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ABSTRACT

Benefiting from the advancement of computer vision, natural lan-

guage processing and information retrieval techniques, visual ques-

tion answering (VQA), which aims to answer questions about an

image or a video, has received lots of attentions over the past few

years. Although some progress has been achieved so far, several

studies have pointed out that current VQA models are heavily af-

fected by the language prior problem, which means they tend to

answer questions based on the co-occurrence patterns of question

keywords (e.g., how many) and answers (e.g., 2) instead of under-

standing images and questions. Existing methods attempt to solve

this problem by either balancing the biased datasets or forcing mod-

els to better understand images. However, only marginal effects and

even performance deterioration are observed for the first and sec-

ond solution, respectively. In addition, another important issue is

the inability to quantitatively measure the extent of the language

prior effect, which severely hinders the advancement of related

techniques.

In this paper, we make contributions towards solving the above

problems from two perspectives. Firstly, we design a metric to

quantitatively measure the language prior effect on VQA models.

The proposed metric has been demonstrated to be effective in our

empirical studies. Secondly, we propose a regularization method

(i.e., score regularization module) to enhance current VQA models

by alleviating the language prior problem as well as boosting the

backbone model performance. The proposed score regularization

module adopts a pair-wise learning strategy, which makes the VQA

models answer the question based on the reasoning on the image

(upon this question) instead of basing on question-answer patterns

observed in the biased training set. The score regularization module

is versatile to be integrated into various VQAmodels. We conducted

extensive experiments over two popular VQA datasets (i.e., VQA 1.0
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and VQA 2.0) and integrated the score regularization module into

three state-of-the-art VQA models. Experimental results show that

the score regularization module can not only effectively reduce the

language prior problem of these VQA models but also consistently

improve their question answering accuracy.
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1 INTRODUCTION

Question Answering (QA) has been long recognized as a challeng-

ing information retrieval task. At the beginning, it focused only

on the text domain. With the great progress of natural language

processing (NLP), computer vision (CV) and information retrieval

(IR), a new ‘AI-complete’ task, namely visual question answering

(VQA), has become an emerging interdisciplinary research field

over the past few years. VQA aims to accurately answer natural

language questions about a given image or a video, bringing bright

prospects in various applications including medical assistance and

human-machine interaction. Recently, several benchmark datasets

have been constructed to facilitate this task [5, 21, 25, 45], followed

by a number of devised deep models [4, 5, 24–26, 40].

Although these methods have achieved state-of-the-art perfor-

mance over their contemporary baselines, many studies point out

that today’s VQA models are still heavily driven by superficial cor-

relations between questions and answers in the training data and

lack sufficient visual understanding [2, 18, 32]. As a consequence,
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it turns out that the carefully designed VQA models actually pro-

vide answers based upon the first few words in questions and can

frequently yield not bad performance. Taking the VQA 1.0 training

set [5] as an example, 2 accounts for 31% of the answers to questions

initiating with how many. This leads to VQA models overwhelm-

ingly replying to ‘how many ...’ questions with 2 without truly

understanding the given images when testing. The problem that

the predicted answers are strongly driven by the answer set from the

same question type1 in the training set is the so called language prior

problem [2, 13, 37] that many VQA models confront with.

It is not hard to understand the reason of the language prior prob-

lem, however this problem is non-trivial to deal with. One reason

for this unsatisfactory behavior is the fundamentally problematic

nature of independent and identically distributed (i.e., IID) train-test

splits in the presence of strong priors. Accordingly, it is hard to

distinguish in a well-performing model between making progress

towards the goal of understanding images correctly and only ex-

ploiting language priors to achieve high accuracy [2]. Moreover,

tackling with the language prior problem without deteriorating the

model performance poses another challenge.

With the realization of the language prior problem in VQA, re-

searchers have devoted great efforts towards solving or somehow

alleviating the problem and developed a set of approaches. Existing

approaches can be broadly classified into two directions: 1) making

the datasets less biased; and 2) making the model answer questions

by analyzing the image contents. In the first direction, researchers

in [13, 42] tried to balance the existing VQA 1.0 dataset by adding

complementary entries and built the VQA 2.0 dataset [13]. More

concretely, for each <image, question, answer> triplet, another

triplet with a visually similar image but a different answer is col-

lected to elevate the role of images in VQA. However, even with

this balance, there still exists significant bias in the augmented VQA

2.0 dataset. For instance, 2 still accounts for 27% of the question

type how many in the training set of the VQA 2.0 dataset. Instead

of amending the datasets, Johnson et al. [17] designed a diagnostic

3D shape dataset to control the question-conditional bias via rejec-

tion sampling within families of related questions. Since they dealt

with the problem from the perspective of datasets and attempted

to circumvent the inherent deficiency in traditional biased datasets,

the language prior problem of previous methods is still not settled.

In contrast, researchers in the second direction make efforts to

design mechanisms to make the VQA models avoid the language

prior problem. Approaches in this direction can be directly used

in the biased datasets and thus are more generalizable. For exam-

ple, the method in [2] explicitly disentangles the recognition of

visual concepts present in the image from the answer prediction

for a given question. And more recently, Ramakrishnan et al. [32]

treated the training as an adversarial game between the VQAmodel

and the QA model (eliminating images from the current triplet)

to reduce the impact of language biases. Both methods are built

upon the widely used VQA model Stacked Attention Networks

(SAN) [40]. Nevertheless, performance deterioration is observed for

both methods as compared to the backbone model SAN. We argue

that a better regularization can not only alleviate the language prior

problem but also improve the model performance.

1Questions initiate with the same words.

Another important issue is the lack of proper evaluation metrics

to measure the extent of language prior effect of VQA models.

Although the language prior problem has been pointed out by

various previous studies [1, 13, 17, 18, 42] and many approaches

have been proposed to deal with this problem [2, 32], few efforts

have been devoted into how to numerically quantify the language

prior effect. As discussed, it is hard to distinguish whether the

model really understands the question and image contents before

answering the question or it just simply discovers some patterns

between question words and answers. Besides, it is also difficult

to evaluate how well a newly designed model solves the language

prior problem.

In order to tackle the aforementioned limitations of the previous

approaches and the lack of language prior measurement, in this pa-

per, we establish a formal quantitative metric to measure the extent

of language prior effect (called LP score) and design a generalized

regularization method to alleviate the language prior problem in

VQA. On the one hand, the proposed LP score evaluates the lan-

guage prior effect by taking into account both the training dataset

bias and model deficiency. In this way, the LP score can measure

the language prior effect quantitatively and guide further studies

on alleviating the language prior problem. On the other hand, our

proposed regularization method leverages a score regularization

module to force backbone models to better reason with the image

contents before predicting answers. More specifically, the score reg-

ularization module is added to the backbone models before the final

answer prediction layer. This is to guarantee that the VQA model

answers questions by understanding questions and correspond-

ing image contents instead of simply analyzing the co-occurrence

patterns of question key words (e.g., how many) and the answer

(e.g., 2). To achieve the goal, the inputs to the score regularization

module are from two streams: fused question-image feature with

the embedding feature of the true answer and question feature with

the embedding feature of the true answer ; and then the score regu-

larization module computes two scores and employs a pair-wise

learning scheme for training. Different from the multi-step learn-

ing as adopted in [2, 32], we train the proposed regularizer with

the backbone model in an end-to-end multi-task learning scheme.

Moreover, our proposed regularization method can be applied to

most of the existing VQA models on the biased datasets.

To verify the effectiveness of our proposed regularizationmethod,

we conducted extensive experiments on two most popular datasets

VQA 1.0 [5] and VQA 2.0 [13]. Moreover, we added the proposed

regularization module to three state-of-the-art models. Experimen-

tal results demonstrate that our proposed methods can yield better

performance as compared to the corresponding backbone models,

and thus achieve state-of-the-art performance.

In summary, our main contributions in this paper are threefold:

• To the best of our knowledge, we are the first to study the lack

of language prior measurement and emphasize its importance

on facilitating the advancement of related techniques. We fur-

ther design an evaluation metric to quantitatively measure the

extent of language prior effect of VQA models.

• We propose a regularization method on VQA models by forcing

the backbone model to better reason visual contents before

the final answer prediction. The proposed regularizer can help
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reduce the language prior effect as well as boost the model

performance. It is expected that our method can be extended to

other visual-language reasoning tasks which also suffer from

the language prior problem, e.g., image captioning.

• We conducted extensive comparative experiments on two pub-

licly available datasets to validate the effectiveness of the pro-

posed regularization method and the feasibility of the proposed

evaluation metric. Moreover, we have released the code and

setting to facilitate future research in this direction2.

2 LANGUAGE PRIOR QUANTIFICATION

2.1 Observations

Before elaborating the conception of our language prior measure-

ment, let us go through some examples to show the language prior

problem intuitively. Figure 1 shows the answer distributions in the

VQA 1.0 dataset [5] of two question types: how many and what

color3. For both sub figures, the leftmost bar represents the ground

truth answer distribution (i.e., GT-train) in the training set. For ex-

ample, the 31% answers to the question type how many are 2. And

the right ones are the distributions of the predicted wrong answers

of three baselines in the validation set. The Question-only [5, 13] is

the model trained without reasoning the image, and it is for sure

that in this baseline would arise the language prior problem. The

other two HieCoAttn [24] and Strong-baseline [20] are the state-

of-the-art models on the VQA 1.0 dataset. For example, if the true

answer for a given question of the question type how many is 6,

and the predicted answer is 2, then it is counted as a predicted

wrong answer of 2 under the question type how many. Without

dataset bias or language prior, the predicted wrong answers from

VQA models should be more diverse (5, apple, on the left, etc) or

roughly follow uniform distribution over all answers instead of

being proportional to the answer distribution in the training set.

For example, a large portion of answers from how many questions

are mispredicted 2, 1 and 3, which are also the most frequent true

answers in the training dataset (as shown in Figure 1). This indicates

that VQA models tend to provide answers according to the patterns

observed between question types and answers in the training set

rather than reasoning about images for the current question.

In the recent work, Goyal et al. [13] attempted to deal with the

language prior problem of the popular VQA 1.0 dataset by collecting

<image, question, answer> triplets to construct the VQA 2.0 dataset.

Instead of associating each question with just one image as in the

VQA 1.0 dataset, the VQA 2.0 dataset assigns a pair of similar images

with different answers to the same question. However, as shown

in Figure 2, the language prior problem still exists. The predicted

wrong answer distributions from the state-of-the-art models Up-

Down [3] and Counter [43] are still highly biased.

The phenomenon arises from the two aspects: 1) training dataset

bias. It is common that some answers are more frequently relevant

to a certain question type. For example, red,white, blue and black are

the most frequent colors in daily life, constituting the most frequent

answers to the question type what color. Moreover, people only

ask the question ‘Is there a clock tower in the picture?’ on images

actually containing a clock tower. As experimented by [13], blindly

2https://github.com/guoyang9/vqa-prior.
3These two types of questions take about 20% of the questions in the whole dataset.
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Figure 1: Answer distribution of two question types in the

VQA 1.0 dataset.

GT-train Question-only Up-down Counter
0.0

0.2

0.4

0.6

0.8

1.0

An
sw
er
D
is
tri
bu
tio
n

others
10
8
7
6
5
4
0
3
1
2

Question Type: how many

GT-train Question-only Up-down Counter
0.0

0.2

0.4

0.6

0.8

1.0

An
sw
er
D
is
tri
bu
tio
n

others
orange
pink
gray
yellow
brown
green
blue
red
black
white

Question Type: what color

Figure 2: Answer distribution of two question types in the

VQA 2.0 dataset.

answering yes for the question type Do you see a without reading

the rest of the question or looking at the associated image results

in a VQA accuracy of 87%. And 2) model deficiency. The predictive

capability of the language over images from today’s VQA models

have been corroborated by ablation studies in [1]. Figure 1 and 2

also validate that these VQA methods suffer from the language

prior problem.

Though many studies mention the language prior problem, nev-

ertheless, little attention has been paid to develop an evaluation

metric to quantitatively measure the extent of language prior ef-

fect numerically. Therefore, in this paper, we propose a metric to

effectively measure the VQA models’ language prior degree and

provide full validation of this metric in Section 5. We hope this

metric can facilitate the advancement of VQA models and other

domains which also suffer from the language prior problem.

2.2 Definition

In this subsection, we will give a detailed definition and explanation

of the proposed metric - language prior score (dubbed as LP score).

We first list the main notations used in the metric.

Notations. LetA denote all the answer multiset4 in the training

set, and QT be the question type set. For a question type qtj , Aj

indicates the corresponding answer multiset, which is a subset of

A; Aj indicates the corresponding answer set, which contains the

non-redundant elements in Aj . And n
i
j
is the number of answer ai

in Aj . For example, let us assume there is only one question type

how many - qtj , andA is {0, 0, 1, 2, 2, 2, 3, 4, 4, 4}. NowAj should be

the same asA, thenAj is {0, 1, 2, 3, 4}. If a
i is 4, then ni

j
should be 3.

4Allow for duplicate elements.
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Answer Precision per Question Type. After evaluating the

model in the validation set, we can compute the answer precision

for each question type. We ignore the case that a predicated answer

ai has not been included in the current answer multiset Aj (i.e.,

ai � Aj )
5. Otherwise we compute P i

j
, which is the precision of the

predicted answer ai under the question type qtj , is computed as:

P ij =
TP i

j

TP i
j
+ FP i

j

, (1)

where TP i
j
denotes the number of true positive answers, i.e., the

predicted answer ai is the same as the ground truth answer under

the question type qtj . And FP
i
j
denotes the number of false positive

answers, i.e., the predicted answer ai is not consistent with the

groundtruth answer under the question type qtj . For example, if a

testing question belongs to the question type qtj and the predicted

answer is ai , and thenTP
i
j
+ 1 if the groudtruth answer is ai , other-

wise FP i
j
+ 1. Apparently, a larger P i

j
indicates that more questions

of this type are correctly answered, and vice versa.

Language Prior Score. Let LP i
j
denote the LP score for the

predict answer ai under the question typeqtj . Formally, it is defined

as:

LP ij = (1 − P ij ) ∗ σ (
ni
j

|Aj |
), (2)

where σ (·) refers to a non-linear function (here the sigmoid function

is adopted) and |Aj | is the size of multisetAj . (1−P i
j
) of Equation 2

represents the model deficiency when testing. In extreme cases, if

a model performs best as oracle, the P i
j
should be near to 1. And

accordingly, (1 − P i
j
) should be near to 0. σ (

ni
j

|Aj |
) represents the

proportion of the true answer ai of a certain question type qtj in
the whole training set. The reason why we use σ (·) for smoothing

this part is the proportion of different answers varies largely and

we hope sparse answers can also contribute to this metric. We

can see that a larger LP i
j
is obtained only when 1) the answers of

more questions in the validation set (or testing set) are incorrectly

predicted to be ai ; and 2) the true answers of more questions are ai

in the training set. In otherwords, if more answers of a question type

in the training data are biased towardsai , andmore questions of this

type are wrongly answered to ai , (i.e., the language prior problem),

the larger LP score will be obtained. Therefore, the measurement

considers both the training dataset bias and the model deficiency -

the two factors that cause the language prior problem as discussed.

Finally, the LP score over the whole validation set can be computed

as,

LP =
1

|QT |

∑
j ∈QT

1

|Aj |

∑
i ∈Aj

LP ij , (3)

where |QT | is the size of the whole question type set, and |Aj | is

the size of the answer set under the question type qtj . We can easily

conclude that LP ∈ [0, 1] and the larger the LP score is, the more

language prior is resulted in by the model.

5If most of the predicted answers do not belong to the answer set of the current question
types, it is obviously that a very low accuracy will be obtained. In the experiments,
only around 0.1% answers are ignored for all the baselines. Therefore, ignoring those

answers (ai � Aj ) has negligible effects on the language prior measurement.

How many 
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RNN

Attention
Module
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fc
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Input Processing

Answer Prediction

Score 
Regularization
Module

Figure 3: Demonstration of the proposed method for allevi-

ating the language prior problem.

3 PROPOSED REGULARIZATION METHOD

3.1 Problem Formulation

The goal of VQA is to provide an accurate answer â to a given

textual question Q upon an image or a video I . A general approach

is to regard the VQA problem as a classification task:

â = argmax
a∈Ω

p(a |Q, I ;Θ), (4)

where Ω denotes the candidate answer set and Θ denotes the model

parameters.

3.2 Background of VQA Models

As shown in Figure 3, the main framework is composed of three

components: Input Processing, Answer Prediction and Score

Regularization. The core of our proposed regularization method

lies in the Score Regularization part, which will be elaborated in

Section 3.3.

3.2.1 Input Processing. There are mainly three parts in the Input

Processing component: Image Processing, Question Processing

and Attention Module.

Image Processing. The predominant VQAmodels leverage pre-

trained Convolutional Neural Network (CNN) frameworks (e.g.,

VGG [35] or ResNet [15]) to extract image featuresv ,

v = CNN(I ). (5)

As most of the state-of-the-art VQA models use the attention mech-

anism, it is worth mentioning that there are two kinds of image

feature extraction. The first one is splitting the image into equal-

size regions (e.g., 14×14) and then extracting image features from

each region. This will result in a tensor size of k × 14 × 14 (k is

the feature size of each equal-sized image region). The other one is

using the region proposal techniques (e.g., Faster R-CNN [33]) to

extract image features for salient image regions, leading to a tensor

size of k × n (k is the feature size of each image region and n is the

proposed salient image region number).

Question Processing. Recurrent Neural Network (RNN, e.g.,

LSTM [16]) is often used in VQAmodels to extract question features
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q,
q = RNN(Q). (6)

More concretely, for a question sentence consisting of T words, its

words are fed into the RNN network one by one to obtain their

hidden features h. Usually the last hidden feature hT or all the

hidden features (when the attention mechanism is used on each

question word) are used to represent this question.

Attention Module. After the processing of images and ques-

tions, a series of image region features {v0,v1, ...} (14×14 or n) and
one question featurehT are obtained. Then the VQAmodels use the

question feature to attend on each image region through a multi-

layer perceptron (MLP) network or CNN to obtain the attention

weights for each image regionvj :

дj = ATT(hT ,vj ), (7)

where дj is normalized through a softmax function. Finally the

attended image feature is given by:

ṽ =
∑

vj ∗ дj . (8)

3.2.2 Answer Prediction. With the attended image feature ṽ and

question feature h, typically, a fusion function (e.g., element-wise

addition, element-wise multiplication or concatenation) can be

adopted to fuse the question and attended image features. After

merging the question and the image features, the VQA models

frequently use several linear layers with non-linear activation func-

tions (e.g., ReLU) to make full interactions. Finally the models pre-

dict a normalized fixed-length vector and each dimension corre-

sponds to one fixed answer,

panswer = softmax(ṽ,h). (9)

The models can be trained by minimizing the log-likelihood loss

function, such as:

Lanswer = −aдt ∗ logpanswer , (10)

where aдt is the distribution of the ground truth answers.

3.3 Proposed Regularization Method

As shown in Figure 1 and 2, there are some frequent patterns be-

tween question types and answers. And these patterns are easily

captured by the VQA models. As a result, the model will directly

give answers based only upon the text questions without referring

to the image contents. The VQA then degenerates to a QA problem

to some extent.

Based on the above discussion, we would like the VQA model to

better reason the image contents upon the corresponding questions

before predicting the answers, instead of relying on the discovered

question-answer patterns to make prediction. To achieve this, we

design a score regularization module, which adopts a pair-wise

learning scheme to make the predicted score obtained from the

<image, question, answer> higher than the predicted score obtained

from the <question, answer>.

As shown in Figure 3, there are two stream inputs to the score

regularization module: ovqa and oqa . The former one represents

the integration representation of image, question and answer, while

the latter one denotes the integration of the question and answer.

â is the pre-trained word embedding of true answers and it can

be fused with other elements (e.g., <image, question> feature or

only question feature) to obtain ovqa and oqa . The fusion method

includes element-wise addition, multiplication and concatenation.

More analysis can be found in Section 5. After this step, the fused

features of <image, question, answer> and <question, answer> are

used to predict svqa and sqa ,

svqa = MLP(ovqa ), (11)

sqa = MLP(oqa ), (12)

where the MLP is leveraged to implement our score regularization

module. In order to achieve that questions with images are better

than merely questions for answer prediction, a pair-wise learning

method is adopted,

Lscore = max(0, svqa − sqa + γ ), (13)

where γ is a relatively small margin. In this way, the backbone mod-

els are forced to consider image content for answering questions,

instead of only basing on the frequent patterns between question

words and answers.

With the proposed regularization method, the final loss function

of the backbone VQA model is a combination of both the answer

prediction loss and the score restriction loss,

L = Lanswer + β ∗ Lscore , (14)

where β is a hyper-parameter balancing these two loss functions.

This enables us to train the backbone model with our regularization

method in an end-to-end multi-task learning scheme. The default

optimization method of the backbone models is kept unchanged to

optimize the final loss function.

In Section 5, we will show that different from the methods

in [2, 32] which deteriorate the backbone models’ performance,

our proposed regularization method can boost the backbone mod-

els’ performance as well as alleviate the language prior problem.

4 EXPERIMENTAL SETUP

We conducted extensive experiments on two datasets to thoroughly

justify the effectiveness of our proposed regularization method

as well as the feasibility of our proposed evaluation metric. In

particular, our experiments mainly answer the following research

questions:

• RQ1: Can our proposed regularization method outperform the

state-of-the-art VQA methods?

• RQ2: Is the proposed evaluation metric (i.e., LP score) feasible

for measuring the extent language prior effect?

• RQ3: Is the proposed regularization helpful for boosting the

answering accuracy as well as alleviating the language prior

problem?

• RQ4: Can backbone models with our proposed regularization

method better understand images than those without it?

4.1 Datasets

We tested our proposed method on VQA 1.0 [5] and VQA 2.0 [13]

datasets. Both datasets consist of real images from MSCOCO [22]

and abstract cartoon scenes. For each image, three different ques-

tions are given by Amazon Mechanical Turk (AMT) workers, with

ten answers per question. The answers are divided into three cat-

egories: yes/no, number and other. Besides, both datasets are split
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into training, validation and testing (or test-std) splits. The ground

truth answers are only available for the first two splits.

4.2 Evaluation Metric

Accuracy.We adopt the standard accuracy metric for evaluation [5,

13]. Given an image and a corresponding question, for a predicted

answer a, the accuracy is computed as:

Acca = min(1,
#humans that provide that answer a

3
). (15)

Note that each question is answered by ten participants, this metric

takes the disagreement in human answers into consideration. The

reported results are the averaged accuracy over all questions.

LP Score. As the ground truth answers are not published for the

testing set data, we only compute the LP score on the validation

set. The computation of LP score is elaborated in Equation 3.

4.3 Compared Baselines

We added our regularization method into the following three state-

of-the-art baselines. The first one is from the VQA 1.0 dataset, while

the last two are from the VQA 2.0 one.

• Strong-baseline [20] leverages two stacked ConvNets to ob-

tain the final attention weights for each equal-sized image re-

gion. After that it fuses the attentive image feature with the

question feature through the vector addition approach.

• Up-Down [3] utilizes a top-down mechanism to determine

attention weights from bottom-up image features (object level

and other salient image regions).

• Counter [43] is an upgraded version of the Strong-baseline,

introducing a counting module to enable robust counting from

object proposals.

4.4 Implementation Details

We kept most of the setting of backbone models unchanged, includ-

ing batch size, optimization method, number of non-linear layers.

For all the three backbone models, the trade-off parameter β was

tuned in the range [0.001, 0.01, 0.1, 1, 10, 100]; the margin γ was

tuned in [0.0, 1.0] with a step size 0.1; and the number of MLP in

our score regularization module is fixed to 2; a dropout layer is

added between the two layers with a dropout rate 0.5.

5 EXPERIMENTAL RESULTS

5.1 Performance of Accuracy Comparison
(RQ1)

Table 1 and Table 2 summarize the accuracy comparison results

between our proposed score regularization method with baselines

from two groups: traditional VQA models (e.g., Question-only [5],

NMN [4], DCN [27]) and VQA models designed to alleviate the lan-

guage prior problem (i.e., SAN-GVQA [2] and SAN+Q-Adv+DoE [32]).

The answers are divided into three categories: Y/N, Num. and Other.

And the split All represents the overall accuracy. Besides, Strong-

baseline-SR, Up-down-SR and Counter-SR6 are backbone models

Strong-baseline, Up-down and Counter with our regularization

method, respectively.

6The fusion method between <question, image> and answer features is element-wise
multiplication. More analysis can be found in Section 5.3.

For VQA models from the second group, the observation from

Table 1 and Table 2 is that these VQA models all deteriorate the

corresponding backbone models’s performance. For example, the

overall accuracy deterioration on the validation set of SAN-GVQA

over backbone model SAN is 5.88% on Table 1, and Up-down+Q-

Adv+DoE over backbone model Up-down is 0.45% on Table 2. Com-

pared with the models in this group, the final models with our score

regularization module (i.e., Strong-baseline-SR, Up-down-SR and

Counter-SR) can outperform these baselines with a large margin

on both the VQA 1.0 and 2.0 datasets. For example, on the VQA

1.0 dataset, the absolute improvement of Strong-baseline-SR over

SAN+Q-Adv+DoE on Validation All is 9.15%; on the VQA 2.0 dataset,

Counter-SR over Up-down+Q-Adv+DoE is 2.74%.

Note that the methods in the second group are carefully designed

to alleviate the language prior problem, however, there is no evi-

dence in their reports to validate their effects. That means although

those methods can indeed alleviate the language prior problem, we

still do not know to what extent they can achieve this7. Next, we

analyze the feasibility of our proposed metric LP score and use it

to measure the extent of language prior effect of the model with

and without our regularization model.

5.2 Feasibility of the Proposed Metric (RQ2)

5.2.1 Case Analysis. We chose two question types how many and

what animal to analyze the feasibility of the proposed LP score

metric. The answer distribution in the training set of question type

what animal is much more uniform than that of how many. Note

that the Question-only method answers the questions merely based

on the question features without reasoning images which will cer-

tainly result in the language prior problem. From Table 3 we could

see that the LP scores of the state-of-the-art approaches are lower

than that of the Question-only ones, which is consistent with that

the language prior problem affects smaller on the former ones than

the latter ones. Moreover, for question type howmany, the LP scores

of state-of-the-art methods and the regularized methods8 on both

the VQA 1.0 and VQA 2.0 datasets are just slightly better than the

Question-only one, respectively. In contrast, for the more uniform

answer distribution of question type what animal, there is a large

margin between the state-of-the-art models and the Question-only

model. This indicates that for the state-of-the-art VQA models, the

language prior effect of these question types with less uniform

answer distributions is higher than those with more uniform an-

swer distributions. Based on the analysis, we can deduce that our

proposed metric is capable of measuring the language prior effect.

5.2.2 Overall Analysis. Figure 4 shows how the LP score and ac-

curacy changes with the increase of training epochs. The red line

shows the accuracy of one typical baseline model, while the other

three on each sub-figure show the LP scores of three baselines.

At the very beginning, the VQA models answer questions mainly

based on the learned language prior, which results in a higher LP

score in the first few training epochs. With more iterations on the

7The codes of SAN-GVQA [2], SAN+Q-Adv+DoE and Up-down+Q-Adv+DoE [32]
are not available, and it is hard for us to replicate their results due to the complicate
parameter tuning in the SAN model, therefore, we cannot get the LP scores for those
models.
8The fusion method is element-wise multiplication.
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Table 1: Performance of accuracy comparisons between the proposed method and baselines over the VQA 1.0 dataset. The best

performance in current splits is highlighted in bold.

Method
Validation Test-dev Test-std

Y/N Num. Other All Y/N Num. Other All Y/N Num. Other All

Question-only [5] 77.86 30.24 27.61 46.75 78.20 35.68 26.59 48.76 78.12 34.94 26.99 48.89

HieCoAttn [24] 79.6 35.0 45.7 57.0 79.7 38.7 51.7 61.8 - - - 62.1

SAN [40] 78.6 41.8 46.4 57.6 79.30 36.60 46.10 58.70 79.11 36.41 46.42 58.85

NMN [4] 80.44 34.03 40.66 54.72 81.2 38.0 44.0 58.6 - - - 58.7

Strong-baseline [20] 82.31 35.77 51.67 61.10 82.2 39.1 55.2 64.5 82.0 39.1 55.2 64.6

Ask-me-anything [38] - - - 55.96 81.01 38.42 45.23 59.17 81.07 37.12 45.83 59.44

SMem [39] - - - - 80.87 37.32 43.12 57.99 80.80 37.53 43.48 58.24

SAN-GVQA [2] 76.90 - - 51.12 - - - - - - - -

SAN+Q-Adv+DoE [32] 71.06 32.59 42.91 52.15 - - - - - - - -

Ours (Strong-baseline-SR) 82.51 35.80 51.68 61.30 83.10 39.05 55.9 65.15 83.2 39.14 55.12 65.28

Table 2: Performance of accuracy comparisons between the proposed method and baselines over the VQA 2.0 dataset. The best

performance in current splits is highlighted in bold.

Method
Validation Test-dev Test-std

Y/N Num. Other All Y/N Num. Other All Y/N Num. Other All

Question-only [5, 13] 67.90 30.48 26.49 42.57 67.17 31.41 27.36 44.22 67.01 31.55 27.37 44.26

Up-Down [3] 80.3 42.8 55.8 63.2 81.82 44.21 56.05 65.32 82.20 43.90 56.26 65.67

DCN [27] - - - 62.94 83.51 46.61 57.26 66.87 83.85 47.19 56.95 67.04

DA-NTN [6] 83.09 44.88 55.71 64.58 84.29 47.14 57.92 67.56 84.60 47.13 58.20 67.94

Counter [43] 81.81 49.22 56.96 65.28 83.14 51.62 58.97 68.09 83.56 51.39 59.11 68.41

SAN-GVQA [2] 72.03 - - 48.24 - - - - - - - -

SAN+Q-Adv+DoE [32] 69.98 39.33 47.63 52.31 - - - - - - - -

Up-down+Q-Adv+DoE [32] 79.84 42.35 55.16 62.75 - - - - - - - -

Ours (Up-down-SR) 80.91 43.2 55.03 63.68 81.86 44.12 56.20 66.35 82.98 43.97 56.96 66.58

Ours (Counter-SR) 82.48 49.02 56.88 65.29 83.67 51.63 58.57 68.12 83.87 51.60 59.16 68.43

Methods
How many What animal

VQA 1.0 VQA 2.0 VQA 1.0 VQA 2.0

Question-only 50.37 49.80 54.49 53.55

Strong-baseline 49.89 - 33.84 -

Strong-baseline-SR 49.81 - 33.85 -

Up-down - 48.01 - 33.81

Up-down-SR - 47.90 - 33.69

Counter - 46.30 - 31.09

Counter-SR - 46.26 - 31.04

Table 3: LP scores of four baselines and three regularized

methods on two typical question types.

training set, the LP scores begins to drop and the accuracy begins

to rise. This denotes that the current VQA models learn to weaken

the influence of language prior problem so that the overall accuracy

can obtain improvement. If more language prior can be alleviated

or overcome, there should be accuracy improvement instead of ac-

curacy degradation. Therefore, it is promising to study and alleviate

the language prior problem.
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Figure 4: The convergence illustration of LP scores and ac-

curacy over several baselines.

5.3 Effect of the Proposed Method (RQ3)

Table 4 and Table 5 show the influence of our score regularization

module over three baselines on the VQA 1.0 and VQA 2.0 datasets,

respectively. The second and the last column report the accuracy

metric, while the third column reports the LP score metric. To be

more specific, mul represents that the element-wise multiplica-

tion is used for the feature fusion of <image, question, answer> or

<question, answer> in score regularization module Equation 11, add

denotes element-wise addition, while con represents concatenation.
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Table 4: Influence of the score regularization module on the

VQA 1.0 dataset.

Method Valid-All Valid-LP Test-dev-All

Strong-baseline 61.10 31.54 64.5

Strong-baseline-SR (mul) 61.30 31.36 65.11

Strong-baseline-SR (add) 61.19 31.33 64.88

Strong-baseline-SR (con) 61.13 31.38 65.15

Table 5: Influence of the score regularization module on the

VQA 2.0 dataset.

Method Valid-All Valid-LP Test-dev-All

Up-down 63.20 29.71 65.32

Up-down-SR (mul) 63.68 29.44 66.35

Up-down-SR (add) 63.53 29.43 66.25

Up-down-SR (con) 63.55 29.50 66.46

Counter 65.28 29.74 68.09

Counter-SR (mul) 65.29 29.67 68.12

Counter-SR (add) 65.03 29.84 67.88

Counter-SR (con) 65.01 29.88 67.86

We could observe that different from SAN-GVQA [2] and SAN+Q-

Adv+DoE [32] deteriorating the backbone models, our proposed

regularization method can achieve comparative performance or

boost the backbone accuracy performance (e.g., Up-down-SR (mul)

over Up-down is 0.48%). Moreover, the LP score of the proposed

regularization method can also outperform the corresponding back-

bone models. This demonstrates the advantage of our regularization

method over the existing ones that we can alleviate the language

prior problem as well as boost the backbone models’ performance.

5.4 Visualization of Attention Kernels (RQ4)

As the attention module becomes an indispensable part of current

VQA models, we visualized some examples of the attention kernels

from these backbone models with and without our score regular-

ization module. We mainly listed the questions which belong to the

question type how many and what color, other more uniform ques-

tion type samples are also analyzed in Figure 5, e.g., what is. There

are three rows of six examples, each row illustrates two samples

from one backbone model with and without regularization, where

the backbone models without regularization predicted incorrectly

and backbone models with regularization predicted correctly. From

the figure, we can see the failure cases of VQA methods without

regularization can be grouped into two categories: 1) attending to

wrong regions and predicting answers incorrectly and 2) attending

to correct regions but predicting answers wrongly.

Both samples from the second row belong to the first category.

For instance, the first example is about the color of the countertop

tiles, and the backbone model Up-down without regularization

focuses on the closet and the white tile while the true region should

be the tile on top of the countertop. As illustrated in Figure 1, the

number of the wrong answer of white is much larger than that

of the true answer blue in the VQA 1.0 training set, which leads

to the language prior problem here. The second example from

backbone model Up-down shares the same problem. In contrast,

examples falling into the second category attended to correct image

regions but predicting answers incorrectly. For instance, the second

example from Strong-baseline is similar to the image classification

task, where the true answer should be a bird instead of a cat. And

the second example of backbone model Counter belongs to how

many question type. Since the number of the answer 1 is much

more than that of the answer 0 under this question type in the

VQA 2.0 dataset, this example also testified that the language prior

learned by the model Counter causes a wrong prediction and it can

be corrected by our regularization method (as shown in the result

of Counter-SR).

6 RELATEDWORK

6.1 Visual Question Answering

Traditional text-based QA [8, 9, 30] has been long recognized as a

challenging information retrieval task. Derived from it, other QA

systems like community QA (CQA) [29], multimedia QA [28]and

visual QA (VQA) [5, 13, 41] have attracted researchers’ interest in

recent years. We mainly recap the related studies of VQA in this

subsection.

VQA has witnessed a renewed excitement in multi-discipline

AI research problems due to the development of CV, NLP and IR.

Generally speaking, the existing VQA methods can be classified

into four categories [37]: Joint Embedding, Attention Mechanism-

based, Compositional and Knowledge Base-enhanced. However, the

language prior problem is observed across the existing VQA mod-

els [5, 38, 40]. It is impossible to distinguish an answer arising

because of image reasoning and one selected because it occurs fre-

quently in the training set. In the view of amending biased datasets,

researcher in [42] added <image, question, answer> triplets by

compositing another visually similar image but with an opposite

answer to a binary question for VQA 1.0 abstract scenes. Similarly,

authors in [13] added triplets based on all varieties of questions

for VQA 1.0 real images. Instead of supplementing biased datasets,

authors in [17] designed a diagnostic 3D shape to balance answer

distribution for each question type from scratch. Different from the

above ones, methods in [2, 32] aim to force VQA models to better

understand the images. The authors built their models on SAN [40]

with restrictions to prevent the model from exploiting language

correlations in the training data.

It is worth emphasizing that the previous methods solve the

language prior problem either by introducing other bias into exist-

ing datasets [13, 42] or degrading performance over the backbone

models [2, 32]. In this paper, we proposed a regularization method

for several publicly released state-of-the-art attentional VQA mod-

els. In addition to the capability of alleviating the language prior

problem, better accuracy is observed for the VQA models with our

regularization module than the corresponding ones without.

6.2 Deep Multimodal Fusion

In this work, we fuse the multi-modality features - image, question,

and answer in the proposed regularization module. Here we briefly

review related works in this direction. There is a large amount

of studies on integrating multimodal data sources in deep neural

networks, including recommendation [7, 11, 44], multimodal re-

trieval [14, 23], and user profiling [12], image captioning [10, 19].

The flexibility of deep architecture advances the implementation of

Session 2A: Question Answering SIGIR ’19, July 21–25, 2019, Paris, France

82



Figure 5: Visualization of three backbone models with and without the proposed regularization method.

multimodal fusion either as feature-level fusion or decision-level

fusion [31].

Methods in the feature-level fusion group transform the raw

inputs from multiple paths into separate intermediate representa-

tions, followed by a shared representation layer to merge them.

For instance, Chen et al. [7] proposed a two-level attention mecha-

nism to fuse the features from component-level and item-level for

multimedia recommendation. Farnadi et al. [12] utilized a shared

representation between different modalities to arrive at more accu-

rate user profiles. Some efforts [10, 19] in image captioning merged

previous word representations and image features to produce the

next word.

By contrast, decision-level fusion refers to the aggregation of de-

cisions frommultiple classifiers, each trained on separate modalities.

These fusion rules could be max-fusion, averaged-fusion, Bayes’

rule based, or even learned using a meta-classifier [31]. For example,

the work in [34] presents a two-stream CNN (i.e., Spatial stream

ConvNet and Temporal stream Convnet) and then combines them

with a class score fusion approach for action recognition in videos.

In order to achieve simultaneous gesture segmentation and recogni-

tion, authors in [36] integrated the emission probabilities estimated

from different inputs (i.e, skeleton joint information, depth and

RGB images) as a simple linear combination.

7 CONCLUSION

The language prior problem severely hinders the advancement of

VQA. In this paper, we target this problem and make contributions

from two perspectives. Firstly, we propose an evaluation metric

called LP score to measure the extent of language prior effect. The

evaluation metric can quantitatively measure the extent of lan-

guage prior effect of different VQA models and thus can facilitate

the development of related techniques. Secondly, we design a score

regularization module, which is versatile to be integrated into vari-

ous current VQA models. The proposed regularizer can effectively

make the VQA models better reason images upon questions before

result prediction, and thus can alleviate the language prior problem

as well as improve the answer accuracy. Extensive experiments

have been conducted on two widely used VQA datasets to validate

the feasibility of the proposed metric and the effectiveness of the

designed regularization method. We hope this metric can be used to

compare the VQAmodels on alleviating the language prior problem

in the future. Besides, we would like to further extend our regu-

larizer based on the non-uniform granularity of different question

types and explore its effectiveness on more diversified VQA models.
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