
Harmony in Divergence: Towards Fast, Accurate, and
Memory-efficient Zeroth-order LLM Fine-tuning

Qitao Tan1 Jun Liu2 Zheng Zhan2 Caiwen Ding3

Yanzhi Wang2 Xiaolong Ma4 Jaewoo Lee1 Jin Lu1 Geng Yuan1

1University of Georgia 2Northeastern University
3University of Minnesota 4University of Arizona

Abstract

Large language models (LLMs) excel across various tasks, but standard first-order
(FO) fine-tuning demands considerable memory, significantly limiting real-world
deployment. Recently, zeroth-order (ZO) optimization stood out as a promis-
ing memory-efficient training paradigm, avoiding backward passes and relying
solely on forward passes for gradient estimation, making it attractive for resource-
constrained scenarios. However, ZO method lags far behind FO method in both
convergence speed and accuracy. To bridge the gap, we introduce a novel layer-
wise divergence analysis that uncovers the distinct update pattern of FO and
ZO optimization. Aiming to resemble the learning capacity of FO method from
the findings, we propose Divergence-driven Zeroth-Order (DiZO) optimization.
DiZO conducts divergence-driven layer adaptation by incorporating projections
to ZO updates, generating diverse-magnitude updates precisely scaled to layer-
wise individual optimization needs. Our results demonstrate that DiZO signifi-
cantly reduces the needed iterations for convergence without sacrificing through-
put, cutting training GPU hours by up to 48% on various datasets. Moreover,
DiZO consistently outperforms the representative ZO baselines in fine-tuning
RoBERTa-large, OPT-series, and Llama-series on downstream tasks and, in some
cases, even surpasses memory-intensive FO fine-tuning. Our code is released at
https://github.com/Skilteee/DiZO.

1 Introduction

Fine-tuning large language models (LLMs) via backpropagation achieves strong performance across
many NLP tasks [1, 2, 3, 4, 5], but their large parameter counts create substantial memory burdens,
limiting downstream applicability. Following neural scaling laws [6, 7], next-generation LLMs grow
rapidly, e.g., model sizes increase 410× every two years, far outpacing DRAM bandwidth (1.4×) and
capacity (2×) growth. This imbalance leads to the memory wall[8], a growing challenge especially
for deployment on memory-limited devices[9, 10, 11].

Zeroth-order (ZO) optimization has recently emerged as a memory-efficient approach for LLM
fine-tuning, gaining growing attention [12, 13, 14, 15]. By relying solely on forward passes for
gradient estimation, ZO eliminates the need for backpropagation and significantly reduces memory
usage for activations, gradients, and optimizer states. As shown in [14], ZO fine-tuning can reduce
memory cost by up to 12×. However, ZO still shows a notable gap in convergence speed and
accuracy compared to first-order (FO) methods, as shown in Table 1. Although ZO benefits from
higher throughput due to its simpler computation, it requires over 10× more iterations to converge,
ultimately increasing GPU time. Prior work often attributes this gap to noisy gradient estimates,
without exploring other contributing factors [14, 16, 15].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Skilteee/DiZO

Table 1: Fine-tuning results on SST-2 datasets.
Although ZO method shows advantages in memory
saving, left behind FO method in terms of both
accuracy and GPU hours.

Model Type Acc. Memory GPU
Hours

RoBERTa FO 91.9 9.2 GB 12.3%
ZO 90.5 4.5 GB 100.0%

OPT-2.7B FO 94.2 45.4 GB 16.8%
ZO 90.0 6.8 GB 100.0%

To further uncover the fundamental causes of
this gap, we begin by analyzing the distinct
update patterns shown by FO and ZO meth-
ods during LLM fine-tuning. Interestingly,
our analysis reveals a substantial difference in
the magnitude of weight updates between lay-
ers. Specifically, FO methods benefit from
fine-grained gradient estimation and enable
diverse-magnitude updates precisely scaled to
the layer-wise individual optimization needs.
In contrast, ZO method tends to behave with
uniform-magnitude updates without consider-
ing layer-wise individual characteristics. This is
attributed to the nature of ZO that relies on high-dimensional random search and leverages random
perturbation for gradient estimation. Based on this, we conjecture that the compromised performance
of ZO stems from its limited capability in achieving diverse-magnitude updates. This naturally raises
the question: if we could enable ZO to achieve the desired diverse-magnitude updates, could we
effectively achieve training acceleration and accuracy improvement?

To validate our conjecture and fill the performance gap, we innovatively propose Divergence-driven
Zeroth-Order optimization (DiZO), which performs divergence-driven layer adaptation via anchor-
based learnable projections, enabling principled adaptive updates that resemble FO methods. Specifi-
cally, DiZO guides updates along geometrically constrained directions by learning target distances
from an anchor point (e.g., the pre-trained model). We also design a ZO-based method for projection
learning that ensures the entire training process is memory-efficient. We extensively evaluate DiZO
on a range of tasks, including classification and generation, using models such as RoBERTa-large,
the OPT series, and the Llama series. Results show that DiZO significantly reduces training iterations
and cuts GPU hours by up to 48% without sacrificing throughput. DiZO also integrates seamlessly
with parameter-efficient tuning methods like LoRA [17], and consistently outperforms ZO baselines,
sometimes even surpassing memory-intensive FO fine-tuning. Finally, we comprehensively analyze
several potential alternatives and validate the necessity and effectiveness of our approach.

The summary of our contributions is as follows:

• We introduce a novel layer-wise divergence analysis to uncover the fundamental differences
in the updating patterns of FO and ZO methods.

• We introduce DiZO, a novel ZO method using divergence-driven layer adaptation, achieving
a learning capacity closely resembling FO while maintaining the throughput benefit.

• DiZO consistently exceeds existing baselines in both accuracy and GPU hours, and it can
be seamlessly integrated with LoRA for additional benefits. These advantages hold across
diverse tasks and LLM architectures.

• We also provide comprehensive analysis and discussions on overheads, convergence guar-
antee, and potential alternatives, which further strengthen the efficiency, feasibility, and
necessity of our proposed approach.

2 Preliminaries and Pattern Analysis

2.1 Revisiting Zeroth-order Optimization

Recently, ZO optimization has gained significant attention in machine learning [18, 19, 20, 21]. Unlike
conventional FO optimization, which calculates gradients via backpropagation, ZO optimization
estimates gradients using only objective oracles via finite differences [22, 23, 24]. This property
can be leveraged for LLM fine-tuning to alleviate the extensive memory costs. Specifically, as ZO
only needs two forward passes to obtain the estimated gradients, it avoids computing and storing the
most memory-consuming information needed in the conventional FO training, i.e., activations in the
forward process, gradients in the backward process, and the optimizer state.

The core idea of ZO optimization is to estimate gradients by applying random perturbations to the
weights and computing differences in the objective. For a mini-batch of data B, sampled from a

2

FO layer-wise update pattern

Iter0: 58.8 (Acc)

Iter1000: 85.0

Iter2000: 90.0

Iter0: 58.8

Iter20: 88.2

Iter40: 93.0

+1000×

+1000×

+20×

+20×

+50×

+50×

ZO Update
 Uniform
Magnitude

Iter0: 58.8

Iter50: 60.0

Iter100: 62.0

FO Update
 Diverse
Magnitude

MeZO layer-wise update pattern

Figure 1: Comparison of the training dynamics of ZO and FO methods. For the upper subfigure,
WK ,WV ,WQ,WO indicate the corresponding weight matrix in the attention module.

labeled dataset D = {xi, yi}|D|
i=1, a model with parameters θ ∈ Rd, where d represents the dimension

of the parameter space, and the corresponding loss function L(θ;B). The gradient is estimated as:

∇L(θ;B) = 1

q

q∑
i=1

[
L (θ + ϵui;B)− L (θ − ϵui;B)

2ϵ
ui

]
(1)

where ui ∼ N (0, I) is a random perturbation typically drawn from standard Gaussian distribution, q
is the number of queries, and ϵ > 0 is a small perturbation scalar for smoothing.

Given the learning rate η and the mini-batch data Bt at t-th iteration, once the estimated gradient
∇L(θ;Bt) is obtained, then ZO-SGD updates the parameters with the following rule:

θt+1 = θt − η∇L(θt;Bt) (2)

2.2 Layer-wise Divergence Analysis

ZO optimization applies uniform-magnitude updates across layers, with similar L2-norms per iteration
(see Appendix F). This uniformity may underlie its weaker performance. To explore how update
divergence impacts convergence and accuracy, we analyze the training dynamics of ZO and FO
methods.

Analysis indicator. To quantify the effect of updates, we adapt the layer-wise L2-norm distance
gap between the weights of the pre-trained and the weights of fine-tuned model as an indicator. The
layer-wise L2-norm distance gap is defined as:

∥∆θ
(ℓ)
t ∥ = ∥θ(ℓ)

t − θ
(ℓ)
0 ∥2 (3)

where t is t-th fine-tuning iteration, ℓ is ℓ-th layer of the model, and θ
(ℓ)
0 indicates the weights of ℓ-th

layer of pre-trained model.

Analysis result. Figure 1 compares the training dynamics of FO and ZO optimization methods,
focusing on how each shapes the layer-wise distance gap between model parameters and the pre-
trained initialization. Both methods show increasing divergence among layers over time, as illustrated
by the twisting lines in the upper sub-figure, indicating that layers benefit from different levels of
deviation from the pre-trained model. However, FO and ZO differ in how this divergence accumulates.
FO uses fine-grained gradients to produce diverse-magnitude updates, quickly establishing meaningful
distance gaps within a few iterations. In contrast, ZO performs random search with uniform-magnitude
updates, requiring thousands of iterations to reach similar divergence. Additionally, FO-based
methods show fast but converging growth in distance gaps, while ZO-based methods exhibit linear,
unconstrained growth. This continued expansion under ZO may reflect a lack of effective constraint,
contributing to accuracy drops in later stages and resulting in suboptimal performance.

3

Algorithm 1: Divergence-diven ZO Optimization (DiZO)
1 Require: parameter of t-th iteration θt and pre-trained model θ0, loss function L, step budget T ,

perturbation scalar ϵ, mini-batch data Bt, learning rate η, projection at t-th iteration γt = {γi
t}Li=1,

projection update interval κ
2 for t = 1 to T do
3 ∇L = GradEst(θt, ϵ,Bt);
4 θt = θt−1 − η∇L;
5 if t mod κ = 0 then
6 γ∗

t = argminγt L(θ0 +
γt

∥∆θt∥∆θt;Bt);
7 θt = ApplyProjection(θt,θ0,γ

∗
t);

8 end
9 end

10 Subroutine GradEst(θ, ϵ, B):
11 Sample: u1, . . . , uq ∽ N (0, I);
12 Query: yi = L(θ + ϵui;B)− L(θ − ϵui;B);
13 Estimator: ∇L = q

2ϵ

∑q
i=1 yiui;

14 return ∇L;
15 return
16 Subroutine ApplyProjection(θt, θ0, γt):
17 for ℓ = 1, 2, . . . , L do

// Project l-th layer

18 θ
(ℓ)
t = θ

(ℓ)
0 +

γ
(ℓ)
t

∥∆θ
(ℓ)
t ∥

∆θ
(ℓ)
t ;

19 end
20 return θt;
21 return

3 Methodology

3.1 Design of the Divergence-driven Layer Adaptation

To provide layer-wise adaptive updates for ZO optimization, we propose applying anchor-based
learnable projections to the updates of different layers. The pseudocode for the method is shown in
Algorithm 1.

Specifically, we treat training iteration as a two-step process that iteratively updates the weights and
the projection factor. Our approach involves two key steps performed in an alternating manner. First,
we perform vanilla ZO optimization as defined in Eq. (2). Second, we identify the ideal projections
for the weights and apply them, generating the projected weights. Formally, we define the ideal
projection learning as solving the following minimization problem:

min
γt

L(θ0 +
γt

∥∆θt∥
∆θt;Bt) (4)

where γt = {γ(ℓ)
t }Lℓ=1 is a projection vector at t-th iteration, and L is the number of layers. While

searching for the ideal projection, we freeze the model weights and use the same mini-batch data Bt

that is employed for the main ZO weight fine-tuning.

After finding the ideal projection for the t-th ZO step, we project the weights as:

θt = θ0 +
γt

∥∆θt∥
∆θt (5)

where we get the new θt after projection, and then we use the projected one for the following
fine-tuning. When the value of γt is larger than ∥∆θt∥, it enlarges the distance gap between the
fine-tuned model and the pre-trained model, and vice versa.

3.2 How to Learn the Projection?

Although promising, finding the ideal projection (defined in Eq. (4)) remains challenging due to the
high complexity of the objective. A straightforward solution is to also perform backpropagation for

4

gradient computation and optimize the projection accordingly (FO-based method). For example,
we use Adam optimizer to directly update γt. The results are shown in Table 2, which significantly
reduces 67.7% of the iterations and 58.5% of GPU hours, and increases by 3.4% in accuracy.

Table 2: Fine-tuning OPT-2.7B on SST-2 dataset. ●: partial
gradient-free; DiZO†: learning projection by FO method;

Task Type Gradient
Free Acc. #Train

Iter.
GPU

Hours

MeZO ✓ 90.0 100% 100%
DiZO† (w. FO) ● 93.4 33.3% 41.5%
FT ✗ 94.2 9.3% 16.8%

However, searching projection with
the FO method makes DiZO only
partially gradient-free. Specifically,
while the model weights are updated
via ZO, the per-layer projection pa-
rameter γ(ℓ)

t is updated via FO, which
still requires the backward pass and
storing memory-intensive activation.
The only memory saving, compared
to the vanilla FO fine-tuning, is the
optimizer state. As a result, relying on FO to find the ideal projection, though it achieves faster
convergence speed and better accuracy in ZO optimization, offers limited overall benefit. It is worth
noting that the peak memory usage during training of the FO-based DiZO is similar to that of low-rank
adaptation (LoRA) [17].

3.3 Projection Learning by Zeroth-order Optimization

Our major goal is to find the ideal projection for adaptive updates while avoiding memory-intensive
backpropagation. One potential promising solution is to also utilize the ZO method to update the
projection. We estimate the gradient and update the projection as:

∇L̂(γt;θt) =

[
L̂ (γt + ϵu;θt)− L̂ (γt − ϵu;θt)

2ϵ
u

]
(6)

γt,j+1 = γt,j − η∇L̂(γt;θt) (7)

where u ∈ RL is a random vector from N (0, I) and L̂ = L(θ0 + γt

∥∆θt∥∆θt;Bt).

However, directly applying vanilla ZO optimization to the sub-task of projection learning yields
limited improvement and can even cause failure, undermining the main fine-tuning process (see
Appendix C.2). This failure stems from two key issues. First, projection values depend not only on γt

but also on the distance gap ∥∆θt∥. Ignoring this gap leads to uninformative updates and suboptimal
solutions. Second, due to noisy ZO updates over a few iterations, projection magnitudes can become
too small or too large. A small projection pulls the model too close to the pre-trained state, erasing
progress, while a large one applies overly aggressive updates that destabilize training.

To address the above issues, two strategies are devised.
Re-initialization. To introduce the distance gap ∥∆θt∥ into the projection learning process, the
initial value γt,0 is reset to ∥∆θt∥ each time the projection is optimized. This means that, initially,
the projection magnitude γt

∥∆θt∥ = 1. If not perform projection updates, DiZO reverts to standard ZO.
Projection clipping. To prevent drastic weight changes and maintain training stability, we introduce
projection clipping. Specifically, given a clipping range τ > 0, if the projection magnitude γt

∥∆θt∥ /∈
[1− τ, 1+ τ], it is clipped to remain within this interval. This prevents aggressive model adjustments
that could destabilize training.

4 Overhead Analysis

We simply analyze the computational overhead of our method here and will elaborate further later.

Memory overhead. Our method requires additional memory as it involves storing the pre-trained
model and calculating the weight distance gap with the fine-tuned model, which can become costly
when scaling to large LLMs. However, in DiZO, we find that projecting only the weight updates of
the Query and Value layers in the attention module, instead of updating all layers, not only reduces
memory requirements but also delivers better performance. As a result, we only need to store the
weights of these two types of layers from the pre-trained model, accounting for approximately 16.7%
of the parameters in OPT-2.7B, which is a manageable overhead. Similarly, LoRA [17] also focuses
on weight decomposition for Query and Value layers, which echoes our observation.

5

Figure 2: Experiments on RoBERTa-large. DiZO outperforms the baselines with and without LoRA.
Detailed numbers are presented in Table E.1, and the loss trajectory is shown in Figure E.1.

Computational overhead. Our method introduces extra computational cost, as the projection
is learned alongside the main optimization (fine-tuning). However, we observe that performing
projection learning intermittently, only once every few training iterations, does not compromise
performance and significantly reduces the added overhead. This strategy reduces the computational
burden while maintaining efficiency, allowing DiZO to achieve throughput comparable to vanilla ZO
fine-tuning. Additionally, the reduced frequency of projection updates ensures that DiZO remains
scalable for larger models and datasets.

5 Convergence Analysis

In this section, we give a nonconvex convergence guarantee in terms of the expected gradient norm.
The bound improves over basic ZO-SGD by replacing the factor d (full dimension) with an effective
dimension on the order of D where we denote by D = max1≤ ℓ≤L d(ℓ).

We assume the following, which are standard in ZO analyses:
Assumption 5.1. L is Lf -smooth, i.e. there exists Lf > 0 such that for all θ,θ′,

∥∇L(θ) − ∇L(θ′)∥ ≤ Lf ∥θ − θ′∥.
Assumption 5.2. Due to DiZO’s layerwise projection step, each θ(ℓ) remains in a ball (or line
segment) around θ

(ℓ)
0 of radius R(ℓ). In particular, define

S =
{
θ | ∥θ(ℓ) − θ

(ℓ)
0 ∥ ≤ R(ℓ) ∀ ℓ

}
.

The algorithm ensures θt ∈ S for all iterations t.
Theorem 5.3. Under Assumptions 5.1–5.2, suppose DiZO runs for T iterations with step size
η = c/

√
T for a sufficiently small constant c > 0. Then there exist constants such that

min
0≤ t<T

E
[
∥∇L(θt)∥2

]
= O

(√D√
T

)
.

Note that D can often be much smaller than the total parameter count
∑L

ℓ=1 d
(ℓ). This drastically

improves the variance bounds in the zeroth-order gradient estimation, leading to a faster convergence
rate in practice.

Standard ZO-SGD in Rd often incurs a factor of
√
d in its nonconvex stationarity bound, due to

estimator variance. By restricting each layer θ(ℓ) to remain near the pre-trained θ
(ℓ)
0 , DiZO effectively

reduces the dimension to D≪ d, improving the rate to O(
√
D/

√
T). The full proof and detailed

analysis are provided in Appendix F.2.

6 Experiments

6.1 Experimental Settings

Models and datasets. We evaluate DiZO with various models, including medium-sized masked
models [2] (RoBERTa-large) and large-sized autoregressive models [25, 26] with different size,

6

including OPT-2.7B, OPT-6.7B, OPT-13B, Llama2-7B, Llama3-3B, and Llama3-8B. The total
parameter size is ranging from 355M to 13B. We evaluate on the SuperGLUE [27] benchmark,
MMLU [28] and MT-Bench [29] benchmarks. More details on datasets are shown in Appendix B.1.

Baseline. We mainly compare with two ZO works, memory-efficient ZO optimization (MeZO) [14]
and Hessian-informed ZO optimization (HiZOO) [15]. MeZO is a fundamental and representative
work in ZO LLM fine-tuning but suffers from slow convergence speed. HiZOO is a recently proposed
ZO acceleration for LLM fine-tuning, which leverages the estimated second-order information to
speed up. In addition, we also incorporate the parameter-efficient fine-tuning (PEFT) technique
LoRA [17].

Evaluation. For SuperGLUE, we follow prior work [30, 14], evaluating few-shot and many-shot
settings on RoBERTa-large using k = 16 and k = 512 samples per class. For each setting, we
randomly sample data for training, validation, and testing. For OPT and LLaMA, we use 1000,
500, and 1000 samples respectively. For MMLU and MT-Bench, we adopt the setup in [31, 32],
fine-tuning on the Alpaca GPT-4 dataset [33]. All experiments are conducted on NVIDIA A100 and
A6000 GPUs, with results averaged over three trials. Full results are provided in Appendix E.

6.2 Medium-sized Masked Language Models

We conduct experiments on RoBERTa-large across three types of datasets and compare DiZO with
two ZO baselines. We also explore PEFT by integrating LoRA. Figure 2 presents the results, while
Figure E.1 shows the trajectory of training loss curves, indicating the convergence speed of DiZO
and MeZO. Our key findings are as follows:

DiZO greatly increases the convergence speed over MeZO. By using divergence-driven layer
adaptation, the loss curve of DiZO decreases much faster, cutting the required iterations by over 50%
on SST-2, MNLI, and RTE. Moreover, DiZO improves accuracy by 1.7%, 3.6%, and 8.5%.

DiZO outperforms MeZO and achieves results on par with full fine-tuning. From Figure 2, DiZO
consistently surpasses MeZO on all six datasets. Notably, on SST-2 and RTE datasets, DiZO even
shows better performance than FO full-parameter fine-tuning, increasing by 0.3% and 1.5%.

DiZO is effective for both full-parameter fine-tuning and PEFT. Although DiZO applies projec-
tions based on the distance with the pre-trained model, while such prior knowledge does not exist for
the decomposed weights of LoRA, it still delivers some gains.

6.3 Large Autoregressive Language Models

Table 3: Experiments results of fine-tuning OPT-2.7B (with 1000 training samples). Better results
between MeZO, HiZOO, and DiZO are highlighted in bold.

Dataset
Task Type

SST-2 RTE CB BoolQ WSC WIC MultiRC SQuAD DROP
————————–classification————————– ——generation——

Zero-shot 56.3 54.2 50.0 47.6 36.5 52.7 44.4 29.8 10.0
FT 94.2 81.2 82.1 72.2 63.8 65.8 71.6 78.4 30.3
LoRA 94.6 80.8 82.7 77.7 59.8 64.0 72.8 77.9 31.1

MeZO 90.0 63.5 69.6 67.4 61.5 57.6 58.7 68.7 22.9
HiZOO 90.8 60.6 70.4 68.0 60.2 56.6 54.8 68.3 23.4
DiZO 92.5 68.2 71.4 67.0 63.4 57.9 56.4 69.0 24.3

MeZO LoRA 91.4 66.6 71.1 67.6 59.6 57.0 57.0 70.8 22.5
HiZOO LoRA 90.6 65.2 71.4 67.4 52.6 58.8 59.0 71.8 22.7
DiZO LoRA 91.5 68.4 71.8 70.0 61.6 58.4 56.2 74.4 23.3

To assess the generalizability of DiZO, we run experiments on the OPT and Llama. The overall
results are summarized in Table 3, Table 4, and Figure 3 for OPT-2.7B, OPT-6.7B, and Llama series,
respectively. We also compare the convergence speeds of DiZO and MeZO on OPT-2.7B across
datasets in Figure 4. We highlight key observations from experiments as follows.

DiZO significantly reduces training GPU hours over MeZO. As shown in Table 4, DiZO achieves
faster convergence with up to 48% less GPU time by quickly establishing effective layer-wise

7

Table 4: Experiment results on OPT-6.7B (with
1000 training samples).

Dataset
Task Type

SST-2 RTE CB WSC SQuAD
———classification——— –generation–

MeZO 90.2 73.2 71.4 62.2 76.0
HiZOO 90.7 74.2 71.8 62.1 77.3
DiZO 91.1 74.8 73.2 61.8 78.6
MeZO LoRA 91.6 71.2 71.4 61.8 76.3
HiZOO LoRA 91.3 71.3 71.4 62.1 76.1
DiZO LoRA 92.4 70.2 71.8 62.6 77.9

Figure 3: Experiment result on Llama3-3B and
Llama3-8B. More results and detailed numbers
are shown in Appendix E.4.

divergence. Unlike HiZOO, which reduces iterations but suffers from slow throughput due to costly
Hessian estimates, DiZO maintains MeZO-level efficiency with a lightweight projection update using
only two forward passes.

DiZO outperforms baselines in both standard and parameter-efficient settings. As shown
in Table 3, DiZO consistently outperforms MeZO and HiZOO, with or without LoRA, achieving
performance close to FO methods. It ranks first on five of seven classification tasks and leads both
text generation tasks. These gains extend to OPT-6.7B (Table 4) and Llama models (Figure 3),
highlighting the benefit of layer-wise adaptive updates.

- 48% - 47% - 45% - 41% - 41%
- 38% - 35%

- 31%
- 29%

DiZO on Datasets# MeZO
Figure 4: Comparison between MeZO and DiZO on speed.

6.4 Memory and Speed Analysis

Table 5: Memory utilization and speed test on OPT-2.7B on RTE dataset (180 tokens per example on
average). ●: partial gradient-free; DiZO†: learning projection with Adam. For a fair comparison, the
speed and memory are measured on the same machine with the same settings.

Task Type Gradient
Free

LoRA
Added

Peak
Memory

Averaged
Memory Throughput #Train

Iter.
GPU

Hours
FT ✗ ✗ 62.2 GB 62.2 GB 1.05 it/s 10.0% 16.2%
LoRA ✗ ✓ 42.5 GB 42.5 GB 2.12 it/s 8.3% 6.6%
DiZO† ● ✗ 44.7 GB 10.1 GB 1.43 it/s 33.3% 39.6%
DiZO LoRA† ● ✓ 40.1 GB 9.8 GB 2.40 it/s 26.6% 18.8%

MeZO ✓ ✗ 7.8 GB 7.8 GB 1.70 it/s 100.0% 100.0%
HiZOO ✓ ✗ 13.2 GB 13.2 GB 1.21 it/s 63.3% 88.9%
DiZO ✓ ✗ 9.5 GB 9.5 GB 1.54 it/s 60.0% 62.3%

MeZO LoRA ✓ ✓ 7.7 GB 7.7 GB 3.10 it/s 94.2% 51.6%
HiZOO LoRA ✓ ✓ 13.0 GB 13.0 GB 2.07 it/s 80.0% 65.7%
DiZO LoRA ✓ ✓ 9.4 GB 9.4 GB 2.87 it/s 66.7% 39.5%

In this section, we examine the memory utilization and convergence speed of DiZO in comparison
with both ZO baselines and FO fine-tuning approaches (with and without LoRA). Table 5 presents
the results of fine-tuning OPT-2.7B on the RTE dataset, more results are shown in Appendix E.2.

From a memory perspective, DiZO avoids backpropagation and memory-heavy activations, cutting
memory use by 90% compared to FO. Its overhead stems only from storing Query and Value weights
(16.7% of total). In contrast, HiZOO stores full-layer Hessians, scaling poorly with model size. In

8

terms of convergence speed, DiZO significantly reduces iteration count while maintaining throughput
comparable to MeZO, leading to much lower training GPU hours. By comparison, HiZOO achieves
less iteration reduction and slows throughput of MeZO by about 1.5× due to Hessian estimation,
resulting in only modest savings, or even higher training cost in some cases, such as HiZOO+LoRA
on RTE

A notable byproduct of our method is using FO (e.g., with the Adam optimizer) to learn the projections.
While this version has memory consumption comparable to LoRA and requires additional training
GPU hours, it offers distinct advantages. Since DiZO does not update projections at every iteration,
FO-based DiZO exhibits significantly lower average memory usage than FO-based LoRA, with an
average memory overhead close to that of the ZO-based DiZO. Although average memory usage may
seem less critical in single-process, single-GPU setup, many real-world on-device training scenarios
involve multi-process environments [34, 35]. In such cases, the FO-based DiZO can stagger memory
usage phases across processes, enabling parallel operations that purely FO methods cannot achieve.
Furthermore, compared with ZO-based DiZO, the FO version reduces extra training GPU hours and
delivers better performance. These qualities make it particularly appealing for specific on-device
training cases.

6.5 Discussion on Potential Alternatives and Limitations

Adaptive learning rate methods may appear analogous to DiZO at first glance, as both introduce
per-layer adaptive control over parameter updates, but their principles differ. Methods like Adam
and RMSProp adjust update magnitude based on gradient history, controlling how fast parameters
move. DiZO, by contrast, uses geometric constraints to guide parameters toward a learnable target
distance from a fixed anchor (the pre-trained model), determining where the parameters move. This
projection-based approach enables principled, divergence-aware updates that step-size modulation
alone cannot replicate. Additionally, adaptive methods maintain gradient moment estimates, adding
memory and computational overhead, particularly in LLMs. We empirically compare DiZO to these
methods in Appendix D.

Line search could potentially be a simpler method to replace ZO for optimizing projection scalars.
However, line search approaches, e.g., backtracking, generally require tuning each layer’s scalar
independently, leading to inefficient and unscalable coordinate-wise search. These methods also
rely on directional derivatives and assume smooth interactions, which do not generalize well to joint
tuning across layers. DiZO avoids these issues by using a ZO-based strategy that updates all scalars
simultaneously, stabilized by projection clipping and re-initialization. As shown in Appendix D,
replacing ZO with line search under the same forward-pass budget leads to worse performance,
confirming its inefficiency in this context.

Limitations. While DiZO demonstrates notable improvements in both accuracy and training ef-
ficiency, the theoretical foundations behind its design choices remain incomplete. For example,
the choice of using a pre-trained model as the anchor point and the selection of which layer to be
projected is primarily supported by empirical observations rather than formal justification(detailed
ablation study in Appendix C). The absence of a solid theoretical framework to explain why such
design yields consistent performance gains leaves open questions about the optimality of the approach.
Nevertheless, our findings offer valuable insights and point to promising directions for future re-
search, particularly in developing anchor-guided, adaptive ZO optimization frameworks with stronger
theoretical grounding.

7 Conclusion

In this paper, we propose a novel layer-wise divergence analysis to reveal the distinct update pattern
between FO and ZO methods. Building on these insights, we present DiZO, an enhanced ZO
method using divergence-driven layer adaptation to resemble the learning capacity of the FO method.
DiZO achieves significant training acceleration and superior performance across diverse tasks and
architectures. Moreover, our method can be seamlessly integrated with PEFT techniques like LoRA
for additional speedup. For future work, we plan to explore DiZO in other fields, particularly for
fine-tuning large pre-trained vision models.

9

8 Acknowledgment

This work was supported by the U.S. National Science Foundation, under Grant No. CCF-2553684,
CNS-2312158, No. 1943046 and IIS-2223768.

References
[1] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin.

End-to-end open-domain question answering with bertserini. arXiv preprint arXiv:1902.01718,
2019.

[2] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692, 2019.

[3] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A ques-
tion answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937,
2018.

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–
113, 2023.

[5] Minghang Zheng, Peng Gao, Renrui Zhang, Kunchang Li, Xiaogang Wang, Hongsheng Li, and
Hao Dong. End-to-end object detection with adaptive clustering transformer. arXiv preprint
arXiv:2011.09315, 2020.

[6] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
An empirical analysis of compute-optimal large language model training. Advances in Neural
Information Processing Systems, 35:30016–30030, 2022.

[7] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[8] Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W Mahoney, and Kurt
Keutzer. Ai and memory wall. IEEE Micro, 2024.

[9] Shulin Zeng, Jun Liu, Guohao Dai, Xinhao Yang, Tianyu Fu, Hongyi Wang, Wenheng Ma,
Hanbo Sun, Shiyao Li, Zixiao Huang, et al. Flightllm: Efficient large language model inference
with a complete mapping flow on fpgas. In Proceedings of the 2024 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pages 223–234, 2024.

[10] Hongzheng Chen, Jiahao Zhang, Yixiao Du, Shaojie Xiang, Zichao Yue, Niansong Zhang,
Yaohui Cai, and Zhiru Zhang. Understanding the potential of fpga-based spatial acceleration for
large language model inference. ACM Transactions on Reconfigurable Technology and Systems,
2024.

[11] Qitao Tan, Sung-En Chang, Rui Xia, Huidong Ji, Chence Yang, Ci Zhang, Jun Liu, Zheng
Zhan, Zhenman Fang, Zhou Zou, et al. Perturbation-efficient zeroth-order optimization for
hardware-friendly on-device training. arXiv preprint arXiv:2504.20314, 2025.

[12] Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

[13] Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024.

10

[14] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes. Advances in Neural
Information Processing Systems, 36:53038–53075, 2023.

[15] Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024.

[16] Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha.
Variance-reduced zeroth-order methods for fine-tuning language models. arXiv preprint
arXiv:2404.08080, 2024.

[17] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[18] Astha Verma, Siddhesh Bangar, A Venkata Subramanyam, Naman Lal, Rajiv Ratn Shah, and
Shin’ichi Satoh. Certified zeroth-order black-box defense with robust unet denoiser. arXiv
preprint arXiv:2304.06430, 2023.

[19] Amit Dhurandhar, Tejaswini Pedapati, Avinash Balakrishnan, Pin-Yu Chen, Karthikeyan Shan-
mugam, and Ruchir Puri. Model agnostic contrastive explanations for structured data. arXiv
preprint arXiv:1906.00117, 2019.

[20] Xiaoxing Wang, Wenxuan Guo, Jianlin Su, Xiaokang Yang, and Junchi Yan. Zarts: On zero-
order optimization for neural architecture search. Advances in Neural Information Processing
Systems, 35:12868–12880, 2022.

[21] Jiaqi Gu, Chenghao Feng, Zheng Zhao, Zhoufeng Ying, Ray T Chen, and David Z Pan.
Efficient on-chip learning for optical neural networks through power-aware sparse zeroth-order
optimization. In Proceedings of the AAAI conference on artificial intelligence, pages 7583–7591,
2021.

[22] Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up
zeroth-order optimization for deep model training. arXiv preprint arXiv:2310.02025, 2023.

[23] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018.

[24] Haishan Ye, Zhichao Huang, Cong Fang, Chris Junchi Li, and Tong Zhang. Hessian-aware
zeroth-order optimization for black-box adversarial attack. arXiv preprint arXiv:1812.11377,
2018.

[25] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[26] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[27] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. Advances in neural information processing systems, 32, 2019.

[28] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[29] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

11

[30] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

[31] Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: lay-
erwise importance sampling for memory-efficient large language model fine-tuning. Advances
in Neural Information Processing Systems, 37:57018–57049, 2024.

[32] Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter optimization
method for large language models. Advances in Neural Information Processing Systems,
37:24926–24958, 2024.

[33] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model,
2023.

[34] Xiangyu Li, Yuanchun Li, Yuanzhe Li, Ting Cao, and Yunxin Liu. Flexnn: Efficient and
adaptive dnn inference on memory-constrained edge devices. In Proceedings of the 30th Annual
International Conference on Mobile Computing and Networking, pages 709–723, 2024.

[35] Shengyuan Ye, Liekang Zeng, Xiaowen Chu, Guoliang Xing, and Xu Chen. Asteroid: Resource-
efficient hybrid pipeline parallelism for collaborative dnn training on heterogeneous edge
devices. In Proceedings of the 30th Annual International Conference on Mobile Computing and
Networking, pages 312–326, 2024.

[36] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

[37] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[38] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[39] Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient
adaptation of pretrained language models for image captioning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18030–18040, 2022.

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[41] Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Bugra Gedik, Raj Pra-
teek Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollár, and Laurens Van Der Maaten.
Revisiting weakly supervised pre-training of visual perception models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 804–814, 2022.

[42] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[43] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In
Forty-first International Conference on Machine Learning, 2024.

[44] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

[45] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems,
35:30318–30332, 2022.

12

[46] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

[47] Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and
Xianglong Liu. Outlier suppression+: Accurate quantization of large language models by
equivalent and optimal shifting and scaling. arXiv preprint arXiv:2304.09145, 2023.

[48] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantiza-
tion for large language models. arXiv preprint arXiv:2308.13137, 2023.

[49] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pages 15–26,
2017.

[50] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shan-
mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
with pertinent negatives. Advances in neural information processing systems, 31, 2018.

[51] Anirudh Vemula, Wen Sun, and J Bagnell. Contrasting exploration in parameter and action
space: A zeroth-order optimization perspective. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 2926–2935. PMLR, 2019.

[52] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

[53] Yao Shu, Zhongxiang Dai, Weicong Sng, Arun Verma, Patrick Jaillet, and Bryan Kian Hsiang
Low. Zeroth-order optimization with trajectory-informed derivative estimation. In The Eleventh
International Conference on Learning Representations, 2023.

[54] Ozan Sener and Vladlen Koltun. Learning to guide random search. arXiv preprint
arXiv:2004.12214, 2020.

[55] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[56] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large
annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326,
2015.

[57] Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In Proceed-
ings of the 23rd annual international ACM SIGIR conference on Research and development in
information retrieval, pages 200–207, 2000.

[58] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural
networks through the lens of the hessian. In 2020 IEEE international conference on big data
(Big data), pages 581–590. IEEE, 2020.

[59] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine learning challenges workshop, pages 177–190. Springer, 2005.

[60] Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second pascal recognising textual entailment challenge. In Proceedings of
the second PASCAL challenges workshop on recognising textual entailment, volume 1. Citeseer,
2006.

[61] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1, 2009.

13

[62] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal
recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on
textual entailment and paraphrasing, pages 1–9, 2007.

[63] Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank:
Investigating projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung,
pages 107–124, 2019.

[64] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

[65] Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for
evaluating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121, 2018.

[66] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of knowledge representation and reasoning,
2012.

[67] Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface: A challenge set for reading comprehension over multiple sentences. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
252–262, 2018.

[68] P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[69] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gard-
ner. Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs.
arXiv preprint arXiv:1903.00161, 2019.

[70] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv preprint arXiv:2305.13245, 2023.

14

A Related Work

A.1 Memory-efficient Fine-tuning

Fine-tuning a pre-trained model offers a powerful way to reuse learned representations and reduce
training costs compared to building models from scratch, often achieving superior performance [36,
37]. Initially successful in NLP with models like BERT, RoBERTa, and GPT [38, 2, 39], fine-tuning
has also shown promise in vision tasks such as CLIP and SWAG [40, 41].

Despite the success of fine-tuning, its high cost makes it not feasible. Therefore memory efficient
fine-tuning method come up. Recent parameter-efficient fine-tuning (PEFT), including LoRA [17],
and prefix tuning [42], minimize resource needs by updating only a small subset of parameters,
preserving most of the pre-trained weights and ensuring valuable knowledge is retained. Low-rank
decomposition-based methods, led by LoRA, have achieved remarkable success. The main idea is to
minimize resource needs by updating only a small subset of parameters, preserving most of the pre-
trained weights and ensuring valuable knowledge is retained. DoRA [43] decomposes the pre-trained
weight into two components, magnitude and direction, to enhance both the learning capacity and
training stability of LoRA. GaLore [44] proposed gradient low-rank projection, allows full-parameter
learning while retaining the memory advantages of low-rank training. Beside low-rank method,
quantization stood out as a promising method to reduce resources utilization. GPT3.int8() [45]
identified the outlier in activation, and include a new mixed-precision decomposition scheme, which
isolates the outlier feature dimensions into a 16-bit matrix multiplication while still more than 99.9%
of values are multiplied in 8-bit. Despite training with mix-precision, SmoothQuant [46] smooths
the activation outliers by offline by scaling, migrating the quantization difficulty from activations to
weights. Moreover, Outlier Suppression+ [47] and OmniQuant [48] apply channel-wise shifting for
asymmetry and channel-wise scaling for concentration for int4-level quantization.

A.2 Zeroth-order Optimization and Acceleration

ZO optimization emerges as an attractive technique that optimizes the model without backpropaga-
tion [22, 49, 24, 18, 50, 19]. Unlike most frequently used FO optimization, which directly obtains
and leverages the gradient for optimization, the zeroth-order method utilizes the objective function
value oracle only, estimating the gradient by finite differences. ZO method has a wide range of
applications in machine learning fields, including adversarial attack and defense [49, 24, 18], machine
learning explainability [50, 19], reinforcement learning [51], and on-chip training [21]. Recently,
the ZO method has been proposed to be leveraged on LLM fine-tuning to address the significant
memory usage. [14] proposed MeZO, first scaling ZO optimization to fine-tuning parameter-intensive
LLMs, greatly reducing memory utilization. On top of MeZO, [15] proposed HiZOO, leveraging the
estimated Hessian information for better learning capacity, but reducing the throughput of MeZO to
some extent.

ZO optimization, although it significantly saves memory, converges more slowly than FO methods
due to higher variance from random search. [23] introduced ZO-SVRG by incorporating variance
reduction techniques [52]. [53] proposed using a Gaussian process to model objective function
queries, thereby reducing query complexity and allowing more frequent queries to lower gradient
variance. [54] performed random search on a learned low-dimensional manifold, reducing the number
of needed objective queries. However, existing ZO accelerators face two main challenges when
adapting to ZO fine-tuning for LLMs. First, these approaches were typically designed for smaller-
scale tasks involving fewer parameters and less data, and cannot be directly extended to large-scale
LLMs. Second, many prior methods focus on improving query efficiency, whereas recent work has
shown that a single query can suffice for LLM fine-tuning [14]. How to effectively accelerate ZO
optimization on large model fine-tuning remains a problem.

Moreover, ZO has several properties that make it well-suited for on-device or edge training scenarios.
1) Memory efficiency: Edge devices such as mobile phones and FPGAs typically offer limited
memory resources. ZO significantly reduces memory usage by avoiding activation and gradient
storage, making it more deployable in such constrained setting. 2) Forward-only optimization: As
ZO only relies on forward passes, it is compatible with existing inference accelerators (e.g., NNAPI
on Android, edge TPUs, etc.), which typically lack support for backpropagation. This makes ZO a
strong candidate for adapting inference-only hardware for training.

15

B Experiment Settings and Analysis

B.1 Datasets and Evaluation

Table B.1: The hyperparameter for experiments. For DiZO and DiZO LoRA, we only show the
setting of extra hyperparameters, and have the same setting in other common hyperparameters with
MeZO and MeZO LoRA respectively.

Experiment Hyperparameters Values

FT
Batch size 8

Learning rate {1e-5, 5e-5}

Lr schedule Constant for RoBERTa
Linear for OPT and Llama

MeZO

Batch size {64, 16}
Learning rate η (Lr) {1e-6, 5e-7}

ϵ 1e-3

Lr schedule Constant for RoBERTa
Linear for OPT and Llama

MeZO LoRA

Batch size {64, 16}
Learning rate η (Lr) {1e-4, 5e-5}

ϵ 1e-2

Lr schedule Constant for RoBERTa
Linear for OPT and Llama

DiZO (LoRA)

Projection update cycle {50, 100, 200, 400}
Smoothing scalar ϵ

′
{1e-1, 5e-2}

Clip range τ {0.1, 0.2, 0.3}

For the RoBERTa-large model, we use the following classification datasets: SST-2 [55], SST-5 [55],
SNLI [56], TREC [57], MNLI [58], and RTE [59, 60, 61, 62]. Following previous studies, we cap
the test set size at 1000 samples. Two training settings are considered: k = 16 and k = 512, where
we randomly select 16 or 512 samples per class for both training and validation.

For the OPT and Llama series models, we use the SuperGLUE benchmark [27], which includes
RTE [59, 60, 61, 62], CB [63], BoolQ [64], WIC [65], WSC [66], and MultiRC [67]. We also include
SST-2 [55] and two question answering datasets, SQuAD [68] and DROP [69]. For each of these
datasets, we randomly sample 1000 instances for training, 500 for validation, and 1000 for testing.

B.2 Hyperparameter Setting

We use the hyperparameters in Table B.1 for experiments on RoBERTa-large, OPT-series, and Llama-
series models. Specifically, the choice of clip range did not significantly impact the performance. The
selection of the projection update cycle and scalar for projection affects the performance somewhat.
Generally, for datasets that need larger iterations for convergence, or for these harder datasets, DiZO
prefers a larger update cycle, while for those less complicated datasets, DiZO benefits from a smaller
update cycle.

C Ablation study on DiZO

C.1 Ablation for Projection Layers Selection

Instead of applying projections to all layers, which would require storing the entire pre-trained model,
we focus only on projecting the weights of the Query and Value in the attention modules. As shown in
Table C.1, this strategy achieves the best trade-off between the overall performance and extra storage
requirements, does not reduce the performance and only 16.7% of the parameters of the pre-trained
model are needed to store. A Similar strategy has also been adopted in LoRA [17].

16

Table C.1: Ablation study for selecting which layers to project. The highlighted line with a blue
rectangle is the setting used in DiZO. Extra memory indicates the extra memory needed due to
pre-trained model storing. Attn_Q: attention Query layer; Attn_V: attention Value layer; Attn_K:
attention Key layer; Attn_O: attention output projection; Dense: dense fully connected layer.

Attn_Q Attn_V Attn_K Attn_O Dense Extra memory SST-2 RTE SQuAD
✓ ✓ ✓ ✓ ✓ 100% 91.7 68.4 67.3
✓ ✓ ✓ ✓ ✗ 33.3% 92.2 67.9 69.2
✓ ✓ ✓ ✗ ✗ 25.0% 91.9 67.1 68.1
✓ ✓ ✗ ✗ ✗ 16.7% 92.5 68.2 69.0
✓ ✗ ✗ ✗ ✗ 8.4% 90.5 64.9 66.5

C.2 Ablation for Strategies in ZO Projection Learning

As discussed in Section 3.3, we introduce two strategies, re-initialization (Re-init) and projection
clipping (Clipping), to enhance projection learning and improve the stability of fine-tuning. The
ablation results for these strategies, along with the corresponding loss curves, are shown in Figure C.1.

Overall (left in Figure C.1), omitting either Re-init or Clipping significantly diminishes the benefits
of DiZO, with MeZO outperforming DiZO in these cases. Specifically, without Re-init, accuracy
drops sharply, falling below MeZO. Similarly, without Clipping, while DiZO slightly outperforms
MeZO on simpler datasets like SST-2, it suffers from severe model collapse on more challenging
datasets, leading to a significant decline in accuracy.

From the loss curve trajectory (right in Figure C.1), without Re-init, DiZO loses its advantage in
training acceleration, as the loss curve becomes noticeably slower to decrease. Without Clipping,
the loss curve exhibits significant oscillations during certain training steps. This instability arises
when projections are optimized to unsuitable values, such as extremely large or small magnitudes.
These inappropriate projections cause substantial changes in model weights, leading to pronounced
oscillations in the loss.

Type Re-init Clipping SST-2 SNLI TREC
MeZO - - 90.5 66.0 76.9

DiZO
✗ ✓ 88.6 64.2 73.8
✓ ✗ 90.9 56.2 61.2
✓ ✓ 92.2 71.6 77.4

Figure C.1: Ablation study for the two strategies: re-initialization and projection clipping, which is
conducted on RoBERTa-large (k = 16). Left: overall results when ablating the strategies. Right: loss
curve when ablating the strategies.

C.3 Ablation for the Selection of the Anchor

We conduct an experiment to illustrate the effect of other anchor points beyond the pre-trained
weights, the results are shown in Table C.2. In conclusion, using 0 or θt−1 significantly reducing
the benefit of our method. Specifically, using 0 as an anchor yields similar results to using θt−1 in
terms of GPU hours, but causes unstable training, the accuracy decreases at the later training stage,
and causes the results to be even worse than MeZO. Therefore, the effectiveness of our method is
inseparable from the choice of anchors. Selecting a more robust anchor could not only improve
accuracy but also the convergence speed.

C.4 Ablation on Hyperparameter Setting

We conduct experiments to investigate the effect of different hyperparameter settings, including
different clip ranges, smoothing scalars, and projection update frequencies. Results are obtained by
fine-tuning RoBERTa-large on SST-2 and SST-5 with 3 different settings for the 3 hyperparameters,

17

Table C.2: Comparison on conducting projection on learning rate (LR) or use weight at (t− 1)-th
iteration θt−1 instead of the weight of the pre-trained model θ0 as the base of projection. Results are
obtained by fine-tuning OPT-2.7B.

Anchor SST-2 RTE SQuAD

Acc. GPU
Hours Acc. GPU

Hours F1. GPU
Hours

NA (MeZO) 90.0 100.0% 63.5 100.0% 68.7 100.0%
0 86.9 85.7% 58.4 91.0% 62.2 85.8%
θt−1 projection 90.7 87.8% 64.5 90.3% 67.2 88.4%
DiZO 92.5 55.7% 68.2 62.3% 69.0 65.4%

Figure C.2: Hyperparameter sensitive testing, including clip range, smooth scalar, and update
frequency. Evaluated by training Roberta-large on SST2 and SST5 datasets.

as shown in Figure C.2. In conclusion, for easier classification tasks like SST-2, the weight of the
model changes fast, and so as the convergence speed, therefore, we can apply more aggressive
projection strategies, apply a larger clip range, a larger smoothing scalar, and update the projection
more frequently. In contrast, for the rather more difficult tasks, a more conservative projection
strategy is preferred.

C.5 Quantization of Anchor (Pre-trained) Model

Our method introduce a anchor model (i.e., the pre-trained model) for projection, roughly 16%
of the pretrained parameters must still reside in memory. To further reduce extra memory cost,
we explored anchor compression via quantization of the pretrained Query and Value matrices to
8-bit and 4-bit precision [48]. As shown in Table C.3, DiZO can effectively incorporate with the
quantization technique, still preserving advantages in both accuracy and GPU hours. Exploring
more advanced quantization or compression methods to further improve anchor efficiency while
maintaining performance is an important avenue for future work.

D Do Other Alternative Strategies Work?

As discussed in Section 6.5, we compare with two representative straightforward alternative strategies,
Adam and Backtracking linesearch, to highlight the effectiveness of our method.

Adam as a representative of learnable learning rate methods, Adam leverages first- and second-
moment estimates of historical gradients to adaptively modulate the update magnitude. However,
incorporating Adam into ZO optimization poses significant practical challenges. Storing gradient mo-

18

Table C.3: DiZO with quantized anchor.
Method SST-2 RTE

Acc GPU hours Acc GPU hours
MeZO 90.0 100% 63.5 100%
DiZO (8-bits) 92.2 63% 67.2 71%
DiZO (4-bits) 91.7 67% 65.2 68%
DiZO 92.5 56% 68.4 62%

Table D.1: Results on fine-tuning OPT-2.7B on SST2 when using Adam as the optimizer. Adam is
either memory-intensive or introduces a lot of extra computational overhead.

Method Optimizer Acc. Training FLOPs Memory Iter.
MeZO SGD 85.2 100% 6.8 GB 2K
MeZO Adam (Recompute) 86.1 431% 6.8 GB 2K
MeZO Adam (Store) 86.1 100.2% 17.6GB 2K

DiZO SGD 86.3 61% 7.5GB 1K
DiZO SGD 89.8 122% 7.5GB 2K

ments leads to over 3× memory overhead compared to ZO-SGD, as shown in Table D.1. MeZO [14]
attempts to address this by recomputing moment statistics on the fly rather than storing them. How-
ever, this strategy is also impractical as the total computational overhead increases quadratically
with the training iterations, e.g., 4.3× more FLOPs for only 2K iterations. Given that zeroth-order
methods often require tens of thousands of iterations to converge, both strategies render Adam either
memory-intensive or computationally impractical at scale. In contrast, DiZO with SGD achieves
higher accuracy with significantly lower FLOPs and comparable memory usage.

Line Search appears to be a simpler alternative for tuning the projection scalar. However, it requires
freezing all other layers when optimizing the scalar for a particular layer, resulting in significant
computational overhead. To empirically validate this limitation, we replace the ZO-based projection
search in DiZO with Armijo-style backtracking line search. For fairness, the line search is initialized
at (1 + τ)× original learning rate, matching the scale used in DiZO. The results in Table D.2 show
that, under the same forward pass budget, backtracking performs notably worse than the original
MeZO. Furthermore, even when increasing the number of forward passes to 7800, it only matches
MeZO’s performance and still falls short of DiZO. These results confirm that traditional line search is
not only less effective but also less efficient in the context of high-dimensional, layer-wise projection
tuning.

E More Experimental Results

In this section, we provide a comprehensive presentation of our results across various datasets and
models to complement the main paper. Specifically, the results include:

• Detailed accuracy number and trajectory of training loss on RoBERTa-large (Table E.1 and
Figure E.1).

Table D.2: Results on fine-tuning OPT-2.7B on SST2. For fair comparison, we use Armijo-style
backtracking line search to replace ZO in our method.

Searching Strategy Forward Pass Accuracy

NA (MeZO) 4000 85.2
Backtracking 4000 81.6
Backtracking 7800 85.1
ZO (DiZO) 4000 89.3

19

Figure E.1: Trajectory of training loss curves when using MeZO and DiZO to fine-tune Roberta-large.

• More memory and speed results of fine-tuning OPT-2.7B on SST-2 and SQuAD datasets
(Table E.2 and Table E.3).

• Results on larger model, OPT-13B (Table E.4).

• Results on Llama3-3B and Llama-8B (Table E.5 and Table E.6).

• Results on more challenging benchmark MMLU and MT-Bench (Table E.7 and Table E.8).

E.1 RoBERTa-large Experiments

Table E.1 reports the corresponding detailed numbers from Figure 2, and Figure E.1 shows the
trajectory of training loss.

Table E.1: Experiment results on RoBERTa-large on six datasets.

Dataset
Task Type

SST-2 SST-5 SNLI MNLI RTE TREC
——-sentiment——- ———-language inference———- –topic–

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0
Gradient-free methods: k = 16

MeZO 90.5 (1.2) 45.5 (2.0) 68.5 (3.9) 56.5 (2.5) 59.4 (5.3) 76.9 (2.7)
MeZO LoRA 91.4 (0.9) 43.0 (1.6) 69.7 (6.0) 64.0 (2.5) 64.9 (3.6) 73.1 (6.5)
HiZOO 91.1 (1.6) 46.1 (1.3) 69.3 (3.1) 58.8 (3.1) 57.4 (6.2) 77.2 (2.2)
HiZOO LoRA 91.4 (0.9) 44.8 (1.5) 70.7 (5.2) 64.3 (2.8) 66.9 (3.2) 72.7 (7.3)
DiZO 92.2 (0.9) 47.1 (1.3) 71.0 (3.1) 60.1 (3.5) 67.9 (4.7) 77.4 (2.4)
DiZO LoRA 91.7 (0.8) 44.6 (1.7) 71.6 (3.8) 65.6 (2.8) 67.3 (3.9) 74.6 (4.3)

Gradient-based methods: k = 16
FT 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 70.0 (2.3) 66.4 (7.2) 85.0 (2.5)
FT LoRA 91.4 (1.7) 46.7 (1.1) 74.9 (4.3) 67.7 (1.4) 66.1 (3.5) 82.7 (4.1)

Gradient-free methods: k = 512
MeZO 93.3 (0.7) 53.2 (1.4) 83.0 (1.0) 78.3 (0.5) 78.6 (2.0) 94.3 (1.3)
MeZO LoRA 93.4 (0.4) 52.4 (0.8) 84.0 (0.8) 77.9 (0.6) 77.6 (1.3) 95.0 (0.7)
HiZOO 93.5 (0.4) 53.5 (1.2) 83.3 (1.4) 77.2 (1.5) 79.1 (1.2) 94.9 (1.7)
HiZOO LoRA 94.3 (0.5) 54.1 (0.6) 82.7 (1.8) 79.0 (0.8) 80.9 (1.6) 93.1 (0.5)
DiZO 94.6 (0.1) 53.6 (1.7) 84.5 (0.6) 79.8 (0.9) 80.3 (1.8) 93.8 (1.5)
DiZO LoRA 94.3 (0.3) 54.1 (1.4) 83.7 (1.1) 77.6 (0.4) 79.3 (1.4) 95.7 (0.9)

Gradient-based methods: k = 512
FT 93.9 (0.7) 55.9 (0.9) 88.7 (0.8) 84.4 (0.8) 82.7 (1.4) 97.3 (0.2)
FT LoRA 94.2 (0.2) 55.3 (0.7) 88.3 (0.5) 83.9 (0.6) 83.2 (1.3) 97.0 (0.3)

E.2 More Memory and Speed Analysis

We present the memory and speed results for OPT-2.7B on the SST-2 and SQuAD datasets in
Table E.2 and Table E.3, respectively. DiZO significantly reduces the number of required iterations
while maintaining throughput comparable to MeZO, leading to substantially fewer training GPU
hours. In contrast, HiZOO achieves only modest iteration savings and further reduces the throughput
of MeZO by approximately 1.5× due to its reliance on second-order information estimation. As a
result, HiZOO offers only a slight improvement over MeZO in terms of training GPU hours. In some

20

Table E.2: Memory utilization and speed test on OPT-2.7B on SST-2 dataset. ●: partial gradient-free;
✓: gradient-free; ✗: gradient-based. DiZO†: searching projection with Adam.

Task Type Gradient
Free

LoRA
Added

Peak
Memory

Averaged
Memory Throughput #Train

Iter.
GPU

Hours
FT ✗ ✗ 45.4 GB 45.4 GB 1.81 it/s 9.3% 16.8%
LoRA ✗ ✓ 18.4 GB 18.4 GB 4.50 it/s 5.6% 4.3%
DiZO† (w. FO) ● ✗ 17.8 GB 15.7 GB 2.63 it/s 33.3% 41.5%
DiZO LoRA† ● ✓ 16.1 GB 14.7 GB 4.16 it/s 22.2% 17.5%
MeZO ✓ ✗ 6.8 GB 6.8 GB 3.28 it/s 100.0% 100.0%
HiZOO ✓ ✗ 11.8 GB 11.8 GB 2.22 it/s 59.2% 87.4%
DiZO ✓ ✗ 7.5 GB 7.5 GB 3.05 it/s 51.8% 55.7%
MeZO LoRA ✓ ✓ 6.5 GB 6.5 GB 5.56 it/s 74.1% 43.7%
HiZOO LoRA ✓ ✓ 11.5 GB 11.5 GB 3.70 it/s 46.3% 41.0%
DiZO LoRA ✓ ✓ 7.2 GB 7.2 GB 4.92 it/s 38.9% 25.9%

Table E.3: Memory utilization and speed test on OPT-2.7B on SQuAD dataset (300 tokens per
example on average). ●: partial gradient-free; ✓: gradient-free; ✗: gradient-based. DiZO†: searching
projection with Adam.

Task Type Gradient
Free

LoRA
Added

Peak
Memory

Averaged
Memory Throughput #Train

Iter.
GPU

Hours
FT ✗ ✗ 73.5 GB 73.5 GB 0.36 it/s 7.5% 27.7%
LoRA ✗ ✓ 58.5 GB 58.5 GB 0.73 it/s 6.3% 11.5%
DiZO† ● ✗ 57.8 GB 20.3 GB 1.22 it/s 41.7% 45.5%
DiZO LoRA† ● ✓ 49.4 GB 19.9 GB 2.44 it/s 31.7% 17.3%
MeZO ✓ ✗ 8.4 GB 8.4 GB 1.33 it/s 100.0% 100.0%
HiZOO ✓ ✗ 12.3 GB 13.3 GB 0.97 it/s 66.7% 91.5%
DiZO ✓ ✗ 9.7 GB 9.7 GB 1.22 it/s 60.0% 65.4%
MeZO LoRA ✓ ✓ 8.4 GB 8.4 GB 2.80 it/s 73.3% 34.8%
HiZOO LoRA ✓ ✓ 11.6 GB 12.6 GB 2.10 it/s 56.7% 35.9%
DiZO LoRA ✓ ✓ 9.6 GB 9.6 GB 2.49 it/s 45.0% 24.0%

cases, such as HiZOO combined with LoRA on SQuAD, it even consumes more training GPU hours
than MeZO with LoRA.

E.3 Larger OPT Models Fine-tuning

To further illustrate the generalizability of our method, we conduct experiments on OPT-13B. The
results are shown in Table E.4, DiZO consistently outperforms the baselines both in terms of accuracy
and speed.

E.4 Llama Fine-tuning

To demonstrate the generalizability of DiZO, we conducted experiments on the Llama-series models.
The results for Llama3-3B and Llama3-8B are presented in Table E.5 and Table E.6, respectively.
DiZO consistently outperforms MeZO across both the 3B and 8B Llama models.

Table E.4: Experiment results on OPT-13B (with 1000 training samples). Better results are highlighted
in bold.

SST-2 RTE SQuAD
Dataset Acc GPU hours Acc GPU hours Acc GPU hours

MeZO 91.4 100% 66.1 100% 84.7 100%
HiZOO 92.1 86% 69.3 82% 82.9 91%
DiZO 92.4 69% 72.6 76% 85.2 73%

21

However, we observed that ZO LoRA performs poorly with Llama models (including DiZO, MeZO
and HiZOO). The loss value remains stagnant, and the resulting accuracy is comparable to or even
worse than zero-shot results. We leave it to future work to investigate why ZO LoRA fails with Llama
models. We suspect that this limitation may be related to the Group Query Attention (GQA) [70]
mechanism employed in Llama3.

Table E.5: Experimental results on Llama3-3B for seven classification datasets and two text generation
datasets (with 1000 training samples). Better results between MeZO and DiZO are highlighted in
bold.

Task
Task Type

SST-2 RTE CB BoolQ WSC WIC MultiRC SQuAD DROP
————————–classification————————– ——generation——

FT 94.2 (0.4) 81.2 (2.1) 91.4 (4.7) 72.2 (4.2) 63.8 (1.8) 65.8 (2.3) 78.2 (3.2) 79.6 (2.9) 40.3 (1.2)
MeZO 88.8 (1.1) 67.4 (1.7) 73.2 (2.4) 78.0 (4.4) 56.6 (3.8) 63.4 (2.3) 64.8 (3.1) 61.9 (2.7) 27.8 (2.0)
HiZOO 89.5 (1.4) 67.1 (1.3) 74.4 (1.9) 78.8 (4.7) 56.3 (3.1) 64.4 (2.4) 64.3 (2.9) 61.7 (2.8) 28.6 (3.0)
DiZO 90.0 (0.9) 68.2 (1.6) 76.7 (3.3) 76.8 (3.8) 57.8 (4.2) 63.8 (1.7) 64.2 (2.9) 63.2 (2.7) 29.7 (1.3)

Table E.6: Experiments results on Llama3-8B for seven classification datasets and two text generation
datasets (with 1000 training samples). Better results between MeZO and DiZO are highlighted in
bold.

Task
Task Type

SST-2 RTE CB WSC SQuAD
———-classification———- –generation–

MeZO 90.0 (0.7) 67.8 (1.4) 71.4 (2.2) 60.2 (1.6) 67.0 (2.6)
HiZOO 91.1 (0.9) 68.2 (1.3) 71.4 (2.9) 62.2 (1.9) 68.3 (3.1)
DiZO 91.5 (0.8) 69.4 (1.8) 73.2 (3.1) 63.4 (2.9) 67.4 (2.1)

E.5 Fine-tuning on MMLU and MT-Bench

To demonstrate the generalizability of DiZO in more realistic and challenging scenarios, we evaluate
our method on MMLU and MT-Bench benchmarks. we follow the setting in [31, 32], fine-tune on
the Alpaca GPT-4 dataset [33], which consists of 52k conversations, and then evaluate. We conduct
experiments based on Llama2-7B and Llama3-8B, the results are shown in Table E.7 and Table E.8,
respectively.

E.6 Compare with Sparse Technique

We conducted a direct comparison between our DiZO and Sparse MeZO [13] in terms of both
accuracy and training efficiency across two datasets and two model sizes. The results are presented
in Table R.6 and Table R.7. From the accuracy perspective, DiZO consistently outperforms Sparse
MeZO under all evaluated settings, demonstrating the effectiveness of our projection-based approach.

From the efficiency perspective, Sparse MeZO requires generating the sparsity mask dynamically
during training. Compared to DiZO, Sparse MeZO requires longer GPU hours for about 20%, and
slows the throughput for more than 30%. Moreover, with the grows of model size, the throughput of
Sparse MeZO will further decrease, due to the growing cost of maintaining and updating the sparse

Table E.7: Results of fine-tuning Llama2-7B on more challenging benchmarks, better results are
highlighted in bold.

MT-Bench MMLU (5 shot) GPU hours

Zero-shot 3.93 45.87 -
MeZO 4.59 45.22 100%
HiZOO 4.62 45.42 92%
DiZO 4.79 45.91 78%

22

Table E.8: Results of fine-tuning Llama3-8B on more challenging benchmarks, better results are
highlighted in bold.

MT-Bench MMLU (5 shot) GPU hours

Zero-shot 5.46 65.20 -
MeZO 5.89 65.08 100%
HiZOO 5.93 65.20 95%
DiZO 6.15 65.42 83%

mask. While Sparse MeZO reduces the number of training iterations, its lower throughput results in
longer total GPU hours compared to DiZO. These findings demonstrate that DiZO not only delivers
better accuracy but also achieves more practical training efficiency compared to Sparse MeZO.

Table E.9: Acc and Speed Comparison on OPT-2.7B.
Method Dataset Accuracy Throughput #Train Iter. GPU Hours
MeZO SST2 90.0 3.3it/s 100% 100%
Sparse MeZO SST2 91.4 2.3it/s 55% 79%
DiZO SST2 92.3 1.9it/s 52% 56%

MeZO RTE 63.5 1.7it/s 100% 100%
Sparse MeZO RTE 67.1 1.1it/s 50% 73%
DiZO RTE 68.4 1.5it/s 60% 62%

Table E.10: Acc and Speed Comparison on OPT-6.7B.
Method Dataset Accuracy Throughput #Train Iter. GPU Hours
MeZO SST2 90.2 1.8it/s 100% 100%
Sparse MeZO SST2 91.9 1.0it/s 47% 84%
DiZO SST2 92.4 1.7it/s 62% 69%

MeZO RTE 73.2 0.6it/s 100% 100%
Sparse MeZO RTE 74.3 0.3it/s 39% 88%
DiZO RTE 74.8 0.5it/s 65% 81%

23

F Theoretical Analysis

F.1 Variance Symmetry under Isotropic Perturbations

We consider a neural network with L layers (or parameter blocks) and analyze the zeroth-order
gradient estimator constructed via two-point finite differences. Let L(θ;B) denote the loss evaluated
on mini-batch B, with θ = (θ(1), . . . ,θ(L)) the full parameter vector. To estimate the gradient ∇L
without access to derivatives, we apply a two-sided estimator along randomly sampled directions
ui ∈ Rd:

∇̂θ(ℓ)L =
1

q

q∑
i=1

L(θ + ϵui)− L(θ − ϵui)

2ϵ︸ ︷︷ ︸
∆i

u
(ℓ)
i ,

where u
(ℓ)
i is the sub-vector of direction ui corresponding to layer ℓ.

We aim to characterize the variance of this estimator, in particular:

E
[∥∥∥∇̂θ(ℓ)L

∥∥∥2] .
Key assumptions:

1. Each ui is drawn independently from an isotropic distribution in Rd, i.e., E[uiu
⊤
i] = I .

2. The scalar ∆i is the same across all parameter blocks for a given i, as it depends only on the
global perturbation.

3. Each block u
(ℓ)
i has zero mean, unit covariance in its own subspace Rdℓ , and is uncorrelated

with other blocks u(m)
i for ℓ ̸= m.

Variance Expansion: We examine the norm-squared of the estimator:

∥∥∥∇̂θ(ℓ)L
∥∥∥2 =

∥∥∥∥∥1q
q∑

i=1

∆iu
(ℓ)
i

∥∥∥∥∥
2

.

Taking expectation over {ui}:

E
[∥∥∥∇̂θ(ℓ)L

∥∥∥2] = 1

q2

q∑
i=1

E
[
∆2

i ∥u
(ℓ)
i ∥2

]
+

1

q2

∑
i ̸=j

E
[
∆i∆j⟨u(ℓ)

i ,u
(ℓ)
j ⟩
]
.

Due to independence and zero-mean isotropy, cross terms vanish, and we obtain:

E
[∥∥∥∇̂θ(ℓ)L

∥∥∥2] = 1

q
E
[
∆2 · ∥u(ℓ)∥2

]
,

where ∆ and u(ℓ) are representative samples from the same distribution.

Conclusion. Since ∆ is shared across layers and u(ℓ) has expected squared norm proportional to
the layer dimension dℓ, we conclude:

E
[∥∥∥∇̂θ(ℓ)L

∥∥∥2] ∝ dℓ.

In other words, the second-moment of the gradient estimator depends on the layer only through its
dimensionality dℓ, and not through any asymmetry in the distribution of direction vectors. If dℓ are
the same for all ℓ, each block exhibits identical expected variance.

This property justifies using uniform per-layer treatment in analysis and initialization when random
direction sampling is isotropic.

24

F.2 The Proof of Convergence Analysis

We now prove Theorem 1.

Proof. By Lf -smoothness (Assumption 5.1), for any θ,θ′:

L(θ′) ≤ L(θ) + ⟨∇L(θ), θ′ − θ⟩ +
Lf

2
∥θ′ − θ∥2.

Set θ = θt and θ′ = θt+1. We get:

L(θt+1) ≤ L(θt) +
〈
∇L(θt), θt+1 − θt

〉
+

Lf

2
∥θt+1 − θt∥2.

Taking conditional expectation Et[·] :=E[· | θt] yields

Et

[
L(θt+1)− L(θt)

]
≤ Et

[
⟨∇L(θt), θt+1 − θt⟩

]
+

Lf

2
Et

[
∥θt+1 − θt∥2

]
. (8)

Denote θ̃t+1 = θt − η gt. Then

θt+1 = ProjS(θ̃t+1), θt+1 − θt = (θt+1 − θ̃t+1) − η gt.

Hence 〈
∇L(θt), θt+1 − θt

〉
=
〈
∇L(θt), θt+1 − θ̃t+1

〉
− η

〈
∇L(θt), gt

〉
.

Because θt+1 is the nearest point in S to θ̃t+1 (by definition of projection), we have

∥θt+1 − θ̃t+1∥ ≤ ∥θt − θ̃t+1∥ = η ∥gt∥.
Thus

∥θt+1 − θ̃t+1∥ ≤ η ∥gt∥. (9)

Taking conditional expectation:

Et

[
⟨∇L(θt), θt+1 − θt⟩

]
= Et

[
⟨∇L(θt), θt+1 − θ̃t+1⟩

]
− η Et

[
⟨∇L(θt), gt⟩

]
.

Using (9) with Cauchy–Schwarz:∣∣⟨∇L(θt), θt+1 − θ̃t+1⟩
∣∣ ≤ ∥∇L(θt)∥ ∥θt+1 − θ̃t+1∥ ≤ η ∥∇L(θt)∥ ∥gt∥.

Moreover, the two-point estimator is unbiased, so

Et

[
⟨∇L(θt), gt⟩

]
= ⟨∇L(θt), Et[gt]⟩ = ∥∇L(θt)∥2.

Hence
Et

[
⟨∇L(θt), θt+1 − θt⟩

]
≤ η ∥∇L(θt)∥ Et

[
∥gt∥

]
− η ∥∇L(θt)∥2. (10)

Again from the projection property:

∥θt+1 − θt∥ = ∥ProjS(θ̃t+1)− θt∥ ≤ ∥θ̃t+1 − θt∥ = η ∥gt∥.
Thus

∥θt+1 − θt∥2 ≤ η2 ∥gt∥2.
Taking expectation completes:

Et

[
∥θt+1 − θt∥2

]
≤ η2 Et

[
∥gt∥2

]
.

Substitute (10) and the above bound into (8):

Et

[
L(θt+1)− L(θt)

]
≤ η ∥∇L(θt)∥ Et[∥gt∥] − η ∥∇L(θt)∥2 +

Lf

2
η2 Et[∥gt∥2].

Taking total expectation and summing over t = 0 to T − 1,

E
[
L(θT)

]
− L(θ0) ≤

T−1∑
t=0

{
η E
[
∥∇L(θt)∥ ∥gt∥

]
− η E

[
∥∇L(θt)∥2

]
+

Lf

2 η2 E
[
∥gt∥2

]}
.

25

Assume that the two-point finite-difference estimator satisfies

E
[
∥gt −∇L(θt)∥2

]
≤ σ2

(
D, q

)
,

where σ2(D, q) grows primarily with D (the maximum layer dimension) and the number of queries
q, rather than the full sum of dimensions.

Therefore, we have
E
[
∥gt∥2

]
≤ c1

(
∥∇L(θt)∥2 + σ2(D, q)

)
for some constant c1 > 0. In addition, E[∥∇L(θt)∥ ∥gt∥] ≤

√
E[∥∇L(θt)∥2] E[∥gt∥2] ≤

c2 (∥∇L(θt)∥2 + σ2(D, q)) (for a constant c2). Collecting terms and choosing η = c/
√
T with

c > 0 sufficiently small ensures that the −η ∥∇L(θt)∥2 term dominates the positive terms for large
T . A standard telescoping argument shows

1

T

T−1∑
t=0

E
[
∥∇L(θt)∥2

]
= O

(√D√
T

)
,

which implies the stationarity measure

min
0≤t<T

E
[
∥∇L(θt)∥2

]
= O

(√D√
T

)
.

This completes the proof.

F.3 τ -Stability of the Clipping Step

Assumptions.

A1. L : Rd → R is Lf -smooth.

A2. Zeroth-order updates use step-size ηt = η and produce an intermediate point θℓt = θt − ηgt
with an unbiased estimator gt.

A3. After every k iterations we apply projection clipping:

θ
(ℓ)
t+1 = θ

(0)
t + ρ

(ℓ)
t ∆θ

(ℓ)
t , ρ

(ℓ)
t := clip

[
ρ
(ℓ)
t , 1− τ, 1 + τ

]
,

where ρ
(ℓ)
t = γ

(ℓ)
t /∥∆θ

(ℓ)
t ∥2, and τ ∈ (0, 1) is the scalar clipping width.

Let
Rmax := max

t,ℓ
∥∆θ

(ℓ)
t ∥2, Gmax := max

t
∥gt∥2.

Then for any τ , we have the stability bound:

∥θt+1 − θℓt∥2 ≤ ηGmax + τRmax. (11)

Moreover, if τ satisfies

τ ≤ cτ
ηGmax

Rmax
, 0 < cτ ≤ 1, (12)

then under the same conditions as Theorem 5.3, the projected DiZO iterates satisfy

min
0≤t<T

E
[
∥∇L(θt)∥22

]
= O

(√
D√
T

)
. (13)

That is, the original non-convex convergence rate is preserved. If τ violates (12), the bound inflates
linearly with τ , i.e.,

Õ
(√

D/T + τ/η
)
.

26

Proof. For any Lf -smooth loss, we have

L(θt+1) ≤ L(θt) + ⟨∇L(θt), θt+1 − θt⟩+
Lf

2
∥θt+1 − θt∥22. (14)

Because θt+1 is the nearest feasible point to θℓt (Euclidean projection), the proof in the paper shows

∥θt − θℓt∥2 ≤ η∥gt∥2. (15)

The additional clipping in ρ
(ℓ)
t imposes another bound:

∥θ(ℓ)t+1 − θ
(ℓ)
t ∥2 = |ρ(ℓ)t − 1|∥∆θ

(ℓ)
t ∥2 ≤ τRmax, (16)

hence combining gives
∥θt+1 − θt∥2 ≤ ηGmax + τRmax. (17)

Plugging (17) into (14) and taking conditional expectation yields

Et[L(θt+1)− L(θt)] ≤ −ηEt[⟨∇L(θt), gt⟩] + Lf (ηGmax + τRmax)ηGmax.

Using standard ZO analysis, the inner product term satisfies

−η

2
∥∇L(θt)∥22 +

η

2
σ2,

and after telescoping the left-hand side for t = 0, . . . , T − 1, dividing by ηT , we obtain

1

T

T−1∑
t=0

E
[
∥∇L(θt)∥22

]
≤ O

(√
D√
T

)
+O

(
τRmax

η

)
.

If τ satisfies condition (12), the second term is dominated, yielding (13).

Remark. Equation (12) implies that the projection impulse matches a single ZO step:

τ ≈ η∥gt∥2
∥∆θt∥2

.

During fine-tuning, we typically observe ∥gt∥2/∥∆θt∥2 ∈ [0.5, 1.5] after warm-up, and learning
rates η∼10−2–10−1. This leads to τ in the range 0.05–0.30, with τ≈0.2 being the empirically stable
choice across tasks.

27

G Implementation

The following is an implementation of our “ZO projection learning” in PyTorch.

d e f Z O _ P r o j e c t i o n _ L e a r n i n g (t h e t a _ t , t h e t a _ 0 , Gammas , d e l t a , e t a , t au , x) :
" " "
Per fo rm Zero th − o r d e r P r o j e c t i o n L e a r n i n g .

Args :
t h e t a _ t : C u r r e n t model p a r a m e t e r s t o be f i n e − t u n e d .
t h e t a _ 0 : Pre − t r a i n e d model p a r a m e t e r s (an c ho r) .
Gammas : P r o j e c t i o n p a r a m e t e r s need t o be o p t i m i z e d .
d e l t a : Smoothing p a r a m e t e r .
e t a : L e a r n i n g r a t e f o r p r o j e c t i o n g r a d i e n t d e s c e n t .
t a u : C l i p p i n g f a c t o r f o r p r o j e c t i o n bounds .
x : I n p u t d a t a f o r t h e f o r w a r d p a s s .

" " "

C a l c u l a t e t h e L2 norm of t h e d i s t a n c e gap
norms = {

name : t o r c h . norm (param . d a t a − an c ho r . d a t a)
f o r (name , param) , a nc h o r i n z i p (t h e t a _ t . named_pa ramete r s () ,

t h e t a _ 0 . p a r a m e t e r s ())
}

I n i t i a l i z e t h e p r o j e c t i o n v a l u e s
f o r name , gamma i n Gammas . named_paramete r s () :

gamma . d a t a = norms [name]

f o r i i n r a n g e (m a x _ i t e r s) :
S t ep 1 : P e r t u r b and a p p l y p r o j e c t i o n , t h e n compute l o s s
Gammas = PerturbGamma (Gammas , d e l t a)
A p p l y P r o j e c t i o n (t h e t a _ t , p r e _ t r a i n e d , Gammas)
l o s s 1 = Forward (t h e t a _ t , x)
R e v e r s e P r o j e c t i o n (t h e t a _ t) # R e s e t t h e p a r a m e t e r b e f o r e

p r o j e c t i o n

S tep 2 : Reve r se and a p p l y p r o j e c t i o n , t h e n compute l o s s
Gammas = PerturbGamma (Gammas , −2 * d e l t a)
A p p l y P r o j e c t i o n (t h e t a _ t , p r e _ t r a i n e d , Gammas)
l o s s 2 = Forward (t h e t a _ t , x)
R e v e r s e P r o j e c t i o n (t h e t a _ t) # R e s e t t h e p a r a m e t e r b e f o r e

p r o j e c t i o n

S tep 3 : R e s e t p r o j e c t i o n and compute g r a d i e n t
Gammas = PerturbGamma (Gammas , d e l t a) # R e s e t p r o j e c t i o n
g rad = (l o s s 1 − l o s s 2) / (2 * d e l t a)

S tep 4 : G r a d i e n t d e s c e n t w i th c l i p p i n g
f o r name , gamma i n Gammas . named_paramete r s () :

t o r c h . manua l_seed (seed) # For r e s a m p l i n g p e r t u r b a t i o n
z = t o r c h . normal (mean =0 , s t d =1 , s i z e =gamma . d a t a . s i z e ())
gamma . d a t a = t o r c h . c l i p (

gamma . d a t a − e t a * g rad * z ,
(1 − t a u) * norms [name] ,
(1 + t a u) * norms [name] ,

) # Conduct d e s c e n t and a p p l y c l i p p i n g

r e t u r n Gammas

28

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we claimed our contribution is to devise a
method to improve the performance of ZO on LLM.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations and future work are discussed in Section 6.5 and conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

29

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have our proof both in Section 5 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present our pseudocode and PyTorch-style implementation in the paper
and release our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

30

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release our code with the anonymized url.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: We present our experiment setting in both the experimental section and the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computing resources we use, and carefully analyze the computa-
tional overhead of our method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

32

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we do.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

33

https://neurips.cc/public/EthicsGuidelines

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we have cited all the necessary works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we have released all the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human-related parts are included in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

34

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not related.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not related.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries and Pattern Analysis
	Revisiting Zeroth-order Optimization
	Layer-wise Divergence Analysis

	Methodology
	Design of the Divergence-driven Layer Adaptation
	How to Learn the Projection?
	Projection Learning by Zeroth-order Optimization

	Overhead Analysis
	Convergence Analysis
	Experiments
	Experimental Settings
	Medium-sized Masked Language Models
	Large Autoregressive Language Models
	Memory and Speed Analysis
	Discussion on Potential Alternatives and Limitations

	Conclusion
	Acknowledgment
	Related Work
	Memory-efficient Fine-tuning
	Zeroth-order Optimization and Acceleration

	Experiment Settings and Analysis
	Datasets and Evaluation
	Hyperparameter Setting

	Ablation study on DiZO
	Ablation for Projection Layers Selection
	Ablation for Strategies in ZO Projection Learning
	Ablation for the Selection of the Anchor
	Ablation on Hyperparameter Setting
	Quantization of Anchor (Pre-trained) Model

	Do Other Alternative Strategies Work?
	More Experimental Results
	RoBERTa-large Experiments
	More Memory and Speed Analysis
	Larger OPT Models Fine-tuning
	Llama Fine-tuning
	Fine-tuning on MMLU and MT-Bench
	Compare with Sparse Technique

	Theoretical Analysis
	Variance Symmetry under Isotropic Perturbations
	The Proof of Convergence Analysis
	τ-Stability of the Clipping Step

	Implementation

