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ABSTRACT

Deep Neural Networks (DNNs), either pre-trained (e.g., GAN generator) or un-
trained (e.g., deep image prior), could act as overparameterized image priors that
help solve various image inverse problems. Since traditional image priors have
much fewer parameters, those DNN-based priors naturally invite the curious ques-
tion: do they really have to be heavily parameterized? Drawing inspirations from
the recently prosperous research on lottery ticket hypothesis (LTH), we conjec-
ture and study a novel “lottery image prior” (LIP), stated as: given an (untrained
or trained) DNN-based image prior, it will have a sparse subnetwork that can be
trained in isolation, to match the original DNN’s performance when being applied
as a prior to various image inverse problems. We conduct extensive experiments
in two representative settings: (i) image restoration with the deep image prior,
using an untrained DNN; and (ii) compressive sensing image reconstruction, us-
ing a pre-trained GAN generator. Our results validate the prevailing existence of
LIP, and that it can be found by iterative magnitude pruning (IMP) with surrogate
tasks. Specifically, we can successfully locate the LIP subnetworks at the spar-
sity range of 20%-86.58% in setting i; and those at sparsity range of 5%-36% in
setting ii. Those LIP subnetworks also possess high transferability. To our best
knowledge, this is the first time that LTH is demonstrated to be relevant in the
context of inverse problems or image priors, and such compact DNN-based priors
may potentially contribute to practical efficiency. Code will be publicly available.

1 INTRODUCTION

Background Deep neural networks (DNNs), in particular convolutional neural networks (CNNs),
have been powerful tools for solving various image inverse problems such as denoising (Zhang et al.,
2017; Guo et al., 2019; Lehtinen et al., 2018), inpainting (Pathak et al., 2016; Yu et al., 2018; 2019b),
and super resolution (Ledig et al., 2017; Lim et al., 2017; Zhang et al., 2018). Conventional wisdom
believes that is owing to DNNs’ universal approximation ability and learning from massive training
data. Yet, recent studies have revealed the specific architectures of CNNs have the inductive bias to
represent and generate natural images well, and such favorable architecture inductive bias can work
independently from fitting specific training sets (Ulyanov et al., 2018; Cheng et al., 2019; Bora et al.,
2017; Heckel & Hand, 2019; Jalal et al., 2020).

For example, deep image prior (DIP) (Ulyanov et al., 2018) shows an untrained neural network
can be used as a handcrafted prior that transfers well across multiple inverse problems. The authors
attributed the success to the CNN architecture itself, that appeared to possess high noise impedance
even with only random initializations. As another example, in compressive sensing, Bora et al.
(2017); Jalal et al. (2020) replaced the common structural assumptions such as sparsity with a pre-
trained generative adversarial networks (GAN). The underlying rationale lies in that a pre-trained
generator should (approximately) represent the notion of a vector being or more likely in the target
domain such as natural images; in other words, a sample more like a natural image will be closer to
the output range of the pre-trained generator. In this paper, we refer to such general-purpose image
prior parameterized by (either untrained or pre-trained) DNNs as DNN-based image priors.

Recall that, classical image regularizers in the spatial or frequency domains are often not learning-
based (Tomasi & Manduchi, 1998; Sardy et al., 2001; Dabov et al., 2007), or rely on compact
learning models (Cao et al., 2008; Elad & Aharon, 2006; He et al., 2015). On contrary, DNN-based
image priors have a massive number of parameters (we compare the parameter numbers between the
full model and the sparse subnetwork in Table. 2), typically magnitudes more than the image (even
the image size) size. The two extremes invite the natural question: Can we identify highly compact
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Figure 1: Overview of our work. In both untrained and pretrained DNN-based image priors, we
study the existence of Lottery Image Prior (LIP) that could transfer to various image inverse prob-
lems such as denoising, inpainting, super-resolution, and/or compressive sensing restoration.

DNN-based image priors, that are same effective? We note that, diving into this question has two-
fold appeals. On the algorithmic side, that could help us understand further how the topology and
connectivity of CNN architecture itself will affect the effectiveness of those priors, and to what
extent sparsity could be relevant. On the practical side, if we could provide an affirmative answer
to this question, that would potentially lead to more computationally savings when applying those
DNN-based priors in practice, leading to faster restoration or computational imaging with them.

Towards the above question, the tool we refer to in this paper is the recently emerged Lottery Ticket
Hypothesis (LTH) (Frankle & Carbin, 2018; Frankle et al., 2020a). LTH suggests that every dense
DNN has an extremely sparse “matching subnetwork”, that can be trained in isolation to match the
original dense DNN’s accuracy. While the vanilla LTH studies training from random scratch, the
latest works also extend similar findings to fine-tuning the pre-trained models (Chen et al., 2020a;
2021a). LTH has widespread success in image classification, language modeling, reinforcement
learning and multi-modal learning, e.g., (Yu et al., 2019a; Renda et al., 2020; Chen et al., 2020a;
Gan et al., 2021).

Our Contributions Drawing inspirations from the LTH literature, we conjecture and empirically
study a novel “lottery image prior” (LIP), stated as:

Given an (untrained or trained) DNN-based image prior, it will have a sparse subnetwork
that can be trained in isolation, to match the original DNN’s performance when being

applied as a prior to regularizing various image inverse problems.

Studying this new problem is, however, NOT a naive extension from the existing LTH methods,
owing to several technical barriers: (a) till now, LTH has not been demonstrated for image inverse
problem or DNN-based priors, to our best knowledge. Most LTH works studied discriminative tasks,
with one exception (Chen et al., 2021c). It is therefore uncertain whether high-sparsity DNN is still
viable for reconstruction-oriented tasks; (b) existing LTH works typically require a full training set
to locate the sparse subnetwork mask, whereas our LIP settings are only not data-rich. For example,
DIP needs the DNN to be trained to overfit one specific image, making it drastically different from
previous problems; (c) the objectives between finding the sparse mask (e.g., learning the prior)
and fitting the sparse subnetwork (e.g., using the prior) are often unaligned in LIP problems. For
example, DIP will overfit a corrupted input image (during which the sparse mask will be found)
in order to reconstruct a clean output image (when the found sparse subnetwork will be used); the
pre-trained generator will also be used towards a different goal (regularizing compressive sensing)
from their original pre-training task (generating realistic images).

Our extensive experimental study confirms the existence of LIP in two representative settings: (i)
image restoration with the deep image prior, using an untrained DNN (as shown in Fig. 2); and
(ii) compressive sensing image reconstruction, using a pre-trained GAN generator. Using iterative
magnitude pruning (IMP) with surrogate tasks (the overview of our work paradigm is in Fig. 1),
we can successfully locate the LIP subnetworks at the sparsity range of 20%-86.58% in setting
i; and those at the sparsity range of 5%-36% in setting ii. Those LIP subnetworks also possess
high transferability. For example, the LIP ticket found in the setting i transfer well across not only
different images, but also different tasks such as denoising, inpainting and super-resolution. Our
contributions are summarized below:

• The first comprehensive study on LTH in DNN-based image priors and inverse problems,
establishing the “lottery image prior” (LIP) and demonstrating the prevailing relevance of
LTH more broadly than previously typical settings.
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Figure 2: LIP visual results: inpainting (row 1), super-resolution (rows 2/3) and denoising (row 4).
The last column (in blue) intends to display the results with the most extremely sparse subnetwork.

• The investigation of both untrained and pre-trained DNNs as image priors, verifying that
LIP subnetworks can be found in both settings, by overcoming several impediments such
as severely limited training data and task objective mismatch.

• High transferability of LIP subnetworks across data/datasets, and various inverse problem
tasks. Our finding reflects the underlying common image prior that is agnostic to specific
data or task, through the lens of the CNN architecture together with sparsity.

2 BACKGROUND WORK

Lottery Ticket Hypothesis LTH (Frankle & Carbin, 2018) states that the dense, randomly ini-
tialized DNN contains a sparse matching subnetwork, which could reach the comparable or even
better performance by independently being trained for the same epoch number as the full network
do. Since then, the statement has been verified in a variety of fields, such as image classification
(Frankle & Carbin, 2018; Liu et al., 2018; Wang et al., 2020; Evci et al., 2019; Frankle et al., 2020b;
Savarese et al., 2019; Yin et al., 2019; You et al., 2019; Ma et al., 2021; Chen et al., 2021a), nat-
ural language processing (Gale et al., 2019; Chen et al., 2020a), reinforcement learning (Yu et al.,
2019a), lifelong learning (Chen et al., 2020b), graph neural networks (Chen et al., 2021b), and ad-
versarial robustness (Cosentino et al., 2019). Rewinding was proposed by (Frankle et al., 2019) to
scale up the LTH to large models and datasets. The found matching subnetworks also demonstrate
transferability across datasets and tasks (Morcos et al., 2019; Desai et al., 2019).

Deep Image Prior and Its Variants Despite CNN’s tremendous success on various imaging tasks,
their outstanding performance is often attributed to massive data-driven learning. DIP (Ulyanov
et al., 2018) pioneered to show that CNN architecture alone has captured important natural image
priors: by over-fitting a randomly initialized untrained CNN to a single degraded image (plus some
early stopping), it can restore the clean output without accessing ground truth. Follow-up work
(Mataev et al., 2019) strengths DIP performance by incorporating it with the regularization by de-
noising (RED) framework and a series of works (Mastan & Raman, 2020; 2021) use the contextual
feature learning method to achieve the same goal of DIP. Besides natural image restoration, DIP
was successfully applied to PET image reconstruction (Gong et al., 2018), dynamic magnetic reso-
nance imaging (Jin et al., 2019), unsupervised image decomposition (Gandelsman et al., 2019) and
quantitative phase imaging (Yang et al., 2021). Heckel & Hand (2018) further demonstrated that
even an under-parameterized non-convolutional model, named “Deep Decoder”, can over-fit a sin-
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gle degraded image like DIP did, which does not critically rely on early stopping or so. Chen et al.
(2020c) was the first to study the possibility to optimize CNN architectures for capturing stronger
image priors in DIP, via leveraging Neural Architecture Search (NAS).

Compressive Sensing using Generative Models Compressive Sensing (CS) reconstructs an un-
known vector from under-sampled linear measurements of its entries (Foucart & Rauhut, 2013), by
assuming the unknown vector to admit certain structural priors. The most common structural prior
is to assume that the vector is k-sparse in some known bases (Candes et al., 2006; Donoho, 2006),
and more sophisticated statistical assumptions were also considered (Baraniuk et al., 2010). How-
ever, those priors are inevitably oversimplified to depict the high-dimensional manifold of natural
images. Bora et al. (2017) presented the first algorithm that used pre-trained generative models such
as GANs, as the prior for compressed sensing. As a prior, the pre-trained generator encourages CS to
produce vectors close to its output distribution, which approximates its training image distribution.
Significant research has since followed to better understand the behaviours and theoretical limits of
CS using generative priors, e.g., (Hand & Voroninski, 2018; Bora et al., 2018; Hand et al., 2018;
Kamath et al., 2019; Liu & Scarlett, 2020; Jalal et al., 2020).

3 PRELIMINARIES AND APPROACH

3.1 NEURAL NETWORK AS PRIORS: TWO SETTINGS

Although the implementation process of the GAN Compressed Sensing (CS) task and the DIP
restoration task are different, yet we combine the two studies in this one paper for two reasons: 1)
we are motivated by two current LTH streams: networks with weights trained from scratch (Frankle
& Carbin, 2018) and networks with pre-trained weights (Chen et al., 2021a). 2) Network structures
with random weights or pre-trained weights can be priors, which is the commodity we view as the
two could be unified. In setting i, we use an untrained CNN as the dense model, and solve the DIP
optimization (Ulyanov et al., 2018)

θ∗ = argmin
θ
E(fθ(z); x̃), x

∗ = fθ∗(z), (1)

where E(; ) denotes the Mean Square Error (MSE), x̃ is the corrupted version of the image x ∈
R3×H×W , fθ represents the dense model f with initial parameter θ and z is the random tensor that
z ∈ RC×H×W . We choose the same hourglass architecture with skip connections as in (Ulyanov
et al., 2018), to be the dense model by default.

In setting ii, we follow Bora et al. (2017) to use a pre-trained GAN generator, to reconstruct the
unknown vector x∗ ∈ Rn, after observing m < n linear measurements of its entries with noise:
y = Ax∗ + η, where A ∈ Rm×n is the measurement matrix and η ∈ Rm is the noise. Within the
range of the pre-trained generator prior, GANs could reconstruct the vector x∗ with high perceptual
quality. Following the recommendation of Jalal et al. (2020), we use the official pre-trained model
PGAN (Karras et al., 2017).

3.2 FINDING LOTTERY TICKETS

Datasets In setting i, we use the popular Set5 (Bevilacqua et al., 2012) and Set14 (Zeyde et al.,
2010) datasets. Besides, we evaluate the transferability of subnetworks on image classification
datasets such as MNIST (LeCun et al., 2010) and CIFAR10 (Krizhevsky et al., 2009). In setting
ii, our evaluation dataset is CelebA-HQ (Lee et al., 2020; Karras et al., 2017), following Jalal et al.
(2020).

Subnetworks Consider a network f(x; θ) parametered by θ with input x, then a subnetwork is
defined as f(x;m � θ), where � ∈ {0, 1}d, d = ||θ||0 and � is the element-wise product. Let
ATt (f(x; θ)) to be the training algorithm, that is, training model f(x; θ) on the specific task T with
t iterations. We also denote the random initialization weight as θ0 and the pre-trained weight as θp;
θi as weight at the i-th training iteration and ET (f(x; θ)) the model performance evaluation.

Finding Subnetworks Following the definitions of Frankle et al. (2020a), we define that if the
subnetworks is matching, it satisfies the following conditions (we use θp for example, to denote a
pre-trained lottery ticket (Chen et al., 2020a; 2021a); θ0 can be defined likewise):

ET (ATt (f(x; θp)) ≤ ET (ATt (f(x;m� θ)). (2)
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That is a matching subnetwork that performs no worse than the dense model under the same training
algorithm AT and the evaluation metric ET . Similarly, we define the winning tickets: if a matching
subnetwork f(x;m� θ) has θ = θp, then it is the winning tickets under the training algorithm AT .

In practice, we find the matching subnetworks in the following ways: 1) IMP on the dense model
with only one image (applicable to the image restoration task on the same domain of images); 2)
IMP on the dense model with various kinds of images through weight-sharing (applicable to the
image restoration tasks on images from different domains); 3) LTH IMP on the dense model with
the sub-dataset (applicable to the CS task with pre-trained GANs).

Ticket Finding Objectives When finding LIP subnetwork in untrained DNN, i.e., DIP, there is a
problem that may be easily overlooked: what is the target during IMP training? Specifically, since
the training target in Eq. 1 for DIP is x̃ (the corrupted image), the model parameters may easily
overfit the corrupted image during IMP training if we do not fine-tune the training epochs. Then
the obtained mask will contain the information of corrupted images instead of the desired image
prior (but we can also find the effective subnetworks by noisy targets, experiments are summarized
in Table. 3 and 4 in Supplementary Materials). Therefore, we modify the optimization objectives
of DIP during IMP training: argminθ E(fθ(z);x) to ensure that model parameters learn the clean
image prior.

Evaluations of Subnetworks After obtaining the matching subnetwork f(x;m � θ), we evaluate
their performances by 1) resetting the model parameter θ to initialization weight θ0’ 2) adding the
mask m to the model; 3) training the model to another N iterations. We evaluate the DIP subnet-
works performances mainly through Peak Signal to Noise Ratio (PSNR) values, plus reconstruction
errors (defined in (Jalal et al., 2020) for compressive sensing with GANs.

Pruning Methods We use the standard pruning method (Han et al., 2015), which iteratively prune
the 20% of the model weight each time. For setting i, our basic algorithm performs IMP over
just one single image (i.e., DIP’s default setting), and the algorithm is summarized in Algorithm 1
(Appendix). We further design an extended algorithm, that can perform IMP for DIP over multiple
images, through backbone weight sharing: the algorithm is outlined in Algorithm 2 (Appendix). We
will discuss the algorithm variants in Section 4. For setting ii, we use IMP to find winning tickets
in pre-trained GANs, following the routine in (Chen et al., 2021c). In each iteration of IMP, we will
first fine-tune the pre-trained GANs on a (sub-)dataset, prune 20% of the remaining weights, and
reset to the pre-trained weights. Note that we also include other pruning methods to compare the
effectiveness of the matching subnetworks such as random pruning (randomly generate the sparsity
mask m′), and pruning-at-initialization methods, e.g., SNIP (Lee et al., 2018).

4 LIP FOR DEEP IMAGE PRIOR WITH UNTRAINED DNNS

In this section, we will investigate the lottery image prior (LIP) property under setting i, for deep
image prior (DIP) models. Model performance is measured by PSNR (Peak Signal to Noise Ratio)
between the restored images and the clean ground truths (SSIM (Structural Similarity) results are
in supplementary materials). We run all experiments with three different random seeds. All images
used for plotting results are summarized in Fig. 14.

In DIP, for each degraded image to be restored, an untrained DNN will be over-fitted over that single
image (with proper early stopping). This casts a crucial difference from typical LTH settings where
winning tickets are identified using IMP over a distribution of data and are verified to be effective
when trained on data from that specific distribution. Therefore, besides the usual properties in
winning tickets such as the existence, the superiority over other pruning methods, and the effect of
rewinding, we will strive to answer two more questions about LIP in DIP. The first question is: can
we extend the IMP algorithm for single-image DIP to multi-image and thus improve the performance
of winning tickets hopefully? The second question is to what extend the LIP found in DIP setting
can be transferred? Answering these two questions not only provides a clearer picture of LIP, but
also hints a new perspective for a deeper understanding of LTH.

Existence of LIPs In DIP setting, we first find the winning tickets with LIP property by imple-
menting the single-image IMP on the hourglass model (i.e., the DIP model used in Ulyanov et al.
(2018). We adopt the modified objectives using clean images as labels as we discussed in Sec. 3.2.
The algorithm is described in detail in Algorithm 1. We apply the implemented algorithm on Set5
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Figure 3: Experimental results of finding LIP in setting i (i.e., DIP). The first row of the figure
summarizes the LTH IMP training loops and the second row denotes the evaluation of found LIP.
Note that we compare the LTH IMP with Random Prune (Random) and SNIP (Lee et al., 2018)
prune methods, on images from different (Baby and Woman) or same domains (Face1 and Face2).
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Figure 4: Experiments of the rewind strategy (background task: denoising). Note that we train the
model with N epochs in IMP and Rewind j means rewinding the ticket parameter to θj , the weights
after j%×N steps of training.

(Bevilacqua et al., 2012) and Set14 (Zeyde et al., 2010) datasets to obtain the sparse subnetworks1

and evaluate these subnetworks on the denoising task.

Results of single-image IMP in Fig. 3 (curves in red colors) verify that the LIP exists in the DIP set-
ting. To be specific, during the IMP finding process when we use clean images in DIP objectives, we
are able to find the winning tickets with LIP on untrained DNN at sparsity as high as 86.58%. While
at the evaluation stage, when we only have access to the degraded images, we find that the winning
tickets found with the modified objectives are still applicable, matching the dense performance at
sparsity as high as 83.23%.

Besides the dense model baselines, we also compare the single-image IMP with Random Pruning,
and a pruning-at-initialization method SNIP (Lee et al., 2018), whose results are also presented in
Fig. 3 in other colors. Specifically, we clearly observe from the first row in Fig. 3 that the single-
image IMP for DIP outperforms random pruning and SNIP at a wide sparsity range [20%, 96%].
Interestingly, we find random prune is a good competitor to SNIP sometimes, but both of them
suffer significant performance decrease at extreme sparsities (over 80%), where IMP still persists.

The Effect of Weight Rewinding In this part, we study the effect of weight rewinding (Frankle
et al., 2019) when applied to the single-image IMP for DIP models. Weight rewinding is proposed
to scale LTH up to large models and datasets. Specifically, we say we use p% weight rewinding if
we reset the model weights at the end of each IMP iteration to the weights in the dense model after
a p% ratio of training steps within a standard full training process, instead of the model’s random
initialization. For the single-image IMP in DIP, we consider 5%, 10% and 20% weight rewinding
schemes. The resulting models are denoted as Rewind 5, Rewind 10 and Rewind 20, respectively.
The results of different weight rewinding schemes are summarized in Fig. 4. We can see that weight

1We prune 20% of the remaining weights in each IMP iteration, resulting in sparsity ratios si = 1− 0.8i.
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Figure 6: Experimental Results of Multi LIP on images from same/different domains. We compare
Multi LIP with LIP and random prune methods. The background task is denoising in setting i.

rewinding is not beneficial for identifying LIP in the DIP setting. Too much rewinding (10% and
20%) even hurts performance or fails it completely. We conjecture that this is due to the extremely
low data complexity in DIP (single image).
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Figure 5: We evaluate differ-
ent single-image LIPs and the
multi-image LIP on Baby image
to measure LIP’s transferability
(cross images).

Is Multi-image IMP A Good Extension in DIP? DIP over-fits
an untrained DNN on a single image. A reasonable conjecture
is that the DNN will be dedicated to the features in that specific
image and so should the resulting winning ticket be if we apply
single-image IMP to the DIP model. We then ask that whether
we can co-consider multiple images during IMP for DIP models
to find winning tickets that are suitable for more general features
and thus yield better image restoration performance? To verify
our idea, we propose a new multi-image IMP for DIP where we
replace the single-image DIP objective with the average of mul-
tiple images during the IMP process. Note that all images will
share the same fixed random code during IMP. Otherwise, differ-
ent random codes will intervene with one another because they
lead to different winning tickets, resulting in a share subnetwork
with inferior performance. The algorithm is formally described
in Algorithm 2.

We evaluate the multi-image IMP in two different settings: (i) cross-domain setting where we apply
the multi-image IMP to the five images from Set5 (Bevilacqua et al., 2012); (2) single-domain
setting where we apply the multi-image IMP to five images of human faces with glasses. We think
images from Set 5 are from more diversified domains because they include bird, butterfly and human
face contents. We compare single-image IMP winning tickets found on the Baby and the Woman
images from Set5 with the cross-domain ticket, and the single-image IMP winning tickets found on
Face-1 and Face-2 with the single-domain ticket. Results presented in Fig. 6 show that multi-image
IMP significantly improves the quality of the winning tickets in the cross-domain setting, which is
aligned with our previous hypothesis.

To what extent can LIP tickets be transferred? Transferability is an important metric to measure
the usefulness of LIP in the DIP setting. It would significantly undermine the practical application
of LIP if the winning tickets can only be dedicatedly found for each image. In this part, we evaluate
the transferability of LIP for DIP models from three perspectives, i.e., the transferability between
images, between image restoration tasks and between high-level tasks.

Observation 1: LIP can transfer across images. We identify the single-image LIPs for all image
from Set5 and the multi-image LIP on Set5 using the new multi-image IMP proposed in the last
part. Then we evaluate all the above LIPs on the Baby image, results being presented in Fig. 5. We
can see that the LIPs found on other images, even those from the Bird and the Butterfly images,
can perform comparably well with LIP dedicatedly found on the Baby image. This shows that LIP
has reasonable transferability across images, even for those coming from slightly different domains
(for example, the Baby and the Butterfly). We can also observe the fact that the multi-image LIP
outperforms all single-image LIPs, as side support for the superiority of multi-image LIP in the
cross-domain settings.

Observation 2: LIP can transfer across image restoration tasks but not to other high-level tasks.
Ulyanov et al. (2018) showed the effectiveness of DIP in different image restoration tasks including
denoising, inpainting and super-resolution. We conduct experiments to verify if a LIP winning ticket
identified on one image restoration task can be re-used in another because they share some common
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Figure 7: Transferability (cross tasks) experimental results. We study the transferability of denois-
ing LIP on the restoration tasks such as inpainting and super-resolution (SR); we also study the
inpainting and SR LIP on the denoising task. We consider two SR scale factors = 4, 8.
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Figure 8: Transferability experiments. We test the denoising LIP on MNIST and CIFAR10 datasets
(left 2 figures). Note that we replace the last convolutional layer of DIP models with the linear layer
and load the same initial weights. We evaluate the CIFAR LIP on the denoising task.

interests? Furthermore, if the above question has an affirmative answer, is such transferability sus-
tainable when transferring to or from some high-level tasks such as classification?

To evaluate the transferability of LIP between image restoration tasks, we first find three LIPs for
the denoising, inpainting and super-resolution tasks respectively and then transfer between them, as
shown in Fig. 7. We observe that a LIP winning ticket transferred from another image restoration
task always yields restoration performance comparable with the single-image LIP found on the
original task, sometimes even better, for examples in Fig. 7(a) and 7(g).

We then evaluate the transferability of LIP between the denoising task and image classification task
on CIFAR-10. We apply the standard IMP on the DIP model, i.e., the hourglass architecture in
(Ulyanov et al., 2018), to obtain winning tickets on MNIST and CIFAR-10 datasets. We show
the results of transferring the denoising LIP to MNIST in Fig. 8(a) and CIFAR-10 in 8(b) and the
CIFAR-10 winning tickets to denoising task in Fig. 8(c). Although transferring denoising LIP to
MNIST seems to yield winning tickets due to MNIST’s low complexity, its transfer to CIFAR-10
is unsuccessful. Interestingly, the multi-image LIP becomes a worse ticket on CIFAR-10 than the
single-image LIP. Moreover, transferring winning tickets on CIFAR-10 back to the denoising DIP
task also fails to generate winning tickets that are comparable with denoising LIPs.

Based on those observations, we conjecture that the architecture priors needed to “win the lottery
ticket” may substantially differ between low-level (reconstruction, restoration,...) and high-level
(classification, recognition,...) vision tasks, but seems to be quite overlapped/shareable among dif-
ferent tasks that are all low-level (or high-level). The high-level task transferability of winning
tickets has been found in prior works (Morcos et al., 2019; Desai et al., 2019; Chen et al., 2021a).
We believe this interesting “incompatibility” between low-level and high-level tasks is an unstudied
new direction, and leave this for our future work.

5 LIP FOR COMPRESSIVE SENSING WITH GENERATIVE MODELS

Finding LIP in GAN priors for compressive sensing task is more natural than in the setting i. The
training process of GANs is more similar to a typical IMP setting where the models are trained on
a distribution of data for image classification. And the existence of winning tickets in GANs for
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Figure 9: Visual results of compressed sensing using LIPs found in a pre-trained PGAN.
Full Model S = 20% S = 36% S = 49% S = 59% S = 67%Masked

Figure 10: Visual results of inpainting using LIPs found in a pre-trained PGAN.

the generative task has been shown in (Chen et al., 2021c). But it has not been shown for GANs
as image priors for the compressive sensing task. In this section, we first describe how we identify
LIP in pre-trained GANs using IMP and show the existence of LIP for the compressive sensing
task. Then we show that the LIPs found can be transferred to other image restoration tasks such as
denoising and inpainting.

Existence of LIP in GANs for Compressive Sensing We use PGAN (Karras et al., 2017) pre-
trained on CelebA-HQ dataset (Lee et al., 2020) as the model in this section. To obtain LIP tickets
in pre-trained GANs, we apply the IMP algorithm. In each IMP iteration, PGAN is first fine-tuned
on 40% of images in celebA-HQ for 30 epochs, has 20% of its remaining weights pruned, and
then reset to the pre-trained weights. We only prune the generator in the IMP process because
it is found in Chen et al. (2021c) that pruning discriminator or not only has marginal influence
on the quality of the winning tickets. We then evaluate the tickets on the compressive sensing
task following the setting in Jalal et al. (2020): we fix the number of measurements to 1,000 with
20 corrupted measurements, and minimize the MOM objective for 1,500 iterations to recover the
images. We compare the performance (measured in per-pixel reconstruction error) of LIP with the
dense baselines in the first row of Table. 1 and provide a visual example in Fig. 9. Tickets with higher
sparsities can match the reconstruction performance of the dense model, confirming the existence of
the winning tickets.

Sparsity 0% 20% 36% 49% 59% 67% 74%

Random-CS 0.0725 0.0963 0.1165 0.1276 0.2184 0.2086 0.3655
LIP-CS 0.0725 0.0744 0.0732 0.0737 0.0711 0.0728 0.0728

Random-I 0.0541 0.0682 0.0748 0.08101 0.1142 0.1904 0.2195
LIP-I 0.0541 0.0542 0.0504 0.0514 0.0506 0.0524 0.0509

Table 1: Experimental results of GAN LIP. We evaluate the LIPs found in PGAN on the compressed
sensing (CS) and the inpainting (I) tasks. The results are based on celebA-HQ dataset (Lee et al.,
2020). Note that we use the MSE (per pixel) to evaluate the LIP effectiveness and compare the LIP
with random pruning results.
Transfer to other image restoration tasks – inpainting Besides the experiments on the com-
pressed sensing restoration tasks, we also evaluate the effectiveness of GAN LIP on the inpainting
task: masking the image and then optimize the input tensor of generator in the GAN LIP range to
reconstruct the pristine image. More formally, consider the input tensor z′ ∈ R1×512, the pristine
image x sampled from celebA-HQ, inpainting mask A (binary mask), masked image y = Ax and a
generator G, then the optimization loss function is: ||AG(z) − y||2. The results are summarized in
Table. 1 and Fig. 10, demonstrating the transferability of GAN LIP.

6 CONCLUSION

In this paper, we successfully find the lottery image prior (LIP) via lottery ticket hypothesis and
we have also empirically demonstrated the prevailing existence of LIP in image inverse problems
such as denoising, inpainting, super-resolution and compressed sensing restoration. Specifically,
we show that subnetworks with high sparsity can still retain the beneficial image prior properties
in both settings. We also prove the powerful transferability of LIP across these tasks, reflecting its
promising application potential.
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A SUPPLEMENTARY MATERIALS

In this section, we will present more experimental results of LIP subnetworks (e.g., the layer-wise
sparsity ratio, discussions about the training targets, learning curves of different training targets,
etc.) to better understand the Lottery Image Prior.

Images Used in Experiments In Fig. 14, we organize and present the images used in this paper
with their names. Note that these images are sampled from Set5 (Bevilacqua et al., 2012) and Set14
(Zeyde et al., 2010) datasets, and we use their default names.

Algorithm To begin with, there exist two ways of finding LIP: 1) Single-image based IMP. 2)
Multi-image based IMP (weight-sharing). We have formulated the 2 method in Algorithm. 1 and
2, respectively. The major difference lies in the loss function of IMP training. Specifically, for the
denoising task, the loss function of single-image IMP is E(f(z; θ �m), x), where z is a randomly
initialized tensor, x is the groundtruth image and E(; ) represents the MSE distance. In parallel, the
weight-sharing IMP loss function is

∑n
a=1E(f(z; θ �m), xa), a ∈ [1, n], where n represents the

number of shared weight images (e.g., in Set5 dataset, n = 5.). Note that we use the weight-sharing
method to find the LIP with the powerful transferability on images from different domains and use
the single-image IMP on the images from the same domains (such as human face images).

Dense Tickets

PSNR 30.35 30.61
Parameters
(non-zero) 2.2M 0.2M

Table 2: The comparison of pa-
rameter numbers in full model
and the winning tickets. Note
that we evaluate the PSNR val-
ues on the image Bird.

Parameter Redundancy Problem We discover that the com-
monly used hourglass model in DIP (Ulyanov et al., 2018) is high
parameter complex. The statistic results of parameter numbers
is summarized in Table. 2. We compare the parameter numbers
of dense DIP models with the found winning tickets and surpris-
ingly discover that the winning tickets could perform better than
the full model while containing 2 million parameters fewer. This
phenomenon motivates us to suspect that there is a high possibil-
ity of finding the matching subnetworks of the pristine dense DIP
model, which indicates that the subnetworks may also contain the
outstanding image prior property as the dense one does.

Dense Noisy M
(s = 50%)

Clean M
(s = 50%)

PSNR 31.06 30.76 31.21

Table 3: Comparison results of different
training targets. We train the DIP model
on one image (Baby.png) for 6000 epochs
and separately set the training target to x
(clean target) and x̃ (noisy target). Then
we evaluate the masks on the same image
for 3000-epoch denoising task.

Training Target of Finding LIP When making the
IMP training loop, one question arises: How to it-
eratively prune the model while maintaining the im-
age prior property in DNNs? In this paper, we pro-
pose to set the training label of the DIP model to
clean image x. Since the DIP model restore the cor-
rupted image (e.g., the noisy image, masked image
and low-resolution image) by training itself with the
corrupted target x̃, and the best restoration image usu-
ally occurs at some points of the process not always
the training ending (DIP model training often requires
the researcher to design the training settings by hand).
Therefore, if we set the IMP training target to x̃, the

model parameters may overfit the corrupted image, which will degrade the desired image prior prop-
erty. In Table. 3, we compare the ticket performances between the noisy target IMP trained (Noisy
M) and clean target IMP trained (Clean M) at the same sparsity s = 50%. This experiment is done
on the Baby image and the background task is denoising. In order to test the effect of overfitting, we
set the DIP training epochs to 6000 (3000 is usually used for the Baby image). We observe that the
Clean M reaches 0.45 higher PSNR value than Noisy M and the Clean M performance is higher than
the Dense model, which demonstrates the importance of choosing the training target during IMP.

However, the above observations do not indicate that our proposed method is applicable only to the
ground-truth image settings. We used clean images as the training targets since this made it easy
to control the learning curves and avoid overfitting. Even using one clean image target, the ob-
tained LIP is practical due to the powerful transferability to other image with no clean groundtruth.
Moreover, we can use the noisy target in finding the same effective LIPs as long as we perform
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“early-stopping” in the optimization process. Note that it was the same trick mentioned when train-
ing the original DIP for denoising tasks (Ulyanov et al., 2018) and was identified to be essential
to the original DIP’s success in (Heckel & Hand, 2019). In Table. 4, we conduct the comparison
experiments of clean and noisy image targets (experimental settings are summarized in the caption
of the table) and we find that there are no large differences between the results of noisy image targets
and clean image targets.
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Figure 11: Layer-wise sparsity ratio results of LIP, SNIP and randomly pruned tickets. Note that
we summarize the sparsity ratio of each layer: the ratio of the number of parameters whose values
are equal to zero to the number of total parameters of the layer. And the x-axis of these figures
is composed of the serial numbers of model layers. We sampled subnetworks with four different
sparsities (sparsity = 36%, 59%, 89%, 95%) to observe.

A Closer Look into the Lottery Image Prior Structure As shown in Fig. 11, the structure of the
LIP subnetwork is drastically different from those found by SNIP and random pruning, in particular
the distribution of layerwise sparsity ratios. LIP tends to preserve weights of the earlier layers (closer
to the input), while pruning the latter layers more aggressively (e.g, Fig. 11(a)). In contrast, SNIP
tends to prune much more of the earlier layers compared to the latter ones. Random pruning by
default prunes each layer at approximately the same ratio.

Comparing the three methods seem to suggest that for finding effective and transferable LIP subnet-
works, to specifically keep more weights at earlier layers more is important. That is an explainable
finding, since for image restoration tasks, the low-level features (color, texture, shape, etc.) presum-
ably matter more and are more transferable, than the high-level features (object categories, etc.).
The earlier layers are known to capture more of low-level image features, hence contributing more
to retraining the image restoration performance with DIP.
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Figure 12: The learning curve plots when using different subnetworks towards the DIP task. In
the figure, S denotes the sparsity of the model. We compare both PSNR and SSIM values. For
fair comparisons, we trained these subnetworks on the denoising task on the Baby image with 3000
iterations, then trained in isolation (the iteration number is recommended by (Chen et al., 2020c) to
capture the ”early-stopping” phenomenon of DIP), and summarized their performances.

Learning Curve Comparison of Using Various Subnetworks for the Restoration Task We
further compare the training convergence curves of different subnetworks on the restoration task.
In Fig. 12, we summarize the convergence of LIP, SNIP and randomly pruned subnetworks on the
denoising task, and the experimental details are included in the caption. We use the PSNR and
SSIM metrics to measure the quality of the generated images: SSIM is often considered better
“perceptually aligned”, by attending more to the contrast in high-frequency regions than PSNR.
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At the early stage of optimization, we observe that the learning curves of LIP and SNIP subnetworks
are almost overlapped (either PSNR or SSIM curves), while the randomly pruned subnetworks failed
to perform comparably with them. Yet when the iterations increase, the SNIP subnetworks start to
lag behind the LIP subnetworks (e.g., the largest PSNR gap between the two can reach 3dB and the
largest SSIM gap can be 0.7). Only the LIP subnetworks can match the comparable performances
of the full model when reaching the 3000-th iteration. Lastly, the SSIM gap is noticeably enlarged
at higher sparsity levels (95%) when comparing LIP and SNIP, which implies LIP to be better at
capturing perceptually aligned details.
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Figure 13: Learning curves using four different training targets: a clean image (Baby.png), the same
image added with noises, the same randomly scrambled and white noise. Note that we use four
different models: the LIP subnetwork (S = 89%), randomly pruned subnetwork (S = 89%), SNIP
subnetwork (S = 89%) and the dense model (S = 0%). And we trained them in isolation in the
same experimental settings for 10000 iterations.

Learning Curves of Subnetworks with Different Training Targets To better explain the success
of the LIP subnetworks, inspired by the Figure 2 of (Ulyanov et al., 2018), we further train the
obtained subnetworks (LIP, SNIP and random pruning) with four different targets: 1) a natural
image, 2) the same added with noise, 3) the same after randomly permuting the pixels and 4) the
white noise. We also train the dense model as the baseline results. The experimental details are
summarized in the caption of Fig. 13. We first observe that for LIP, SNIP and dense models, the
optimization converges much faster in case 1) and 2) than in case 3) and 4). But the randomly
pruned subnetworks have failed in all cases. Interestingly, we also find that SNIP subnetworks
perform similarly with the dense model. Meanwhile, the parametrization of LIP subnetworks offers
the higher impedance to noise and the lower impedance to signal than the dense model, which
indicates that the separation of high frequency and low frequency is more obvious for winning
network architectures. Also, in order to observe whether the high-frequency information will be
lost during the pruning, we apply Fourier Transformation to the Baby figure (described in Fig. 14)
and visualize the frequency intensity of the ground-truth image and the reconstructions from three
different subnetworks (LIP, SNIP and random pruning). The results are summarized in Fig. 15. We
found that compared with random pruning, LIP and SNIP can maintain most of the high frequency
information in the ground-truth (e.g., in Fig 15, SNIP and LIP can both maintain the high-frequency
information at the sparsity of 79%; however, SNIP could lose more high-frequency information than
LIP at lower sparsity ratios.).

Sparsity(%) 0 36 59 67 79 89 95

Clean Image 32.60 32.51 32.45 32.40 32.21 32.10 31.99
Noisy Image 32.60 32.56 32.46 32.41 32.22 32.13 31.94

Table 4: We compare the results of clean and noisy image targets in setting i. Note that the used
image is F16.png, the evaluation metric is PSNR and the training iteration number is 3000 to capture
the “early-stopping” phenomenon. The results suggest that there are no large differences (with
PSNR value smaller than 0.05) between the performances of subnetworks with clean and noisy
image targets (the sparsity ranges from 0% to 95%).

16



Under review as a conference paper at ICLR 2022

Face_1 Face_2 Face_3 Face_4 Face_5

Bird Baby Butterfly Woman Head

KateVase F16 Baboon Pepper

Figure 14: Images used in plotting the curves of experiments.

Algorithm 1: Single Image-based IMP
Input: The desired sparsity s, the random code z as the model input, the untrained model fu

and the image x.
Output: A sparse DIP model f(z; θ �m) with image prior property

1 Set mu = 1 ∈ R||θ||0and θ0 are the initial weights of the model fu.
2 Iteration i = 0, training epochs N and j ∈ [0, N ];
3 while the sparsity of mu < s do
4 Train the fu(z; θ0 �mu) with the objective E(f(z; θ �m);x) for N epochs to reach the

parameter θiN ;
5 Create the mask m′u;
6 Update the mask mu = m′u;
7 Set the model parameters to θj : f(z; θj);
8 create the sparse model: f(z; θj �mu);
9 i = i+ 1;

10 end
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Algorithm 2: Weight-sharing IMP with Various Domain Images
Input: The desired sparsity s, the random code z as the model input, the untrained model fu

and images from n domains xa ∈ {x1, x2, ..., xn}.
Output: A sparse DIP model f(z; θ �m) with image prior property

1 Set mu = 1 ∈ R||θ||0and θ0 are the initial weights of the model fu.
2 Iteration i = 0, training epochs N and j ∈ [0, N ];
3 while the sparsity of mu < s do
4 loss =

∑n
a=1E(f(z; θ �m);xa), a ∈ [1, n];

5 Train the fu(z; θ0 �mu) by Backpropagation (loss) for N epochs to reach the parameter
θiN ;

6 Create the mask m′u and update the mask mu = m′u;
7 Set the model parameters f(z; θj);
8 create the sparse model f(z; θj �mu);
9 i = i+ 1;

10 end

Ground-truth LIP - S = 59% LIP - S = 67% LIP - S = 79%

Ground-truth SNIP - S = 59% SNIP - S = 67% SNIP - S = 79%

Ground-truth Random - S = 67% Random - S = 79%Random - S = 59%

Figure 15: Evaluating the reconstruction images of different subnetworks (LIP, SNIP and random
pruning) by FFT (Fast Fourier Transformation) to check whether the high frequency information
has been lost during pruning. Note that we experimented on the Baby.png. We found that com-
pared with random pruning, LIP and SNIP can both maintain the high frequency information of the
ground-truth. For example, the LIP and SNIP subnetworks both maintain mostof the high-frequency
information of the ground-truth at the sparsity 79%, but the LIP could also performs well at the spar-
sity 59% where the SNIP loses more high-frequency information.
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