
Under review as a conference paper at ICLR 2024

TOWARDS DYNAMIC EHR PHENOTYPING: A GENERA-
TIVE CLUSTERING MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

In healthcare, identifying clinical phenotypes—subgroups defined by specific
clinical traits—is essential for optimizing patient care. The wealth of Electronic
Health Record (EHR) information has fueled data-driven approaches to tackle
this challenge. Unfortunately, the heterogeneity, multi-modality, and dynamic
nature of EHR data pose significant hurdles. We propose DeepGC, a novel
generative, clustering, outcome-sensitive end-to-end deep learning (DL) model for
uncovering dynamic phenotypes within temporal EHR data. DeepGC leverages
patient trajectories and outcomes to identify clinically meaningful phenotypes that
evolve over time. Our generative model employs a dynamic sequential approach
based on a Markovian Dirichlet distribution and Variational Auto-Encoders (VAEs),
which is capable of providing insights into the evolution of patient phenotypes
and health status. Preliminary evaluation indicates that DeepGC shows promise
in identifying distinct and interpretable phenotypes, and outperforming existing
benchmarks, particularly with regard to outcome sensitivity (3 % increase in F1).
We also showcase the model’s potential to yield valuable insights into the future
evolution of patients’ health status.

1 INTRODUCTION

In healthcare environments, phenotyping, or the precise identification of clinical phenotypes, sub-
groups of the general population characterized by distinct clinical traits, can be a valuable tool
indispensable for optimizing patient care (Vogelmeier et al., 2018). A huge number of chronic
conditions, for instance, Chronic Obstructive Pulmonary Disease (COPD), naturally present distinct
phenotypes. It underlines the vital role of phenotype recognition in improving disease management
through the refinement of treatment strategies guided by information in each phenotype (Adeloye
et al., 2015). In practice, phenotypes encompass disparate clinical aspects collected over time, includ-
ing observational measurements, treatment responses, and adverse event occurrences. Nevertheless,
temporal Electronic Health Record (EHR) data, characterized by its heterogeneous nature, and
exhibiting high dimensionality, multi-modality, non-stationarity, and data imbalance, etc. represent
formidable hurdles not only for modeling but also for the analysis of clinical phenotypes (Conway
et al., 2011).

Deep learning (DL) has emerged as a promising avenue for EHR data modeling (Rajkomar et al.,
2018). However, current DL-based methods for phenotype identification primarily focus on ob-
servational data, often neglecting other crucial aspects such as patient outcomes, occurrence of
adverse events, and clinical interventions. Existing frameworks also typically assume a phenotype
is static over time, which is not necessarily aligned with the dynamic nature of patient health status
in clinics. Finally, it is generally challenging to derive a meaningful clinical understanding of the
derived phenotypes. We introduce a novel Deep learning Generative outcome-based Clustering
approach for dynamic phenotyping (DeepGC) that aims to tackle the above limitations. Our
method combines DL techniques with dynamic clustering to model patients’ evolving physiological
status over time. For a clinical application, DeepGC’s generative approach enables the generation of
unseen, future observation data, facilitating the exploration of future scenarios.

Our paper comprises the following sections: Section 2 reviews prior research in EHR time-series
modeling, EHR phenotyping, clustering and generative models for multi-dimensional time-series data.
In Section 3, we provide an in-depth exposition of DeepGC’s generative and inference components,
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as well as a derivation of the resulting optimization goal. Section 4 outlines the experimental setup,
including a characterization of the datasets we considered as part of our experiments, a description of
the evaluation pipeline and the obtained results. We discuss the results in Section 5. We conclude by
highlighting the implications of our work and avenues for future research under Section 6.

2 BACKGROUND

In recent years, there has been a growing interest in utilizing data-driven approaches to phenotype
medical cohorts through the analysis of multi-dimensional temporal EHR data (Davenport & Kalakota,
2019). Phenotyping involves the identification of patient subgroups with shared characteristics or
disease trajectories, typically achieved through clustering techniques. This task, however, presents
formidable challenges. Firstly, EHR data lacks labeled phenotypic information, making it necessary
to rely on unsupervised learning methods for pattern discovery which are hard to validate and evaluate.
Secondly, the multi-dimensional nature of EHR time-series data complicates the establishment of a
suitable distance metric for assessing the similarity between sets of trajectories from distinct patients.
Finally, clinical interpretation and validation of the resulting clusters and cluster assignments is
extremely important, and it has been shown this is hard to address effectively within the EHR context
(Xiao et al., 2018).

Standard clustering methods such as the K-Means algorithm (K-means, Lloyd (1982)), and Gaussian
Mixture Models (GMM, Reynolds et al. (2009)) are not directly applicable to multidimensional
time-series data, but simple variants have been introduced to this effect (Cuturi & Blondel, 2017).
An extension to K-Means, Time-Series K-Means (Tavenard et al., 2020), was proposed based on
applying the K-Means algorithm with a set of customized time-series distance metrics based on the
idea of Dynamic Time Warping (Berndt & Clifford, 1994). DL methodologies, however, have largely
led the performance landscape with respect to the modeling of multi-dimensional temporal EHR data
and phenotyping. This is due to a variety of reasons but is largely driven by the lack of modeling
capacity of simpler models to accurately identify relevant trends in the data (Shickel et al., 2018).

A key challenge in phenotype identification pertains to the incorporation of different aspects into the
formation of the phenotypes. Different aspects need to be modeled very differently, and the resulting
clusters are discordant (in fact, a good clustering for aspect A is typically not a good clustering for
aspect B). Furthermore, some information might not be available until the end of a clinical admission
(for example, the occurrence of adverse events), and so models must be capable of handling ’missing
information’ when deploying to non-training patient cohorts. To this end, the authors in Lee &
Schaar (2020) propose AC-TPC to tackle phenotyping with both observation and occurrence of
intra-admission events. T-Phenotype (Qin et al., 2023) is another alternative in a similar setting based
on efficient representation learning in a frequency domain. Another approach, CAMELOT (Aguiar
et al., 2022) was introduced to phenotype time-series data over observation and outcomes. However,
the aforementioned methods display some limitations. Firstly, phenotype learning is applied to data
within a fixed timeframe, which is not representative of the needs of a typical healthcare setting,
where phenotypes, as representatives of underlying physiology, should be regularly updated and
analyzed. Secondly, is it hard to characterize future physiology evolution based on the estimated
phenotypes, again, due to the fixture of model analysis. Generative time-series methods, such as
VRNN-GMM (Chung et al., 2015), employ techniques that can tackle both of these limitations due to
their capability of generating observation data (including estimates of future observations). However,
VRNN-GMM is limited due to its inability to identify clinical phenotypes that are outcome-sensitive.
It also lacks temporal modeling of cluster assignments and the distribution of the mixture coefficients.
Furthermore, it is not implemented in an end-to-end fashion, which is sub-optimal.

To that effect, we proposed a novel generative, clustering, outcome-sensitive model, DeepGC, to
identify phenotypes in temporal clinical data. We also introduce a training algorithm to optimize a
lower bound to the log-likelihood function. Our approach is capable of providing outcome-sensitive
phenotypes in multiple aspects: (1) the dynamic nature of our model allows it to be applicable to
realistic time-varying clinical scenarios; (2) the generation capabilities of DeepGC, together with
the clustering nature, allow the extraction of clinically relevant knowledge and insight concerning
individual patient’s past and future health status.
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Figure 1: Sketch diagram for DeepGC given input data x≤T ,y. At each time step, we model cluster
assignment probability variables πt via prior (red) and inference (orange) steps, observation data via
the generation step (green), and we update the network’s cell state (blue). Note that inference and
generation steps occur at every time step - they are shown separately for ease of visualization. For
t > T , generated data x′

t is used in lieu of xt as we don’t have access to ’future’ data. Finally, the
outcome is derived from the last estimated sample representation zT ′ (black). Square boundaries
denote probabilistic objects, while triangle boundaries encompass derived vectors. Finally, dashed
lines represent probabilistic models.

3 OUR APPROACH

We propose a novel generative model called DeepGC for dynamically phenotyping patients via
temporal EHR data. Our model characterizes patient phenotypes based on two distinct aspects: a) the
trajectories of temporal observation sets, the observation aspect, and b) the empirical distribution
of admission outcomes for patients in each phenotypic group, the outcome aspect. Note admission
outcomes are obtained only at the end of a patient admission; further detail regarding the definition of
the outcomes is present in Section 4.1. A sketch diagram of our model is shown in Figure 1.

DeepGC represents a joint probability model via a neural network based on a variational autoencoder
(VAE) architecture coupled through time via a dynamic Markovian Dirichlet approach. At each time
step, the latent space is modeled as a Gaussian Mixture Model (GMM) with a Dirichlet distribution
prior, such that a patient representation is obtained as a weighted combination of cluster centroids (i.e.
phenotypic groups). Across time, the Dirichlet prior is updated using a Recurrent Neural Network
(RNN) under a Markovian assumption. Finally,DeepGC models the admission outcome with a VAE
decoder framework applied to the last observable patient representation. Note that our model is
end-to-end and optimization is done jointly across all components.

Theoretical Formulation We consider a dataset X = {xn}Nn=1 of patient trajectories. We define:
N as the number of patients, x={xn,t}Tn

t=1 as the set of observations for patient n, and Tn the number
of observations for patient n. Each xn,t = [x1

n,t, ...,x
f
n,t] denotes a set of measurements from f

clinical features taken at time t and for patient n. A trajectory is the sequence of temporal observation
sets collected with respect to the same feature. For simplicity, we denote T := max

n
{Tn} to be the

maximum number of time steps.

3



Under review as a conference paper at ICLR 2024

Separately, we have a dataset of patient outcomes Y = {yn}Nn=1 for each patient. We assume
outcomes are one-hot encoded for a total of C > 1 possibilities. In general, due to our global
application objective, outcomes represent the occurrence (or lack thereof) of adverse events that occur
no earlier than a fixed window of time after the last observation. This is to avoid modeling events
taking place concurrently as this is not useful information for medical correction or intervention.

3.1 MODEL ARCHITECTURE

Given input data X, DeepGC iteratively computes a temporal sequence of (a) cluster probability
assignment vectors, or simply, assignment probabilities, πt ∈ ∆K−1, and (b) generated observation
samples, x̂t, using a Dirichlet Markovian approach (detailed below). Here, we use the notation
∆K−1 :=

{
v ∈ RK : ∥v∥1 = 1, v ≥ 0

}
, and the hyperparameter K denotes the number of phe-

notypes/clusters. Assignment probabilities are used to estimate patient representations, zt, based
on a weighted average with the set of phenotype centroids, C = {c1, ..., cK}. The cluster centroids
are randomly initialized and then optimized by gradient descent, as per the other model parameters.
Importantly, and distinct from the existing literature, DeepGC ’looks into the future’ via forward
generation of unseen observations. This is achieved by continuing to generate observations after
time step T and iteratively leveraging the generated data to compute assignment probabilities and
vice-versa. The number of such extra time steps generated is also a pre-defined hyperparameter.
Finally, the patient representation obtained at the last time step in the model passes through a set of
neural network layers to compute the outcome of the patient admission. DeepGC models the joint
probability:

p(π≤T ,x≤t,y) = p(y | x≤T ,π≤T )

T∏
t=1

p(xt | π≤t,x<t)p(πt | π<t,x<t) (1)

by dynamically modeling the two inner probability terms, denoted as Generating Step and Prior
Step, respectively, akin to an RNN approach. The outer term is referred to as the Outcome Step.
Furthermore, we also implement an Inference Step which computes the assignment probabilities,
and it approximates the intractable posterior p(πt | π<t,x≤t). We make two added assumptions: (a)
at each time step t, the previous cell state, ht−1 in an RNN is representative of (π<t,x<t), (b) the
outcome conditional probability is solely dependent on the last estimated representation zT ′ (recall
T ′ > T as DeepGC generates future unseen data). A pseudo-algorithmic description of our model is
shown in Algorithm 1. DeepGC includes a set of feed-forward neural networks, which are leveraged
to model the generating, prior, state update, outcome, and inference components. For ease of notation,
we will use fi(x) to denote the function encoded by the i−th corresponding feed-forward component
(in no particular order).

Generating Step Observation data are modeled as a normal distribution with mean and variance
obtained as the outputs of a feedforward network (akin to a VAE decoder). Given ht−1,πt, C,
the phenotype-derived patient representation is computed, zt =

∑
ck∈C π

k
t ck, then the relevant

features are extracted, f1(zt), and we concatenate this embedding with the cell-state to estimate
the distribution parameters, [µ,σ2] = f2(ht−1, f1(zt)). Input data are generated according to
xest
t ∼ N (µ,σ2If ).

Prior Step We employ the Dirichlet Markovian approach to model the prior. Given (π<t,x<t), πt is
distributed according to a Dirichlet distribution with parameter αp

t . Together with the assumption (a)
described above, we model πt | ht−1 ∼ D(αp

t ), and αp
t = f3(ht−1).

State Update Step We model ht | (π<t,x<t) ∼ ht | (πt,xt,ht−1) = f4(ht−1, f1(zt), f5(xt)),
where f5 is a feature extractor for the input space, and zt is derived from the Generating step.

Outcome Step We use a Categorical distribution whose parameter is the output of a feed-forward
network, as well as the assumption (b) to model the outcome, so that y | π<T ,x<T ∼ ŷ | πT ′ ∼
Cat(f6(zT ′)). We reinforce the idea that we use the latest estimated representation zT ′ , which occurs
after the last observed time step via forward data generation.

Inference Step The posterior p(πt | π<t,x≤t) is approximated by DeepGC according to a Dirichlet
distribution πt | π<t,x≤t ∼ πt | ht−1,xt ∼ D(αi

t), with αi
t = f7(ht−1, f5(xt)). We use q to

represent the probability distribution function encoded by the inference step of the model.
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Algorithm 1 Pseudo-algorithmic description of DeepGC

Require: Temporal data X = (x1, ...,xT ), outcome y, centroids C hyper-parameters T ′,K.
Ensure: Latent variables πt, generated observations xest

t , for t = 1, ..., T ′, and prediction ŷ.
1: Initialize cell state h0
2: for t = 1 to T do
3: sample πt ∼ q(πt | xt,ht−1)
4: xest(t) ∼ p(xest(t)|πt,ht−1)
5: Update cell state: ht ← f4(ht−1, f1(zt), f5(xt))
6: end for
7: Forward variable generation:
8: for t = T + 1 to T ′ do
9: sample πt ∼ q(πt | xest(t),ht−1)

10: xest(t) ∼ p(xest(t)|πt,ht−1)
11: Update cell state: ht ← f4(ht−1, f1(zt), f5(xest(t)))
12: end for
13: Outcome Prediction:
14: sample ŷ← ŷ | πT ′

15: return πt,x
est
t , for t = 1, ..., T ′, and ŷ

3.2 MODEL OPTIMIZATION

Ideally, we would train our model to optimize the log-likelihood:

p(x≤T ,y) =

∫
p(x≤T ,y,π≤T )dπ≤T =

∫
p(y | hT )

T∏
t=1

p(xt | πt,ht−1)p(πt | ht−1)dπ≤T

(2)

where we use the decomposition in Equation 1, as well as our modeling assumptions. This integral is
generally intractable, and so cannot easily be evaluated directly. Several methods have been proposed
to approximate the likelihood directly based on sampling such as Monte Carlo (Luengo et al. (2020)),
or Markov Chain Monte Carlo (Chib, 2001). However, such methods are computationally expensive.
Therefore, we propose a Variational Inference (VI) approach using the Evidence Lower BOund
(ELBO) method (Blei et al., 2017).

The ELBO method makes use of a family of amortized distributions (distributions that approximate
the posterior) to derive a lower bound to the log-likelihood, L, which is maximized. Under certain
conditions, it can be shown that L maximization is equivalent to maximizing the similarity to the
posterior and approximating its distribution (Rezende et al., 2014). We define our family to be those
represented by our inference step model - note that q(π≤T | x≤T ,y) =

∏
t q(π≤t | xt,ht−1), so

we can extend our inference step to a probability distribution over all latent variables π. The ELBO
for our model is then given by:
Lemma 1. The ELBO lower bound for the generative model represented by DeepGC is given by:

L = Eπ≤T∼q(π≤T |x≤T )

[
log p(y | π≤T ) +

T∑
t=1

(
log p(xt | πt,ht−1)−

DKL(q(πt | xt,ht−1)∥p(πt | ht−1))
)]

(3)

Proof. The full derivation is described in the Appendix Section A.1.

We train our model to maximize the log-likelihood L. The intuitive contribution of each term
in the ELBO expression can be explained as follows: firstly, given uncertainty about the latent
variables π<T , we average over the inference distribution; log p(y | π≤T ) encourages the modeling
of the outcome aspect of the resulting phenotypes; log p(xt | πt,ht−1) quantifies the quality of data
generation; finally, the Kullback-Leibler (KL) divergence, denoted asDKL, is a measure of the quality
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of our posterior approximation. However, the optimization of our neural network concerning Equation
3 presents notable challenges. These challenges revolve around two core issues. Firstly, the intricate
computation of DKL between the inference and prior distributions stemming from their inherent
complexity. We show we can simplify DKL using properties of the Dirichlet distribution, reducing
its dependence solely on the distribution parameters in a differentiable fashion (full derivation
in the Appendix Section A.2). Secondly, the computation of the expectation in a manner that
enables effective backpropagation of gradients through the network parameters. It has been shown
that sampling through the q distribution is a strong estimator with low variance for estimating the
ELBO Rezende et al. (2014). However, it is challenging to sample from a Dirichlet distribution
while allowing backpropagation of gradients through the distribution parameter. We use a Dirichlet
sampling method based on (a) a Dirichlet reparameterization into independent Gamma-distributed
variables with shape πi and rate 1, and (b) an approximate parameter-differentiable gamma sampling
mechanism (Joo et al., 2020) based on the inverse transform sampling theorem (Devroye, 1986). A
description of our algorithm is shown in Algorithm 2 and a full derivation of its correctness is present
in the Appendix Section A.2

Algorithm 2 Proposed Dirichlet Sampling Algorithm

Require: Number of components K, parameter α
Ensure: Dirichlet sample v ∼ D(α)

1: Initialize output of size K: v← [0, 0, . . . , 0]
2: for k = 1 to K do
3: Sample random variable uk ∼ Unif(0, 1)
4: gk ← (zukΓ(uk))

1/uk

5: end for
6: Set vk ← gk∑K

k=1 gk

7: return v

3.3 MODEL TRAINING

For the purposes of our experiments, T ′ was picked as 2 ∗ T , i.e., we generate a new period of
future data that is used to estimate the outcome. All feed-forward neural network components of our
model were implemented with 2 hidden layers of 30 nodes each, and a hyperbolic tangent activation
function. For computing parameters of Dirichlet distributions, a Rectified Linear Unit activation was
further applied to ensure all vector components were non-negative. Glorot initialization (Glorot &
Bengio, 2010) was used for all neural network weights, with the exception of bias weights, which are
initialized according to a standard normal distribution. Our model was implemented in Python using
the Pytorch (Paszke et al., 2017), Scikit-learn (Fabian et al., 2011) and NumPy (Harris et al., 2020)
packages, with environment specifications indicated in our online repository, and all experiments
were run with 1 NVIDIA Tesla V100 GPU, and 8 CPUs Intel(R) Xeon(R) Gold 6246 @3.30 GHz.

4 EVALUATION AND RESULTS

4.1 DATA AND PRE-PROCESSING

For our experiments, we utilized two distinct medical datasets, each offering unique insights into the
healthcare domain. HAVEN (HAVEN project, REC reference: 16/SC/0264 and Confidential Advisory
Group reference 08/02/1394) comprises proprietary secondary care records from a United Kingdom
hospital, while MIMIC-IV-ED (named MIMIC hereafter, Johnson et al. (2023)) is a publicly available
dataset from a United States Emergency Department (ED). HAVEN primarily informed model
development and clinical applications, while MIMIC provided evidence of model generalizability
and reproducibility. Both datasets share similar characteristics, including EHR heterogeneity, data
multimodality, and significant class imbalance among multiple outcome categories.

HAVEN The HAVEN Database consists of clinical observations, such as vital signs and laboratory
measurements, collected from March 2014 to March 2018 at Oxford University Hospitals NHS
Foundation Trust. The cohort focused on patients at risk of developing Type-II Respiratory Failure
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(T2RF) during hospitalization, following the protocol in Pimentel et al. (2019). After filtering for
observation availability, we averaged data over 4-hour blocks. These values were determined based
on clinical insight concerning observation recording and clinical staff visit frequency. Outcomes
include death (’Death’), cardiac arrest (’Cardiac’), unplanned ICU admission (’ICU’), based on the
first occurrence of an adverse event, and healthy discharge from hospital (’Healthy’), otherwise.
Post-processing yielded over 100,000 patient trajectories across 4,266 unique hospital admissions,
with a severe class imbalance: 86.8% (Healthy), 10.3% (Death), 1.8% (ICU) and 1.1% (Cardiac).
Models were trained using observations between 48 and 72 hours prior to the onset of the event time.

MIMIC-IV-ED MIMIC-IV-ED documents ED admissions at the Beth Israel Deaconess Medical
Center, with records of vital signs, triage data, medications, and patient hospital journeys. Pre-
processing paralleled HAVEN, selecting patients by observation availability, and averaging data over
1-hour blocks. We removed patients with an Emergency Severity Index (ESI, Gilboy et al. (2011))
score of 1 or 5, as these potentially represented extreme cases (too ill or not ill enough). Outcomes
within 12 hours of admission include patient demise (’Death’), ICU admission (’ICU’), discharge
(’Discharge’), and presence in a non-intensive ward (’Ward’). Like HAVEN, MIMIC exhibits class
imbalance: 81.06% (Ward), 16.53% (ICU), 2.11% (Discharge), 0.30% (Death). Models were trained
on observations corresponding to the last 6 hours of the ED admission.

Both datasets underwent preprocessing based on clinical knowledge and empirical validation as in
Aguiar et al. (2022). Our analysis assessed cluster phenotypes, considering dissimilarities in trajectory
data (’observation aspect’) and outcome distributions (’outcome aspect’). The post-processed cohort
was split into training (60%) and testing (40%) data based on patient admissions. Deep learning
models further divided the training data into training (60%) and validation (40%) subsets. Features
were min-max normalized, and missing values were imputed based on observed values, with static
features introduced as constant time-series. Normalization and imputation parameters derived from
training data were applied to test data (and validation data for deep learning models).

4.2 PERFORMANCE EVALUATION

In the realm of temporal EHR data, DeepGC is tailored to the critical task of identifying patient
phenotypes. To comprehensively assess its performance, we conducted benchmark comparisons with
classical clustering models like Time-Series K-Means (TSKM) and GMM, advanced phenotyping
methods such as CAMELOT, and AC-TPC, as well as VRNN-GMM, a deep learning model well-
regarded for clustering multi-dimensional structured time-series data. Our evaluation focused on the
models’ performance using the final available time step of the input data.

We examined the learned clusters from two pivotal perspectives: observation and outcome. For the
observation aspect, we evaluated how effectively the models clustered patient trajectories, employing
well-established metrics such as Silhouette score (SIL, Rousseeuw (1987)), Davies-Bouldin Index
(DBI, Davies & Bouldin (1979)), and Variance Ratio Criterion (VRI, Caliñski & Harabasz (1974)).
Assessing the outcome aspect presented a unique challenge, given that each cluster corresponded
to a distinct outcome distribution. We are interested in identifying different outcome distributions
over each cluster, not necessarily identifying clusters associated with a single outcome, as the latter
show very poor separation at the observation aspect. We used a separate task as a proxy to evaluate
this aspect - namely the more straightforward outcome prediction task. Purely unsupervised models
without an outcome output were extended to classification methods by assigning each patient to the
training outcome distribution of the cluster they belong to. Higher scores signified that the clusters
effectively captured the relevant outcomes and exhibited better separation. We evaluated prediction
performance using multi-class Macro-average AUROC, F1-score (F1), Recall, and Normalized
Mutual Information (NMI).

Furthermore, to underscore the practical relevance of our model, we compared its performance with
standard classifiers like Support Vector Machines (SVM), XGBoost (XGB), and NEWS2 and ESI,
clinical benchmarks for HAVEN and MIMIC, respectively. To handle time-series data, we considered
2 natural extensions for both SVM and XGB. Firstly, we considered each (clinical feature, time
step) pair as a separate feature passed to the classifier models. Alternatively, we built an ensemble
classifier, building individual classifiers for each particular feature’s trajectory data. The best result is
shown in Table 1. With NEWS2, we built a classifier based on the NEWS2 score of the last training
observation set. The comparison with standard classifiers demonstrated our model’s ability to identify
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Dataset Model AUROC F1 Recall Precision SIL VRI DBI

HAVEN

TSKM 0.53 (.03) 0.22 (.02) 0.25 (.02) 0.25 (.01) 0.48(.10) 417(8.20) 1.11(.20)
GMM 0.51 (.01) 0.27 (.01) 0.26 (.01) 0.27 (.03) 0.00 (.00) 98.7 (11.32) 3.56 (.28)

CAMELOT 0.65(.02) 0.30 (.03) 0.32 (.01) 0.29 (.02) 0.14 (.05) 157.2 (27.0) 2.37 (.36)
VRNN-GMM 0.55 (.03) 0.26 (.01) 0.27 (.00) 0.28 (.01) 0.11 (.03) 103.2 (4.56) 3.13 (.87)

DeepGC 0.65(.03) 0.32(.02) 0.33(.01) 0.29(.03) 0.22 (.04) 189.9 (29.2) 1.93 (.15)
SVM 0.56 (.01) 0.25 (.00) 0.26 (.01) 0.26 (.00) - - -
XGB 0.61 (.03) 0.29 (.01) 0.29 (.01) 0.30(.01) - - -

NEWS2 0.53 0.26 0.27 0.25 - - -

MIMIC

TSKM 0.63 (.01) 0.27 (.01) 0.30 (.01) 0.26 (.01) 0.16(.03) 471.9(80.7) 1.59(.10)
GMM 0.61 (.05) 0.25 (.01) 0.28 (.03) 0.36 (.01) 0.03 (.06) 143.4 (138.2) 4.41 (1.26)

CAMELOT 0.63 (.03) 0.29 (.02) 0.32 (.03) 0.30 (.02) 0.11 (.05) 302.5 (25.1) 2.77 (.20)
VRNN-GMM 0.55 (.01) 0.18 (.01) 0.27 (.00) 0.26 (.01) 0.02 (.03) 41.6 (6.5) 3.8 (.62)

DeepGC 0.65(.02) 0.35(.01) 0.34(.01) 0.36 (.01) 0.10 (.01) 316.7 (15.1) 2.65 (.24)
SVM 0.61 (.06) 0.32 (.00) 0.32 (.00) 0.41(.00) - - -
XGB 0.56 (.04) 0.32 (.01) 0.34(.03) 0.40 (.01) - - -
ESI 0.46 (.00) 0.22 (.00) 1.00 (.00) ∗ 0.25 (.00) - - -

Table 1: Performance scores of DeepGC and benchmarks on HAVEN and MIMIC datasets across
observation and outcome aspects. We show average metric performance and standard deviation
(in parenthesis) over the same set of 10 seeds. Dashed lines are used whenever the metric is not
applicable to the corresponding model. Note ESI is unable to identify all classes, hence why it results
in perfect Recall.

clinically meaningful patient phenotypes based on outcomes. Due to the imbalanced nature of our
data, we consider only those experiments where all classes are predicted at least once. Table 1 shows
the scores obtained by our model and benchmarks across both datasets.

We used a grid search (Bergstra & Bengio, 2012) approach to hyperparameter tuning, and we used
Macro-average F1 as the main goal metric due to class imbalance. We used 5-fold cross-validation
to tune hyper-parameters, and then evaluated performance on the hold-out test set. Results were
averaged over 10 fixed seeds. Throughout the process, we adhered to the Occam’s Razor (Hamilton,
1861) approach for hyperparameter optimization, selecting integer hyperparameter values that did
not yield a statistically significant improvement in performance when further increased. We also
ensured that the models selected could correctly identify at least one patient from each outcome class,
effectively addressing the challenge posed by class imbalance in the data.

5 DISCUSSION

Compared with all other benchmarks, our model shows an increase performance in phenotyping
clusters (Table 1), particularly improving performance related to the outcome aspect (at least 2 %
increase in average F1 score over both datasets, and improvements over all benchmarks in average
F1 score and average Recall score, with the exception of XGBoost on the MIMIC Dataset). With
the exception of TSKM, our model also outperforms all benchmarks with respect to the observation
aspect, as can be seen by second best performance in clustering metrics SIL, DBI and VRI in both
datasets. TSKM shows better clustering performance, but this is expected for three reasons. Firstly,
TSKM learns cluster decision boundaries. Secondly, clustering metrics such as SIL, DBI and VRI
have a natural bias towards convexity in cluster formation due to the distance functions used in their
formulation. Finally, TSKM clusters directly on the input space, while DL models cluster on a latent
space. Ideally, we would be able to compare cluster formation in latent space with the TSKM cluster
formation, but this is not a trivial task due to the different space designs. We stress that DeepGC
outperforms all other benchmarks across all metrics and datasets, however, except SIL performance
on the MIMIC dataset, where CAMELOT displays a similar performance to DeepGC.

Our proposed model demonstrates superior capabilities in extracting intricate patterns from complex
and heterogeneous electronic health record (EHR) data compared to prior models. Notably, the model
excels in predictive tasks, even in the presence of a clustering bottleneck, where patient outcomes
are determined based on assigned clusters rather than tailored to individual input data. While
alternative models may potentially outperform ours in direct outcome prediction tasks, they could
face challenges related to robustness, input sensitivity, and the identification of clinically relevant
trends. Consequently, these alternatives may provide outcome predictions for new admissions but
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may lack a comprehensive understanding of the underlying processes, preventive strategies, and data
aggregation capabilities that our model offers.

6 CONCLUSION

In this paper, we introduce a novel generative deep learning model tailored for the identification
of distinctive clusters within temporal EHR data, with a focus on phenotypic characteristics. Our
proposed model leverages a sequential variational approach that serves several crucial purposes:
a) modeling the probabilistic assignment of clusters at each time step, b) generating observational
data over time, and c) forecasting patient outcomes. Through extensive experimentation on two
independent datasets, including a publicly available dataset, we have observed promising outcomes
regarding the distinguishability of clusters and the accuracy of outcome predictions. The integration
of a deep learning-based probabilistic model significantly enhances the capacity to capture relevant
representations and form meaningful clusters. Furthermore, our approach provides valuable insights
into the dynamic evolution of cluster probability assignments during a patient’s health journey.

It is worth emphasizing that further scrutiny is essential to assess the effectiveness of our generative
approach. Data generation holds increasing importance in the healthcare domain, and we plan to
explore the pertinence of our generative framework and delve into the generated observations, which
hold particular significance due to data access constraints in healthcare (while generated data remains
accessible). Preliminary qualitative analysis showcases our model is capable of generating relevant
EHR data. Our upcoming research will focus on evaluating the robustness and sensitivity of the
generated data to noise. Additionally, we intend to conduct an in-depth analysis of temporal cluster
assignments, investigate the driving factors behind cluster transitions over time, and devise accurate
evaluation methodologies for learned cluster assignments.
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A MATHEMATICAL DERIVATIONS

In this section, we provide more detail into some of the formulae obtained within our main text.

A.1 ELBO

Lemma 2. The ELBO lower bound for the generative model represented by DeepGC is given by:

L = Eπ≤T∼q(π≤T |x≤T )

[
log p(y | π≤T ) +

T∑
t=1

(
log p(xt | πt,ht−1)−

DKL(q(πt | xt,ht−1)∥p(πt | ht−1))
)]

Proof. To derive the ELBO, we start with Equation 1:

p(x≤T ,y) =

∫
p(x≤T ,y,π≤T )dπ≤T

Define a new set of variables x′ via x′
t = xt for t < T , and x′

T = [xT ,y], so our log-likelihood can
be written as

∫
p(x′

≤T | π≤T )dπ≤T . We can naturally extend the probability distribution given by q
to variables x′

T by using DeepGC’s assumption (a) and (b). Denote the probability density function
of the extension with q′. In this new setting we can use the work of Chung et al. (2015) to obtain the
ELBO equation:

L = Eπ≤T∼q(π≤T |x′
≤T

)

[ T∑
t=1

(
log p(x′

t | πt,ht−1)−DKL(q(πt | x′
t,ht−1)∥p(πt | ht−1))

)]
For t < T , all expressions are unaltered when replacing x and x′ since xt = x′

t. For t = T , we
look at each individual term. First, the prior step remains altered as it does not depend on any
input observation. Similarly, we may re-arrange the terms in the q(πt | x′

t,ht−1) term of the KL
divergence, to conclude that the KL divergence expression is the same for all time steps. On the other
hand:

log p(x′
T | πT ,hT−1) = log p(xT ,y | πT ,hT−1) = log p(xT | πT ,hT−1) + log p(y | πT ,hT−1)

where we used conditional independence given πT . Separating the second term outside the summa-
tion, and re-arranging, we obtain:
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L = Eπ≤T∼q(π≤T |x≤T )

[
log p(y | π≤T ) +

T∑
t=1

(
log p(xt | πt,ht−1)−

DKL(q(πt | xt,ht−1)∥p(πt | ht−1))
)]

as required.

A.2 COMPUTING THE ELBO

It is not trivial to compute the ELBO (Equation 3) in a differentiable fashion. First, we show how to
simplify the KL divergence term as a function of the distribution parameters.
Lemma 3. The KL divergence between two Dirichlet distributions Z1 and Z2 with probability density
functions p1(v|α) and p2(v|β), respectively, is given by:

DKL(Z1||Z2) = log

(
Γ(α0)

Γ(β0)

)
+
∑
i

log

(
Γ(αi)

Γ(βi)

)
+
∑
i

(αi − βi) (ψ(αi)− ψ (α0))

Where:
- α = (α1, α2, . . .), and β = (β1, β2, . . .).
- α0 =

∑
i αi and β0 =

∑
i βi.

- Γ(·) is the gamma function.
- ψ(·) is the digamma function.

Proof. The proof uses general properties of the Dirichlet distribution (Ng et al., 2011), specifically:

• The marginal distributions of Z1 are given by Beta distributions: Zj
1 ∼ Beta(αj −α0−αj);

• The negative entropy of the marginals can be written in terms of the digamma function:
E[− logZj

i ] = ψ(α0)− ψ(αj).

Then, we have:

DKL(Z1∥Z2) = −
∫
∆d−1

log pZ1
(z)

pZ2
(z)

pZ1
(z)

dz = Ez∼pZ1

[
log

pZ1

pZ2

]
= Ez∼pZ1

[
log pZ1

− log pZ2

]
= Ez∼pZ1

[
log Γ(α0)−

∑
i

log Γ(αi) +
∑
i

(αi − 1) log(Zi
1)−

log Γ(β0) +
∑
i

log Γ(βi)−
∑
i

(βi − 1) log(Zi
1)
]

= log Γ(α0)− log Γ(β0)−
∑
i

[
log Γ(αi)− log Γ(βi)

]
+

∑
i

(αi − βi)Ez∼Zi
1

[
logZi

1

]
and the result follows from the Dirichlet marginal entropy formula.

Lemma 3 allows simplification of the DKL with respect to the distribution parameters, which are
network outputs. We now show how we can sample through a Dirichlet random variable to allow
backpropagation of gradients. We start with the following lemma:
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Lemma 4. A Dirichlet-distributed random vector v with dimensionality K and concentration
parameter α = (α1, α2, . . . , αK) can be expressed as a normalized vector of independent gamma-
distributed random variables:

v =

(
v1∑K
i=1 vi

,
v2∑K
i=1 vi

, . . . ,
vK∑K
i=1 vi

)
∼ D(α) (4)

Where vi is Gamma(αi, 1) distributed for i = 1, 2, . . . ,K.

Proof. This can be shown using the Jacobian change of variable formula and the density function
formula for the Dirichlet distribution. For further details, see Devroye (1986).

Note that no current method exists that allows for exact sampling of general gamma variables.
Furthermore, directly approximating a gamma sampling process would not naturally be differentiable
with respect to the distribution parameter (now αi, instead of α). Instead, we leverage the inverse
probability inverse transform theorem. The cumulative distribution function (cdf) of a Γ(αi, 1) r.v. is
Fαi(x) =

γ(αi,x)
Γ(αi)

, where γ denotes the lower incomplete gamma function (Neuman, 2013). It does
not have a well-defined inverse function, but approximations have been proposed (Knowles, 2015).
We approximate F−1

αi
(z) ≈ (zαiΓ(αi))

1/αi . Algorithm 2 describes the differentiable Dirichlet
sampling approach.
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