepONet ∶= 1
n ∑

n
i=1 (yi − Gθ (fi) (pi))2,

where pi is a randomly sampled point in the (x, t) space and yi is the approximate PDE solution at pi

corresponding to fi – which we recall was obtained from a conventional solver.
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7.1 Implementations & Results
We created 10 DeepOnet models in each experimental setting such that each model has a depth of 5 and
width varying between 24 and 50 for each layer while keeping the total number of training parameters
approximately equal for each of those 10 models. For each case the branch input dimension is 40(i.e number
of sensor points), and trunk input dimension is 2. The smallest number of training data (n) we use is 104

and twice we make a choice of 10 different (q, n) values parameterizing the learning setups, once keeping
the ratio q√

n
approximately constant and then holding the ratio q

n
2
3

almost fixed. All the DeepONet models
were trained by the stochastic Adam optimizer at its default parameters.

The code for this experiment can be found in our GitHub repository (link).

Experiments in the fixed q√
n

setting. In this setting, the q value was varied from 5 to 50, in increments
of 5. We have taken the starting value of n as 104. In Figure 2 we have plotted the training loss dynamics
for these 10 models being trained over 120 epochs.

Experiments in the fixed q

n
2
3

setting. We repeat the above experiment but while appproximately fixing
the value of q

n
2
3

. The corresponding plots are shown in Figure 3.

Figure 2: Training Loss vs Epoch in fixed q√
n

setting Figure 3: Training Loss vs Epoch in fixed q

n
2
3

setting

Further experiments of the above kinds at other values of D and k, for orders of magnitude above and below
what’s considered here, can be seen in Appendix A. In Appendix A.1 we shall show that the emergence of
a scaling law as demonstrated for fixed q√

n
experiments persists even for fixed q

n
1
6

experiments - as is to
be expected as the amount of available data increases for each model considered. A summary table of all
parameters studied for the ADR PDE can be seen in Section A.2.

We draw two primary conclusions from the above results. Firstly, from Figure 2, we can observe that if q
and n increase at a fixed q√

n
then performance increases almost monotonically. Secondly, from the Figure

3 it is clearly visible that the previous monotonicity is breaking - that is the rate of increase of data size in
the later experiment was not sufficient to leverage the increase in the output dimension size of the branch
and the trunk as was happening in the first figure.

8 Discussion
Our key result Theorem 4.1 shows that a certain data size dependent largeness of q is needed if there has
to exist a bounded weight DeepONet at that q which can have their empirical error below the label noise
threshold. From our experiments, we have shown that there is some non-trivial range of q (the common
output dimension) along which empirical risk improves with q for a fixed model size - if the amount of
training data is scaled quadratically with q. We envisage that trying to prove this “scaling law” can be a
very interesting direction for future exploration in theory.
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Secondly, we note that our result hasn’t yet fully exploited the structure of the neural nets used in the
branch and the trunk. Also, it would be interesting to understand how to tune the argument specifically
for the different variations of this architecture (Kontolati et al., 2023), (Bonev et al., 2023) that are getting
deployed, Lastly, we note that our result is currently agnostic to the PDE being attempted to be solved.
There is a tantalizing possibility, that methods in this proof could be extended to derive bounds which can
distinguish PDEs that are significantly hard for operator learning.
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A Appendix
In this section we extended the scope of our demonstration by revisiting the experiments detailed in Section
7.1 and redoing them at further more values of the diffusion coefficient (D) and the reaction rate (k), as
specified in Equation 22. This time we go a couple of orders of magnitude above as well as below the value
of D = k chosen in Section 7.1.

We conducted four sets of experiments, at different common values for D and k, namely 1) 1 in Figure 4, 2)
0.1 in Figure 5, 3) 0.001 in Figure 6 and 4) 0.0001 in Figure 7.

Our findings indicate that for any given pair of (D, k) value, at a fixed q√
n

setting, performance keeps on
increasing monotonically i.e the best empirical loss obtained monotonically falls with increasing q. However,
for the fixed q

n
2
3

setting, this monotonicity breaks, particularly for higher values of D = k.

Thus the key insights about a possible scaling law for DeepONets continues to hold as was motivated earlier
in Section 7.1.

Figure 4: (D & k value as 1) Left: Training Loss vs Epoch in fixed q√
n

setting. Right: Training Loss vs
Epoch in fixed q

n
2
3

setting.

Figure 5: (D & k value as 0.1) Left: Training Loss vs Epoch in fixed q√
n

setting. Right: Training Loss vs
Epoch in fixed q

n
2
3

setting.
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Figure 6: (D & k value as 0.001) Left: Training Loss vs Epoch in fixed q√
n

setting. Right: Training Loss vs
Epoch in fixed q

n
2
3

setting

Figure 7: (D & k value as 0.0001) Left: Training Loss vs Epoch in fixed q√
n

setting. Right: Training Loss
vs Epoch in fixed q

n
2
3

setting
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A.1 Experiment at a fixed q

n
1
6

setting on the ADR PDE

In here we conducted two sets of experiments, at q and n settings more closely inspired by Theorem 4.2
i.e. we chose a set of nets of increasing q such that the size of the nets and q

n
1
6

are almost fixed. We do
experiments at different common values for D and k, namely 0.0001 & 1 in Figure 8.

Figure 8: (D & k value as 0.0001) Left: Training Loss vs Epoch in fixed q

n
1
6

setting. (D & k value as 1)Right:
Training Loss vs Epoch in fixed q

n
1
6

setting.

The above plots suggest that the monotonic performance improvement with increasing q as seen in all earlier
experiments continue to hold even at the scaling as chosen here.

A.2 Table of Data for All Experiments on the ADR PDE
A.2.1 Experiments where q

n
1
6

(and size of the operator net) are kept nearly constant

# Trainable Parameters in the DeepONet q n, D = k = 10−4 n, D = k = 1
18112 6 11650 11650
18316 8 65511 65511
18520 10 249906 249906
18724 12 746215 746215

Table 1: The last 2 columns correspond to Figure 8

A.2.2 Experiments where q

n
1
2

(and size of the operator net) are kept nearly constant

# Trainable Parameters in the DeepONet q n, D = k = 10−4 n, D = k = 10−3 n, D = k = 10−2 n, D = k = 10−1 n, D = k = 1
18010 5 10000 10000 10000 10000 10000
18520 10 40000 40000 40000 40000 40000
18568 15 90000 90000 90000 90000 90000
18719 40 640000 640000 640000 640000 640000
18714 45 810000 810000 810000 810000 810000
18760 50 1000000 1000000 1000000 1000000 1000000

Table 2: The column for D = k = 10−2 corresponds to Figure 2 and the rest of the last 5 columns, starting
from the rightmost above, correspond to the left column of Figures 4, 5, 6, and 7
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A.2.3 Experiments where q

n
2
3

(and size of the operator net) are kept nearly constant

#Trainable Parameters in the DeepONet q n, D = k = 10−4 n, D = k = 10−3 n, D = k = 10−2 n, D = k = 10−1 n, D = k = 1
18010 5 10000 10000 10000 10000 10000
18520 10 31623 31623 31623 31623 31623
18568 15 58000 58000 58000 58000 58000
18719 40 252982 252982 252982 252982 252982
18714 45 301870 301870 301870 301870 301870
18760 50 353553 353553 353553 353553 353553

Table 3: The column for D = k = 10−2 corresponds to Figure 3 and the rest of the last 5 columns, starting
from the rightmost above, correspond to the right column of Figures 4, 5, 6, and 7
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