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ABSTRACT

Benefiting from the advancement of computer vision, natural lan-
guage processing and information retrieval techniques, visual ques-
tion answering (VQA), which aims to answer questions about an
image or a video, has received lots of attentions over the past few
years. Although some progress has been achieved so far, several
studies have pointed out that current VQA models are heavily af-
fected by the language prior problem, which means they tend to
answer questions based on the co-occurrence patterns of question
keywords (e.g., how many) and answers (e.g., 2) instead of under-
standing images and questions. Existing methods attempt to solve
this problem by either balancing the biased datasets or forcing mod-
els to better understand images. However, only marginal effects and
even performance deterioration are observed for the first and sec-
ond solution, respectively. In addition, another important issue is
the inability to quantitatively measure the extent of the language
prior effect, which severely hinders the advancement of related
techniques.

In this paper, we make contributions towards solving the above
problems from two perspectives. Firstly, we design a metric to
quantitatively measure the language prior effect on VQA models.
The proposed metric has been demonstrated to be effective in our
empirical studies. Secondly, we propose a regularization method
(i-e., score regularization module) to enhance current VQA models
by alleviating the language prior problem as well as boosting the
backbone model performance. The proposed score regularization
module adopts a pair-wise learning strategy, which makes the VQA
models answer the question based on the reasoning on the image
(upon this question) instead of basing on question-answer patterns
observed in the biased training set. The score regularization module
is versatile to be integrated into various VQA models. We conducted
extensive experiments over two popular VQA datasets (i.e., VQA 1.0
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and VQA 2.0) and integrated the score regularization module into
three state-of-the-art VQA models. Experimental results show that
the score regularization module can not only effectively reduce the
language prior problem of these VQA models but also consistently
improve their question answering accuracy.
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1 INTRODUCTION

Question Answering (QA) has been long recognized as a challeng-
ing information retrieval task. At the beginning, it focused only
on the text domain. With the great progress of natural language
processing (NLP), computer vision (CV) and information retrieval
(IR), a new ‘Al-complete’ task, namely visual question answering
(VQA), has become an emerging interdisciplinary research field
over the past few years. VQA aims to accurately answer natural
language questions about a given image or a video, bringing bright
prospects in various applications including medical assistance and
human-machine interaction. Recently, several benchmark datasets
have been constructed to facilitate this task [5, 21, 25, 45], followed
by a number of devised deep models [4, 5, 24-26, 40].

Although these methods have achieved state-of-the-art perfor-
mance over their contemporary baselines, many studies point out
that today’s VQA models are still heavily driven by superficial cor-
relations between questions and answers in the training data and
lack sufficient visual understanding [2, 18, 32]. As a consequence,
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it turns out that the carefully designed VQA models actually pro-
vide answers based upon the first few words in questions and can
frequently yield not bad performance. Taking the VQA 1.0 training
set [5] as an example, 2 accounts for 31% of the answers to questions
initiating with how many. This leads to VQA models overwhelm-
ingly replying to ‘how many ... questions with 2 without truly
understanding the given images when testing. The problem that
the predicted answers are strongly driven by the answer set from the
same question type! in the training set is the so called language prior
problem [2, 13, 37] that many VQA models confront with.

It is not hard to understand the reason of the language prior prob-
lem, however this problem is non-trivial to deal with. One reason
for this unsatisfactory behavior is the fundamentally problematic
nature of independent and identically distributed (i.e., IID) train-test
splits in the presence of strong priors. Accordingly, it is hard to
distinguish in a well-performing model between making progress
towards the goal of understanding images correctly and only ex-
ploiting language priors to achieve high accuracy [2]. Moreover,
tackling with the language prior problem without deteriorating the
model performance poses another challenge.

With the realization of the language prior problem in VQA, re-
searchers have devoted great efforts towards solving or somehow
alleviating the problem and developed a set of approaches. Existing
approaches can be broadly classified into two directions: 1) making
the datasets less biased; and 2) making the model answer questions
by analyzing the image contents. In the first direction, researchers
in [13, 42] tried to balance the existing VQA 1.0 dataset by adding
complementary entries and built the VQA 2.0 dataset [13]. More
concretely, for each <image, question, answer> triplet, another
triplet with a visually similar image but a different answer is col-
lected to elevate the role of images in VQA. However, even with
this balance, there still exists significant bias in the augmented VQA
2.0 dataset. For instance, 2 still accounts for 27% of the question
type how many in the training set of the VQA 2.0 dataset. Instead
of amending the datasets, Johnson et al. [17] designed a diagnostic
3D shape dataset to control the question-conditional bias via rejec-
tion sampling within families of related questions. Since they dealt
with the problem from the perspective of datasets and attempted
to circumvent the inherent deficiency in traditional biased datasets,
the language prior problem of previous methods is still not settled.

In contrast, researchers in the second direction make efforts to
design mechanisms to make the VQA models avoid the language
prior problem. Approaches in this direction can be directly used
in the biased datasets and thus are more generalizable. For exam-
ple, the method in [2] explicitly disentangles the recognition of
visual concepts present in the image from the answer prediction
for a given question. And more recently, Ramakrishnan et al. [32]
treated the training as an adversarial game between the VQA model
and the QA model (eliminating images from the current triplet)
to reduce the impact of language biases. Both methods are built
upon the widely used VQA model Stacked Attention Networks
(SAN) [40]. Nevertheless, performance deterioration is observed for
both methods as compared to the backbone model SAN. We argue
that a better regularization can not only alleviate the language prior
problem but also improve the model performance.

!Questions initiate with the same words.
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Another important issue is the lack of proper evaluation metrics
to measure the extent of language prior effect of VQA models.
Although the language prior problem has been pointed out by
various previous studies [1, 13, 17, 18, 42] and many approaches
have been proposed to deal with this problem [2, 32], few efforts
have been devoted into how to numerically quantify the language
prior effect. As discussed, it is hard to distinguish whether the
model really understands the question and image contents before
answering the question or it just simply discovers some patterns
between question words and answers. Besides, it is also difficult
to evaluate how well a newly designed model solves the language
prior problem.

In order to tackle the aforementioned limitations of the previous
approaches and the lack of language prior measurement, in this pa-
per, we establish a formal quantitative metric to measure the extent
of language prior effect (called LP score) and design a generalized
regularization method to alleviate the language prior problem in
VQA. On the one hand, the proposed LP score evaluates the lan-
guage prior effect by taking into account both the training dataset
bias and model deficiency. In this way, the LP score can measure
the language prior effect quantitatively and guide further studies
on alleviating the language prior problem. On the other hand, our
proposed regularization method leverages a score regularization
module to force backbone models to better reason with the image
contents before predicting answers. More specifically, the score reg-
ularization module is added to the backbone models before the final
answer prediction layer. This is to guarantee that the VQA model
answers questions by understanding questions and correspond-
ing image contents instead of simply analyzing the co-occurrence
patterns of question key words (e.g., how many) and the answer
(e.g., 2). To achieve the goal, the inputs to the score regularization
module are from two streams: fused question-image feature with
the embedding feature of the true answer and question feature with
the embedding feature of the true answer; and then the score regu-
larization module computes two scores and employs a pair-wise
learning scheme for training. Different from the multi-step learn-
ing as adopted in [2, 32], we train the proposed regularizer with
the backbone model in an end-to-end multi-task learning scheme.
Moreover, our proposed regularization method can be applied to
most of the existing VQA models on the biased datasets.

To verify the effectiveness of our proposed regularization method,
we conducted extensive experiments on two most popular datasets
VQA 1.0 [5] and VQA 2.0 [13]. Moreover, we added the proposed
regularization module to three state-of-the-art models. Experimen-
tal results demonstrate that our proposed methods can yield better
performance as compared to the corresponding backbone models,
and thus achieve state-of-the-art performance.

In summary, our main contributions in this paper are threefold:

e To the best of our knowledge, we are the first to study the lack
of language prior measurement and emphasize its importance
on facilitating the advancement of related techniques. We fur-
ther design an evaluation metric to quantitatively measure the
extent of language prior effect of VQA models.

e  We propose a regularization method on VQA models by forcing
the backbone model to better reason visual contents before
the final answer prediction. The proposed regularizer can help
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reduce the language prior effect as well as boost the model
performance. It is expected that our method can be extended to
other visual-language reasoning tasks which also suffer from
the language prior problem, e.g., image captioning.

e  We conducted extensive comparative experiments on two pub-
licly available datasets to validate the effectiveness of the pro-
posed regularization method and the feasibility of the proposed
evaluation metric. Moreover, we have released the code and
setting to facilitate future research in this direction?.

2 LANGUAGE PRIOR QUANTIFICATION
2.1 Observations

Before elaborating the conception of our language prior measure-
ment, let us go through some examples to show the language prior
problem intuitively. Figure 1 shows the answer distributions in the
VQA 1.0 dataset [5] of two question types: how many and what
color™. For both sub figures, the leftmost bar represents the ground
truth answer distribution (i.e., GT-train) in the training set. For ex-
ample, the 31% answers to the question type how many are 2. And
the right ones are the distributions of the predicted wrong answers
of three baselines in the validation set. The Question-only [5, 13] is
the model trained without reasoning the image, and it is for sure
that in this baseline would arise the language prior problem. The
other two HieCoAttn [24] and Strong-baseline [20] are the state-
of-the-art models on the VQA 1.0 dataset. For example, if the true
answer for a given question of the question type how many is 6,
and the predicted answer is 2, then it is counted as a predicted
wrong answer of 2 under the question type how many. Without
dataset bias or language prior, the predicted wrong answers from
VQA models should be more diverse (5, apple, on the left, etc) or
roughly follow uniform distribution over all answers instead of
being proportional to the answer distribution in the training set.
For example, a large portion of answers from how many questions
are mispredicted 2, 1 and 3, which are also the most frequent true
answers in the training dataset (as shown in Figure 1). This indicates
that VQA models tend to provide answers according to the patterns
observed between question types and answers in the training set
rather than reasoning about images for the current question.

In the recent work, Goyal et al. [13] attempted to deal with the
language prior problem of the popular VQA 1.0 dataset by collecting
<image, question, answer> triplets to construct the VQA 2.0 dataset.
Instead of associating each question with just one image as in the
VQA 1.0 dataset, the VQA 2.0 dataset assigns a pair of similar images
with different answers to the same question. However, as shown
in Figure 2, the language prior problem still exists. The predicted
wrong answer distributions from the state-of-the-art models Up-
Down [3] and Counter [43] are still highly biased.

The phenomenon arises from the two aspects: 1) training dataset
bias. It is common that some answers are more frequently relevant
to a certain question type. For example, red, white, blue and black are
the most frequent colors in daily life, constituting the most frequent
answers to the question type what color. Moreover, people only
ask the question ‘Ts there a clock tower in the picture?’ on images
actually containing a clock tower. As experimented by [13], blindly

2https://github.com/guoyang9/vqa-prior.
3These two types of questions take about 20% of the questions in the whole dataset.
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Figure 1: Answer distribution of two question types in the
VQA 1.0 dataset.
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Figure 2: Answer distribution of two question types in the
VQA 2.0 dataset.

answering yes for the question type Do you see a without reading
the rest of the question or looking at the associated image results
in a VQA accuracy of 87%. And 2) model deficiency. The predictive
capability of the language over images from today’s VQA models
have been corroborated by ablation studies in [1]. Figure 1 and 2
also validate that these VQA methods suffer from the language
prior problem.

Though many studies mention the language prior problem, nev-
ertheless, little attention has been paid to develop an evaluation
metric to quantitatively measure the extent of language prior ef-
fect numerically. Therefore, in this paper, we propose a metric to
effectively measure the VQA models’ language prior degree and
provide full validation of this metric in Section 5. We hope this
metric can facilitate the advancement of VQA models and other
domains which also suffer from the language prior problem.

2.2 Definition

In this subsection, we will give a detailed definition and explanation
of the proposed metric - language prior score (dubbed as LP score).
We first list the main notations used in the metric.

Notations. Let A denote all the answer multiset? in the training
set, and QT be the question type set. For a question type gt;, Xj
indicates the corresponding answer multiset, which is a subset of
71; Aj indicates the corresponding answer set, which contains the

non-redundant elements in Zj. And n; is the number of answer a!

in 7&}-. For example, let us assume there is only one question type
how many - qtj, and Ais {0, 0, 1, 2, 2, 2, 3, 4, 4, 4}. Now A; should be
the same as 71, then A;is {0, 1, 2, 3, 4}. If al is 4, then n; should be 3.

4 Allow for duplicate elements.
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Answer Precision per Question Type. After evaluating the
model in the validation set, we can compute the answer precision
for each question type. We ignore the case that a predicated answer
a' has not been included in the current answer multiset A; (i,
at ¢ A])s
predicted answer a’ under the question type qtj, is computed as:

TP!
J

pi=— 71 | (1)
J i i
TPj + FPJ.

. Otherwise we compute PJ’ which is the precision of the

where TP; denotes the number of true positive answers, i.e., the
predicted answer a; is the same as the ground truth answer under
the question type gt;. And FP]’: denotes the number of false positive
answers, i.e., the predicted answer a; is not consistent with the
groundtruth answer under the question type gt;. For example, if a
testing question belongs to the question type gt; and the predicted
answer is a;, and then TPJ’: + 1 if the groudtruth answer is a;, other-

wise FPJ’: + 1. Apparently, a larger PJ’: indicates that more questions
of this type are correctly answered, and vice versa.
Language Prior Score. Let LP} denote the LP score for the

predict answer a’ under the question type gt ;. Formally, it is defined
as: )
l
P}) * o A |)
where o(-) refers to a non-linear function (here the sigmoid function
is adopted) and |Aj| is the size of multiset A;. (1 - PJ’:) of Equation 2
represents the model deficiency when testing. In extreme cases, if
a model performs best as oracle, the P} should be near to 1. And

LP} = (1- o))

accordingly, (1 — P}) should be near to 0. 0(%) represents the
j

proportion of the true answer a’ of a certain question type gt; in
the whole training set. The reason why we use o(-) for smoothing
this part is the proportion of different answers varies largely and
we hope sparse answers can also contribute to this metric. We
can see that a larger LP! is obtained only when 1) the answers of
more questions in the validation set (or testing set) are mcorrectly
predicted to be a*; and 2) the true answers of more questions are a*

in the training set. In other words, if more answers of a question type
in the training data are biased towards a', and more questions of this
type are wrongly answered to a’, (i.e., the language prior problem),
the larger LP score will be obtained. Therefore, the measurement
considers both the training dataset bias and the model deficiency -
the two factors that cause the language prior problem as discussed.
Finally, the LP score over the whole validation set can be computed

as,
1
:@ Z T ZLP’,

J

®)

where |QT| is the size of the whole questlon type set, and |A;j] is
the size of the answer set under the question type gt;. We can easily
conclude that LP € [0, 1] and the larger the LP score is, the more
language prior is resulted in by the model.

SIf most of the predicted answers do not belong to the answer set of the current question
types, it is obviously that a very low accuracy will be obtained. In the experiments,
only around 0.1% answers are ignored for all the baselines. Therefore, ignoring those
answers (a’ ¢ Aj) has negligible effects on the language prior measurement.
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Figure 3: Demonstration of the proposed method for allevi-
ating the language prior problem.

3 PROPOSED REGULARIZATION METHOD

3.1 Problem Formulation

The goal of VQA is to provide an accurate answer 4 to a given
textual question Q upon an image or a video I. A general approach
is to regard the VQA problem as a classification task:

a = argmax p(alQ, I; ©), (4)
acQ

where Q denotes the candidate answer set and © denotes the model

parameters.

3.2 Background of VQA Models

As shown in Figure 3, the main framework is composed of three
components: Input Processing, Answer Prediction and Score
Regularization. The core of our proposed regularization method
lies in the Score Regularization part, which will be elaborated in
Section 3.3.

3.2.1 Input Processing. There are mainly three parts in the Input
Processing component: Image Processing, Question Processing
and Attention Module.

Image Processing. The predominant VQA models leverage pre-
trained Convolutional Neural Network (CNN) frameworks (e.g.,
VGG [35] or ResNet [15]) to extract image features v,

v = CNN(I). (5)

As most of the state-of-the-art VQA models use the attention mech-
anism, it is worth mentioning that there are two kinds of image
feature extraction. The first one is splitting the image into equal-
size regions (e.g., 14x14) and then extracting image features from
each region. This will result in a tensor size of k X 14 X 14 (k is
the feature size of each equal-sized image region). The other one is
using the region proposal techniques (e.g., Faster R-CNN [33]) to
extract image features for salient image regions, leading to a tensor
size of k X n (k is the feature size of each image region and n is the
proposed salient image region number).

Question Processing. Recurrent Neural Network (RNN, e.g.,
LSTM [16]) is often used in VQA models to extract question features
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q,

g = RNN(Q). (6)
More concretely, for a question sentence consisting of T words, its
words are fed into the RNN network one by one to obtain their
hidden features h. Usually the last hidden feature hr or all the
hidden features (when the attention mechanism is used on each
question word) are used to represent this question.

Attention Module. After the processing of images and ques-
tions, a series of image region features {vy, v1, ...} (14X14 or n) and
one question feature ht are obtained. Then the VQA models use the
question feature to attend on each image region through a multi-
layer perceptron (MLP) network or CNN to obtain the attention
weights for each image region v;:

gj = ATT(ht,vj), (7)

where g; is normalized through a softmax function. Finally the
attended image feature is given by:

5=Zvj*gj. 3)

3.2.2  Answer Prediction. With the attended image feature @ and
question feature h, typically, a fusion function (e.g., element-wise
addition, element-wise multiplication or concatenation) can be
adopted to fuse the question and attended image features. After
merging the question and the image features, the VQA models
frequently use several linear layers with non-linear activation func-
tions (e.g., ReLU) to make full interactions. Finally the models pre-
dict a normalized fixed-length vector and each dimension corre-
sponds to one fixed answer,

©)
The models can be trained by minimizing the log-likelihood loss
function, such as:

Panswer = softmax(o, h).

(10)

Lanswer = —Qgt * 10gpanswer,

where ag; is the distribution of the ground truth answers.

3.3 Proposed Regularization Method

As shown in Figure 1 and 2, there are some frequent patterns be-
tween question types and answers. And these patterns are easily
captured by the VQA models. As a result, the model will directly
give answers based only upon the text questions without referring
to the image contents. The VQA then degenerates to a QA problem
to some extent.

Based on the above discussion, we would like the VQA model to
better reason the image contents upon the corresponding questions
before predicting the answers, instead of relying on the discovered
question-answer patterns to make prediction. To achieve this, we
design a score regularization module, which adopts a pair-wise
learning scheme to make the predicted score obtained from the
<image, question, answer> higher than the predicted score obtained
from the <question, answer>.

As shown in Figure 3, there are two stream inputs to the score
regularization module: 0,44 and ogq. The former one represents
the integration representation of image, question and answer, while
the latter one denotes the integration of the question and answer.
a is the pre-trained word embedding of true answers and it can
be fused with other elements (e.g., <image, question> feature or
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only question feature) to obtain 04,44 and 0gqq. The fusion method
includes element-wise addition, multiplication and concatenation.
More analysis can be found in Section 5. After this step, the fused
features of <image, question, answer> and <question, answer> are
used to predict syq4 and sgq,

Svga = MLP(qua),
Sqa = MLP(Oqa),

(11)
(12)

where the MLP is leveraged to implement our score regularization
module. In order to achieve that questions with images are better
than merely questions for answer prediction, a pair-wise learning
method is adopted,

(13)

where y is a relatively small margin. In this way, the backbone mod-
els are forced to consider image content for answering questions,
instead of only basing on the frequent patterns between question
words and answers.

With the proposed regularization method, the final loss function
of the backbone VQA model is a combination of both the answer
prediction loss and the score restriction loss,

L = Lanswer + B+ Lscores

where f is a hyper-parameter balancing these two loss functions.
This enables us to train the backbone model with our regularization
method in an end-to-end multi-task learning scheme. The default
optimization method of the backbone models is kept unchanged to
optimize the final loss function.

In Section 5, we will show that different from the methods
in [2, 32] which deteriorate the backbone models’ performance,
our proposed regularization method can boost the backbone mod-
els’ performance as well as alleviate the language prior problem.

Lscore = max(0, Suga — Sqa +¥),

(14)

4 EXPERIMENTAL SETUP

We conducted extensive experiments on two datasets to thoroughly
justify the effectiveness of our proposed regularization method
as well as the feasibility of our proposed evaluation metric. In
particular, our experiments mainly answer the following research
questions:

e ROQ1: Can our proposed regularization method outperform the
state-of-the-art VQA methods?

e RQ2: Is the proposed evaluation metric (i.e., LP score) feasible
for measuring the extent language prior effect?

e ROQ3: Is the proposed regularization helpful for boosting the
answering accuracy as well as alleviating the language prior
problem?

e RQ4: Can backbone models with our proposed regularization
method better understand images than those without it?

4.1 Datasets

We tested our proposed method on VQA 1.0 [5] and VQA 2.0 [13]
datasets. Both datasets consist of real images from MSCOCO [22]
and abstract cartoon scenes. For each image, three different ques-
tions are given by Amazon Mechanical Turk (AMT) workers, with
ten answers per question. The answers are divided into three cat-
egories: yes/no, number and other. Besides, both datasets are split
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into training, validation and testing (or test-std) splits. The ground
truth answers are only available for the first two splits.

4.2 Evaluation Metric

Accuracy. We adopt the standard accuracy metric for evaluation [5,
13]. Given an image and a corresponding question, for a predicted
answer q, the accuracy is computed as:

#humans that provide that answer a
). (15)
3
Note that each question is answered by ten participants, this metric
takes the disagreement in human answers into consideration. The
reported results are the averaged accuracy over all questions.
LP Score. As the ground truth answers are not published for the
testing set data, we only compute the LP score on the validation
set. The computation of LP score is elaborated in Equation 3.

Accg = min(1,

4.3 Compared Baselines

We added our regularization method into the following three state-
of-the-art baselines. The first one is from the VQA 1.0 dataset, while
the last two are from the VQA 2.0 one.

e Strong-baseline [20] leverages two stacked ConvNets to ob-
tain the final attention weights for each equal-sized image re-
gion. After that it fuses the attentive image feature with the
question feature through the vector addition approach.

e Up-Down [3] utilizes a top-down mechanism to determine
attention weights from bottom-up image features (object level
and other salient image regions).

e Counter [43] is an upgraded version of the Strong-baseline,
introducing a counting module to enable robust counting from
object proposals.

4.4 Implementation Details

We kept most of the setting of backbone models unchanged, includ-
ing batch size, optimization method, number of non-linear layers.
For all the three backbone models, the trade-off parameter f§ was
tuned in the range [0.001, 0.01, 0.1, 1, 10, 100]; the margin y was
tuned in [0.0, 1.0] with a step size 0.1; and the number of MLP in
our score regularization module is fixed to 2; a dropout layer is
added between the two layers with a dropout rate 0.5.

5 EXPERIMENTAL RESULTS

5.1 Performance of Accuracy Comparison
(RQ1)
Table 1 and Table 2 summarize the accuracy comparison results
between our proposed score regularization method with baselines
from two groups: traditional VQA models (e.g., Question-only [5],
NMN [4], DCN [27]) and VQA models designed to alleviate the lan-
guage prior problem (i.e., SAN-GVQA [2] and SAN+Q-Adv+DoE [32]).
The answers are divided into three categories: Y/N, Num. and Other.
And the split All represents the overall accuracy. Besides, Strong-
baseline-SR, Up-down-SR and Counter-SR® are backbone models
Strong-baseline, Up-down and Counter with our regularization
method, respectively.

©The fusion method between <question, image> and answer features is element-wise
multiplication. More analysis can be found in Section 5.3.
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For VQA models from the second group, the observation from
Table 1 and Table 2 is that these VQA models all deteriorate the
corresponding backbone models’s performance. For example, the
overall accuracy deterioration on the validation set of SAN-GVQA
over backbone model SAN is 5.88% on Table 1, and Up-down+Q-
Adv+DoE over backbone model Up-down is 0.45% on Table 2. Com-
pared with the models in this group, the final models with our score
regularization module (i.e., Strong-baseline-SR, Up-down-SR and
Counter-SR) can outperform these baselines with a large margin
on both the VQA 1.0 and 2.0 datasets. For example, on the VQA
1.0 dataset, the absolute improvement of Strong-baseline-SR over
SAN+Q-Adv+DoE on Validation All is 9.15%; on the VQA 2.0 dataset,
Counter-SR over Up-down+Q-Adv+DoE is 2.74%.

Note that the methods in the second group are carefully designed
to alleviate the language prior problem, however, there is no evi-
dence in their reports to validate their effects. That means although
those methods can indeed alleviate the language prior problem, we
still do not know to what extent they can achieve this’. Next, we
analyze the feasibility of our proposed metric LP score and use it
to measure the extent of language prior effect of the model with
and without our regularization model.

5.2 Feasibility of the Proposed Metric (RQ2)

5.2.1 Case Analysis. We chose two question types how many and
what animal to analyze the feasibility of the proposed LP score
metric. The answer distribution in the training set of question type
what animal is much more uniform than that of how many. Note
that the Question-only method answers the questions merely based
on the question features without reasoning images which will cer-
tainly result in the language prior problem. From Table 3 we could
see that the LP scores of the state-of-the-art approaches are lower
than that of the Question-only ones, which is consistent with that
the language prior problem affects smaller on the former ones than
the latter ones. Moreover, for question type how many, the LP scores
of state-of-the-art methods and the regularized methods® on both
the VQA 1.0 and VQA 2.0 datasets are just slightly better than the
Question-only one, respectively. In contrast, for the more uniform
answer distribution of question type what animal, there is a large
margin between the state-of-the-art models and the Question-only
model. This indicates that for the state-of-the-art VQA models, the
language prior effect of these question types with less uniform
answer distributions is higher than those with more uniform an-
swer distributions. Based on the analysis, we can deduce that our
proposed metric is capable of measuring the language prior effect.

5.2.2  Overall Analysis. Figure 4 shows how the LP score and ac-
curacy changes with the increase of training epochs. The red line
shows the accuracy of one typical baseline model, while the other
three on each sub-figure show the LP scores of three baselines.
At the very beginning, the VQA models answer questions mainly
based on the learned language prior, which results in a higher LP
score in the first few training epochs. With more iterations on the

"The codes of SAN-GVQA [2], SAN+Q-Adv+DoE and Up-down+Q-Adv+DoE [32]
are not available, and it is hard for us to replicate their results due to the complicate
parameter tuning in the SAN model, therefore, we cannot get the LP scores for those
models.

8The fusion method is element-wise multiplication.
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Table 1: Performance of accuracy comparisons between the proposed method and baselines over the VQA 1.0 dataset. The best

performance in current splits is highlighted in bold.

Validation Test-dev Test-std
Method
Y/N Num. Other All Y/N Num. Other All Y/N Num. Other All

Question-only [5] 77.86 30.24 27.61 46.75 78.20 35.68 26.59 4876 78.12 3494 26.99 48.89
HieCoAttn [24] 79.6 35.0 45.7 57.0 79.7 38.7 51.7 61.8 - - - 62.1
SAN [40] 78.6 41.8 46.4 57.6 79.30 36.60 46.10 58.70 79.11 36.41 46.42 58.85
NMN [4] 80.44 34.03 40.66 54.72 81.2 38.0 44.0 58.6 - - - 58.7
Strong-baseline [20] 82.31 35.77 51.67 61.10 82.2 39.1 55.2 64.5 82.0 39.1 55.2 64.6
Ask-me-anything [38] - - - 55.96 81.01 3842 45.23 59.17 81.07 37.12 4583 59.44
SMem [39] - - - - 80.87 37.32 43.12 5799 80.80 37.53 4348 58.24
SAN-GVOQA [2] 76.90 - - 51.12 - - - - - - - -
SAN+Q-Adv+DoE [32] 71.06 3259 4291 5215 - - - - - - - -
Ours (Strong-baseline-SR)  82.51 35.80 51.68 61.30 83.10 39.05 55.9 65.15 83.2 39.14 55.12 65.28

Table 2: Performance of accuracy comparisons between the proposed method and baselines over the VQA 2.0 dataset. The best

performance in current splits is highlighted in bold.

Method Validation Test-dev Test-std
Y/N Num. Other All Y/N Num. Other All Y/N Num. Other All
Question-only [5, 13] 6790 3048 26.49 42,57 67.17 31.41 27.36 44.22 67.01 3155 27.37 44.26
Up-Down [3] 80.3 42.8 55.8 63.2 81.82 44.21 56.05 6532 82.20 4390 56.26 65.67
DCN [27] - - - 62.94 83.51 46.61 57.26 66.87 83.85 47.19 5695 67.04
DA-NTN [6] 83.09 4488 55.71 64.58 84.29 47.14 5792 6756 84.60 47.13 58.20 67.94
Counter [43] 81.81 49.22 5696 65.28 83.14 51.62 58.97 68.09 8356 5139 59.11 68.41
SAN-GVOQA [2] 72.03 - - 4824 - - - - - - - -
SAN+Q-Adv+DoE [32] 69.98 3933 47.63 5231 - - - - - - - -
Up-down+Q-Adv+DoE [32] 79.84 4235 55.16 62.75 - - - - - - - -
Ours (Up-down-SR) 80.91 43.2 55.03 63.68 81.86 44.12 56.20 6635 8298 4397 56.96 66.58
Ours (Counter-SR) 82.48 49.02 56.88 65.29 83.67 51.63 5857 68.12 8387 51.60 59.16 68.43
Methods How many What animal ol VOA 1.0 o VQA 2.0
VOA1.0 VQA20 VQA10 VOQA 2.0 . oo
Question-only 50.37 49.80 54.49 53.55 551
Strong-baseline  49.89 - 33.84 - 501 Sitong baselneacd| | 501 — Counter-ace
Question-only-LP Question-only-LP}
Strong-baseline-SR ~ 49.81 - 33.85 - 454 [—HieCoAttn-LP 451 |— Up-Down-LP
Strong-baseline-LP Counter-LP
Up-down - 48.01 - 33.81 404 409\
Up-down-SR - 47.90 - 33.69 35+
Counter - 46.30 - 31.09 51 0 A
Counter-SR ' 4626 i} 31.04 % T 2 0 4 s 10 20 30 40 50
Epoch Epoch

Table 3: LP scores of four baselines and three regularized
methods on two typical question types.

training set, the LP scores begins to drop and the accuracy begins
to rise. This denotes that the current VQA models learn to weaken
the influence of language prior problem so that the overall accuracy
can obtain improvement. If more language prior can be alleviated
or overcome, there should be accuracy improvement instead of ac-
curacy degradation. Therefore, it is promising to study and alleviate
the language prior problem.
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Figure 4: The convergence illustration of LP scores and ac-
curacy over several baselines.

5.3 Effect of the Proposed Method (RQ3)

Table 4 and Table 5 show the influence of our score regularization
module over three baselines on the VQA 1.0 and VQA 2.0 datasets,
respectively. The second and the last column report the accuracy
metric, while the third column reports the LP score metric. To be
more specific, mul represents that the element-wise multiplica-
tion is used for the feature fusion of <image, question, answer> or
<question, answer> in score regularization module Equation 11, add
denotes element-wise addition, while con represents concatenation.
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Table 4: Influence of the score regularization module on the
VQA 1.0 dataset.

Method Valid-All ~ Valid-LP  Test-dev-All
Strong-baseline 61.10 31.54 64.5
Strong-baseline-SR (mul) 61.30 31.36 65.11
Strong-baseline-SR (add) 61.19 31.33 64.88
Strong-baseline-SR (con) 61.13 31.38 65.15

Table 5: Influence of the score regularization module on the
VOQA 2.0 dataset.

Method Valid-All  Valid-LP  Test-dev-All
Up-down 63.20 29.71 65.32
Up-down-SR (mul) 63.68 29.44 66.35
Up-down-SR (add) 63.53 29.43 66.25
Up-down-SR (con) 63.55 29.50 66.46
Counter 65.28 29.74 68.09
Counter-SR (mul) 65.29 29.67 68.12
Counter-SR (add) 65.03 29.84 67.88
Counter-SR (con) 65.01 29.88 67.86

We could observe that different from SAN-GVQA [2] and SAN+Q-
Adv+DoE [32] deteriorating the backbone models, our proposed
regularization method can achieve comparative performance or
boost the backbone accuracy performance (e.g., Up-down-SR (mul)
over Up-down is 0.48%). Moreover, the LP score of the proposed
regularization method can also outperform the corresponding back-
bone models. This demonstrates the advantage of our regularization
method over the existing ones that we can alleviate the language
prior problem as well as boost the backbone models’ performance.

5.4 Visualization of Attention Kernels (RQ4)

As the attention module becomes an indispensable part of current
VQA models, we visualized some examples of the attention kernels
from these backbone models with and without our score regular-
ization module. We mainly listed the questions which belong to the
question type how many and what color, other more uniform ques-
tion type samples are also analyzed in Figure 5, e.g., what is. There
are three rows of six examples, each row illustrates two samples
from one backbone model with and without regularization, where
the backbone models without regularization predicted incorrectly
and backbone models with regularization predicted correctly. From
the figure, we can see the failure cases of VQA methods without
regularization can be grouped into two categories: 1) attending to
wrong regions and predicting answers incorrectly and 2) attending
to correct regions but predicting answers wrongly.

Both samples from the second row belong to the first category.
For instance, the first example is about the color of the countertop
tiles, and the backbone model Up-down without regularization
focuses on the closet and the white tile while the true region should
be the tile on top of the countertop. As illustrated in Figure 1, the
number of the wrong answer of white is much larger than that
of the true answer blue in the VQA 1.0 training set, which leads
to the language prior problem here. The second example from
backbone model Up-down shares the same problem. In contrast,
examples falling into the second category attended to correct image
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regions but predicting answers incorrectly. For instance, the second
example from Strong-baseline is similar to the image classification
task, where the true answer should be a bird instead of a cat. And
the second example of backbone model Counter belongs to how
many question type. Since the number of the answer 1 is much
more than that of the answer 0 under this question type in the
VQA 2.0 dataset, this example also testified that the language prior
learned by the model Counter causes a wrong prediction and it can
be corrected by our regularization method (as shown in the result
of Counter-SR).

6 RELATED WORK

6.1 Visual Question Answering

Traditional text-based QA [8, 9, 30] has been long recognized as a
challenging information retrieval task. Derived from it, other QA
systems like community QA (CQA) [29], multimedia QA [28]and
visual QA (VQA) [5, 13, 41] have attracted researchers’ interest in
recent years. We mainly recap the related studies of VQA in this
subsection.

VQA has witnessed a renewed excitement in multi-discipline
Al research problems due to the development of CV, NLP and IR.
Generally speaking, the existing VQA methods can be classified
into four categories [37]: Joint Embedding, Attention Mechanism-
based, Compositional and Knowledge Base-enhanced. However, the
language prior problem is observed across the existing VQA mod-
els [5, 38, 40]. It is impossible to distinguish an answer arising
because of image reasoning and one selected because it occurs fre-
quently in the training set. In the view of amending biased datasets,
researcher in [42] added <image, question, answer> triplets by
compositing another visually similar image but with an opposite
answer to a binary question for VQA 1.0 abstract scenes. Similarly,
authors in [13] added triplets based on all varieties of questions
for VQA 1.0 real images. Instead of supplementing biased datasets,
authors in [17] designed a diagnostic 3D shape to balance answer
distribution for each question type from scratch. Different from the
above ones, methods in 2, 32] aim to force VQA models to better
understand the images. The authors built their models on SAN [40]
with restrictions to prevent the model from exploiting language
correlations in the training data.

It is worth emphasizing that the previous methods solve the
language prior problem either by introducing other bias into exist-
ing datasets [13, 42] or degrading performance over the backbone
models [2, 32]. In this paper, we proposed a regularization method
for several publicly released state-of-the-art attentional VQA mod-
els. In addition to the capability of alleviating the language prior
problem, better accuracy is observed for the VQA models with our
regularization module than the corresponding ones without.

6.2 Deep Multimodal Fusion

In this work, we fuse the multi-modality features - image, question,
and answer in the proposed regularization module. Here we briefly
review related works in this direction. There is a large amount
of studies on integrating multimodal data sources in deep neural
networks, including recommendation [7, 11, 44], multimodal re-
trieval [14, 23], and user profiling [12], image captioning [10, 19].
The flexibility of deep architecture advances the implementation of
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Backbone model: Strong-baseline

Question: What is the color of the hat on the person on the bench?

A e
)

With-Reg: yellow

Question: What is on the car?
L L

Answer: bird Without-Reg: cat With-Reg: bird

|

Without-Reg: white

Answer: blue With-Reg: blue

Backbone model: Up-down

Question: How many people are on skis?

Answer: 4

Without-Reg: 2

With-Reg: 4

Backbone model: Counter

Question: What side is the refrigerator on?

Answer: left

Without-Reg: right

With-Reg: left

Question: How many paddles can you see?

Answer: 0 Without-Reg: 1

With-Reg: 0

Figure 5: Visualization of three backbone models with and without the proposed regularization method.

multimodal fusion either as feature-level fusion or decision-level
fusion [31].

Methods in the feature-level fusion group transform the raw
inputs from multiple paths into separate intermediate representa-
tions, followed by a shared representation layer to merge them.
For instance, Chen et al. [7] proposed a two-level attention mecha-
nism to fuse the features from component-level and item-level for
multimedia recommendation. Farnadi et al. [12] utilized a shared
representation between different modalities to arrive at more accu-
rate user profiles. Some efforts [10, 19] in image captioning merged
previous word representations and image features to produce the
next word.

By contrast, decision-level fusion refers to the aggregation of de-
cisions from multiple classifiers, each trained on separate modalities.
These fusion rules could be max-fusion, averaged-fusion, Bayes’
rule based, or even learned using a meta-classifier [31]. For example,
the work in [34] presents a two-stream CNN (i.e., Spatial stream
ConvNet and Temporal stream Convnet) and then combines them
with a class score fusion approach for action recognition in videos.
In order to achieve simultaneous gesture segmentation and recogni-
tion, authors in [36] integrated the emission probabilities estimated
from different inputs (i.e, skeleton joint information, depth and
RGB images) as a simple linear combination.

7 CONCLUSION

The language prior problem severely hinders the advancement of
VQA. In this paper, we target this problem and make contributions
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from two perspectives. Firstly, we propose an evaluation metric
called LP score to measure the extent of language prior effect. The
evaluation metric can quantitatively measure the extent of lan-
guage prior effect of different VQA models and thus can facilitate
the development of related techniques. Secondly, we design a score
regularization module, which is versatile to be integrated into vari-
ous current VQA models. The proposed regularizer can effectively
make the VQA models better reason images upon questions before
result prediction, and thus can alleviate the language prior problem
as well as improve the answer accuracy. Extensive experiments
have been conducted on two widely used VQA datasets to validate
the feasibility of the proposed metric and the effectiveness of the
designed regularization method. We hope this metric can be used to
compare the VQA models on alleviating the language prior problem
in the future. Besides, we would like to further extend our regu-
larizer based on the non-uniform granularity of different question
types and explore its effectiveness on more diversified VQA models.
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