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Abstract

The visual projector, which bridges the vision and language modalities and facili-
tates cross-modal alignment, serves as a crucial component in Multimodal Large
Language Models (MLLMs). However, measuring the effectiveness of projectors
in vision-language alignment remains under-explored, with current evaluations
relying primarily on the performance of MLLMs on downstream tasks. Motivated
by this gap, this study conducts an in-depth examination of the projector module by
analyzing the vision-language semantic flow within MLLMs. Our findings reveal
that compressive projectors (e.g., QFormer) reduce the number of visual tokens by
abstracting visual patches into a limited set of semantic concepts, such as objects or
attributes, leading to a deficiency we term “double abstraction” in MLLMs. This
phenomenon involves i) an initial visual semantic abstraction by the projector in
the vision modality, which refers to pre-defined query tokens, and ii) a secondary
extraction by the LLM in the language modality based on text instructions. The
double abstraction is inefficient during training and leads to cumulative deficiencies
in visual semantics. To address this issue, we propose the key insight of “Decouple
Token Compression from Semantic Abstraction (DeCo)”, where projectors com-
press visual tokens at the patch level non-semantically, while allowing the LLM to
fully manage semantic understanding and abstraction. Consequently, we employ
a simple compressor, i.e., 2D Adaptive Pooling, to downsample visual patches in
a parameter-free manner. Empirical evaluations demonstrate that 2D Adaptive
Pooling outperforms traditional compressive projectors in both performance and
efficiency, achieving gains of 0.9%, 7.1%, and 2.9% across the MLLM Benchmarks,
Visual Localization, and Open-ended VQA tasks, respectively, while utilizing fewer
trainable parameters and achieving faster convergence. Furthermore, it preserves
vision spatial locality and exhibits robustness across various MLLM configurations,
including different vision backbones, image resolutions, and LLMs.

1 Introduction

Multimodal Large Language Models (MLLMs) (OpenAI, 2023; Gemini Team, 2023; Reka, 2024)
endow Large Language Models (LLMs) with vision perception capability, which have shown their
versatility and expertise in diverse vision-language tasks (Kafle et al., 2018; Yu et al., 2016; Singh
et al., 2019; Bigham et al., 2010; Li et al., 2024; Yao et al., 2023; 2022; Chen et al., 2023b). For
MLLMs, learning good vision-language alignment is at the core of their intelligence (Li et al., 2023d;
Zhu et al., 2023; Ren et al., 2023b; 2024). To achieve cross-modal alignment, recent studies utilize
an intermediate module, i.e., the projector (Liu et al., 2023b; Zhu et al., 2023; Madureira, 2021;
Dai et al., 2023), to map representations of image patches (Dosovitskiy et al., 2020) into the LLM
embedding space as visual tokens.

Widely used projectors can be roughly summarized into two branches: non-compressive and
compressive. The non-compressed projector (Liu et al., 2023b) directly uses linear layers that translate
the visual token dimension to the LLM’s while keeping the visual token number unchanged. Despite
its simplicity and effectiveness, the linear projector struggles with high training resources and costs
due to the length of the visual token sequence. The sequence would be long in two common scenarios:
(i) the length increases quadratically with the input resolution (Li et al., 2023a; Chen et al., 2023c);
(ii) the length increases linearly with the image number for handling video frames (Ren et al., 2023c;
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(a) Original Images (b) Query-to-Patch Relevance (down img) (c) Query-to-Patch Relevance (top img)

Figure 1: Visualization of the R-GAE relevance map from compressed visual tokens (Query) to original image
patches (Patch) of the QFormer (Li et al., 2023d) projector. The QFormer reduces the original 576 visual (patch)
tokens to 64 (equal to 8× 8) learned query tokens. The relevance maps are obtained from the image-to-text
generation process of the MLLM. From the Query-to-Patch map (zoomed in), each query token is activated with
diverse visual concepts at the semantic level, such as objects (zebras, grassland, the skateboard), attributes (black
and white texture of zebras), and backgrounds (the sea level). However, different query tokens from the same
image are visually sparse and showcase repetitive patterns (highlighted in the same color frame), limiting their
capacity for visual semantic expression.

Song et al., 2023; Ren et al., 2023a), potentially resulting in sequences up to a million tokens long (Liu
et al., 2024a). On the other branch, prevalent compressive projectors, e.g., QFormer (Li et al., 2023d;
Dai et al., 2023), Resampler (Alayrac et al., 2022), and D-Abstractor (Cha et al., 2024), condense
the original visual tokens into fewer query tokens to reduce visual redundancy, which have a better
balance between performance and efficiency.

However, how existing projectors affect the vision-to-language semantic alignment in an explainable
perspective is still under-explored. Understanding this question is crucial for facilitating better
architectural improvement and providing broader practicability in demanding scenarios such as high
image resolutions and video applications. In this study, we investigate this problem by analyzing the
relevance between generated textual tokens, raw visual patches and intermediate projector outputs.
We start by tracing the language-to-vision semantic flow using a novel R-GAE explainability tool.
Specifically, we decouple the overall Text-to-Patch semantic relevance to Text-to-Query and Query-
to-Patch sub-flows during the image-to-text generation. Among the sub-flows, the Text-to-Patch
relevance reveals the effective visual context from ViT patch tokens (Patch) leveraged by the LLM
(Text). Meanwhile, the Query-to-Patch relevance interprets the visual patterns learned from original
visual patches (Patch) by query tokens (Query).

Based on the R-GAE analysis, we derive two important findings: Firstly, the query tokens compress
the number of visual tokens by abstracting semantic-level visual concepts, leading to visual semantics
deficiency such as loss of fine-grained attributes and spatial locality. As Figure 1 illustrates, different
query tokens are activated with varied visual concepts such as objects, attributes or backgrounds
from the original images. For the top image with zebras in the grassland, query tokens attend to
visual patterns such as three zebras, their body parts, surface textures, and distant backgrounds
respectively. However, the fixed number of queries can only express limited visual semantics.
Specifically, different query tokens show repetitive patterns across images (highlighted by color
frames in Figure 1). Moreover, they tend to lose fine-grained visual attributes (e.g., “purple and
red” in Figure 3). Furthermore, the vanilla QFormer has been demonstrated to lose visual spatial
locality (Cha et al., 2024) during semantic abstraction.

Secondly, the LLM acts as an excellent visual-semantic abstractor directly from patch features. As
Figure 3 first row shows, utilizing a non-compressive linear projector allows the LLM to perceive
patch-level visual representations and attend to accurate vision regions without prior semantic
deficiency. Consequently, the QFormer-based MLLM system redundantly extracts visual semantics
twice—once by the QFormer and again by the LLM—a phenomenon we refer to as Redundant Double
Abstraction. This double abstraction introduces two major drawbacks: (i) increased training resource,
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③ Large Language Model

Please describe the image.

Three zebras stand in  grass    ,   tails touching gently .

Projected Visual Tokens

 (Query)

Output Text Tokens (Text)Visual Patch Tokens (Patch)

Text-to-Query (     →      )

Query-to-Patch (     →     )Text-to-Patch (     →     )

① Vision 
Transformer

② Projector

Trace Back  

Relevance Maps

Input Image

Figure 2: The overall analysis framework of a typical MLLM. During image-to-text generation, we
trace back the language-to-vision semantic flow utilizing R-GAE relevance maps.

such as GPUs and data, are required to optimize an external visual semantic abstractor as the projector,
and (ii) without careful training, an accumulation of visual semantic deficiencies will propagate from
the projector to the LLM, such as the loss of fine-grained semantics and spatial locality caused by a
poorly performing QFormer. As a result, the initial visual semantic abstraction by QFormer adds
unnecessary burden to the MLLM system.

To overcome the double abstraction problem, we propose to Decouple token number Compression
(DeCo) from vision semantic abstraction. The core of DeCo is using a simpler projector, which
operates and outcomes visual tokens directly at the patch level non-semantically to reduce the visual
token number. Subsequently, the LLM acts as an expertise to understand and abstract both visual
and textual semantics. To quantitatively validate the DeCo insight, we adopt the naive Adaptive
Average Pooling as a natural down-sampler at the patch level and then use the linear layers to map
the reduced visual tokens. Under fair experimental settings, quantitative results demonstrate that a
simple Adaptive Pooling design consistently outperforms semantic-level compressed projectors in
both effectiveness and efficiency. Additionally, experiments across various MLLM configurations,
including different vision backbones, image resolutions, and LLMs, further highlight the robustness
of Adaptive Pooling. Through both qualitative and quantitative analysis, our DeCo insight aims to
illuminate ways to improve the efficiency of the projector module in current MLLM systems. We
also hope that it will serve as a valuable reference for future architectural improvements in projector
design.

2 Visual Projector Analysis

In this section, we analyze the impact of projector modules in Multimodal Large Language Models
(MLLMs) from a semantic flow perspective using a novel R-GAE explainability tool. During image-
to-text generation, visual context plays an indispensable role in the perception of Large Language
Models (LLMs). The related relevance maps between image and text, such as attention maps (Vaswani
et al., 2017), can serve as an interpretation of the vision-language semantic alignment (Chefer et al.,
2021b; Xu et al., 2015; Carion et al., 2020; Ren et al., 2021). As Figure 2 shows, given an oracle
description in the MLLM architecture, the backtracking relevance map from text words to visual
patches (referred to as Text-to-Patch) exhibits the visual semantics aligned with the LLM and further
indicates the effective visual context leveraged by the LLM. To examine the impact of projectors
as the intermediate module, we dissect the Text-to-Patch relevance map into Text-to-Query and
Query-to-Patch sub-maps. The Query-to-Patch map can explain the visual patterns learned by the
query (or compressed) tokens, while the difference between Text-to-Patch and Text-to-Query, exerted
by the projector, reveals its impact on the vision-language semantic alignment.

2.1 Problem Formulation

A typical MLLM architecture comprises a Vision Transformer (ViT) to acquire visual representations
I ∈ RN×dI containing N patches, a projector to transform visual representations into the textual
embedding space, and an LLM that handles both vision and instruction tokens to output hidden
states T ∈ RL×dT and generate responses Y = {y1, y2, . . . , yL}. We summarize widely adopted
projectors into two branches:
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Adaptive

AvgPool
(576 → 64)

Text-to-Patch Text-to-Query Query-to-Patch

QFormer
(576 → 64)

Linear
(576 → 576)

Text: remote with purple and red buttons
Zoom in 

= x

= x

= x

Figure 3: Visualization of the R-GAE relevance maps across the same MLLM architecture except for projector
modules. The linear projector is non-compressive while the QFormer and Adaptive Average Pooling (ours)
compress the original 576 vision tokens to 64 tokens. Text-to-Patch relevance reveals the effective vision semantics
aligned with the LLM during image-to-text generation. For QFormer in the second row, its Query-to-Patch map
discards the fine-grained visual semantics about “purple and red”. This semantic deficiency is transmitted to the
final Text-to-Patch map and leads to a misalignment of vision patches and textual words.

Non-compressive Projectors maintain the number of patch tokens N and only transform the visual
embedding dimension to match the dimension of the LLM, as exemplified by the linear projector (Liu
et al., 2023b). The projected visual tokens can be denoted as Q ∈ RN×dT .

Compressive Projectors reduce the number of patch tokens N to a specified lesser number M
(M < N ), conserving training resources. For instance, QFormer (Li et al., 2023d) learns pre-defined
query tokens to compress original visual tokens. These compressed query tokens Q ∈ RM×dT are
then fed into the LLM providing vision information.

For clear clarification, we distinguish the compression and abstraction concepts in this study. The
compression refers to the reduction of vision token number in particular, whereas abstraction denotes
the extraction of vision semantic concepts (e.g., objects and attributes, etc.).

2.2 R-GAE: Relevance Maps in MLLMs Derived from GAE

We aim to employ the dissected Text-to-Query and Query-to-Patch relevance maps to examine the
projector module. A straightforward attempt is utilizing the raw attention maps in MLLM layers as
the relevance map (Ren et al., 2021). However, the attention map exhibits the interaction between
tokens in a single layer (Chefer et al., 2021b). Instead, we require a relevance map that traces
back inter-token alignment in arbitrary two layers in the MLLM, for instance, the alignment from
intermediate-layer query tokens to initial-layer input patch tokens. To achieve this goal, we propose a
novel R-GAE relevance map derived from the Generic Attention Explainability (GAE) (Chefer et al.,
2021a). R-GAE extends the GAE method originally designed for classification tasks, to generative
MLLMs, and adapts it to the typical MLLM architecture consisting of a ViT, a projector, and an LLM.
The R-GAE can acquire relevance maps from any two arbitrary layers within the MLLM through
propagation.

We initialize three R-GAE relevance maps including a Text-to-Patch map as RT →I , a Text-to-Query
map as RT →Q, and a Query-to-Patch map as RQ→I . Each map is an identity matrix based on the
intuition that each input token’s relevance score is equal in the beginning. Given an image and an
instruction (e.g., “Please describe the image with a concise sentence”), an MLLM will generate a
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textual description Y = {y1, y2, . . . , yL} referring to the visual information. During the generation
step t, we can cache the attention maps across the ViT, the projector and the LLM during a forward
pass. Then, specifying a word class ŷt as the target prediction, we can obtain the related gradients
through a backward pass. For each layer, a single R-GAE relevance map is obtained by utilizing
gradients to average across the attention heads. For step t, we can propagate the Text-to-Query
map Rt

T →Q ∈ R1×M from the LLM’s first layer to its last layer to get the final map. Similarly,
the Query-to-Patch map Rt

Q→I ∈ RM×N can be propagated from the first layer to the last layer
of the projector. Subsequently, the overall Text-to-Patch relevance map can be obtained by matrix
multiplication of Text-to-Query and Query-to-Patch maps:

Rt
T →I = Rt

T →Q ×Rt
Q→I (1)

For a complete sentence Y , we integrate the R-GAE relevance maps from each time step t by
averaging to obtain the overall visual relevance related to a factual sentence. We set the ground-truth
description from an image-text pair as the target response to perform the backward process. This
limits MLLMs with different projectors having the same Oracle Text-to-Patch visualization. We
provide the background of GAE and the specific propagation formula of R-GAE in Appendix A.
Moreover, we compare the visualization between R-GAE and original attention maps in Appendix B.

2.3 A Redundant Double-Abstraction Phenomenon

Based on the R-GAE maps, we analyze the different types of projectors and investigate how they
affect the vision-to-language semantic alignment. For fair comparison and analysis, we train MLLMs
under the same architecture, except for the projector module, and keep all other variables the same
(experimental details are provided in § 3.1). We visualize the R-GAE maps of a non-compressive
projector (i.e., linear layers) and a compressive projector (i.e., QFormer) in Figure 3 and draw the
following findings.

Observation 1. LLMs are good visual semantic abstractors directly from patch representation.

The non-compressive projector directly inputs the patch representation to the LLM. As shown in
the first row of Figure 3, given a description containing visual objects (i.e., the remote and buttons)
and attributes (i.e., purple and red), the LLM can highlight the most relevant visual regions in a
fine-grained manner, as it discriminates the accurate remote with purple and red buttons among other
similar remotes. This indicates that the LLM has built a strong alignment between textual and visual
semantics based on the patch representation. The recent success of MLLMs (Liu et al., 2024b; Li
et al., 2023b; Chen et al., 2023a) with non-compressive projection further demonstrates that the LLM
itself is an efficient visual semantic abstractor. For instance, LLaVA-Next (Liu et al., 2024b), which
employs a simple Multi-layer Perceptron (MLP), achieves state-of-the-art performance across diverse
multimodal benchmarks.

Observation 2. Compressive projectors extract limited visual semantic concepts from patches.
Compressive projectors like QFormer pre-extract visual semantic concepts from patches and provide
reduced visual tokens at the semantic level to the LLM. As the Query-to-Patch map in Figure 3
shows, the compressed 8x8 query tokens are activated with visual semantic patterns such as different
remotes, buttons, control panels, and the black background board. However, the fixed number of
query tokens can only cover limited visual semantic concepts from the image. Comparing the visual
patterns among 64 tokens, we find that they are visually repetitive and semantically sparse. For
instance, query tokens indexing (0, 1) and (2, 0) are nearly identical and all attend to the bottom-right
panel of the right remote. These sparse query tokens lead to a deficiency in visual semantics, losing
the fine-grained attribute of “purple and red buttons”. Consequently, the LLM suffers from this
irreversible visual semantic deficiency when re-extracting visual context in the query semantic space.
As the Text-to-Query map shows, the LLM primarily attends to the query tokens indexing (0, 2),
(0, 4), and (4, 5) (framed in red), resulting in a misalignment of text words and patches verified in the
Text-to-Patch map. More visualization cases are presented in Appendix D.

Insight. An inefficient MLLM system due to the double abstraction of visual semantics.

Based on these observations, we conclude that existing compressive projectors, which learn a fixed
number of query tokens, are inefficient compressors for reducing the number of vision tokens.
They result in a “Double Abstraction” MLLM system, where visual semantics are first abstracted

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

by projectors and then re-extracted by the LLM. This dual-abstraction procedure has two main
shortcomings: (i) Accumulative visual semantics loss. The projector serves as an intermediate module
bridging the ViT and LLM, therefore, the visual semantics lost during the initial abstraction by the
projector become a bottleneck for the MLLM system. (ii) Increased training complexity. Optimizing
a projector to be an effective semantic abstractor is essential for alleviating semantic loss; however,
this increases the training cost and complexity.

2.4 DeCo: Decoupling Vision Token Compression from Semantic Abstraction

Patch Tokens

Linear
 Projection

1 1

4 6 3

𝑵
𝟏
𝟐

Adaptive 
AvgPooling 

…

…

𝑵× 𝒅𝑰

𝑴×𝒅𝑻𝑴×𝒅𝑰

Projected 

Visual Tokens

kernel size 𝑲 
with stride 𝑺

𝑴
𝟏
𝟐

Figure 4: Visualization of the 2D Adaptive Pooling.

Inspired by the analysis in §2.3, we pro-
pose a DeCo insight to Decouple vision to-
ken Compression from semantic abstraction in
MLLMs. In this approach, the compressive
projectors focus on reducing the number of vi-
sual tokens with patch-level outcomes, while the
LLM serves as the expert semantic abstractor.
Consequently, the DeCo system only requires a
simple projector that compresses visual tokens
at the patch level. This design removes the inter-
mediate semantic bottleneck and simplifies the
training process.

Based on the DeCo insight, we employ a straightforward 2D Adaptive Average Pooling (referred to
as AdaptiveAvgPool) as a natural contrast to downsample the visual tokens at the patch level. As
Figure 4 illustrates, given N patch tokens from the ViT, the adaptive pooling can reduce the token
number to a lesser square number M . Specifically, we reshape the N visual tokens to 2D tensors
with size (N

1
2 , N

1
2 ) and utilize a 2D adaptive average pooling to get compressed tokens with size

(M
1
2 ,M

1
2 ). Subsequently, the compressed 2D tensor is flattened into M tokens. These tokens are

finally projected by the linear layer to match the textual embedding dimension, serving as visual
inputs to the LLM. During compression, the adaptive pooling 1 automatically calculates the stride S
and kernel size K in a parameter-free mode. It averages patches in a spatial K ×K window into a
mixed token. In essence, the 2D AdaptiveAvgPool merges the spatial neighbor patch tokens which
tend to have high visual redundancy.

As illustrated in the third row of Figure 3, the Query-to-Patch mapping of the AdaptiveAvgPool
projector forms a 2D grating pattern. It uniformly down-samples the grouped patches over the
2D spatial space of the original image. This uniform patch-level sampling preserves dense visual
context compared to the QFormer abstractor. For instance, the compressed token indexed at (3, 3),
highlighted in the red frame, retains the fine-grained representation of the “purple and red buttons”.
Subsequently, the LLM can attend to the accurate visual region by leveraging the visual context
from the AdaptiveAvgPool, as shown in the Text-to-Patch map. Furthermore, the Text-to-Patch maps
of the linear projector and AdaptiveAvgPool are nearly identical. This similarity reveals that the
AdaptiveAvgPool projector achieves a superior combination of (i) effectiveness, approximating the
linear projector in preserving visual context, and (ii) efficiency, reducing the number of vision tokens,
similar to the QFormer abstractor.

3 Quantitative Results

In this section, we qualitatively validate the simple AdaptiveAvgPool following the DeCo insight,
by comparing it with prevailing compressive projectors, including QFormer, C-Abstractor, and
D-Abstractor (Cha et al., 2024), in terms of both effectiveness and efficiency.

3.1 Experiment Setting

Training data and Evaluation. We utilize the open-sourced 558K pre-training data (sourced
from LAION (Schuhmann et al., 2021), Conceptual Captions (Changpinyo et al., 2021) and SBU
Captions (Ordonez et al., 2011)) and 665K instruction-following data (containing LLaVa Synthetic

1Apply the torch.nn.AdaptiveAvgPool2d function in the PyTorch framework.
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Table 1: Overall performance compared to existing compressive projectors including Linear Projector (Liu et al.,
2023a), QFormer (Li et al., 2023d), and C-Abstractor/D-Abstractor (Cha et al., 2024). All results are conducted
under the same architecture and settings. We All compressive projectors reduce the vision token number (#V)
from 576 to 144. * indicates reproduced results using LoRA while † denotes the full-training results reported in
LLaVA v1.5. AvgN means an average of normalized benchmark scores. The best and second-best results are
bolded and underlined, respectively.

Projectors #V SEEDI MMEP POPE Refcoco Refcoco+ Refcocog VizWiz VQAv2 GQA VQAText AvgN

Linear† 576 66.2 1524.6 86.4 54.4 47.8 49.8 53.6 76.3 60.0 58.9 63.0
Linear* 576 65.1 1338.6 86.8 46.9 41.6 46.3 50.2 74.9 56.5 58.4 59.4
QFormer 144 55.3 1312.7 79.0 15.1 10.5 11.6 51.2 65.6 48.6 50.7 45.3
C-Abstractor 144 60.5 1411.8 84.5 40.6 34.3 38.4 47.8 70.9 52.6 55.9 55.6
D-Abstractor 144 60.0 1313.2 84.6 32.9 27.6 32.4 49.7 71.1 53.1 55.1 53.2
DeCo (Ours) 144 62.8 1373.4 85.9 43.4 38.5 39.3 49.7 74.0 54.1 56.2 57.3

Table 2: Performance comparison on more fine-
grained benchmarks includes the informative di-
agram benchmark AI2D (Chen et al., 2024) and
ChartQA (Masry et al., 2022) for chart-related ques-
tion answering, document understanding benchmarks
such as DocVQA (Mathew et al., 2021), and science
topic question answering with ScienceQA (Lu et al.,
2022).

Projectors AI2D ChartQA DocVQA SciQAimg AvgN

QFormer 52.4 12.4 15.8 68.4 37.3
C-Abstracter 53.9 14.3 19.0 69.1 39.1
D-Abstractor 52.2 14.2 19.4 68.0 38.5
DeCo (Ours) 52.8 15.4 20.9 68.4 39.4

Table 3: Vision spatial understanding capability: Posi-
tion (POS) for MME, Spatial Relationship (SR), Object
Localization (OL), and Physical Relation (PR) for MM-
Bench, and Spatial Relation (SR) and Instance Location
(IL) for SEED-Bench.

Projector #V MME MMB SEED Avg
POS SR OL PR SR IL

Linear 576 123.3 20.0 51.9 33.3 50.2 59.6 56.4
QFormer 144 73.3 17.8 33.3 33.3 39.0 48.9 40.9
C-Abstractor 144 116.7 15.6 42.0 54.2 43.5 54.4 54.4
DeCo (Ours) 144 116.7 24.4 48.1 41.7 46.6 58.5 56.0

Data (Liu et al., 2023b), VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), OK-
VQA (Marino et al., 2019), OCR-VQA (Mishra et al., 2019), A-OKVQA (Schwenk et al., 2022),
TextCaps (Sidorov et al., 2020), RefCOCO (Yu et al., 2016), Visual Genome (Krishna et al., 2017) and
ShareGPT (ShareGPT, 2023)) following LLaVA v1.5 (Liu et al., 2023a). For evaluation, we measure
model performance spanning three aspects. Multimodal LLM Benchmarks including SEED-Bench (Li
et al., 2023c) (report image-only set as SEEDI), MME (Fu et al., 2023) (report perception set as
MMEP) and POPE (Li et al., 2023g) are specially designed for instruction-following MLLMs. Visual
Localization task encompassing RefCOCO, RefCOCO+, and RefCOCOg (Kazemzadeh et al., 2014;
Yu et al., 2016) is to measure the bounding box prediction accuracy. Open-Ended Visual Question
Answering task consisting of VizWiz (Bigham et al., 2010), VQAv2 (Goyal et al., 2017), GQA (Hudson
& Manning, 2019) and TextVQA (Singh et al., 2019) aims to evaluate visual reasoning capability.

Implementation Details. DeCo is primarily built on the LLaVA v1.5 framework, encompassing
model architectures, training data, and training strategies. We replace the original two-layer MLP
projector with QFormer (Li et al., 2023d), C-Abstractor (Cha et al., 2024), D-Abstractor (Cha et al.,
2024) and AdaptiveAvgPool respectively for fair comparison. The default configuration includes
a CLIP ViT-L/14 336px (Radford et al., 2021) and Vicuna v1.5 7B (Chiang et al., 2023) with a
two-stage training strategy. The first pre-training stage updates only the projector while the second
instruction-tuning stage optimizes both the projector and the LLM using LoRA (Hu et al., 2022). The
main results are derived from this default configuration. Additionally, we conduct generalization
experiments using a more lightweight setup that involves only the instruction tuning stage as outlined
in PRISM (Karamcheti et al., 2024). Specific training hyper-parameters are detailed in Appendix C.

3.2 Compared with Existing Projectors

To showcase the efficiency and effectiveness of the DeCo method with AdaptiveAvgPool, we compare
it with common projectors including the Linear projector (Liu et al., 2023b), QFormer (Li et al.,
2023d), C-Abstractor (Cha et al., 2024), and D-Abstractor(Cha et al., 2024).

Performance Effectiveness. Table 1 presents the overall performance of different projectors. The
non-compressive linear projector preserves all vision information and achieves the best overall
performance. In the compressive projector category, DeCo outperforms existing solutions across
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Table 4: Comprehensive comparison between the C-Abstractor (C-Abstr) and Adaptive Averaging Pooling
(AvgPool) across various settings including different vision backbones, image resolutions and LLMs. All
experiments are conducted on the one-stage instruction tuning (665K data) referring to PRISM (Karamcheti
et al., 2024) to speed up training. Res. denotes image resolution. Compress. means the compression ratio of
each projector from the raw visual token number to the projected vision token number.

ViT LLM Res. Compress. Project. POPE Refcoco / + / g VizWiz VQAv2 GQA VQAText

B1 SigLIP ViT-SO Phi-2 224 256->144 C-Abstr 66.1 11.5 / 6.5 / 8.4 18.7 47.8 42.0 34.6
(2.7B) AvgPool 84.1 21.5 / 13.6 / 15.6 34.5 68.1 52.6 41.2

B2 CLIP ViT-L Phi-2 336 576->144 C-Abstr 73.7 11.8 / 7.3 / 6.9 18.0 52.5 45.3 36.7
(2.7B) AvgPool 84.5 15.0 / 9.3 / 8.8 28.4 64.6 48.9 40.8

B3 SigLIP ViT-SO Phi-2 384 729->144 C-Abstr 78.8 12.9 / 8.2 / 7.7 41.3 53.2 45.1 35.4
(2.7B) AvgPool 81.7 17.4 / 11.4 / 11.0 39.5 60.3 48.0 40.2

B4 DINOv2+SigLIP Phi-2 384 729->144 C-Abstr 52.6 13.5 / 6.6 / 7.5 29.2 40.9 36.3 34.9
(2.7B) AvgPool 85.7 24.9 / 17.3 / 21.6 24.0 63.9 52.6 39.2

B5 DINOv2+SigLIP Qwen-Chat 384 729->144 C-Abstr 49.9 8.7 / 4.3 / 7.6 17.7 53.8 45.1 28.9
(0.5B) AvgPool 49.9 12.9 / 9.7 / 11.2 25.3 58.3 46.5 31.4

B6 DINOv2+SigLIP Vicuna-v1.5 384 729->144 C-Abstr 86.0 31.7 / 25.5 / 29.2 39.1 62.6 52.3 46.5
(7B) AvgPool 87.0 42.3 / 33.1 / 37.6 52.2 69.8 55.4 49.3

most benchmarks. Specifically, DeCo achieves gain margins of SEEDI +2.3 and POPE +1.3 in the
instruction-following MLLM benchmarks, RefCOCO/RefCOCO+/RefCOCOg +2.8/4.2/0.9 for visual
localization, and VQAv2 +3.9, GQA +1.0, VQAText +0.3 for open-ended visual question answering.
The superior results of DeCo under the same compression ratio (576->144) demonstrate that naive
compression at the patch level effectively transmits visual context while reducing the token number.
Among the existing projectors, the locality-enhanced C-Abstractor produces results comparable
to DeCo. Additionally, we observe that QFormer performs poorly on the visual localization task,
particularly in predicting visual coordinates. This poor performance is due to the loss of spatial
locality during projector compression, resulting in cumulative spatial context deficiency. Besides, as
Table 2 shows, AdaptiveAvgPool also performs the best on fine-grained tasks. The remarkable result
gain on the ChartQA (+7.69%) and DocVQA (+7.73%) dataset requiring fine-grained visual cues
(e.g., flowchart labels, plot axes) reveals that AdaptiveAvgPool is efficient in both widely-used general
benchmarks and more challenging sets.

Figure 5: Pre-training loss convergence of AdaptiveAvg-
Pool (brown), C-Abstractor (blue) and QFormer (green).

Training Efficiency. Besides the remarkable
performance, DeCo also has efficiency advan-
tages because it conducts parameter-free com-
pression clarified in § 2.4. Among exist-
ing compressive projectors, the sub-optimal C-
Abstractor comprises 3-layer ResNet blocks (Xie
et al., 2017), the adaptive average pooling and
another 3-layer ResNet blocks. Meanwhile, we
adopt a two-layer QFormer consisting of a self-
attention and a cross-attention layer initialized
from the BLIP-2 (Li et al., 2023d) pretraining
weights. Compared with them, the AdaptiveAvg-
Pool in DeCo method is more lightweight and
efficient. Figure 5 depicts that DeCo has faster training convergence during pre-training.

Spatial Locality Reservation. Spatial understanding capability in vision modality is essential to
achieve accurate visual location, fine-grained vision reasoning, object relation perception and etc.
We verify the spatial understanding capability of DeCo in Table 3 across six spatial understanding
tasks from MLLM benchmarks. As Honeybee (Cha et al., 2024) points out, the vanilla resampler
architecture like QFormer will lose the visual spatial locality, therefore, it obtains a low average
score of 40.9. The locality-enhanced projector, i.e., C-Abstractor, has remarkable improvements and
achieves 54.4. Overall, the DeCo with AdaptiveAvgPool well reserves the significant spatial context
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and achieves the closest score (56.0) to the linear projector (56.4). This benefits from the kernel and
stride operation of 2D AdaptiveAvgPool similar to the convolutional network (Li et al., 2021).

3.3 Generalization Results

To explore the performance of DeCo under different configurations, we select varied vision backbones,
image resolutions and LLMs, and report results in Table 4. To speed up training, all results are
obtained through the one-stage training (i.e., instruction tuning) according to PRISM (Karamcheti
et al., 2024). We select the most comparative baseline C-Abstractor (refer to Table 1) as a reference.

For vision backbones (B2, B3, and B4), we adopt the CLIP ViT-L, SigLIP ViT-SO (Zhai et al.,
2023), and the DINOv2 (Oquab et al., 2023)+SigLIP ensemble in embedding dimension. For
scaling image resolution (B1 and B3), we compare 224px and 384px image inputs using the SigLIP
ViT-SO backbone. For LLMs (B4, B5, and B6), we employ three levels of model scope, including
Qwen-Chat-0.5B (Bai et al., 2023a), Phi-2-2.7B (Javaheripi et al., 2023), and Vicuna-v1.5 (Chiang
et al., 2023).

The overall results in Table 4 under six different settings demonstrate the robustness of DeCo as a
compressive projector across diverse MLLM architectures. It surpasses the C-Abstractor notably in
almost all metrics and all settings.

3.4 Ablation Study

Compression Ratio Analysis. There is a trade-off between visual information deficiency and training
cost based on the compression ratio. In Figure 6, we compress the visual tokens from 24 × 24 to
20× 20, 16× 16, 12× 12, and 8× 8 respectively, and report the average Accuracy@IoU=0.5 on the
visual localization task. Results reveal that a quarter compression from 24× 24 to 12× 12 provides
the best balance for AdaptiveAvgPool.

Average Pooling vs. Max Pooling. Average pooling and max pooling are two widely-used
downsampling operations. We compare these two operations in the DeCo method in Figure 7.
Results show that adaptive average pooling performs better across almost all metrics, especially visual
localization. The reason is that the averaging operation integrates each patch within the kernel-size
window and can serve more visual context.

One-Stage vs. Multi-Stage Training. PRISM (Karamcheti et al., 2024) indicates simple linear
projectors only require one-stage instruction tuning. Inspired by this, we compare the one-stage and
two-stage training results of DeCo and find that two-stage training is recommended, as shown in
Figure 8.

4 Related Work
Multimodal Large Language Models. The development of large vision-language models has accel-
erated recently (OpenAI, 2023; Reka, 2024; Gemini Team, 2023; Li et al., 2023e). Flamingo (Alayrac
et al., 2022; Awadalla et al., 2023) and IDEFICS (Laurençon et al., 2023) have showcased the
effectiveness of consolidating LLMs with vision encoders. The Q-Former from BLIP-2 (Li et al.,
2023d) has helped bridge the gap between the visual and text modalities. InstructBLIP (Dai et al.,
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2023), Ying-VLM (Li et al., 2023f) and MM-ICL (Zhao et al., 2023) further integrate instructions into
the vision-text alignment process for improved in-context learning ability (Dong et al., 2022). Various
approaches have been proposed to align visual encoders and LLMs effectively. MiniGPT-4 (Zhu et al.,
2023) and LLaVA (Liu et al., 2023b;a) use a single projection layer, while mPLUG-Owl (Ye et al.,
2023) adopts LoRA tuning (Hu et al., 2022; Ma et al., 2024), showing promising results. Qwen-VL-
Chat (Bai et al., 2023b) has scaled up multi-modal pre-training with more datasets. Fuyu-8 (Bavishi
et al., 2023) proposes a new architecture by segmenting images into pixel patches, treating them
as visual tokens to train a conditional multi-modal language model directly. However, these works
employ projector modules empirically or simply refer to the final performance of the MLLMs on
downstream tasks without conducting an in-depth analysis of the projectors’ effectiveness. In this
paper, we examine this significant component by tracking the vision-and-language semantic flow
within MLLMs. We visualize the internal patterns learned by projectors and highlight their drawbacks,
offering valuable insights for future development.

Transformer Explainability. Explainability tools have been widely explored for Transformers
to better visualize their inner decision-making processes. Raw attention maps in Transformers
usually provide interpretations for a single layer. Abnar et al. (Abnar & Zuidema, 2020) combine
the attention scores across multiple layers and propose the rollout method. Chefer et al. (Chefer
et al., 2021b) introduce the relevance map through information propagation from all layers and
components in Transformers. LRP (Voita et al., 2019) captures the relative importance between
different attention heads using gradients. Casual Interpretation (Rohekar et al., 2023) can identify the
most important input tokens corresponding to the model output. However, these methods are only
applicable to Transformers with self-attention layers. As an alternative, the GAE (Chefer et al., 2021a)
method extends the propagated relevance maps to bi-modal scenarios with cross-attention layers.
Moreover, several studies (Aflalo et al., 2022; Liu et al., 2023c; Lyu et al., 2022; Ramesh & Koh, 2022;
Swamy et al., 2024) focus on the multimodal system interpretation. Recently, LVLM-Interpret (Ben
Melech Stan et al., 2024) has developed an interactive application for interpreting MLLMs. Despite
these efforts, in-depth explainability of existing MLLMs is rarely explored. In this study, we propose
the R-GAE method derived from GAE for MLLMs to investigate how projector modules affect the
vision-and-language semantic alignment of MLLMs.

5 Conclusion

We introduce DeCo to decouple visual token compression from semantic abstraction. It is motivated by
the “Double Abstraction” problem of existing projectors disentangling the Text-to-Patch, Text-to-Query
and Query-to-Patch R-GAE maps in the vision-and-language semantic alignment. The DeCo method
simplifies existing compressive projectors with a naive AdaptiveAvgPool, which downsamples spatial
vision tokens directly at the spatial level. Experiments across diverse configurations demonstrate the
efficiency, effectiveness, and robustness of DeCo. Eventually, the intuition of “DeCo” is not limited
to the specific AdaptiveAvgPool projector design, there is great potential to improve it to perform
more effectively under more demanding scenarios like high compression ratio.

Limitations

We present limitations in this work to facilitate future research. Firstly, the AdaptiveAvgPool
adopted in the DeCo method may cause severe visual information deficiency in an increasingly
high compression ratio compared to semantic-level compression projectors. In a high-compression
scenario, the averaging pooling will erase the fine-grained visual context in a kernel scope. Secondly,
the superiority of DeCo lies in a limited training resource application including limited GPUs to train
a long visual token sequence and limited training data to optimize a desirable semantic QFormer-type
projector. Otherwise, when have abundant training resources, the architecture of projectors tend to be
insignificant in an MLLM system as pointed out in the MM1 (McKinzie et al., 2024).
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A Details of R-GAE Explainability Tool

A.1 Background: GAE Explainability for Transformer Layers

The Generic Attention Explainability (GAE) (Chefer et al., 2021a) is a powerful method to interpret
predictions for bi-modality Transformer-based architectures. It has the advantage of acquiring the
relevance map from two arbitrary layers in the Transformer through propagation. Essentially, the
GAE method generates a relevance map Ā for each self-attention layer or cross-attention layer by
integrating raw attention maps and gradients. Then it aggregating the relevance maps of all layers
into a overall single map R. Formally, denote a Transformer architecture as ϕ, its attention map of
each layer as A, the input modality tokens as I ∈ RN×d and the output predict class as y. We aim to
visualize the relevance map Ry→I ∈ RN from class y to input tokens I . Take the self-attention layer
as an example, the relevance map Ā for each layer and the propagation of final map Ry→I are termed
as:

Ā = Eh((∇A⊙A)+), (2)

R = R+ Ā ·R, (3)

where each layer’s attention map A can be obtained through a forward pass and the related gradient
∇A := ∂ϕ(y)

∂A can be cached during a backward pass. ⊙ is the Hadamard product, (·)+ represents the
operation of setting negative values to 0, and Eh is the mean across the attention heads dimension. The
overall map R is initialized as the identity matrix with the intuition that each input token’s relevance
score is identical in the beginning. The propagation Formula 3 updates the R from a start layer Ls to
an end layer Le (Le > Ls ) in the Transformer. The cross-attention propagation is similar, which
maintains two relevance matrices for two modalities and updates them through the layer interaction.
Please refer to the details of the propagation formula across cross-attention layer from the original
paper.
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A.2 R-GAE Propagation for MLLMs

The traditional GAE map is designed for a classification task with the special CLS token. We
adapt it to MLLM architectures and propose the R-GAE explainability tool. As Figure 2 shows, a
typical MLLM architecture comprises a Vision Transformer (ViT) ϕv to acquire patch-level visual
representations I ∈ RN×dI (containing N patches), a projector ϕp to transform visual representations
into the textual embedding space as Q, and an LLM ϕt that handles both vision and instruction tokens
to output hidden states T ∈ RL×dT and generate responses Y = {y1, y2, . . . , yL}. We summarize
widely adopted projectors into two branches:

Non-compressive Projectors maintain the number of patch tokens N and only transform the visual
embedding dimension to match the dimension of the LLM, as exemplified by the linear projector (Liu
et al., 2023b). The projected visual tokens can be denoted as Q ∈ RN×dT .

Compressive Projectors reduce the number of patch tokens N to a specified lesser number M
(M < N ), conserving training resources. For instance, QFormer (Li et al., 2023d) learns pre-defined
query tokens to compress original visual tokens. These compressed query tokens Q ∈ RM×dT are
then fed into the LLM providing vision information.

We initialize three GAE relevance maps including a Text-to-Patch map as RT →I , a Text-to-Query
map as RT →Q, and a Query-to-Patch map as RQ→I . As Figure 3 depicts, given an image and an
instruction (e.g., “Please describe the image with a concise sentense”), an MLLM will generate a
textual description Y = {y1, y2, . . . , yL} referring to the visual information. During the generation
step t, we can cache the attention map Av , Ap, At across the ViT, the projector and the LLM during
a forward pass. Then specifying a word class ŷt as the target predict, we can get the gradients ∇At,
∇Ap, ∇Av in each module through a backward pass. The LLM module in MLLMs substantially
contains self-attention layers, therefore, we can propagate theRt

T →Q ∈ R1×M according to Formula 3
from LLM’s first layer to its last layer. The QFormer-type projector consisting of self-attention and
cross-attention layers can also be propagated similarly to get Rt

Q→I ∈ RM×N . Subsequently, the
overall text-to-patch relevance map can be obtained by matrix multiplication of text-to-query and
query-to-patch maps:

Rt
T →I = Rt

T →Q ×Rt
Q→I (4)

For a complete sentence Y , we integrate the GAE relevance maps from each time step t by averaging
them to obtain the overall visual relevance related to a factual sentence. The final three maps are
formulated as followings, in which RT →I ∈ R1×N , RT →Q ∈ R1×M , and RQ→I ∈ RM×N .

RT →Q =
1

L

L∑
t=1

Rt
T →Q, RQ→I =

1

L

L∑
t=1

Rt
Q→T , RT →I =

1

L

L∑
t=1

Rt
T →I (5)

For non-compression projectors maintaining the number of original patches, such as linear layers, the
Query-to-Patch map is an identity mapping based on the one-to-one correspondence between queries
and patches. Consequently, the Query-to-Image map visualizes the original image consisting of 576
patches. The Text-to-Query map is obtained in the same manner as in the QFormer, which propagates
from the R-GAE maps in the Language Model (LLM).

For the AdaptiveAvgPool projector in the DeCo method, a 2D spatial down-sampling mapping is
constructed from the original tokens to the compressed tokens. For an operation window with kernel
size K, the merged token is assigned a relevance score equal to 1/K2 of the sum of the relevance
scores of each raw token within the window. The corresponding Query-to-Patch map can be calculated
using this simple mapping rule. Similar to the QFormer, the Text-to-Query map is obtained from the
LLM layers.

B Comparison between R-GAE and Raw Attention Maps

The R-GAE map offers two advantages over raw attention maps: (i) it demonstrates better explain-
ability (Chefer et al., 2021a) by integrating both attention maps and gradients, and (ii) it can track
token relevance from a target layer (e.g., output textual tokens) to the first layer (e.g., original patch
tokens). In contrast, the attention map commonly used from the last layer of the Large Language
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Text-to-Patch Text-to-Query Query-to-Patch

R-GAE

Text: small orange Nissan pick up truck in traffic 

= x

= xAttn Map

Figure 9: Comparison between the R-GAE and raw attention map explainability on the same case
from the QFormer projector, which compresses 576 vision tokens to 64 query tokens.

Model (LLM) can only show the relevance of mixed tokens in that layer, where the tokens related to
the vision input position or the output word position have incorporated the semantics of other tokens
through attention operation in previous layers.

Figure 9 visualizes the R-GAE relevance maps and the raw attention maps for a comparative analysis.
The Query-to-Patch map of raw attention is obtained from the last cross-attention layer in the QFormer,
while the Text-to-Query map of raw attention is derived from the last layer in the LLM. By visualizing
the same model and image-text pair, it becomes evident that R-GAE provides a more interpretable
representation of the inner vision-language alignment of an MLLM. In contrast, the raw attention
map highlights an unrelated visual patch, such as the sky, which introduces an additional error in the
explainability procedure when analyzing semantic alignment. An in-depth analysis reveals that the
error in the raw attention map primarily originates from the Text-to-Query map of the last LLM layer.
This can be attributed to the fact that the LLM consists of 32 self-attention layers, and the relevance
among query tokens and text tokens in the last layer has deviated due to the fusion of semantics
from other tokens in previous layers. On the other hand, the Query-to-Patch map exhibits relatively
similar characteristics to the R-GAE map. This similarity can be explained by the architecture of the
QFormer, which only employs a single cross-attention layer, thus minimizing the influence of token
fusion across layers for raw attention.

C Training Hyper-parameters

Architecture of Used Projectors.

1. C-Abstractor comprises 3-layer ResNet blocks (Xie et al., 2017), the adaptive average pooling
and another 3-layer ResNet blocks.

2. D-Abstractor leverages Deformable Attention (Zhu et al., 2020) to replace the vanilla
attention and conduct well-designed initialization of query tokens. We adopt a two-layer
D-Abstractor.

3. QFormer is a two-layer BERT (Devlin et al., 2019) architecture same as the the BLIP-2 (Li
et al., 2023d) and we load the BLIP-2 pre-training weights as an initialization.

4. Linear projector is a two-layer MLP with the GELU activation same as the LLaVA v1.5 (Liu
et al., 2023a).

5. AdaptiveAvgPool is parameter-free, we utilize a two-layer MLP as the linear projector to
map the vision feature dimension to the LLM’s.
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Training Parameters. Our experiments are conducted under two primary training settings. The
main experiments are built on the LLaVA v1.5 framework, as shown in Table 5. The generalization
experiments are constructed using a more lightweight setup that involves only the instruction tuning
stage, referring to the PRISM (Karamcheti et al., 2024) approach. Specific training hyperparameters
are detailed in Table 6.

Table 5: Hyper-parameters of main experiments.

Hyperparameter Pretrain Finetune
batch size 256 128
lr 1e-3 2e-5
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 2 3

Table 6: Hyper-parameters of generalization experiments.

Hyperparameter Value
Batch Size 128
Max Gradient Norm 1.0
Weight Decay 0.1
Learning Rate 2e-5
Optimizer AdamW
Scheduler Warmup & Cosine Decay
Warmup Ratio 0.03

D More R-GAE Relevance Maps

Figure 10 presents additional visualized cases of the R-GAE relevance map across different projectors.

E Broader Impacts

Our work utilizes off-the-shelf frozen LLMs, which means it shares some of their intrinsic drawbacks,
such as generating hallucinated, ungrounded text or biased outputs. We mitigate these issues by
enhancing the model’s grounding in both visual and instruction inputs. Additionally, our training
dataset includes 40K examples of safety data sourced from ShareGPT, instructing the models to
refuse responses to toxic, inappropriate, or otherwise unsafe inputs. However, we do not recommend
applying our models to any downstream applications without a prior assessment of safety and fairness
specific to that application.
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(a) R-GAE maps related to the generated text “small orange Nissan pick up truck in traffic”. In this case, all
projectors reserve the effective visual representation and translate it to the LLM. Specifically, the Qformer-based
MLLM attends to the query indexing (0, 2) which highlights the “Nissan” semantics on the image. This indicates
extracting effective visual semantic concepts in the first abstraction by the QFormer is important for the traditional
compressive projectors.

Adaptive

AvgPool
(576 → 64)

Text-to-Patch Text-to-Query Query-to-Patch

QFormer
(576 → 64)

Linear
(576 → 576)

Text: skateboard of boy wearing red and white tennis shoes

= x

= x

= x

(b) R-GAE maps related to the generated text “skateboard of boy wearing red and white tennis shoes” are shown
in Figure 10. In this case, the QFormer-based MLLM fails to attend to the relevant patches with the “red and
white tennis shoes” attributes. In contrast, both the linear projector and the AdaptiveAvgPool highlight the
correct patches.

Figure 10: Visualization of additional R-GAE relevance maps. The linear projector is non-compressive,
while the QFormer and Adaptive Average Pooling (AdaptiveAvgPool) compress the original 576
vision tokens to 64. For better visualization, the highlighted query tokens from the text are framed in
red.
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