
Conformal Time-Series Forecasting

Kamilė Stankevičiūtė
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Abstract

Current approaches for (multi-horizon) time-series forecasting using recurrent
neural networks (RNNs) focus on issuing point estimates, which are insufficient
for informing decision-making in critical application domains wherein uncertainty
estimates are also required. Existing methods for uncertainty quantification in RNN-
based time-series forecasts are limited as they may require significant alterations
to the underlying architecture, may be computationally complex, may be difficult
to calibrate, may incur high sample complexity, and may not provide theoretical
validity guarantees for the issued uncertainty intervals. In this work, we extend
the inductive conformal prediction framework to the time-series forecasting setup,
and propose a lightweight uncertainty estimation procedure to address the above
limitations. With minimal exchangeability assumptions, our approach provides
uncertainty intervals with theoretical guarantees on frequentist coverage for any
multi-horizon forecast predictor and any dataset. We demonstrate the effectiveness
of the conformal forecasting framework by comparing it with existing baselines on
a variety of synthetic and real-world datasets.

1 Introduction

Time-series forecasting tasks are central to a broad range of application domains, including stock
price predictions [1, 2], service demand forecasting [3, 4], and medical prognoses [5–7]. Recurrent
neural networks (RNNs) and their variants (e.g., LSTM, GRU, etc.) constitute an instrumental class of
models that are most commonly used to carry out time-series forecasting tasks [8, 9]. These models,
however, are usually used to issue point predictions—i.e., singular estimates of the future values
of a time-series. In many high-stakes applications—such as finance and medicine—these are not
enough; estimates of uncertainty are also required for accurate risk assessment and decision-making
[10]. For example, clinical practitioners need to make treatment decisions accounting for all potential
scenarios, where less likely scenarios may have graver consequences and require more care compared
to the more likely scenarios [11, 12].

While various methods for uncertainty estimation in standard feed-forward neural networks have
been recently proposed [13–15], equivalent methods for RNN-based time-series models are still
under-explored. Existing solutions include Bayesian recurrent neural networks [16–18], quantile
regression models [3, 19], latent variable models with deep state-space architectures [6, 20], and
post-hoc uncertainty estimates using bootstrapping, jackknife or other ensembling procedures [21–
23]. Each of these solutions has its own limitations: Bayesian models may be difficult to calibrate,
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quantile predictors may “overfit” their uncertainty estimates, and bootstrapping methods scale poorly
for RNNs with large number of parameters. Almost all existing methods share at least one of the two
major drawbacks: (1) they require substantial modifications to the underlying model architecture,
and (2) they provide no theoretical guarantees on frequentist coverage, any of the exceptions being
computationally intractable.

We aim to address the above limitations by adapting conformal prediction (CP) [24, 25]—a framework
used to derive prediction intervals with guaranteed finite-sample frequentist coverage—to the time-
series forecasting setup. CP has originally been designed to construct prediction intervals for scalar
targets; on the other hand, observations and predictions in time-series forecasting involve temporally
dependent, potentially multivariate sequences that are not, in general, directly comparable due to
differences in observation lengths, irregular frequencies, non-stationarity, and other variations in
temporal dynamics (comparison between training points being a key step in CP). We extend CP to a
novel, computationally efficient conformal forecasting framework that can leverage any underlying
point forecasting model to produce multi-step prediction intervals with coverage guarantees across
the prediction horizon. We focus on RNN-based conformal forecasting architectures, which we
call conformal forecasting RNNs (CF-RNNs), and explore their effectiveness in providing valid and
efficient coverage intervals.

2 Related Work

Most previous work in the area of uncertainty quantification in deep learning focuses on feed-forward
neural network models. Much less work has been done on uncertainty estimation for time-series
models. In what follows, we discuss previous methods developed for uncertainty estimation for
RNNs, which we also summarise in Table 1.

Table 1: Overview of the most popular RNN-based probabilistic forecasting methods.

Method Paradigm Architecture Time-series
observations

Frequentist
coverage

Bayesian RNNs [16–18] Bayesian Built-in Multiple —
Monte Carlo dropout [26] Bayesian (approx.) Built-in Multiple —
MQ- [3], SQF-RNN [19] — Built-in Multiple —
BJ-RNN [21] Frequentist Post-hoc Multiple 1− 2α
EnbPI [27] Frequentist (approx.) Ensemble Single 1− α

CF-RNN (proposed) Frequentist Post-hoc Multiple 1− α

Bayesian RNNs [16–18] extend the ideas of Bayesian inference to RNN models, expressing the
model (epistemic1) uncertainty through distributions on model parameters [28, 29]. Exact Bayesian
inference quickly becomes infeasible, however; various approximations based on Markov chain Monte
Carlo [30–33] or variational inference [34–37] are needed. Bayesian neural networks depend on
significant changes in the underlying model architecture (at least doubling the number of parameters),
and rely on a good choice of prior (which may be challenging in practice). While simplifying
techniques such as Monte Carlo dropout [26] (with RNN-specific adaptation in Gal and Ghahramani
[38]) exist, they are often difficult to calibrate [21].

Quantile RNNs can be viewed as a deep neural network extension of quantile regression [39] for
sequential data: instead of returning a series of point estimates across the prediction horizon, quantile
RNNs learn the prediction intervals directly, with upper and lower bounds of the forecast as separate
prediction targets. The standard approach to achieve this is to use the appropriate pinball loss function
as the objective. While successful applications of this approach in time-series forecasting exist
[3], naively learning individual bounds may have problems such as quantile crossing; more recent
approaches Gasthaus et al. [19] resolve this by fitting the entire quantile function. Quantile RNNs are
additionally at risk of quantile overfitting due to poor sample complexity [21].

Ensembles are based on the principle of training and combining multiple models, e.g. deep en-
sembles trained on different random initialisations [40, 41], or models retrained on partial datasets
(jackknife or bootstrap resampling-based RNNs, [22, 21]). Deep neural network ensembles are in
general not mathematically principled for uncertainty quantification [42]; while resampling-based

1Contrast with aleatoric uncertainty of the data [12].

2



temporally dependent 
(non-exchangeable) 

observations

independent 
(exchangeable) 

observations

Figure 1: Time-series observation paradigms. (Left) The dataset is assumed to comprise a single time-
series, with observations being individual time-steps within the time-series. These observations are temporally
dependent. (Right) The dataset consists of a set of independent time-series, where the entire series is treated as
an observation. Independence of time-series implies their exchangeability.

models resolve this and provide post-hoc frequentist coverage guarantees, they are instead limited
in their time and space complexity. For example, exact inference on the state-of-the-art blockwise
jackknife RNN (BJ-RNN) model [21] takes O(P 3) time for P parameters, and even with simplifying
approximations—which in turn deteriorate accuracy—the model does not scale beyond small datasets.

Conformal prediction (CP) For a given significance level (error rate) α, the goal of CP [24, 25]
is to return a prediction region Γα that is guaranteed to contain the true value with probability
of at least (1 − α). In regression problems (such as time-series forecasting), CP is modified to
work inductively using an additional calibration set and an underlying model—an approach called
inductive conformal prediction (ICP) [43, 44]. Little work has been done applying (I)CP methods
for time-series forecasting; the main challenge is that CP assumes exchangeability, where any
permutation of the dataset observations is equiprobable. However, the time-steps within a time-series
are inherently non-exchangeable due to temporal dependencies (Figure 1, left); naively applying
CP to derive forecast intervals from a given time-series is therefore not methodologically valid
and lacks the validity guarantees. One notable exception is the EnbPI model [27], which bypasses
the exchangeability assumption (introducing some others) and uses an ensemble of bootstrapped
estimators to provide approximately valid intervals. However, we argue that learning from a single
time-series—while useful in cases where indeed only one time-series is available—may not be
optimal in settings where datasets contain multiple time-series, the shared patterns of which could
potentially be exploited (Figure 1, right). To the best of our knowledge, no existing method has
applied CP to the latter forecasting setting (despite it being more methodologically grounded); yet
the datasets of multiple time-series are increasingly common and useful [45].

3 Conformal forecasting RNNs (CF-RNNs)

In this Section, we introduce the conformal forecasting RNN (CF-RNN) model. We start off by
formalizing the multi-horizon time-series forecasting problem in Section 3.1, and providing the
necessary background on inductive conformal prediction (ICP) for regression tasks in Section 3.2.
We introduce the details of the conformal forecasting procedure in Section 3.3.

3.1 Multi-horizon time-series forecasting

Let yt:t′ = (yt, yt+1 . . . , yt′) be a time-series of d-dimensional observations yt, . . . , yt′ ∈ Rd that
start at time step t and end at time step t′. A multi-horizon time-series forecast predicts future values

ŷ(t′+1):(t′+H) = (ŷt′+1, . . . , ŷt′+H) ∈ RH×d, (1)
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given the history of observed values y1:t′ , where H is the number of steps to be predicted (the
prediction horizon). For critical applications, we are interested in the uncertainty associated with the
forecast—for each time step h in the prediction horizon, we would like to obtain prediction intervals
of the form [ŷLt+h, ŷ

U
t+h], h ∈ {1, . . . ,H}, so that the ground truth value yt+h is contained in the

interval with a sufficiently high probability. We fix a desired significance level (or error rate) α, such
that the ground-truth values of the entire time-series trajectory are contained within the intervals; i.e.,

P
[
yt+h ∈ [ŷLt+h, ŷ

U
t+h], ∀h ∈ {1, . . . ,H}

]
≥ 1− α. (2)

3.2 Inductive conformal prediction (ICP)

Given a set of observations D = {(x(i), y(i))}li=1 and a new example x(l+1), the ICP procedure
[24, 46, 47] returns a prediction interval Γα such that the property of validity is satisfied:

Property 1. (Validity) Under the exhangeability assumption, any conformal predictor will return
the prediction region Γα(x(i)) such that the probability of error y(l+1) /∈ Γα(x(l+1)) is not greater
than α. Alternatively:

P[y(l+1) ∈ Γα(x(l+1)) | D] ≥ 1− α. (3)

The conformal prediction framework is distribution-free (i.e. it does not have any assumptions on the
distribution of the underlying data D), and applies to any underlying predictive model as long as the
exchangeability assumption is satisfied:

Assumption 1. (Exchangeability) In a dataset of l observations {(x(i), y(i))}li=1, any of its l!
permutations are equiprobable. Note that independent identically distributed (iid) observations
satisfy exchangeability.

The inductive2 variant of CP operates by splitting the training set into the proper training set of size
n and a calibration set of size m: D = Dtrain ∪ Dcal. The proper training set is used to train the
underlying (auxiliary) model M , and the calibration set is used to obtain the nonconformity scores,
which measure how unusual is the given example compared to previously observed data. While CP
guarantees validity for any nonconformity score (including a random number generator), the most
commonly used nonconformity score in regression is of the form

Ri = A(D, (x(i), y(i))) = ∆(M(x(i)|D), y(i)), (4)

where ∆ is some distance metric. While any choice for M is valid, the best architecture depends on
the dataset and the problem. When ∆(ŷ, y) = |ŷ − y|, the nonconformity score Ri = |ŷ(i) − y(i)|
corresponds to the residual error between the prediction of the underlying model and the true label.

The resulting empirical nonconformity score distribution {Ri}li=1 is used to compute a critical
nonconformity score ε̂, which corresponds to the d(m+ 1)(1− α)e-th smallest residual [48]. For a
new example x(l+1), the prediction interval is then:

Γα(x(l+1)) = [ ŷ(l+1) − ε̂, ŷ(l+1) + ε̂ ], (5)

with ŷ(l+1) =M(x(l+1)).

3.3 CF-RNN: ICP for multi-horizon RNNs

So far we have considered the case when the labels y ∈ R are scalar, but multi-horizon time-series
forecasts return H (d-dimensional) values (in this work, we focus on d = 1; extending the results
to multivariate time-series is left for future work). We extend the ICP framework to handle the

2As opposed to the standard “transductive” setting, following the categorisation in Zeni et al. [48]. Alternative
definitions for “transductive” predictors exist; for further discussion see Vovk [49].
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Figure 2: CF-RNN uncertainty estimation procedure. (a) The calibration set is used to obtain the empirical
distribution of nonconformity scores ε̂h, and its appropriate quantile is selected depending on the desired target
coverage level. (b) Critical nonconformity scores are used to obtain the prediction interval.

multi-horizon forecasting setup, while maintaining the validity of the resulting multi-horizon forecast
intervals—we call this the conformal forecasting framework.

Let D be the set of exchangeable observations of the form (y1:T , yT+1:T+H), where y1:T is the
time-series consisting of T observed steps, and yT+1:T+H is the H-step forecast. Note that the label
yT+1:T+H is now an H-dimensional value, in contrast with the scalar y value from before. Due to
the sequential nature of the task, we will use an RNN as the underlying model M . We set M to
produce multi-horizon forecasts directly (where at each time step t, all values of the H-step target
yt+1:t+H are predicted at the same time from a single embedding) rather than recursively (where
a single prediction is obtained at a time, and successive values are obtained by iteratively feeding
them back into the RNN). We motivate our choice of the direct strategy by its robustness to error
accumulation [50, 3], and conditionally independent predictions given the state of M (which will be
important for theoretical guarantees as discussed below). We now replace the single-dimensional
nonconformity score defined earlier by its H-dimensional counterpart,

Ri =
[
|y(i)t+1 − ŷ

(i)
t+1|, . . . , |y

(i)
t+H − ŷ

(i)
t+H |

]>
, (6)

where
[
ŷ
(i)
t+1, . . . , ŷ

(i)
t+H

]>
= M(y

(i)
1:t). Since the H conditionally independent predictions are

obtained from the same embedding, we apply Bonferroni correction to the critical calibration scores
in order to maintain the desired error rate α. In particular, the original α is divided by H , so that
the critical nonconformity scores ε̂1, . . . , ε̂H become the d(m+ 1)(1− α/H)e-th smallest residuals
in the corresponding nonconformity score distributions. The resulting set of prediction intervals is
therefore

Γα1

(
y
(l+1)
(1:t)

)
, . . . , ΓαH

(
y
(l+1)
(1:t)

)
, (7)

where

Γαh

(
y
(l+1)
(1:t)

)
=
[
ŷ
(l+1)
t+h − ε̂h, ŷ

(l+1)
t+h + ε̂h

]
∀h ∈ {1, . . . ,H}. (8)

In summary, the conformal forecasting RNN (CF-RNN) model consists of an RNN issuing point
forecasts, and a conformal forecasting procedure to derive the uncertainty. The entire procedure for
constructing prediction intervals in CF-RNN is illustrated in Figure 2 and summarized in Algorithm 1.
Finally, we show the theoretical motivations behind our approach via the following Theorem, which
provides validity for intervals obtained with the conformal forecasting procedure.

Theorem 1. (Conformal forecasting validity) Let D =
{(
y
(i)
1:t, y

(i)
t+1:t+H

)}l
i=1

be the dataset of
exchangeable time-series observations and their H-step forecasts obtained from the same underlying
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probability distribution. Let M be the recurrent neural network predicting H-step forecasts using
the direct strategy. For any significance level α ∈ [0, 1], the intervals obtained with the ICP-based
conformal forecasting algorithm will have the error rate of at most α; alternatively,

P (∀h ∈ {1, . . . ,H}. yt+h ∈ [ŷt+h − ε̂h, ŷt+h + ε̂h]) ≥ 1− α. (9)

The proof follows from conditional validity of ICP in Vovk [51] and Boole’s inequality. The full
statement and detailed proof is provided in Appendix A.

Algorithm 1 Conformal forecasting RNN (CF-RNN)

1: Input: A trained model M producing H-step forecasts,
2: calibration dataset Dcal =

{
(y

(i)
1:t, y

(i)
t+1:t+H)

}m

i=1
, target error rate α.

3: Output: Critical nonconformity scores ε̂1, . . . , ε̂H .

4: Initialize ε1 = {}, . . . , εH = {}.
5: for i = 1 to m do
6: ŷ

(i)
t+1:t+H ←M(y

(i)
1:t).

7: for h = 1 to H do
8: εh ← εh ∪ {|ŷ(i)t+h − y

(i)
t+h|}.

9: end for
10: end for
11: for h = 1 to H do
12: (Bonferroni and finite sample correction)
13: ε̂h ← d(m+ 1)(1− α/H)e-th smallest residual in εh.
14: end for
15: return ε̂1, . . . , ε̂H .

16: For a new time-series example y∗1:t:
17: ŷ∗t+1:t+H ←M(y∗1:t).

18: return intervals ŷ∗t+1 ± ε̂1, . . . ŷ∗t+H ± ε̂H .

4 Experiments

In this section, we showcase the performance of the conformal forecasting RNN (CF-RNN) model
against three baselines: the frequentist blockwise jackknife RNN (BJ-RNN) [21], the multi-quantile
RNN (MQ-RNN) [3], and the Monte Carlo dropout-based RNN (DP-RNN) [26]. We chose these
baselines as the most popular and representative examples of the different paradigms for uncertainty
estimation (frequentist, quantile prediction and Bayesian uncertainty estimation for BJ-RNN, MQ-
RNN and DP-RNN respectively). All architectures use LSTM as the underlying recurrent neural
network, and are adapted to produce direct multi-horizon forecasts. We first present the performance
of CF-RNNs on synthetic data with controlled properties. Since BJ-RNNs do not scale to larger real
datasets, we use smaller synthetic datasets to provide the comparison of BJ-RNNs with the other
methods. Finally, we compare the performance of CF-RNNs with the remaining two baselines on
three real-world medical datasets. The code is available at github.com/kamilest/conformal-rnn.

4.1 Synthetic data

We first generate the synthetic time-series consisting of two components: the autoregressive process
determining the trend of the time-series, and the noise process representing the inherent uncertainty
of the dataset.3 For a time-series of length T , this is expressed mathematically as:

3Additional experiments showcasing performance on time-series with explicit seasonal (periodic) components
of different frequencies are discussed in Appendix B.2.
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yt =

t∑
k=0

ak · xk + εt,∀k ∈ {1, . . . , T}, (10)

where xt ∼ N (µx, σ
2
x), a = 0.9 is the memory parameter and εt ∼ N (0, σ2

t ) is the noise process.
We consider five time-dependent noise variance profiles, σ2

t = 0.1tn and five static noise variance
profiles σ2

t = 0.1n, for n = {1, . . . , 5}.

4.2 Results

We train the models on 2000 training sequences (with CF-RNNs splitting this dataset into 1000 true
training and 1000 calibration sequences) for the two noise variance profiles. We aim to forecast
prediction intervals for H future values yT+1:T+H for a default coverage rate of 90% (α = 0.1).
Here, T = 15 and H = 5. The RNN hyperparameters for the networks underlying the uncertainty
estimation models are fixed in order to ensure fair comparison, and largely follow those provided
in previous work [21]. These are detailed in the Appendix B along with the time-series model
parameters. Where possible,4 we repeat the experiments five times with a new randomly generated
dataset, reporting the variation in empirical joint coverage over the different realisations.

Table 2: Comparison of joint coverages produced by CF-RNNs and competing baselines on autoregressive series
with static or time-dependent noise profiles. Where possible, empirical joint coverages are aggregated over
repeated trials with randomly generated datasets.

Empirical joint coverage

Noise mode CF-RNN BJ-RNN MQ-RNN DP-RNN

Static
σ2
t = 0.1n

n = 1 92.8 ± 0.8% 100% 65.0 ± 2.7% 5.4 ± 0.5%
n = 2 94.0 ± 0.4% 100% 65.6 ± 3.4% 5.6 ± 1.0%
n = 3 94.6 ± 1.6% 100% 66.4 ± 1.9% 5.0 ± 0.9%
n = 4 94.3 ± 1.4% 100% 65.2 ± 4.4% 4.7 ± 1.0%
n = 5 94.3 ± 1.4% 100% 67.2 ± 1.6% 4.2 ± 1.0%

Time-dependent
σ2
t = 0.1tn

n = 1 92.7 ± 1.3% 99.4% 63.4 ± 1.5% 2.5 ± 1.1%
n = 2 92.4 ± 0.9% 100% 60.9 ± 1.9% 0.4 ± 0.2%
n = 3 90.9 ± 1.3% 100% 57.2 ± 2.1% 0.3 ± 0.2%
n = 4 90.6 ± 1.2% 97.0% 57.1 ± 3.7% 0.0 ± 0.1%
n = 5 91.1 ± 0.7% 99.4% 58.6 ± 2.1% 0.1 ± 0.1%

Table 3: Prediction interval widths of CF-RNNs and competing baselines on synthetic datasets of autoregressive
time-series with static or time-dependent noise profiles. The mean and standard deviation are reported over all
prediction horizons and random seeds.

Interval widths

Noise mode CF-RNN BJ-RNN MQ-RNN DP-RNN

Static
σ2
t = 0.1n

n = 1 16.45 ± 3.69 98.45 ± 25.95 9.47 ± 1.99 2.82 ± 0.33
n = 2 16.97 ± 3.34 32.53 ± 2.92 9.63 ± 1.85 2.95 ± 0.37
n = 3 17.12 ± 3.50 35.82 ± 1.59 9.72 ± 1.92 2.77 ± 0.37
n = 4 17.34 ± 3.77 33.83 ± 2.49 9.71 ± 1.80 2.87 ± 0.35
n = 5 16.97 ± 3.27 51.23 ± 3.21 9.84 ± 1.99 2.85 ± 0.38

Time-dependent
σ2
t = 0.1tn

n = 1 19.80 ± 3.61 27.09 ± 1.16 11.50 ± 1.66 3.01 ± 0.35
n = 2 25.74 ± 3.32 104.85 ± 5.68 15.45 ± 1.68 3.15 ± 0.37
n = 3 32.70 ± 3.97 36.45 ± 1.25 20.05 ± 2.02 3.62 ± 0.33
n = 4 40.74 ± 4.10 33.24 ± 2.32 25.02 ± 2.11 3.91 ± 0.45
n = 5 49.00 ± 5.58 51.45 ± 5.37 30.55 ± 2.54 4.15 ± 0.57

Tables 2 and 3 compare the joint coverage uncertainty intervals of the models. Both CF-RNN and
BJ-RNN empirically surpass the target joint coverage of 90% (α = 0.1) in both static and time-
dependent noise settings, satisfying the finite-sample frequentist coverage guarantees as required.

4BJ-RNNs were not retrained beyond a single random seed due to limited resources.
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Figure 3: Trade-offs between the dataset size, joint coverage and interval widths. (Left and Middle) The
relationship between the training dataset size, joint coverage rate (left) and average interval width (middle) for
CF-RNN, MQ-RNN and DP-RNN baselines. (Right) The trade-off between the coverage rate and prediction
horizon for a fixed prediction interval width in CF-RNN models with different types of the underlying RNN.

Table 3 additionally illustrates that CF-RNN intervals adapt to the properties of the temporal dynamics
of the dataset: when the noise is static (and the time-series more predictable), CF-RNN prediction
interval widths do not change much with increasing base variance; on the other hand, when the
noise profile is time-dependent—so that inherent noise of the time-series accumulates in addition to
uncertainty of the model itself—the average intervals get wider with increasing dataset uncertainty.
The other frequentist baseline—BJ-RNN—has markedly wider intervals than those of CF-RNN. This
might be important to maintain the perfect coverage; however, we argue that as long as the coverage
rate surpasses target coverage, the intervals should be as efficient (narrow) as possible to be the most
informative for decision making. (Consider that infinite intervals would have perfect coverage but
would not be informative.) In addition, BJ-RNNs take prohibitively long to compute (the reason
for which they contain only a single seed and will also be excluded from the comparisons on real
data). Conversely, the ICP procedure only requires running the trained RNN model on a calibration
set (where the model can be calibrated for any desired coverage simultaneously, with no additional
computational cost), at which point adding uncertainty intervals to a prediction takes constant time.
On the other hand, baselines following the alternative (non-frequentist) paradigms—MQ-RNN and
DP-RNN—both fail to achieve target coverage, sometimes reporting coverage rates as low as zero.
For this reason, while the two models also come with narrower (more efficient) intervals, lack of
coverage guarantees makes them less useful in high stakes real-world applications.

Experiments on the data with controlled properties provide additional insight on the trade-offs
between the desired coverage rate and how far into the future can the predictions be reliably made.
These trade-offs are shown in Figure 3 as applied to the datasets with time-dependent noise variance
profile σ2

t = 0.1t. The left and middle panels show the average performance of the CF-RNN,
MQ-RNN and DP-RNN baselines depending on the training dataset size. CF-RNN is the only model
to achieve and maintain the required joint coverage rate with finite number of examples; additionally,
with more data (larger calibration datasets), the distribution of nonconformity scores can be specified
more accurately, so the width of the intervals decreases. Finally, in the panel on the right we fix the
prediction interval width and for each horizon H compute the largest coverage level 1−α maintained
by CF-RNN. As shown in the Figure, low target coverage levels allow us to make valid predictions
far into the future, and ideal coverage levels can only be achieved with horizons near the prediction
point. The overall trend is maintained for every recurrent neural network model M .

4.3 Experiments on real data

We now demonstrate the effectiveness of our procedure on real-world time-series. We train the
proposed CF-RNN architecture as well as the MQ-RNN and DP-RNN baselines on three datasets
summarised in Table 4. For the first task, we use the data from the Medical Information Mart for
Intensive Care (MIMIC-III) [52] dataset, where we forecast daily observations of white blood cell
counts of varying lengths. For the second task, we use the electroencephalography (EEG) dataset
from the UCI machine learning repository [53], where we forecast trajectories of downsampled
EEG signals obtained from healthy subjects exposed to three types of visual stimuli. For the final
task, we forecast daily COVID-19 cases within the United Kingdom local authority districts. All
datasets are publicly available and the medical data is anonymised. We selected these datasets
to represent a variety of scenarios of real time-series: the numbers of available training instances
span different orders of magnitude (from hundreds to tens of thousands), the datasets have varying
observation sequence lengths, different stationarity properties (e.g. the COVID-19 time-series are
synchronous—each time step representing the same point in time—the others are not), different
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noise profiles (e.g. EEG signal data will inherently have higher frequencies than MIMIC-III white
blood cell count data), and different target prediction horizons. We note that COVID-19 dataset is
especially challenging as the forecasts contain a wave of infections and lockdowns, with the wave
starting at different points for every region. Details on datasets and their preprocessing are provided
in Appendix C.

Table 4: Dataset properties. The number in parentheses under the training example column indicates how many
examples were used for training when a calibration set was required, such as in the case of CF-RNNs.

Dataset # Training sequences Window length T Prediction horizon H

MIMIC-III [52] 3823 (2000) [3, 47] 2
EEG [53] 19200 (15360) 40 10

COVID-19 [54] 300 (200) 100 50

Table 5: Uncertainty forecasting model performance on three real-world datasets. Coverage refers to joint
coverage (higher is better), and is averaged over the random splits of the dataset and training seeds. Prediction
interval lengths (lower is better) are averaged over the prediction horizons and random seeds.

MIMIC-III EEG COVID-19

Model Coverage CI/PI lengths Coverage CI/PI lengths Coverage CI/PI lengths

DP-RNN 40.2 ± 13.9% 3.59 ± 0.90 3.3 ± 0.7% 7.39 ± 0.74 0.0 ± 0.0% 61.18 ± 32.37
MQ-RNN 89.3 ± 1.2% 16.16 ± 3.92 48.0 ± 4.0% 21.39 ± 2.36 15.0 ± 5.9% 136.56 ± 63.32
CF-RNN 94.0 ± 1.2% 20.59 ± 3.10 96.5 ± 1.0% 61.86 ± 18.02 89.7 ± 5.3% 733.95 ± 582.52

Performance of the models is summarised in Table 5. We note that the underlying LSTM model of
the proposed CF-RNN architecture had the same hyperparameters as the competing baselines, yet
fewer training instances (as some of the examples are used for the calibration procedure). Despite
this, CF-RNN obtains the highest coverage for all datasets, and is the only model to empirically
achieve the target joint coverage rates. While this seems to disproportionately affect the efficiency of
CF-RNN intervals (as these are the widest), the predictions are indeed reliable across the range of
datasets and scenarios. On the other hand, the baseline models seem to have competitive coverage
with better efficiency in some settings (e.g. MIMIC-III), yet revert to unreliable predictions in less
certain scenarios (e.g. COVID-19). In other words, CF-RNN adapts its prediction interval widths to
reliably match the required target coverage, increasing the width for unpredictable datasets.

Finally, we briefly explore the importance of and motivation behind the Bonferroni correction of
the error rate in the CF-RNN calibration procedure. Table 6 shows that calibration scores without
Bonferroni correction generally lead to poor joint coverage, even though independent coverage rates
normally achieve the target coverage (most notable exception being the COVID-19 dataset selected
for its forecasting difficulty).

Table 6: Bonferroni-corrected and uncorrected empirical coverages of the CF-RNN model. Joint coverage is
aggregated over the different random seeds; independent coverages present the range of observed values across
all horizons and all random seeds.

MIMIC-III EEG COVID-19

Model Joint Independent Joint Independent Joint Independent

CF-RNN 94.0 ± 1.2% [93.8%, 96.8%] 96.5 ± 1.0% [98.3%, 99.8%] 89.7 ± 5.3% [87.5%, 100.0%]
Uncorrected 89.0 ± 1.4% [89.0%, 91.4%] 59.4 ± 2.4% [85.5%, 91.6%] 55.5 ± 8.0% [77.5%, 98.8%]

5 Conclusion

In this paper, we extended the ICP framework to the multi-horizon time-series forecasting problem,
providing a lightweight algorithm with theoretical guarantees for frequentist coverage. Extending
from the initial investigation presented in Appendix D, future work would focus on increasing the
overall efficiency of prediction intervals by reducing their width, which would involve making them
more adaptive to individual observations.
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