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ABSTRACT

Large Reasoning Models (LRMs) have become a central focus in today’s large
language model (LLM) research, where models are designed to output a step-by-
step thinking process before arriving at a final answer to handle complex reasoning
tasks. Despite their promise, recent empirical studies (e.g., [Shojaee et al., 2025]
from Apple) suggest that this thinking process may not actually enhance reason-
ing ability, where LLMs without explicit reasoning actually outperform LRMs on
tasks with low or high complexity. In this work, we revisit these findings and
investigate whether the limitations of LRMs persist when tool augmentations are
introduced. We incorporate two types of tools, Python interpreters and scratch-
pads, and evaluate three representative LLMs and their LRM counterparts on Ap-
ple’s reasoning benchmark. Our results show that, with proper tool use, LRMs
consistently outperform their non-reasoning counterparts across all levels of task
complexity. These findings challenge the recent narrative that reasoning is an illu-
sion and highlight the potential of tool-augmented LRMs for complex reasoning.

1 INTRODUCTION

Taking advantage of large-scale pre-training and web-scale training data, Large Language Mod-
els (LLMs) (Anthropic, 2024; Achiam et al., 2023; OpenAI, 2024; Llama Team, 2024; McKinzie
et al., 2024) have demonstrated unprecedented reasoning capabilities as their model scale contin-
ues to increase. This scaling has enabled a range of emergent abilities (Schaeffer et al., 2023; Du
et al., 2024), including zero-shot generalization (Brown et al., 2020; Wang et al., 2022) and com-
plex reasoning (Mirzadeh et al., 2025; Wei et al., 2022). Recently, a new class of LLMs, namely
Large Reasoning Models (LRMs), has attracted growing interest from the AI community. Models
such as OpenAI’s o-series (OpenAI, 2024; 2025), DeepSeek-R1 (Guo et al., 2025), and Qwen 3
Thinking (Yang et al., 2025) exhibit significant improvements on various benchmarks compared to
non-reasoning LLMs, due to their incorporation of “thinking” strategies such as Chain-of-Thought
(CoT) prompting (Wei et al., 2022; Yao et al., 2023; Besta et al., 2024), self-reflection (Ji et al.,
2023; Zhao et al., 2025), and process supervision (Chen et al., 2024a; Kim & Suzuki, 2025). These
developments suggest a potential paradigm shift in LLMs, where LRMs may represent the next
generation of models for complex problem solving.

Despite these advances, there is increasing skepticism about whether LRMs truly improve upon the
problem-solving capabilities of conventional LLMs. A number of recent studies have challenged
the supposed advantages of LRMs, raising concerns that these models may not possess genuinely
deeper reasoning capabilities (Mirzadeh et al., 2025; Shojaee et al., 2025). For example, GSM-
Symbolic (Mirzadeh et al., 2025) finds that LRMs tend to rely on pattern matching rather than
performing generalizable reasoning. Other studies report that LRMs often generate lengthy outputs
filled with redundant tokens that are irrelevant to the final answer (Chen et al., 2024b; Qu et al., 2025;
Sui et al., 2025). More notably, Apple’s recent “thinking-illusion” benchmark (Shojaee et al., 2025)
presents a controlled evaluation comparing LLMs and LRMs across tasks with varying complexity.
Their results show that LRMs underperform on simple tasks (e.g., solving the Tower of Hanoi with
4 plates), and fail to show any advantage over LLMs on more complex tasks (e.g., Hanoi with
17 plates), while also consuming significantly more tokens. These findings cast doubt on whether
current LRMs offer real improvements in reasoning over standard LLMs.
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Figure 1: Research Question. Previous empirical results, such as Apple’s Thinking-Illusion Bench-
mark (Shojaee et al., 2025), suggest that Large Reasoning Models (LRMs) do not show clear ad-
vantages over standard LLMs when solving complex reasoning problems under controlled problem
complexity. In this work, we introduce a new evaluation framework to revisit this conclusion, dif-
fering from Apple’s setting by allowing LRMs and LLMs to use external tools. We explore whether
LRMs exhibit advantages over LLMs in reasoning tasks when tool augmentation is enabled.

However, prior work may have overlooked the fact that benchmark conditions could disadvantage
LRMs due to output length limitations. For instance, Apple’s benchmark (Shojaee et al., 2025)
evaluates reasoning on tasks such as the Tower of Hanoi with up to 20 plates, which may require
more than 106 reasoning steps, far exceeding the output token limits of most LLMs (e.g., DeepSeek-
R1’s limit of 64K tokens (Guo et al., 2025), Qwen 3’s limit of 32K tokens (Yang et al., 2025)). As
a result, the underperformance of LRMs on hard tasks may not reflect a fundamental reasoning
deficiency, but rather an artifact of the limited output window. A natural solution is to augment both
models with external tools, such as Python interpreters or scratchpads, to overcome this limitation
and better reflect the models’ actual reasoning abilities (see Figure 1 for an intuitive illustration).
This leads us to the central research question of this paper:

Under tool augmentation, do LRMs exhibit improved reasoning capabilities compared to LLMs?

In this paper, we conduct a careful re-examination of the reasoning capabilities of LRMs and LLMs
in a tool-augmented setting. Specifically, we equip both models with two basic tools: a Python
interpreter and a scratchpad for intermediate computations. We adopt Apple’s “thinking-illusion”
benchmark (Shojaee et al., 2025) as our evaluation framework, which provides fine-grained control
over task complexity and clearly verifiable solutions. Our key distinction from Apple’s setting is that
we evaluate both LLMs and LRMs under a tool-augmented setup, which the original benchmark
does not address. We evaluate two recent LLMs and their corresponding reasoning-augmented
variants, and our study reveals several key findings (Section 4):

• We propose a novel LLM evaluation environment by extending the original “thinking-
illusion” benchmark (Shojaee et al., 2025) to support tool-augmented evaluation of both
LLMs and LRMs. Our framework incorporates a Python interpreter and an innovative
scratchpad interface, which mitigates the output length limitations of the original bench-
mark and enables a fairer and more realistic evaluation of reasoning capabilities.

• We find that with proper tool use, LRMs achieve significant performance improvements on
previously unsolvable problems, such as the River Crossing and Blocks World tasks in the
Apple’s thinking-illusion benchmarks.

• We observe that for certain specific reasoning problems, even with tool use, both LLMs
and LRMs still experience notable failures.

• We find that tool use does not necessarily increase token consumption for LRMs.

Roadmap. In Section 2, we present our related works. In Section 3, we show our puzzle environ-
ments and tool-use settings. In Section 4, we present our main experiment results. In Section 5, we
conclude this paper.

2 RELATED WORKS

Fundamental Limits of LRMs. Despite the progress, recent work has questioned whether LRMs
genuinely improve reasoning performance over standard LLMs. Theoretical analyses based on cir-
cuit complexity suggest that a Transformer using k CoT steps corresponds to the TCk circuit class,
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indicating that even multi-step CoT reasoning may be limited in the complexity of problems it can
solve (Giannou et al., 2023; Li et al., 2024; Kim & Suzuki, 2025). Empirical evidence also shows
that LRMs often generate lengthy outputs with many redundant or irrelevant tokens, increasing in-
ference cost without improving task accuracy (Chen et al., 2024b; Qu et al., 2025; Sui et al., 2025).
Furthermore, studies on math reasoning tasks indicate that reinforcement learning may not consis-
tently enhance LRM performance (Mirzadeh et al., 2025). A particularly notable benchmark is Ap-
ple’s “thinking-illusion” framework (Shojaee et al., 2025), which evaluates both LLMs and LRMs
without any tool augmentations under controlled settings with varying task complexities. Their re-
sults show that LRMs outperform LLMs only on tasks of medium difficulty, while providing no
clear advantage on either simple or very challenging problems.

In this paper, we revisit the evaluation of reasoning capabilities in LLMs and LRMs using a carefully
controlled experimental setup. In contrast to previous work (Shojaee et al., 2025), we augment both
model types with external tools, specifically a Python interpreter and a scratchpad, and find that
LRMs with tool augmentation consistently outperform LLMs with the same tool access. These
results challenge prior empirical claims and offer new insights into the potential of LRMs under
practical usage scenarios.

Due to space constraints, we move the related works of Large Reasoning Models (LRMs) to Ap-
pendix A.1 and LLM Tool Use to Appendix A.2.

3 PUZZLE ENVIRONMENTS

In Section 3.1, we introduce our evaluation environment based on Apple’s thinking-illusion bench-
mark. In Section 3.2, we discuss our Python interpreter environments. In Section 3.3, we show the
scratchpad tool used in our evaluation.

3.1 APPLE’S THINKING-ILLUSION BENCHMARK

To systematically evaluate whether LRMs have improved reasoning capabilities compared to LLMs,
we adopt Apple’s thinking-illusion benchmark (Shojaee et al., 2025) in our evaluation. While we
reuse their puzzle descriptions, we test both LLMs and LRMs in a tool-augmented setup, differing
from the original benchmark. This recent benchmark reflects the latest developments in LRM eval-
uation, offering a controlled, evaluation-friendly environment with clearly defined difficulty levels.
Specifically, the benchmark features four types of puzzles that are easy to understand and can be
automatically checked using simple verifiers. We evaluate only the correctness of reasoning steps,
without considering their optimality, as generating a correct solution alone is already challenging
for current LLMs (e.g., in the subtask Checker Jumping, DeepSeek-R1 and DeepSeek-V3 almost
fail to solve any problem with N ≥ 3 in (Shojaee et al., 2025)).

Hanoi Tower. This puzzle involves three pillars and N disks, initially placed on the first pillar in
descending order (largest at the bottom). The objective is to move all N disks to the third pillar
without placing a larger disk on top of a smaller one, and only one disk may be moved per step. The
difficulty is directly controlled by the number of disks N .

Checker Jumping. This is a one-dimensional puzzle with N red checkers on the left, one empty
space in the middle, and N blue checkers on the right, placed across 2N + 1 spaces. The goal is
to swap the positions of red and blue checkers, resulting in a mirrored configuration. A checker
can move into the adjacent empty space or jump over a checker of the opposite color into the space
beyond. The difficulty increases with N .

River Crossing. This puzzle involves a river with two banks, N actors, and N agents, where each
actor is uniquely paired with an agent. Initially, all individuals are on the left bank, and the goal is to
move all 2N individuals to the right bank. A boat can carry at most k individuals and cannot travel
empty. Due to rivalry constraints, actors cannot be left alone with non-paired agents either on the
boat or on either bank. We adopt the original setting of k as defined in (Shojaee et al., 2025), and
control complexity via N .

Blocks World. This is a planning puzzle involving three locations and multiple colored blocks. The
objective is to rearrange the blocks to achieve a specific color order. Only the topmost blocks at each
location can be moved. Task complexity is controlled by the number of blocks N .
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For all puzzles, we follow the original problem description prompts provided in Section A.1 of (Sho-
jaee et al., 2025) to ensure a fair comparison. To implement each tool-use baseline, we incorporate
these prompts into the prompt templates of the corresponding tools.

I have a puzzle with 3 disks of different sizes with

Initial configuration: [[3,2,1],[],[]]

Goal configuration: [[],[],[3,2,1]]


Rules:


• Only one disk can be moved at a time.


• A larger disk may not be placed on top of a
smaller disk.
Find the sequence of moves to transform the
initial configuration into the goal configuration.

def solution(n):

    moves = []

    

    def _hanoi(n, from_peg, to_peg, aux_peg):

        if n == 1:

            moves.append([1, from_peg, to_peg])

        else:

            _hanoi(n-1, from_peg, aux_peg, to_peg)

            moves.append([n, from_peg, to_peg])

            _hanoi(n-1, aux_peg, to_peg, from_peg)

    

    _hanoi(n, 0, 2, 1)

    return moves

LLM

Python Program

Puzzle

                                   >>>
[[1, 0, 2], [2, 0, 1], [1, 2, 1], ...]

Program-of-Thought (PoT)

                                  >>>
The expected execution output 
from the print functions in the code is as follows:

Extracted parameters: n=3, number of disks

Computed auxiliary peg: [[3,2,1],[],[]]

Total moves generated: 7

Final answer: [[1, 0, 2], [2, 0, 1], [1, 2, 1], ...]

Explanation of output:
- First line: Parameters parsed from ...
- Second line: Auxiliary peg computed as ...

- Third line: Total moves generated is ...

- Final answer: The full list of ... moves. 
Note: The actual move sequence ...

Think-and-Execute

LLM

Python
Interpreter

LLM as Compiler

Python Interpreter

Output

Update

LLM

Input

Previous Scratchpad:

{
  "prev_scratchpad": "",
  "use_count": 0,
  "max_use": 5
}

Scratchpad

{

  "moves": "[[1,0,2], [2,0,1]]",

  "scratchpad": "state = [[3],[2],[1]]",

  "finished": "False"

}

Answer

LLM

Previous Scratchpad:
{
  "prev_scratchpad": 
	 "state = [[3],[2],[1]]",
  "use_count": 1,
  "max_use": 5
}

LLM

Previous Scratchpad:
{
  "prev_scratchpad": 
	 "state = [[],[1],[3,2]]",
  "use_count": T,
  "max_use": 5
}

...
{

  "moves": "[[1,2,1], [3,0,2]]",

  "scratchpad": "state = [[],[2,1],[3]]",

  "finished": "False"

}

{

  "moves": "[[1,1,2]]",

  "scratchpad": "(empty)",

  "finished": "True"

}

Output Output

Input Input

Puzzle

Partial Answer 1 Partial Answer 2 Partial Answer T

Scratchpad 1 Sctratchpad 2 Scratchpad T

...

Update

moves = [[1,0,2], 

	 	 [2,0,1],

                [1,2,1], 

	 	 [3,0,2],

                ..., 

	 	 ..., 

                [1,1,2]]

Final Answer

...

A 3-disk Hanoi
tower problem.

Input

Puzzle

A 3-disk Hanoi
tower problem.

Input

Puzzle

A 3-disk Hanoi
tower problem.

Input

Concatenate

Answer 1

Answer 2

Answer T

... ...






(b) Scratchpad





(a) Python Intepreter


Figure 2: Evaluation Setting of Tool Use. (a) Python Interpreter: To address the limited output
length issue in LRM evaluation, we introduce two types of Python-based tool usage. The puzzle
is first reformulated into Python code by the evaluated LLM, and then executed using either the
Program-of-Thought (PoT) or Think-then-Execute framework. In PoT, the external Python inter-
preter directly executes the code to obtain the answer. In Think-then-Execute, the LLM itself acts
as a compiler to interpret the generated code. (b) Scratchpad: We use scratchpads as an external
memory that allows LLMs and LRMs to store intermediate states and partial answers. This enables
models to continue solving the task in multiple steps when the output limit is reached. The LLM de-
termines whether the reasoning process is complete by outputting Finish:True. If not finished,
the model writes to the scratchpad, which is then fed back along with the puzzle in the next step. The
final answer is obtained by concatenating all intermediate partial answers, excluding the scratchpad
content itself from the final prediction.

3.2 PYTHON INTERPRETER ENVIRONMENTS

Due to the natural output limitations of LRMs and LLMs, they may struggle to solve reasoning
problems that require extremely long outputs, such as Blocks World with N = 13. A natural solu-
tion to enable evaluation on such long-output problems is to incorporate Python code interpreters,
which are not subject to the same “memory constraints” as LLMs. In this work, we adopt two
Python interpreter-based techniques (Figure 2(a)) to augment LLMs with tools and introduce a new
evaluation setting.

Program-of-Thought (PoT). Program-of-Thoughts (PoT) (Chen et al., 2023) directly prompts
LLMs or LRMs to generate executable Python code, which is then executed using an external Python
interpreter. In this paper, we adopt a zero-shot PoT setting without Chain-of-Thought (CoT) reason-
ing, as the problems are relatively simple in a Python environment (e.g., Hanoi Tower is commonly
used as a beginner-level programming exercise). For problem descriptions, we use the same prompts
as in (Shojaee et al., 2025), and the prompt template for code generation is adapted from Appendix
A.7 of (Chae et al., 2024).

Notably, our evaluation setup differs from (Shojaee et al., 2025) in two key aspects: 1) we incor-
porate an additional code-generation prompt from (Chae et al., 2024), which is not included in the
original thinking-illusion benchmark (Shojaee et al., 2025), and 2) we integrate an external Python
interpreter to execute the generated code and produce the final answer.

Think-and-Execute. Think-and-Execute (Chae et al., 2024) is a multi-step framework that treats
the LLM as a compiler, enabling it to reason directly in the form of Python code. This ensures
that the LLM builds a clear abstraction of the puzzle and approaches the solution in a rigorous,
structured manner. Specifically, Think-and-Execute begins with a meta prompt that includes a basic
system prompt, a task description, and three task-specific examples, guiding the LLM to generate
pseudo Python code for execution. The generated code is then interpreted by the LLM itself, rather
than by an external Python interpreter, thereby producing an answer through code-like reasoning.
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3.3 SCRATCHPAD ENVIRONMENTS

Evaluating LRMs and LLMs on problems that require extremely long outputs (e.g., Blocks World
with N = 13) can be unfair due to the limited output window of these models. Moreover, expecting
humans to solve deeply recursive or very long reasoning tasks entirely in their brains is impractical.
To address such concerns, we introduce a scratchpad mechanism that provides an external memory
for recording intermediate states and allows the model to produce its solution over multiple steps
rather than in a single, potentially truncated output. An illustration of our scratchpad environment
can be seen in Figure 2(b).

Key Components. To ensure the LLM can solve the problem within a limited token budget and
avoid infinite loops, we set an upper limit on the number of scratchpad usage steps, denoted as
integer T . Our scratchpad framework for LLM external memory involves three key components and
their interactions:

• The Large Language Model f : This refers to the evaluated LLM/LRM in our study. We
assume that the LLM has no memory of previous dialogue steps in our evaluation, ensuring
that we are specifically probing the capabilities of the scratchpad tool-use framework rather
than relying on proprietary memory APIs provided by the service.

• The Partial Answers A1, A2, · · · , AT : These are the textual outputs generated by the
LLM at each step, allowing an overly long answer to be decomposed into manageable
segments. For example, when solving a complex Hanoi Tower problem that requires 1023
steps, the LLM can first output the initial 300 steps in A1, the next 300 steps in A2, and the
remaining 423 steps in A3. Outputs from different steps are non-overlapping and will be
concatenated to form the final answer.

• The Scratchpad Inputs S1, S2, · · · , ST : These are textual containers that record the
LLM’s intermediate reasoning states (e.g., disk placement status in the Hanoi Tower). They
can be written arbitrarily by the LLM. At each step t ∈ {1, 2, · · · , T}, the LLM f reads St

as input and produces St+1 as part of its output.

Step-wise Prompt with In-Context Examples. Building on the three key components described
earlier, we construct a step-by-step reasoning framework for LLMs using external scratchpad mem-
ory. The input prompt to the LLM f at each step consists of three parts. The first part is the puzzle
description P , which is directly inherited from Apple’s Thinking-Illusion benchmark introduced in
Section 3.1. The second part is the current scratchpad state St, which captures intermediate reason-
ing progress. For the initial step, we use an empty scratchpad S1 = ∅.

To ensure the LLM understands how to use the scratchpad, we prepend the prompt with a scratchpad
description D, which defines the scratchpad interface in a structured JSON format and explains its
intended usage. This instruction is shared across all four tasks in the benchmark. Following D,
we include m in-context examples Em := {E1, E2, · · · , Em} tailored to the specific task, demon-
strating proper scratchpad usage. Each in-context example includes a task description, an example
instance, and the full step-wise output (i.e., both partial answers and scratchpad states) annotated by
humans to teach the correct usage pattern.

During inference, the puzzle description P , the scratchpad description D, and the in-context exam-
ples Em := {E1, E2, · · · , Em} remain fixed across all steps, while the scratchpad input St evolves
over time. At each step t, the LLM performs the following operations:

Zt = f(P, St, D, Em),

At, St+1 = Decode(Zt),

where Zt is the raw output of the LLM at step t, and the partial answer At and the updated scratchpad
state St+1 are extracted using a decoding function Decode(·), which can be implemented via simple
regex-based parsing or another LLM.

Final Answer Collection. After executing all T reasoning steps, we collect the sequence of inter-
mediate partial answers A1, A2, · · · , AT to form the final output. In our benchmark, where all tasks
involve generating a list of simple movement instructions, the final answer can be constructed by
applying string-level regex matching and concatenation. For more complex tasks, our framework
allows the use of a secondary LLM to aggregate partial outputs into a coherent final answer.

5
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Importantly, executing all T steps is not always necessary. For example, a complex puzzle involving
thousands of reasoning steps may require the full sequence, while a simpler task, such as solving
the Tower of Hanoi with N = 3, can often be completed in a single iteration. To support this
flexibility, we enable the LLM to control early stopping. Specifically, at step t, if the model outputs
Finish:True within At using the predefined JSON format, we treat t as the early stopping point
and skip subsequent steps.

Thus, incorporating optional early stopping, the final answer construction is defined as:

Tfinal := min{T, Tcut},
Afinal := Concat(A1, A2, · · · , ATfinal

),

where Tcut denotes the first step where Finish:True is detected. This design enables dynamic
reasoning depth and provides a unified framework that balances token efficiency with the ability to
perform long-chain reasoning.

4 EXPERIMENTS

In Section 4.1, we introduce the main experimental settings of this paper. In Section 4.2, we discuss
whether tool use can improve the relative advantage of LRMs compared with LLMs. In Section 4.3,
we show several parameter studies.

Model Year Thinking Output Tokens # Params
DeepSeek-V3 (Liu et al., 2024) 2024 No 8K 37B
DeepSeek-R1 (Guo et al., 2025) 2025 Yes 64K 37B

Qwen 3 (Yang et al., 2025) 2025 No 32K 32B
Qwen 3 Thinking (Yang et al., 2025) 2025 Yes 32K 32B

Table 1: LLM and LRM models evaluated in this paper.

4.1 EXPERIMENTAL SETTINGS

LLM Models. In this paper, we primarily use two recent non-thinking LLMs: DeepSeek-V3 and
Qwen 3, along with their corresponding long reasoning model (LRM) variants, DeepSeek-R1 and
Qwen 3 Thinking. Their basic specifications are summarized in Table 1. We interact with these
models through their official APIs for all experiments.

To enable the thinking feature in DeepSeek, one can select the model "deepseek-reasoner".
For Qwen 3, thinking is activated by including the flag "enable thinking": true in the
request body. Both DeepSeek and Qwen models require importing the OpenAI interface from
the openai package. To handle possible interruptions in DeepSeek due to long responses, we
recommend setting a large timeout parameter (e.g., timeout=1200), allowing up to 20 minutes
for completion. Each prompt consists of a system prompt and a user prompt. In our setup, the
system prompt provides the general problem description, while the user prompt specifies the puzzle
instance (e.g., by number). This structure enables easy control over puzzle complexity by adjusting
the instance number.

Parameter Settings. All experiments in this paper are repeated five times, and we report the average
results across runs. For the scratchpad setting, we use m = 3 in-context examples, and the maximum
number of reasoning steps T is set to T = 5. For the number of examples in Think-and-Execute, we
follow the official configuration provided by (Chae et al., 2024). For the Program of Thought (PoT)
experiments, we use Python version 3.11.13 as the external interpreter.

4.2 CAN TOOL USE OVERCOME THE LIMITS OF REASONING MODELS?

In this experiment, we study the core question of this paper: Can tool use help LRMs achieve a
performance advantage over standard LLMs? Specifically, we evaluate three tool-use frameworks
and compare them against direct prompting (i.e., no tool use). All experiments are repeated 5 times,
and we report the number of successful runs out of 5 (i.e., success/trial).

6
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Hanoi Checker
Tool Usage LLM Models N=3 N=5 N=7 N=9 N=11 N=13 N=3 N=5 N=7 N=9 N=11 N=13
Direct Prompting DeepSeek-V3 5/5 3/5 4/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

DeepSeek-R1 5/5 5/5 5/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Qwen 3 5/5 1/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Qwen 3-Thinking 5/5 1/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

Think-and-Execute DeepSeek-V3 5/5 5/5 5/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
DeepSeek-R1 5/5 4/5 3/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Qwen 3 5/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Qwen 3-Thinking 5/5 2/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

PoT DeepSeek-V3 5/5 5/5 5/5 5/5 5/5 5/5 0/5 0/5 0/5 0/5 0/5 0/5
DeepSeek-R1 5/5 5/5 5/5 5/5 5/5 5/5 0/5 0/5 0/5 0/5 0/5 0/5
Qwen 3 5/5 5/5 5/5 5/5 5/5 5/5 0/5 0/5 0/5 0/5 0/5 0/5
Qwen 3-Thinking 5/5 5/5 5/5 5/5 5/5 5/5 0/5 0/5 0/5 0/5 0/5 0/5

Scratchpad DeepSeek-V3 5/5 5/5 2/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
DeepSeek-R1 5/5 5/5 3/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Qwen 3 5/5 1/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
Qwen 3-Thinking 5/5 2/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

Table 2: Accuracy results for Hanoi Tower and Checker Jumping. Cases that LRMs outperform
LLMs are denoted by underline.

River Block
Tool Usage LLM Models N=3 N=5 N=7 N=9 N=11 N=13 N=3 N=5 N=7 N=9 N=11 N=13
Direct Prompting DeepSeek-V3 0/5 0/5 0/5 0/5 0/5 0/5 4/5 3/5 0/5 0/5 0/5 0/5

DeepSeek-R1 1/5 0/5 0/5 0/5 0/5 0/5 5/5 4/5 0/5 0/5 0/5 0/5
Qwen 3 0/5 0/5 0/5 0/5 0/5 0/5 5/5 0/5 0/5 0/5 0/5 0/5
Qwen 3-Thinking 0/5 0/5 0/5 0/5 0/5 0/5 5/5 3/5 2/5 0/5 0/5 0/5

Think-and-Execute DeepSeek-V3 0/5 0/5 0/5 0/5 0/5 0/5 5/5 5/5 0/5 0/5 0/5 0/5
DeepSeek-R1 0/5 0/5 0/5 0/5 0/5 0/5 5/5 4/5 2/5 2/5 1/5 1/5
Qwen 3 0/5 0/5 0/5 0/5 0/5 0/5 5/5 4/5 2/5 0/5 0/5 0/5
Qwen 3-Thinking 0/5 0/5 0/5 0/5 0/5 0/5 5/5 3/5 1/5 0/5 0/5 0/5

PoT DeepSeek-V3 0/5 0/5 0/5 0/5 0/5 0/5 1/5 1/5 1/5 1/5 1/5 1/5
DeepSeek-R1 4/5 4/5 4/5 4/5 4/5 4/5 5/5 5/5 5/5 5/5 5/5 5/5
Qwen 3 0/5 0/5 0/5 0/5 0/5 0/5 2/5 2/5 2/5 2/5 2/5 2/5
Qwen 3-Thinking 0/5 0/5 0/5 0/5 0/5 0/5 5/5 5/5 5/5 5/5 5/5 5/5

Scratchpad DeepSeek-V3 0/5 0/5 0/5 0/5 0/5 0/5 5/5 1/5 0/5 0/5 0/5 0/5
DeepSeek-R1 1/5 0/5 0/5 0/5 0/5 0/5 5/5 5/5 3/5 4/5 4/5 0/5
Qwen 3 0/5 0/5 0/5 0/5 0/5 0/5 5/5 4/5 5/5 0/5 0/5 0/5
Qwen 3-Thinking 0/5 0/5 0/5 0/5 0/5 0/5 5/5 1/5 0/5 0/5 0/5 0/5

Table 3: Accuracy results for River Crossing and Blocks World. Cases that LRMs outperform
LLMs are denoted by underline.

We focus on the four subtasks in Apple’s Thinking Illusion benchmark (described in Section 3.1)
and vary the task complexity using a parameter N ∈ 3, 5, 7, 9, 11, 13. Simpler cases with N ≤ 2
are omitted because almost all models perform well in those settings.

Results for the Hanoi Tower and Checker Jumping tasks are shown in Table 2, and results for River
Crossing and Blocks World are shown in Table 3. We highlight four key observations:

1) Tool use with Program of Thought (PoT) enables major improvements for LRMs on multi-
ple tasks. We find that PoT significantly boosts the performance of LRMs like DeepSeek-R1. For
example, on both River Crossing and Blocks World, DeepSeek-R1 achieves around 80% accuracy
with tool use, while its non-thinking variant DeepSeek-V3 fails to solve most cases. On River Cross-
ing, DeepSeek-V3 performs near zero, while DeepSeek-R1 with PoT achieves consistent success.
Similarly, for Blocks World, PoT lifts accuracy from 20% to 80%. Another striking result is ob-
served in Hanoi Tower: previously, both DeepSeek-V3 and DeepSeek-R1 struggled with large N ,
but with PoT, they achieve perfect accuracy due to the structured nature of the problem, which is
well-suited for external Python programs.

2) Some hard problems remain unsolved even with tool use. Checker Jumping remains unsolved
for N ≥ 3 across all models and tool-use methods. This aligns with Apple’s original benchmark,
where only N = 1 and N = 2 are solvable. This result suggests that while tools help in many cases,
there are still hard reasoning tasks that remain out of reach.

3) The effectiveness of tool use depends on the base model’s strength. Not all models benefit
equally from tool use. While DeepSeek-R1 shows strong improvements with PoT and Scratchpad
(e.g., on River Crossing and Blocks World), Qwen-3 shows only limited gains, mostly on Blocks
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Figure 3: Number of Scratchpads Used on DeepSeek-V3 and DeepSeek-R1.
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Figure 4: Number of Scratchpads Used on Qwen 3 and Qwen 3 Thinking.

World with PoT. In general, Qwen 3 also performs worse across tasks. This suggests that tool use
helps only when the base model is strong enough to utilize the tools effectively.

4) Some tool-use frameworks are more effective than others. Among the three tool-use methods,
PoT delivers the strongest improvements. Scratchpad also helps significantly, especially on Blocks
World from N = 3 to N = 11, where accuracy jumps from 0–20% to 60–100%. In contrast, Think-
and-Execute provides minimal gains. The only notable case is DeepSeek-R1 on Blocks World from
N = 7 to N = 13, where accuracy increases by only 20–40%. Overall, PoT is the most powerful
tool framework, followed by Scratchpad, with Think-and-Execute being the least effective in our
experiments.

4.3 HYPERPARAMETER STUDIES

Scratchpad Chain Length. In this parameter study, we examine whether task complexity is directly
related to the number of scratchpads used for reasoning in our scratchpad-based tool-use framework,
as described in Section 3.3. Specifically, we record how many times the model invokes the scratch-
pad and requests a pause due to long outputs before continuing to the next reasoning step. The
results for DeepSeek-V3 and DeepSeek-R1 are shown in Figure 3, and the results for Qwen-3 and
Qwen-3-Thinking are shown in Figure 4. In these figures, model accuracy is plotted as a line, and
the number of scratchpad invocations is shown as bars.

First, we observe that different base models exhibit highly distinct patterns of scratchpad usage.
For example, DeepSeek models tend to use the maximum allowed number of 5 scratchpads on the
Checker and River Crossing problems, while the Qwen models typically use only 0–2 scratchpads
on the same tasks. Second, the number of scratchpad invocations is similar between reasoning and
non-reasoning variants of each model, showing no significant difference. This suggests that both
types of models have a similar tendency to use the scratchpad tool, and that the key differences lie
in the base model architecture rather than the presence of explicit reasoning instructions.

Token Consumption. In this study, we investigate whether the use of external tools increases
the number of tokens consumed by reasoning models. Specifically, we evaluate Qwen 3 Thinking
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Figure 5: Token Consumption of Qwen 3 Thinking on Tower of Hanoi.
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Figure 6: Token Consumption of Qwen 3 Thinking on Checker Jumping.
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Figure 7: Token Consumption of Qwen 3 Thinking on River Crossing.
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Figure 8: Token Consumption of Qwen 3 Thinking on Blocks World.

across all four tool-use baselines and four datasets from Apple’s benchmark. The results are shown
in Figures 5–8. First, we observe that tool-use frameworks involving multi-step reasoning, such
as Scratchpad or Think-and-Execute, do not necessarily lead to higher token consumption. This
advantage is especially evident on the Checker Jumping and Blocks World tasks. Second, when
analyzing the composition of the freed tokens, we find that both the thinking tokens and the output
tokens are reduced, without any particular bias toward one type. This may be because tool use
helps guide the model toward more effective reasoning paths, allowing it to avoid unnecessary or
unproductive trials.

5 CONCLUSION

This work revisits the reasoning capabilities of Large Reasoning Models (LRMs) by introducing ex-
ternal tools such as Python interpreters and scratchpads. Contrary to prior studies suggesting LRMs
offer limited benefit over standard LLMs, our results show that tool-augmented LRMs consistently
outperform their non-reasoning counterparts, especially on previously unsolvable reasoning tasks.
These findings challenge the recent skepticism around LRMs and underscore the importance of tool
augmentation when evaluating model reasoning.

Looking forward, several promising directions remain open. First, extending tool use beyond basic
interpreters to more structured environments (e.g., symbolic solvers or simulators) may further un-
lock the reasoning potential of LRMs. Second, understanding the failure modes of both LLMs and
LRMs under complex tool-based workflows is essential for robustness. Lastly, future benchmarks
should incorporate tool interactions as a first-class component to better reflect real-world problem-
solving scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our empirical findings. For all experiments, we describe the sources
of the LLM models, datasets, and API settings in the main text. All prompt templates used are also
provided to support the reproducibility of our results.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence (AAAI), volume 38:16, pp. 17682–17690, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems (NeurIPS), 33:1877–1901,
2020.

Hyungjoo Chae, Yeonghyeon Kim, Seungone Kim, Kai Ong, Beong-woo Kwak, Moohyeon Kim,
Sunghwan Mac Kim, Taeyoon Kwon, Jiwan Chung, Youngjae Yu, et al. Language models as
compilers: Simulating pseudocode execution improves algorithmic reasoning in language models.
In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 22471–22502, 2024.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervi-
sion without process. Advances in Neural Information Processing Systems (NeurIPS), 37:27689–
27724, 2024a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research (TMLR), 2023. ISSN 2835-8856. URL https://openreview.
net/forum?id=YfZ4ZPt8zd.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024b.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
gloRA: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations (ICLR), 2024c. URL https://openreview.net/
forum?id=6PmJoRfdaK.

Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of
language models from the loss perspective. Advances in neural information processing systems
(NeurIPS), 37:53138–53167, 2024.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning (ICML), pp. 11398–11442. PMLR, 2023.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaish-
navh Nagarajan. Think before you speak: Training language models with pause tokens. In The
Twelfth International Conference on Learning Representations (ICLR), 2024. URL https:
//openreview.net/forum?id=ph04CRkPdC.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
llm hallucination via self reflection. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1827–1843, 2023.

Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain of thought.
In The Thirteenth International Conference on Learning Representations (ICLR), 2025. URL
https://openreview.net/forum?id=n2NidsYDop.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth International Conference on Learning Represen-
tations (ICLR), 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703, 2025.

AI @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis & insights
from multimodal llm pre-training. arXiv preprint arXiv:2403.09611, 2024.

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
large language models. In The Thirteenth International Conference on Learning Representations
(ICLR), 2025. URL https://openreview.net/forum?id=AjXkRZIvjB.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024. Accessed: September 12.

OpenAI. Introducing o3 and o4 mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025. Accessed: July 18.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning
ability of large language models. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 13679–13707, 2024.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. In Forty-second International Conference on Machine Learning (ICML), 2025.

11

https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=n2NidsYDop
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=AjXkRZIvjB
 https://openai.com/index/introducing-openai-o1-preview/
 https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in neural information processing systems (NeurIPS), 36:55565–
55581, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems (NeurIPS),
36:68539–68551, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, et al. Blenderbot 3: a deployed conversational agent that
continually learns to responsibly engage. arXiv preprint arXiv:2208.03188, 2022.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time com-
pute optimally can be more effective than scaling parameters for reasoning. In The Thir-
teenth International Conference on Learning Representations (ICLR), 2025. URL https:
//openreview.net/forum?id=4FWAwZtd2n.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. What language model architecture and pretraining objective
works best for zero-shot generalization? In International Conference on Machine Learning
(ICML), pp. 22964–22984. PMLR, 2022.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning (ICLR), 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems (NeurIPS), 35:24824–24837, 2022.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems (NeurIPS), 36:11809–11822, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems (NeurIPS), 35:15476–15488,
2022.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), volume 38:17, pp. 19632–19642, 2024.

12

https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lili Zhao, Yang Wang, Qi Liu, Mengyun Wang, Wei Chen, Zhichao Sheng, and Shijin Wang.
Evaluating large language models through role-guide and self-reflection: A comparative study.
In The Thirteenth International Conference on Learning Representations (ICLR), 2025. URL
https://openreview.net/forum?id=E36NHwe7Zc.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), volume 38:17, pp. 19724–19731, 2024.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems
(NeurIPS), 36:50117–50143, 2023.

13

https://openreview.net/forum?id=E36NHwe7Zc


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we present our addtional related works.

A ADDITIONAL RELATED WORKS

In Section A.1, we present the related works on large reasoning models (LRMs). In Section A.2, we
show the related works on tool usage in LLMs.

A.1 LARGE REASONING MODELS (LRMS)

Reasoning is a core capability of intelligent autonomous systems. Recent advances in Large Lan-
guage Models (LLMs) have demonstrated that scaling up training data and model size signifi-
cantly enhances general capabilities, including emergent properties such as zero-shot generaliza-
tion (Brown et al., 2020; Wang et al., 2022) and logical reasoning (Mirzadeh et al., 2025; Wei et al.,
2022), as evidenced by the success of many commercial models (Anthropic, 2024; Achiam et al.,
2023; OpenAI, 2024; Llama Team, 2024; McKinzie et al., 2024). A natural follow-up question is
whether the step-by-step thinking process of LLMs can also be explicitly supervised (OpenAI, 2024;
2025; Chen et al., 2024a), enabling more structured, human-like task decomposition and deeper rea-
soning. This is often referred to as scaling the model’s test-time computation (Snell et al., 2025; Liu
et al., 2025). These efforts have led to notable progress in domains such as mathematical reason-
ing (Mirzadeh et al., 2025) and logical problem solving (Parmar et al., 2024), giving rise to a new
class of models known as Large Reasoning Models (LRMs).

LRMs are designed with specific techniques to support more structured reasoning. For example,
they extend earlier prompting methods such as Chain-of-Thought (CoT) (Wei et al., 2022; Yao
et al., 2023; Besta et al., 2024) with additional capabilities like self-verification, enabled through
high-quality CoT supervision from human experts. However, such expert annotations are expensive
and limited in scale. As a result, a growing body of work explores the use of reinforcement learning
(RL) to generate reasoning trajectories without direct supervision (Zelikman et al., 2022; Goyal
et al., 2024; Shao et al., 2024). This has been shown to be a viable alternative in several reasoning-
focused models, such as DeepSeek-R1 (Guo et al., 2025).

A.2 LLM TOOL USE

Due to inherent limitations in Large Language Models (LLMs), such as restricted output length and
hallucinations (Ji et al., 2023; Chen et al., 2024c), a growing body of research has explored the use
of external tools to enhance their problem-solving capabilities. Early studies focused on integrating
a single tool with LLMs, including search engines (Shuster et al., 2022), web browsers (Nakano
et al., 2021), Python interpreters (Chen et al., 2023; Chae et al., 2024), calculators (Thoppilan
et al., 2022), and external memory buffers (e.g., scratchpads) (Zhong et al., 2024). For example,
Program-of-Thought (PoT) (Chen et al., 2023) allows an LLM to first generate Python code, which
is then executed by an external interpreter to obtain the final result. Subsequent work has developed
unified frameworks that allow LLMs to interact with a wide range of tools through standardized
APIs (Schick et al., 2023; Zhuang et al., 2023). These advances have also led to the emergence of
LLM agent systems (Zhao et al., 2024; Wang et al., 2024), in which LLMs are equipped with tools
and capable of interacting with other LLMs to solve complex tasks collaboratively. In this paper, we
revisit prior empirical findings that suggest LRMs do not show significant advantages over LLMs
when using tools. By systematically evaluating LRMs and LLMs under a tool-augmented setting,
we demonstrate that tool use can unlock the reasoning potential of LRMs, revealing clear benefits
that were overlooked in earlier benchmarks.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

14


	Introduction
	Related Works
	Puzzle Environments
	Apple's Thinking-Illusion Benchmark
	Python Interpreter Environments
	Scratchpad Environments

	Experiments
	Experimental Settings
	Can Tool Use Overcome the Limits of Reasoning Models?
	Hyperparameter Studies

	Conclusion
	Additional Related Works
	Large Reasoning Models (LRMs)
	LLM Tool Use


