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Abstract
Clustering by fast search and find of density peaks (DPC) is a popular clustering method based on density and dis-
tance. In DPC, each non-center point’s cluster label is led by its nearest point with higher density, which may cause 
some misclassifications of non-center points and interfere with the choice of correct cluster centers in the decision 
graph. To avoid these defects, we propose a novel clustering algorithm that automatically generates clusters without 
using the decision graph based on the Normal-neighbor and Merging force (NM-DPC). We conduct a series of experi-
ments on various challenging synthetic datasets. Experimental results demonstrate that NM-DPC can better identify 
clusters of complex shapes and automatically recognize the number of clusters.

Keywords  Data clustering · Density peaks · Decision graph

1  Introduction

Clustering, a process of dividing a collection of objects 
into multiple classes with similar characteristics, is 
an important tool in data mining and has been widely 
applied to scientific and engineering applications [1–5] 
such as in computer vision, image mining [6], image 
segmentation [7], text mining [8]. Since clustering is a 
problem without a unique solution, numerous clustering 
method is proposed based on their special definitions of 
a cluster [9].

For example, K-Means [10, 11] as one of the most 
popular clustering algorithms defines a cluster as a group 
of data points with a small distance from a cluster center. 
Due to its simplicity and efficiency, K-Means has been 
widely used in various disciplines. However, K-Means 

still has some limitations: It cannot detect clusters with 
arbitrary shapes; it can easily get into local minima [12]; 
it requires the number of cluster centers as an input 
parameter. Despite various algorithms have been devel-
oped to remedy these limitations [13–15], they all fail to 
detect clusters with arbitrary shapes due to the fact that 
data points are always assigned to the nearest center. The 
classic graph-based spectral clustering [16] algorithm 
can recognize arbitrary-shaped clusters by considering 
a cluster as a set of closely connected points in a graph 
structure. Nevertheless, like K-Means, spectral cluster-
ing also requires the number of cluster centers as input.

Density-based clustering method is outstanding in 
automatically identifying clusters of arbitrary shapes 
without setting cluster centers. Density-based spatial 
clustering of applications with noise (DBSCAN) [17] as 
a typical density-based method can detect any arbitrary 
shape clusters with specified density thresholds, such as 
� , the neighborhood radius and MinPts, the minimum 
number of points included in the neighborhood with 
radius � [18, 19]. However, DBSCAN may merge two or 
more clusters that are in close proximity.

Density peak clustering (DPC) [20] proposed by Rod-
riguez and Laio can effectively partition closely con-
nected clusters by initially finding density peaks. DPC 
assumes that a cluster center should have a higher density 
� than its surrounding neighbors and have a relatively 
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large distance � from the nearest data point a with higher 
density. Based on this assumption, cluster centers as 
large density-distance points can be easily detected in the 
decision graph (i.e., a density-distance plot). After the 
cluster centers are determined, DPC’s allocation strategy 
assigns each non-center point into the cluster of its lead-
ing point (i.e., the nearest data point a with higher den-
sity) to complete clustering without iterating. Although 
generic allocation strategy is applicable to any cluster 
shape, it has two conditions: First, all the selected clus-
ter centers are correct; second, each non-center point’s 
cluster label is actually the same as its leading point’s. In 
other words, a wrong selection of cluster centers or any 
inconsistency between points and their leading points’ 
actual cluster labels both can cause the misclassification 
of DPC. However, when dealing with clusters of arbitrary 
and heterogeneous structure, it is difficult to ensure the 
consistency of each point’s actual cluster label and the 
cluster label of its leading point, which means DPC’s 
allocation strategy is not robust [21].

An example is presented in the following part to better 
explain the limitation of DPC’s allocation strategy.

As shown in Fig. 1a, the dataset is composed of two 
clusters: the right-side cluster and the left-side cluster, 
where the number indicates the density � of each point, 
and point C and D are the cluster centers of the two clus-
ters. As shown in Fig. 1b, except for the highest density 
point (as point C), each point has an arrow pointing to 
its leading point, and its distance value � is the Euclidean 

distance toward its leading point. Although cluster cent-
ers C and D can be found intuitively in the decision graph 
(i.e., a plot of �i as a function of �i for each point i) 
(Fig. 1c), DPC’s allocation strategy misclassifies point 
D1 into the left-side cluster due to point C (the leading 
point of D1) and point D1 are not really in the same 
cluster. At the same time, all points affected by point 
D1 that should belong to the right-side cluster are also 
misclassified to the left-side cluster.

Numerous methods have been proposed to reform the 
allocation strategy of DPC. In [22], the cluster labels of 
neighbors play an important role in assigning the non-
center points. Pizzagalli et al. [21] assign non-center 
points based on the shortest path and train a path clas-
sifier by providing examples of valid and invalid paths 
to further eliminate the wrong allocation paths. Non-
center points are assigned robust, but the selection of 
cluster centers still relies on the decision graph. In other 
words, incorrect selection of cluster centers in the deci-
sion graph will directly lead to bad clustering results. 
Thus, it is critical to select the correct cluster centers in 
the decision graph. However, in some cases, the decision 
graph may show some large density-distance points that 
cannot represent real cluster centers to mislead the cor-
rect selection of cluster centers. An example is presented 
in Fig. 2 to better explain the abovementioned limitation 
of DPC’s decision graph.

In Fig. 2a, the dataset is composed of two clusters: the 
right-side cluster with center F and the left-side cluster 

Fig. 1   Allocation strategy leads to the misclassification in DPC

Fig. 2   Leading relationship leads to decision graph misleading the correct choice of centers in DPC
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with center E. Figure 2b shows points’ leading relation-
ships, where point F1 has a high density and a leading 
point F that far away from it, as a result, point F1 has 
a high � value and large � value. Thus, in the decision 
graph Fig. 2c, we find that point F1’s �F1 and �F1 are even 
larger than cluster center E’s, thus point F1 may more 
easily be selected as the cluster center of the left-side 
cluster. This leads to the misclassification of point F1 
and all points led by it as shown in Fig. 2d.

To obtain a decision graph that can better display the 
correct cluster centers, some methods have proposed to 
change the evaluation method of density. [23] evalu-
ates the density of each point based on KNN (K-nearest 
neighbors) method, which makes the detection of low-
density cluster centers in the decision graph become 
easier. In [24], a shared-nearest-neighbor-based method 
is used to evaluate the density of each point. Although 
these methods make the inconspicuous cluster centers in 
the decision graph clearer, for some complex datasets, it 
is still challenging to select the correct cluster centers. 
In addition, the method of selecting cluster centers is 
manual, which means that the execution of clustering is 
semi-automated.

In this work, we present a novel automatic clustering 
algorithm that adaptively merging sub-clusters based on 
the Normal-neighbor (see Sect. 3.1) and Merging force 
(see Sect. 3.2), called as NM-DPC. It not only can effec-
tively overcome the limitation of DPC’s allocation strat-
egy but also gets rid of the manual selection of cluster 
centers in the decision graph.

Herein, a definition is introduced to further summarize 
the defects of DPC, that is, the jumping phenomenon of 
sub-cluster centers. From the above two examples, it can 
be noted that the point with the highest density (except 
for the highest density point in the dataset) in a density 
area that composed of points led by it will jump out of 
the area to find its leading point. We consider this den-
sity area as a sub-cluster where the highest density point 
is viewed as the sub-cluster center. In this paper, we 
attribute the limitations of DPC’s allocation strategy and 
decision graph to the unstable allocation of sub-clusters: 

a sub-cluster center jumps to the wrong area (i.e., an area 
of points with another cluster label) will directly lead to 
the misallocation of the entire sub-cluster (see point D1 
in Fig. 1); a sub-cluster center’s jumping behavior may 
make it have a large density-distance value that may lead 
to a confusing decision graph (see point F1 in Fig. 2). 
Thus, this jump phenomenon causes DPC to have the 
following disadvantages: 

1.	 Sub-cluster allocation is unstable.
2.	 The sub-cluster centers may interfere with the correct 

selection of cluster centers in the decision graph.

To avoid the jumping phenomenon of sub-cluster cent-
ers caused by the instability of the sub-cluster center in 
finding its leading point, we only allow each point to find 
its leading point in its normal neighbors (i.e., neighbors 
with real adjacent relationships) that are obtained based 
on our normal-neighbor method. As a result, sub-cluster 
centers (i.e., the points without a leading point in their 
normal neighbors) are emerged automatically and are no 
longer divided by their unstable leading points (namely 
the jumping phenomenon will not occur). Then, sub-clus-
ters are formed according to the sub-cluster points and 
the allocation strategy that each point is assigned into 
the cluster of its leading point in its normal neighbors. 
These sub-clusters need to be merged into clusters to 
complete clustering. To analyze the possibility of merg-
ing two sub-clusters, we propose a concept of Merging 
force based on the structural characteristics of sub-clus-
ters. By adding a fixed merge threshold, the intersect-
ing sub-clusters are merged into clusters spontaneously 
according to the merging force between them to complete 
the clustering.

Our method is fully automatic without applying the 
decision graph, which, as a result, ensures that our algo-
rithm never misclassifies clusters. Figure 3 simply shows 
the process of our algorithm. As shown, for the dataset 
(Fig. 3a), our algorithm first automatically forms three 
sub-clusters based on Normal-neighbor, then the two 
sub-clusters on the right-side are merged according to 

Fig. 3   NM-DPC’s clustering process
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the Merging force (Fig. 3b, c). Finally, the clustering 
result is shown in Fig. 3d. Thus, it can be seen that the 
new features of NM-DPC are: 

1.	 Sub-clusters are generated by each point finding its 
leading point based on Normal-neighbor, in other 
words, sub-cluster centers do not need to search for 
leading points beyond its cluster, which means there 
will be no jumping phenomenon in NM-DPC.

2.	 Sub-clusters are merged automatically according to 
the Merging force between sub-clusters, which means 
clusters can naturally emerge without using the deci-
sion graph.

The rest of this paper is composed as follows: Sect. 2 
gives a brief introduction to DPC algorithm and its analy-
sis. Sections 3 and 4 are mainly focused on introducing 
and analyzing NM-DPC algorithm, while Sect. 5 tests 
our proposed algorithm by experiments on synthetic and 
real-world datasets. Finally, Sect. 6 is a general conclu-
sion to this paper.

2 � DPC algorithm and analysis

2.1 � Notations

The major symbols and notations used in the following 
parts are presented in Table 1.

2.2 � DPC algorithm

DPC defines the local density �i for each data point i 
as in Eq. 1, and the distance �i to the nearest data point 
with a higher density is defined as Eq. 2. Where dij is the 
Euclidean distance between point i and point j, while dc is 
the cutoff distance which was proposed in [20]. �(x) = 1 
if x < 0 , otherwise, �(x) = 0 , basically, �i is equal to the 
total number of points in the dc range of data point i. In 
addition, for some sparse datasets, DPC estimates the 
local density by a Gaussian kernel with a pre-specified 
cutoff distance dc , as in Eq. 3.

(1)�i =
∑

j≠i
�
(
dij − dc

)

(2)𝛿i = min
j∶𝜌j>𝜌i

(
dij
)

Table 1   Notations in DPC and NM-DPC

Symbol Meaning

N The total number of data points in the data set
dij The Euclidean distance between point i and j
� = (�1, �2,… �N ) The local density value of data points
� = (�1, �2,… �N ) The distance value of data points
iT The Tth (T ⩽ K) nearset neighbor of point i
iin
T

The minimum inner neighbor distance of iT
�iT The jumping coefficient of point i’s neighbor iT that indicates the jump amplitude of the neighbor
� ∈ {1, 2, 3, 4, 5} The anti-jump threshold that used to determine the abnormal neighbors
ileading The leading point of point i
K The parameters used to set the number of nearest neighbors are considered
KNNi The K nearest neighbors of point i
NNi The normal nearest neighbors among K nearest neighbors of point i
NANi The nearest abnormal neighbor of point i
SC = (SC1, SC2,…) The sub-clusters
C = (C1,C2,…) The clusters
M = (MSC1

,MSC2
,…) The merging ability of sub-clusters

� = (�SC1
, �SC2

,…) The sharpness of sub-clusters’ density peaks
BSCpSCq

The boundary point set of two sub-clusters
SSCpSCq

The highest density point on the boundary of two intersecting sub-clusters called a saddle point.
OSCpSCq

The overlapping thickness coefficient between two sub-clusters
MFSCpSCq

The Merging force between two sub-clusters
� ∈ [0, 1] The merge threshold parameter
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�i is the minimum distance between point i and any other 
point j with higher density, and the highest density point imax 
has the largest distance �imax

= max
(
dij
)
 . Figure 4 illustrates 

the basic principle of the distance �.
According to DPC, �i is much larger than the typical 

nearest neighbor distance only for points that are local 
or global maximum in the density, thus, cluster centers 
can be determined because �i has an abnormally large 
distance value [20].

The selection of cluster centers is a critical step in the 
clustering analysis of DPC. DPC uses a decision graph, 
that is, the plot where �i as a function of �i for each point 
i. The cluster centers can be determined by finding the 
points with large �-� in the decision graph.

DPC does not introduce a noise-signal cutoff, instead, 
it defines the set of points within a distance dc from other 
clusters’ data points as the border region of each cluster. 
DPC finds the highest density point within each cluster’s 
border region and denotes its density as �b . The points in 
the cluster whose density is lower than �b are considered 
to be noise.

(3)�i =
∑

j≠i
exp

(
−

(
dij

dc

)2
)

2.3 � Analysis

As mentioned in Sect. 1, although DPC has good cluster-
ing performance, it still has some defects caused by the 
jumping phenomenon of sub-cluster centers. 

1.	 The limitation of the decision graph.
2.	 The allocation limitation of sub-clusters.

These two limitations of DPC are detailed in the follow-
ing part.

2.3.1 � The limitation of the decision graph

An example is presented in Fig. 5 to show the limita-
tion of the decision graph. Figure 5a shows the cluster-
ing result (by selecting 2 cluster centers in the decision 
graph) of DPC on the Jain dataset [25] which is clearly 
composed of two crescent-shaped clusters, the left-side 
branch cluster with center E, and the right-side branch 
cluster with center A.

However, as shown in Fig. 5a, DPC cannot fully rec-
ognize the Jain dataset, since it selects point A1 and A as 
the cluster centers (as shown in Fig. 5b), which is obvi-
ously a misselection of centers as point A1 and A are all 
belong to the right-side cluster. As a result, point E (the 
real left-side cluster center) is missed because it is not 
conspicuous in the decision graph. The reason behind is 
that point A1 has a larger �-� value than point E, which 
makes it easier to be regarded as a cluster center candi-
date in the decision graph.

The above example verifies that points with a large �-� 
value in the decision graph cannot always represent the 
real cluster centers but may even mislead the choice of 
cluster centers. In addition, as mentioned in Sect. 1, if we 
can ensure that the cluster center selection is always cor-
rect, DPC may still not completely accurate allocation. 
This is because DPC is unstable in sub-cluster allocation.

Fig. 4   Distance value � ’s illustration

Fig. 5   The clustering result (a) and the decision graph (b) of DPC 
with selected Center

A
 and Center

A1 as cluster centers on Jain
Fig. 6   The clustering result (a) and the decision graph (b) of DPC 
with selected Center

A
 and Center

E
 as cluster centers on Jain
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2.3.2 � The allocation limitation of sub‑clusters

Due to the jumping phenomenon of sub-cluster centers 
(mentioned in Sect. 1), even when the choice of cluster 
centers is correct, some sub-clusters may also be misclas-
sified by DPC.

For example, Fig. 6a shows the clustering result of 
DPC when it selects the correct cluster centers in the 
decision graph (Fig. 6b). But, we can still observe that 
a sub-cluster (circled out by black line) with the sub-
cluster center E1 is mistakenly divided into the right-
side cluster due to the jumping phenomenon of E1. The 
principle behind this is that the labels of points in E1’s 
sub-cluster are all led by the sub-cluster center E1, but 
point E1 finds its leading point in the right-side cluster. 
The labels of all the points in the sub-cluster are led by 
the sub-cluster center E1. But, due to E1’s leading point 
is in the right-side cluster, as a result, the whole sub-
cluster of E1 is assigned into the right-side cluster.

The above example demonstrates that the jumping 
phenomenon of sub-cluster centers may cause DPC’s 
misallocation of sub-clusters.

To avoid DPC’s limitation of the decision graph and 
the misallocation of sub-clusters. Herein, a novel algo-
rithm is proposed which performs clustering by adap-
tively merging sub-clusters based on the Normal-neigh-
bor and Merging force (NM-DPC).

3 � The proposed NM‑DPC algorithm

NM-DPC algorithm offers a solution that each point 
searches for its leading point only in its Normal-neighbor 
which effectively avoids the jumping phenomenon, and 
the clusters will naturally emerge after the sub-clusters 
are merged by using the Merging force in between, which 
breaks the limitation of decision graph.

This section presents the essential details of our pro-
posed clustering algorithm, such as Normal-neighbor, 
Merging force.

3.1 � Normal‑neighbor

In order to avoid the jumping phenomenon, based on 
the idea of KNN (K-Nearest Neighbor), we design the 
Normal-neighbor method to limit the searching range of 
each point for its leading point, so that points cannot 
jump to other clusters to get their leading points (namely 
the jumping phenomenon is avoided).

In our Normal-neighbor method, we first evaluate 
the neighbors’ distribution characteristic of each point, 
then use this characteristic to help point in obtaining its 
neighbors really close to it. In this way, the neighbors 

of each point can be ensured in a cluster. Unlike in the 
KNN method, K is a fixed value that may fail to ensure 
that all K neighbors of a point belong to one cluster. The 
following part is a detailed introduction of the Normal-
neighbor method.

Normal-neighbor method introduces two new defini-
tions: normal neighbors (i.e., neighbors with real adja-
cent relationships) and abnormal neighbors (i.e., neigh-
bors without adjacent relationships). Herein, for each 
point i, we view i’s nearest abnormal neighbor ( NANi ) 
as a border between normal and abnormal neighbors 
of point i. Then, neighbors inside NANi (namely inner 
neighbors of NANi ) are defined as normal neighbors, 
and neighbors outside NANi are defined as abnormal 
neighbors. Therefore, as long as NANi can be accurately 
detected, the normal neighbors of i can be identified.

Normal-neighbor method detects the NAN by using 
the assumption that the NAN has a relatively large dis-
tance from its inner neighbors. Thus, the minimum inner 
neighbor distance of each neighbor needs to be measured 
for detecting abnormal neighbors, as defined in Eq. 4, 
where iT  is the Tth neighbor of point i and 0 < t < T  
means it is the inner neighbor of iT .

For example, as shown in Fig. 7, A1–A5 are the five 
nearest neighbors of point A. The distance from A1–A5 
to A is gradually increased from 1 to 2.2, 3.6, 5.1, 5.2. 
Compared to A1–A4 , A5 is more like an abnormal neigh-
bor to A because it is far from the other neighbors around 
A. Since the NAN has a relatively large distance from its 
inner neighbors, it can be intuitively observed that only 
A5 is far away from its inner neighbors ( A1–A4 ). Then, 
we calculate the minimum inner distance of A1–A5 , and 
get Ain

5
= 5.2 which is much larger than other neighbors’, 

Fig. 7   Minimum inner distance
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so we assure that A5 is an abnormal neighbor of point A 
and should not be counted as point A’s normal neighbor.

To automatically detect the NANi (namely point i’s 
nearest abnormal neighbor.), we design a jumping coef-
ficient �iT for each neighbor iT  in KNNi ( T < K  ) of as in 
Eq. 5. Nmin is the minimum number of normal neigh-
bors. After experiment, we find the value of Nmin is 
not sensitive, we generally set Nmin = 5 . Denominator 
1

T−1
×
∑T−1

p=1
iin
p

 is the average minimum inner distance 
value of iT  ’s inner neighbors, which can indicate the 
compactness of iT  ’s inner neighbors. A large �  value of 
neighbor indicates that the distance between the neigh-
bor and its inner neighbor is large, and vice versa. Since 
the NAN has a relatively large minimum inner distance, 
NAN should have a relatively larger �  than its inner 
neighbors’. Based on this feature, we use an anti-jump 
threshold constant � ( � ∈ [1, 2, 3, 4, 5] ) as an input param-
eter to detect the abnormal neighbors : if 𝜁iT > 𝜀 , point iT 
is considered as an abnormal neighbor of point i. Thus, 
for point i, NANi is the nearest neighbor in KNNi whose 
�  vlaue is larger than � , as defined in Eq. 6. Then, the 
definition of normal neighbors of point i ( NNi ) in KNNi 
is shown in Eq. 7.

In a word, our Normal-neighbor method can find the 
possible homology relationship between K nearest neigh-
bors. When � = ∞ , Normal-neighbor method essentially 
trend to KNN.

(4)iin
T
= min

0<t<T
(diT it ), iT ∈ KNNi

(5)�iT =
iin
T

1

T−1
×
∑T−1

t=1
iint

,Nmin ⩽ T ⩽ K

(6)NANi =

{
iT |min

𝜁iT>𝜀

(T), iT ∈ KNNi

}

To demonstrate the performance of our Normal-neighbor, we 
use Fig. 8 which shows point A’s range of obtaining its 5th 
nearest neighbors based on Normal-neighbor ( � = 1, 2, 3 ) 
and KNN. In Fig. 8, normal neighbors are marked in blue, 
abnormal neighbors are marked in red, and the search range 
of the 5th nearest neighbor is in the gray area. It can be noted 
in Fig. 8a–c that Normal-neighbor calculates the average 
minimum inner distance value of the four inner neighbors 
(A1–A4) which is 1.275 and then limits the searching range 
of A’s 5th neighbor according to anti-jump threshold con-
stant � , so as to exclude the abnormal neighbors as much 
as possible. While KNN does not limit the search range of 
the 5th nearest neighbor, as a result, it cannot exclude the 
abnormal neighbor A5 (as in Fig. 8d).

It can be noted that compared to KNN, Normal-neigh-
bor can get appropriate neighbors according to the sur-
rounding distribution characteristics of each point, ensur-
ing that all neighbors are in the same cluster.

3.2 � Merging force

In order to merge sub-clusters into clusters automatically, 
for each sub-cluster, we propose a concept of merging 
ability (denoted as M). We assume that the stronger the 
merging ability of two intersecting sub-cluster, the easier 
they are to be merged, that is, the smaller the overlapping 
degree required. Based on this idea, we design a Merging 
force method as in Eq. 8, where MFSCpSCq

 is the Merging 
force coefficient of intersecting sub-clusters SCp and 
SCq , and OSCpSCq

 is the overlapping thickness coefficient 
of sub-clusters SCp and SCq that indicates the overlapping 
degree of them. The following part is a detailed introduc-
tion to our Merging force method.

(7)NNi =
{
iT |diiT < diNANi

, iT ∈ KNNi

}

(8)MFSCpSCq
=

1

2
× (MSCp

+MSCq
) × OSCpSCq

Fig. 8   Point’s search range of 5th normal neighbor based on Normal-neighbor ( � = 1, 2, 3 ) (a–c) and 5th nearest neighbor based on KNN (d)
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We assume that the merging ability of a sub-cluster 
is related to its structure. In order to verify this, we pre-
sent Fig. 9 to show three clusters of different distribu-
tion types and their merging processes. These three types 
of clusters are all composed of 25 points with different 
distribution rules: Type1 (Fig. 9a) is a uniform distribu-
tion of cluster, Type2 (Fig. 9b) is a cluster where the 
center points are distributed relatively densely, and Type3 
(Fig. 9c) is a cluster where its center points are distrib-
uted most densely. To make it more visual, these three 
types of clusters are converted into three sharp density 
peaks, and their density heat maps are drawn as shown 
in Fig. 9. Figure 9 shows two status of Type1,2,3 ’s merge 
process: (1) just contacted, (2) just merging. We note 
that in the same space and with the same quantity of 
data points, clusters with denser center distribution need 
a larger overlapping thickness to complete the merging 
process than clusters with the sparse center distribution. 
Therefore, to figure out whether two sub-clusters can be 
merged, except for the overlapping thickness, the sub-
cluster structures also need to be considered.

Unlike ISODATA’s cluster merging method that based 
on the distance between centers [26], our method consid-
ers the overlapping thickness and the merging ability of 

sub-clusters based on density, which enables it to deal 
with clusters of arbitrary shape.

3.2.1 � The merging ability coefficient

We notice that sub-cluster with denser center distribution 
has a sharper density peak tip, and the sharpness of a 
density peak is related to its merging ability. Thus, we 
design parameter � to define the sharpness of density 
peak, as shown in Eq. 9, where �SCp

 refers to the density 
of SCp ’s center, �SCmean

 refers to the average density of all 
points in sub-cluster SCp , and NSCp

 refers to the total 
number of the points in sub-cluster SCp . Based on the 
assumption that the merging ability M of sub-cluster is 
inversely proportional to its sharpness � , we get Eq 10.

Based on Eq. 10, the merging ability MSCp
 can be converted 

to Eq. 11, where SCGaussn refers to the n-dimensional Gauss-
ian distribution sub-cluster (n is the number of dimensions 
of the dataset), which functions as a reference body for the 
merging ability of n-dimensional sub-cluster.

3.2.2 � The overlapping thickness coefficient

To define the overlapping thickness coefficient O, we 
first search for the highest density point on the bound-
ary of two intersecting sub-clusters, which we call, the 
saddle point.

The saddle point SSCpSCq
 between sub-cluster SCp and 

SCq is defined in Eq. 12. BSCpSCq
 is the boundary point set 

of sub-cluster SCp and SCq , as in Eq.  13, where C(i) 
means i’s cluster label.

(9)�SCp
=

1

NSCp

×
∑

i∈SCp

|||�i − �meanSCp

|||
�SCp

(10)MSCp
× �SCp

= MSCq
× �SCq

, SCp …SCq ∈ dataset.

(11)MSCp
=

�SCGaussn

�SCp

×MSCGaussn

(12)SSCpSCq
=

{
i|�i = max

j∈BSCpSCq

(�j), i ∈ BSCpSCq

}

(13)
BSCpSCq

=
{
i|C(i) ≠ C(j), i, j ∈ SCp ∪ SCq, j ∈ KNNi,K = 5

}

Fig. 9   Three cluster pairs of different distribution types and their 
merging processes
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We note that the larger the overlapping thickness between 
sub-clusters, the higher their saddle point density. Thus, we 
define the overlapping thickness coefficient OSCpSCq

 in Eq 14, 
where SCbig

ij
 refers to the sub-cluster that contains more 

points between SCp and SCq.
As a result, we transform Eq. 8 into Eq. 15.

Herein, we set MSCGaussn
= 1 , and the value of �SCGaussn

 is 
in a fixed range, which will be verified in the following 
paragraphs.

3.2.3 � Derivation of �
SCGaussn

Since SCGaussn ’s each dimension is an independent nor-
mal distribution, �SCGaussn

 equals to �SC
Gauss1

 , so the only 
thing we need to derive is that �SC

Gauss1
 is a fixed value.

We normalized the distribution of Gauss1 to N(0, 1) 
and its probability distribution density function is shown 
as Eq.  16. In addition, the density estimation can be 
transformed into a continuous integration method, as in 
Eq. 17, where xi is the coordinate of point i on the X-axis. 
So, the average density �mean

Gauss1
 is defined as Eq. 18.

When xi = 0 , we can get the center density of Gauss1 
which denoted as �Center

Gauss1
 , as in Eq. 19.

(14)OSCpSCq
=
�SSCpSCq

�
SC

big

ij

(15)MFSCpSCq
=

1

2
×

(
�SCGaussn

�SCp

+
�SCGaussn

�SCq

)
×
�SSCpSCq

�
SC

big

ij

(16)P(x) =
1

√
2�

× exp

�
−x2

2

�

(17)

�i
Gauss1

= ∫
+∞

−∞

N × P(xi) × exp

(
−(x − xi)

2

d2
c

)
dx

= N ×
dc√
d2
c
+ 2

× exp

(
−

x2
i

d2
c
+ 2

)

(18)

�mean
Gauss1

= ∫
+∞

−∞

N × P(xi) × �i
Gauss1

dxi

= N ×
dc√
d2
c
+ 4

(19)�Center
Gauss1

= N ×
dc√
d2
c
+ 2

.

Therefore, �SC
Gauss1

 is shown in Eq. 20, where xmean is obtained 
when�xmean

= �mean
Gauss1

 , as in Eq. 21.
Since dc → 0 , we substitute dc = 0 into Eq.  21 to 

get xmean =
√
ln2 , then substitute dc = 0, xmean =

√
ln2 

into Eq.  20 to obtain �SC
Gauss1

 as in Eq.  22. Thus, 
�SCGaussn

= �SC
Gauss1

≈ 0.2349.

4 � Clustering process of NM‑DPC

This section presents the clustering process of NM-DPC 
and theoretically analyze the clustering performance of 
our algorithm.

NM-DPC first generates sub-clusters by generation 
strategy (Algorithm 1), that is, assigns each point into 
the same sub-cluster of its nearest normal neighbor with 
a high density. Then, NM-DPC defines the overlapping 
thickness coefficient and Merging force between each 
pair of sub-clusters. Followed, according to a merging 
threshold �(� ∈ [0, 1]) , sub-cluster pairs with overlapping 
thickness coefficient O larger than � are directly merged 
into transition sub-clusters (as Eq. 24); subsequently, 

(20)

�SC
Gauss1

=
1

N ∫
+∞

−∞

N × P(xi)
��i

Gauss1
− �mean

Gauss1
�

�Center
Gauss1

dxi

2 × ∫
xmean

0

P(xi)
�i

Gauss1
− �mean

Gauss1

�Center
Gauss1

dxi

− 2 × ∫
∞

xmean

P(xi)
�mean

Gauss1
− �i

Gauss1

�Center
Gauss1

dxi

= 2 ×

erf

��
d2
c
+4

2×(d2
c
+2)

× xi

�
− erf

�
1√
2
× xi

�

�
(d2

c
+ 2) × (d2

c
+ 4)

�����

xmean

0

−

2 ×

erf

��
d2
c
+4

2×(d2
c
+2)

× xi

�
− erf

�
1√
2
× xi

�

�
(d2

c
+ 2) × (d2

c
+ 4)

�����

+∞

xmean

= 4 ×

erf

��
d2
c
+4

2×(d2
c
+2)

× xmean

�
− erf

�
1√
2
× xmean

�

�
(d2

c
+ 2) × (d2

c
+ 4)

(21)xmean =

�
(d2

c
+ 2) × (ln(d2

c
+ 4) − ln(d2

c
+ 2))

√
2

(22)

�SC
Gauss1

=
√
2 ×

�
erf(

√
ln2) − erf

�√
ln2

√
2

��
≈ 0.2349
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transition sub-clusters with Merging force MF larger than 
� are automatically merged into transition sub-clusters 
into final clusters (as Eq. 25). Figure 10 shows NM-
DPC’s process diagram.

4.1 � Generate sub‑clusters based 
on Normal‑neighbor and density

The generation of sub-clusters in our algorithm is based 
on Normal-neighbor and density. The local density �i of 
point i is defined by Eq. 3, we replace the DPC method of 
obtaining the “cutoff distance” dc with a robust approach 
that defined in Eq. 23, where k′ is the k′ th nearest neigh-
bor of point i. In this paper, a density parameter p is used 
to set the size of k′ , and its value is generally set to 2% 
of N (the total number of the data point in the dataset).

The generation steps of sub-clusters based on Normal-neigh-
bor and density are as follows: firstly, each point i obtains 
its Normal-neighbor NNi . Followed, each point i finds its 
leading point in NNi , denote as ileading , and if �i is the high-
est in NNi , point i will be considered as a sub-cluster center. 
Then, as each non-center point’s assignment follows its 
leading point, the sub-clusters are naturally formed. This is 
called the generation strategy process, which is described 
in Algorithm 1.

(23)dc = mean

(
∑

i∈dataset

diik�

)

As mentioned above, Normal-neighbor is designed to 
ensure that neighbors of each point all belong to the same 
cluster, and thus, each sub-cluster generated by our gen-
eration strategy is guaranteed to be in the same cluster.

Nevertheless, since the number of sub-clusters always 
tends to be bigger than the real number of clusters in the 
dataset, some overlapping sub-clusters should be merged 
based on the merging relationship in-between.

4.2 � The merging of sub‑clusters based 
on the Merging force

After obtaining the Merging force coefficient between 
each pair of intersecting sub-cluster, we start the merg-
ing process of sub-clusters: The first step is to merge 
sub-clusters into transition sub-clusters, called merging 
step 1, as in Eq. 24; the second step is to merge transition 
sub-clusters into final clusters, called merging step 2, as 
in Eq. 25, where �(0 ⩽ � ⩽ 1) is a merge threshold. After 
the two merge steps, the clustering is completed.

Figure 11 illustrates the entire process of our method 
in dealing with the Jain dataset. As shown in Fig. 11a, 
our method successfully avoids 9 sub-cluster cent-
ers’ jumping phenomenon (marked by a red cross in 
Fig. 11a), where two sub-cluster centers (A and B) eager 
to jump to the other cluster to get their leading points. To 
better explain how our Normal-neighbor method works, 
we zoom in detail in Fig. 11a that shows the point B’s 
process of obtaining its normal neighbors. It can be noted 

(24)If OSCpSCq
> 𝜆 Merge, SCp, SCq ∈ dataset

(25)If MFSCpSCq
> 𝜆 Merge, SCp, SCq ∈ dataset

Fig. 10   NM-DPC’s process diagram
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that B20 is the nearest abnormal neighbor (namely NANB ) 
of point B due to its large Bin

20
 . Thus, no matter how large 

the K value of NNB (i.e., K ⩾ 20 or K ≫ 20 ), the NNB 
will be restricted to the inner neighbors of B20 (within 
gray area), that is, the number of normal neighbors in 
NNB will not larger than 19. So point B cannot jump to 
sub-cluster C that exceeds the range of NNB to obtain 
its leading point Bleading (marked by a black circle), as a 
result, point B without a leading point is considered as a 
sub-cluster center.

The idea of our method is to initially obtain sub-
clusters instead of misallocating sub-clusters due to the 
jumping phenomenon, and then merge sub-clusters into 
clusters as shown in Fig. 11b. As shown, we use two 
merging steps to achieve the final clustering: merging 
step 1 that based on the coefficient O; merging step 2 that 
based on the coefficient MF. By using � = 0.8 , merging 
step 1 merges 9 sub-cluster into 7 transition sub-clusters 
which are finally merged into 2 cluster by merging step 
2. This clustering result is perfect for the Jain dataset.

4.3 � Exceptional cluster processing

After sub-clusters have been merged, there may leave 
some clusters with extremely few data points called 
exceptional clusters that need to be reprocessed.

To identify exceptional clusters, we design an excep-
tional cluster filter as in Eq. 26, where NCi

 is the total 
number of points of cluster Ci , and � is an exceptional 
cluster filter threshold. If NC is large than � , we denote 
cluster C as Cnormal.

Next, point i in the exceptional clusters is denoted as ie and 
assigned to the normal cluster that closest to it, as in Eq. 27.

(26)If NCi
< 𝜐 Ci is an exception cluster

(27)C(ie) =

{
C(j)|djie = min

j∈all Cnormal
(djie )

}

4.4 � Noise processing

In terms of noise processing, our algorithm is similar 
to DPC. We average the density value of each cluster’s 
boundary points, denoted as �b . The point with smaller 
density than the �b of its cluster is considered as noise.

In summary, the procedure of NM-DPC algorithm is 
presented as follows: 

1.	 Calculate � for each point from Eq. 3;
2.	 Generate sub-clusters by generation strategy;
3.	 Calculate the Merging force coefficient MF for each 

pair of intersecting sub-clusters;
4.	 First merge the sub-clusters into transition sub-clus-

ters according to Eq. 24, then merge transition sub-
clusters into final clusters according to Eq. 25;

5.	 Exceptional cluster processing;
6.	 Clustering is accomplished.

4.5 � Complexity analysis of NM‑DPC

NM-DPC needs space to store the distance from each 
point to its K-nearest neighbors, and the recognition 
matrix of sub-clusters. The approximate space complex-
ity of NM-DPC is O(n2).

The time complexity of NM-DPC depends on the fol-
lowing four parts: (a) the time for computing the distance 
between points is O(n2) ; (b) the time to calculate the local 
density � for each point is O(n2) ; (c) the time of obtain-
ing the normal neighbors for each point is O(n ∗ K2) ; 
(d) the time of generating sub-clusters is O(n2) . Thus, 
the total approximate time complexity of NM-DPC is 
O(n2) + O(n ∗ K2) . K is our input parameter that indicates 
the number of neighbors to obtain for each point and the 
impact of K value on the overall time complexity is weak 
since it is usually set as 20 which is much smaller than n.

Fig. 11   The clustering process of our algorithm on the Jain dataset
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4.6 � Some discussions of NM‑DPC

NM-DPC follows DPC’s assumption that each cluster is 
regarded as a density peak, but NM-DPC does not use 
the � and � to search for cluster centers. Compared with 
DPC’s clustering method that first finds the cluster cent-
ers before assigning other points, NM-DPC prefers to 
generate sub-clusters from points, and merge sub-clusters 
into clusters, in other words, NM-DPC pays more atten-
tion to points rather than cluster centers, which enables 
it to have some outstanding clustering properties that 
different from DPC.

Generation strategy ensures that the assignment of 
each point will not be affected by points in other clusters, 
which helps all the sub-cluster centers in NM-DPC get 
away from the jumping phenomenon, and naturally avoid 
the bad influence of jumping phenomenon.

In addition, we propose the Merging force idea into 
the clustering process, which is beneficial to the auto-
matic emergence of clusters without using the decision 
graph.

Through the above discussion, we can conclude that 
NM-DPC does have better clustering results compared to 
DPC, which will be demonstrated in Sect. 5.

5 � Experimental results and analysis

We conducted experiments on synthetic datasets and 
Olivetti Faces dataset with the purpose of testing the effi-
ciency of our algorithm. These datasets of different char-
acteristics are commonly used to test the performance 
of clustering algorithms. The synthetic datasets used in 
experiments are displayed in Table 2. In this section, the 
performance of NM-DPC is compared with DPC, KNN-
DPC [23], DBSCAN, K-Means, Spectral clustering (SC) 
[16], S-DPC(G) (i.e., the generic method proposed by 
[21] without training.) and SNN-DPC [24].

The clustering results are evaluated using four evalu-
ation indices: adjusted mutual information (AMI) [34], 
adjusted Rand index (ARI) [34], Fowlkes–Mallows index 
(FMI) [35] and clustering accuracy (ACC). The upper 
bound of the four indicators is 1, where larger values 
indicate better clustering results.

Before experiments, data are preprocessed by the 
min-max normalization method in [36]. The parameter 
requirements of each algorithm are shown as follows: 
DBSCAN requires two parameters, the maximum radius 
� and the minimum point MinPts; The value of cluster 
number k is indispensable for K-Means; DPC, KNN-DPC 

and S-DPC(G) need to set the density parameter p, SNN-
DPC need to set the K to obtain neighbors. DPC, KNN-
DPC, SNN-DPC and S-DPC(G) all need to select the 
cluster centers in the decision graph manually; our NM-
DPC also requires the density parameter p, besides, the 
K and � of Normal-neighbor need to be given, in addi-
tion, the merge threshold coefficient � is set as 0.8, the 
exceptional cluster filter threshold � is equal to 2% of the 
total number of the points in the dataset.

These needed parameters of each algorithm during the 
experiments are displayed in the subsequent experimental 
results tables (Tables 3, 4). PAR in Tables 3 and 4 represents the 
parameter setting of algorithms such as PARNM-DPC = K∕�∕p , 
PARDBSCAN = �∕MinPts , PARDPC = p , PARK-Means = k  , 
PARKNN-DPC = p , PARS-DPC(G) = p , PARSNN-DPC = K ,and 
PARSC = k∕�.

5.1 � Synthetic datasets

In this part, a number of synthetic datasets that are 
widely used to test a variety of clustering algorithms 
are selected. Table  3 shows the clustering results in 
terms of the AMI, ARI, FMI and ACC scores on all syn-
thetic datasets listed in Table 2. For K-Means and SC, 
the best experimental results are selected after multiple 
experiments.

Next, the clustering results of some synthetic datasets 
in the experiments will be presented in Fig. 12, where 
different colors indicate different clusters. Except for 
DBSCAN and K-Means, the cluster centers obtained 
from other algorithms are marked with black penta-
grams, while black points indicate noise determined by 
DBSCAN.

Figure 12 and Table 3 show that NM-DPC has opti-
mal clustering performance on almost all datasets 

Table 2   Synthetic datasets

Dataset Instances Attributes Clusters Source

Spiral 312 2 3 [27]
Jain 373 2 2 [25]
Flame 240 2 3 [28]
Compound 399 2 6 [29]
Pathbased 300 2 3 [27]
Aggregation 788 2 7 [30]
S3 5000 2 15 [31]
D31 3100 2 31 [32]
R15 600 2 15 [32]
Eyes 238 2 2 [33]
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except for the compound dataset, and NM-DPC’s per-
formance is merely slightly different from DBSCAN. As 
shown in Fig. 12, for the compound dataset, we notice 
that DBSCAN treats sparse points as noise, including 
the sparse cluster on the right side, while NM-DPC 
merges two clusters on the right side into one, and that 
is why NM-DPC’s accuracy on compound is lower than 
DBSCAN. It is worth mentioning that all algorithms’ 
clustering results on the Eyes dataset are not perfect, 

since they cannot accurately identify the ring cluster. 
The reason why our algorithm fails to identify the ring 
cluster of the Eyes dataset is that our Normal-neighbor 
method cannot prevent the points on the sparse ring 
from jumping to the square dense clusters to find their 
leading points. This is because the distribution distance 
between points in the ring cluster is almost the same 
as the shortest distance between it and the square clus-
ter, and our method cannot effectively detect abnormal 

Fig. 12   The clustering results of 8 algorithms on some synthetic datasets
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Table 3   The comparison of 8 clustering algorithms on synthetic datasets

The best values are highlighted

Algorithm AMI ARI FMI ACC​ PAR AMI ARI FMI ACC​ PAR

Spiral Jain
NM-DPC 1 1 1 1 20/2/2% 1 1 1 1 20/4/3%
DPC 1 1 1 1 5% 0.5396 0.6183 0.8386 0.8954 2%
KNN-DPC 1 1 1 1 5% 0.6183 0.7146 0.8819 0.9249 2%
SNN-DPC 1 1 1 1 10 1 1 1 1 20
S-DPC(G) 1 1 1 1 2% 0.2382 0.1277 0.5514 0.7855 2%
DBSCAN 1 1 1 1 0.04/2 0.8593 0.9756 0.9905 0.9905 0.08/4
K-Means -0.006 -0.0055 0.3274 0.3494 3 0.4916 0.5767 0.82 0.882 2
SC -0.0058 0.0006 0.3510 0.3429 3/2 1 1 1 1 2/2

Compound Flame
NM-DPC 0.842 0.8531 0.8982 0.8722 20/2/2% 1 1 1 1 20/2/2%
DPC 0.6968 0.5461 0.6491 0.8321 2% 1 1 1 1 5%
KNN-DPC 0.6913 0.5329 0.6381 0.8321 2% 1 1 1 1 2%
SNN-DPC 0.7356 0.5775 0.6791 0.8296 20 0.8165 0.8854 0.9479 0.9708 15
S-DPC(G) 0.7563 0.7825 0.8547 0.8321 2% 1 1 1 1 2%
DBSCAN 0.8714 0.9086 0.9321 0.9321 0.05/5 0.8732 0.9550 0.9790 0.9917 0.09/8
K-Means 0.6761 0.5598 0.6599 0.8496 6 0.3648 0.4202 0.7201 0.8250 2
SC 0.6170 0.3796 0.5974 0.7393 6/2 0.4420 0.4880 0.8528 0.8500 2/2

Pathbased Aggregation
NM-DPC 0.9579 0.9699 0.9799 0.99 15/2/2% 0.9892 0.9935 0.9949 0.9962 20/1/2%
DPC 0.4997 0.453 0.6585 0.7333 2% 0.9922 0.9956 0.9966 0.9975 4%
KNN-DPC 0.5294 0.4797 0.6703 0.76 3% 0.9922 0.9956 0.9966 0.9975 4%
SNN-DPC 0.9001 0.9294 0.9529 0.9767 9 0.9262 0.9272 0.9428 0.9607 20
S-DPC(G) 0.7073 0.6133 0.7511 0.8233 2% 0.9696 0.9749 0.9803 0.9848 2%
DBSCAN 0.871 0.9011 0.934 0.9667 0.08/10 0.9864 0.9913 0.9932 0.9949 0.5%
K-Means 0.5098 0.4613 0.6617 0.7433 3 0.8041 0.7114 0.7724 0.9112 7
SC 0.5607 0.4797 0.7209 0.7600 3/2 0.8015 0.6718 0.8571 0.8617 7/2

S3 D31
NM-DPC 0.9746 0.966 0.9683 0.9832 20/4/0.5% 0.9545 0.9345 0.9366 0.9674 20/2/0.5%
DPC 0.9775 0.9645 0.9669 0.979 1% 0.9539 0.9332 0.9354 0.9684 2%
KNN-DPC 0.9628 0.9522 0.9554 0.9738 1% 0.9554 0.9364 0.9384 0.9684 2%
SNN-DPC 0.8658 0.8033 0.8166 0.8986 40 0.9589 0.9415 0.9434 0.9710 30
S-DPC(G) 0.8826 0.8302 0.8418 0.9098 2% 0.9552 0.9353 0.9374 0.9677 2%
DBSCAN 0.448 0.0859 0.248 0.496 0.02/30 0.8895 0.8078 0.8186 0.8287 0.04/38
K-Means 0.9001 0.8723 0.8809 0.9344 15 0.9305 0.86 0.8655 0.9152 31
SC 0.8417 0.7100 0.8127 0.8100 15/300 0.9064 0.7012 0.8270 0.8174 31/2

R15 Eyes
NM-DPC 0.9938 0.9928 0.9932 0.9967 20/2/2% 0.6130 0.6698 0.8007 0.8487 20/2/2%
DPC 0.9938 0.9928 0.9932 0.9967 2% 0.4933 0.5797 0.7672 0.7647 3%
KNN-DPC 0.9938 0.9928 0.9932 0.9967 3% 0.4933 0.5797 0.7672 0.7647 3%
SNN-DPC 0.9938 0.9928 0.9932 0.9967 20 0.4905 0.5844 0.7674 0.7647 10
S-DPC(G) 0.9885 0.9857 0.9866 0.9933 2% 0.4926 0.5873 0.7689 0.7647 2%
DBSCAN 0.8755 0.7847 0.8007 0.9150 0.02/3 0.5992 0.6138 0.7979 0.7647 0.04/3
K-Means 0.9329 0.8816 0.8901 0.9217 15 0.5730 0.6434 0.7892 0.8235 3
SC 0.8550 0.5024 0.7307 0.7317 15/2 0.6711 0.6877 0.8262 0.8529 3/2
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neighbors (in the square cluster) of points in the ring 
cluster. This is also the reason why our algorithm 
merges two clusters on the right side of the compound 
dataset.

5.2 � Olivetti faces dataset

The Olivetti Faces dataset [37], which includes 40 face 
images of different people, each with 10 different face 
angles, is a widely used database in the machine learn-
ing field.

In this experiment, for NM-DPC, we not only test the 
performance according to 40 clusters but also the per-
formance of the best result situation (48 clusters). For 
DPC, KNN-DPC, SNN-DPC and S-DPC(G), we test the 
performance of selected 40 clusters and the performance 
of 48 clusters. For DBSCAN, K-Means and SC, we only 
show their best results of 40 clusters.

The results of all tested algorithms on the Olivetti 
faces dataset are shown in Table 4. As shown, the ARI, 
FMI and ACC metrics of NM-DPC are remarkably 
higher than other algorithms. In the best case where the 
NM-DPC selects 48 clusters, the AMI, ARI, FMI and 
ACC values of NM-DPC are 0.875, 0.8039, 0.7288 and 
0.7355, respectively, which are still higher than all the 
comparing algorithms.

5.3 � Run time comparison of algorithms

Table 5 shows the run time of our NM-DPC and some 
other comparison algorithms in seconds on ten tested 
synthetic datasets. We have analyzed the complex-
ity of NM-DPC in Sect.  4.5, knowing that NM-DPC 
has the approximate computational complexity of 
O(n2) + O(n ∗ K2) . From the experimental results, we get 
that the calculation time of NM-DPC is not necessarily 
longer than that of DPC, and for Spiral, Jain, Flame, 
Pathbased datasets, NM-DPC is even faster than DPC.

Table 4   The comparison of 8 
clustering algorithms on Olivetti 
faces dataset

The best values are highlighted

Algorithm AMI ARI FMI ACC​ Clusters PAR

NM-DPC 0.7982 0.6423 0.6593 0.775 40 7/1.47/0.8%
0.8039 0.7288  0.7355 0.875 48 7/1.1/0.8%

DPC 0.7657 0.6211 0.6356 0.74 40 0.4%
0.7889 0.6438 0.653 0.7925 48 0.4%

KNN-DPC 0.7287 0.5215 0.5498 0.725 40 1%
0.7744 0.6127 0.6223 0.805 48 1%

SNN-DPC 0.7650 0.6231 0.6402 0.7375 40 5
0.7919 0.6422 0.6524 0.7800 48 5

S-DPC(G) 0.7570 0.5758 0.6015 0.7050 40 0.8%
0.7564 0.5606 0.5797 0.7175 40 0.8%

DBSCAN 0.0714 0.0052 0.1289 0.255 40 0.3/2
K-Means 0.7208 0.5749 0.5888 0.715 40 40
SC  0.8221 0.4925 0.6512 0.6650 40 40/10

Table 5   Run time of NM-DPC 
and some comparative 
algorithms on some synthetic 
datasets (unit: second)

Dataset NM-DPC (s) DPC (s) KNN-DPC (s) DBSCAN (s) K-Means (s)

Pathbased (300 instances) 0.355 0.396 0.614 0.180 0.080
Flame (240 instances) 0.182 0.404 0.543 0.207 0.079
Spiral (312 instances) 0.289 0.456 0.783 0.109 0.069
Jain (373 instances) 0.427 0.439 0.749 0.216 0.070
Compound (399 instances) 0.521 0.513 0.651 0.172 0.088
Aggregation (788 instances) 0.571 0.533 0.685 0.178 0.078
D31 (3100 instances) 4.173 2.897 2.865 0.235 0.097
S3 (5000 instances) 9.895 5.249 8.063 0.460 0.111
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5.4 � The limitation of decision graph

One of NM-DPC’s advantages is that clusters can be 
naturally emerged without using the decision graph. 
Although the decision graph can help us visually dis-
cover cluster centers, it cannot always show clearly.

Herein, we present Fig. 13, the decision graphs of 
DPC, KNN-DPC, SNN-DPC [24], S-DPC(G) [21] on 
dataset Jain, where the red point indicates the misse-
lected cluster center, and the green point indicates the 
true cluster center, to show the limitation of the decision 
graph. We can easily observe that the points in the upper 
right corner of the decision graph are most likely to be 
selected as cluster centers, and the actual left-side cluster 
center will be missed, which results in poor clustering 
results on Jain.

The above examples verify that the decision graph 
cannot always show the correct cluster centers clearly, 
and may even mislead the selection of correct cluster 
centers.

5.5 � The evaluation of the sensitivity of NM‑DPC’s 
parameters

There are four parameters in NM-DPC: the merge thresh-
old coefficient � , the density parameter p, the K, and � 
of Normal-neighbor. Table 6 clearly presents NM-DPC’s 
input parameters and how to set them.

In NM-DPC, � is fixed to 0.8, thus only p, K, and 
� need to be set. As can be observed in the above 

experiments, p, K and � are easy to be set, except for 
parameter � which needs to be adjusted from 1 to 5, K is 
basically 20, and p is basically 2%.

To demonstrate the robustness of our parameters, 
Table 7 displays the AMI values of some synthetic data-
sets using different K or � or p, respectively.

As shown in the upper table of Table 7, when param-
eter � and p are appropriate, changing the size of � 
parameter K can hardly affect the clustering results, 
which benefits from the anti-jump threshold constant � 
in Normal-neighbor that essentially determines the upper 
limit of K. Despite K takes the highest value, N (the total 
number of data points in the dataset), Normal-neighbor 
will limit the K size to satisfy normal neighbors.

As shown in the bottom left table of Table 7, when 
parameter K and p are appropriate, changing the size of 
� hardly impacts the clustering results.

As shown in the bottom-right table of Table 7, when 
parameter K and � are appropriate, changing the size of 
p also hardly affects the clustering results.

The above experiments verify that the sensitivity of 
the three parameters of our algorithm is low.

6 � Conclusion

NM-DPC inherits DPC’s feature that each cluster center 
is regarded as a density peak. To avoid the jumping 
phenomenon, NM-DPC first generates sub-clusters by 
Generation Strategy, which can obtain the local struc-
ture information of the point to ensure that the points in 
the sub-cluster belong to the same cluster. To break the 
limitation of the decision graph, NM-DPC obtains the 
clusters by adaptively merging the sub-clusters accord-
ing to their Merging force that is not involved in DPC. 
NM-DPC is able to perform clustering completely auto-
matically. Compared to DPC, NM-DPC is more suitable 
to process multi-peak, multi-density cluster datasets of 
complex shapes.

Table 6   Input parameters of NM-DPC

Parameter Meaning Setting (default)

� ∈ [0, 1] The merge threshold � = 0.8

� ∈ {1, 2, 3, 4, 5} The anti-jump threshold � = 2

p The density parameter p = 2%

K The number of neighbors to 
search

K = 20

Fig. 13   The decision graphs of DPC, KNN-DPC, SNN-DPC and S-DPC(G) on the Jain dataset
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The experimental results on classical synthetic data-
sets and the Olivetti Faces dataset show that non-center 
points are assigned to the appropriate cluster by the gen-
eration strategy, and NM-DPC can find cluster centers 
accurately without referring the decision graph. Further-
more, NM-DPC is not sensitive to its parameters, which 
also makes it a robust clustering algorithm.

However, the clustering performance of NM-DPC in 
the multidimensional datasets does not show outstanding 
advantages, and the robustness of the density estimation 
method needs to be solved. For future work, we still need 
to find an efficient way to adaptively estimate density 
and improve clustering performance for a multidimen-
sional dataset.
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