©
. Perovskite-LLM: Knowledge-Enhanced Large
Language Models for Perovskite Solar Cell Research

Xiang Liul"*  Penglei Sun’*  Shuyan Chen!? Longhan Zhang'-?
Peijie Dong' Huajie You! Yongqi Zhang' Chang Yan'?
Xiaowen Chu'>"  Tong-yi Zhang' >
!The Hong Kong University of Science and Technology (Guangzhou)
2Guangzhou Municipal Key Laboratory of Materials Informatics

Abstract

The rapid advancement of perovskite solar cells (PSCs) has led to an exponential
growth in research publications, creating an urgent need for efficient knowledge
management and reasoning systems in this domain. We present a comprehensive
knowledge-enhanced system for PSCs that integrates three key components. First,
we develop Perovskite-KG, a domain-specific knowledge graph constructed from
1,517 research papers, containing 23,789 entities and 22,272 relationships. Second,
we create two complementary datasets: Perovskite-Chat, comprising 55,101 high-
quality question-answer pairs generated through a novel multi-agent framework,
and Perovskite-Reasoning, containing 2,217 carefully curated materials science
problems. Third, we introduce two specialized large language models: Perovskite-
Chat-LLM is used for domain-specific knowledge assistance, and Perovskite-
Reasoning-LLM is used for scientific reasoning tasks. Experimental results
demonstrate that our system significantly outperforms existing models in domain-
specific knowledge retrieval and scientific reasoning tasks, providing researchers
with effective tools for literature review, experimental design, and complex problem
solving in PSC research.

1 Introduction

Perovskite solar cells (PSCs) have emerged as one of the most promising next-generation photovoltaic
technologies, achieving remarkable progress with power conversion efficiencies (PCEs) exceeding
27.0% within just over a decade [[IH7]]. The rapid development of PSCs has generated an exponential
growth in research publications, making it increasingly challenging for researchers to efficiently
access and utilize the vast amount of knowledge in this field. This challenge is particularly acute given
the complex interplay between material composition, fabrication processes, and device structure that
characterizes PSC research.

Traditional approaches to scientific knowledge management, such as literature reviews and databases,
while valuable, are limited in their ability to capture the intricate relationships between different
aspects of PSC research [8, |9]. Furthermore, existing artificial intelligence systems in materials
science typically focus on specific prediction tasks or general scientific knowledge, lacking the
specialized capability to handle the unique characteristics of the research of perovskite solar cells
and more general materials science research [9H14]. This gap highlights the need for an integrated
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system that can both systematically organize domain knowledge and provide intelligent assistance to
researchers.

To address these challenges, we present a comprehensive knowledge-enhanced system specifically
designed for the perovskite solar cell domain, consisting of three key components. First, we de-
velop Perovskite-KG, a domain-specific knowledge graph constructed from 1,517 research articles,
containing 23,789 entities and 22,272 relationships between manufacturing processes, parameters,
and performance metrics. Second, we create a multi-agent framework for generating high-quality
instruction-tuning data, which not only reduces annotation costs but also ensures high reliability
and low hallucination through the synergy of multiple specialized agents and expert guidance. This
framework generates two complementary datasets: (1) Perovskite-Chat, an instruction-tuning dataset
comprising 55,101 high-quality question-answer pairs generated from 2,214 high-impact papers using
a novel multi-agent framework, and (2) Perovskite-Reasoning, a collection of 2,217 carefully curated
materials science problems designed to enhance scientific reasoning capabilities. Third, we introduce
two specialized large language models: Perovskite-Chat-LLLLM for domain-specific knowledge
assistance and Perovskite-Reasoning-LLLM for tackling complex materials science reasoning tasks.
Our work makes the following key contributions:

@ Construction of a comprehensive perovskite knowledge graph. We construct the first compre-
hensive knowledge graph for perovskite solar cells, organizing domain knowledge into a structured
format that captures the relationships between materials, processes, and device performance.

® Multi-agent framework for high-quality data generation. We propose an effective multi-agent
framework for generating high-quality instruction-tuning data, resulting in two specialized datasets:
a diverse domain-specific dataset covering seven research categories and a focused reasoning dataset
for enhancing scientific problem solving capabilities.

® Specialized LLMs for perovskite research. We develop and evaluate two specialized large
language models for perovskite solar cells that demonstrate superior performance compared to
baseline models: one optimized for domain-specific queries and another for scientific reasoning tasks.

O Extensive experimental validation. We provide extensive experimental results showing the
effectiveness of our integrated system in supporting various research tasks, from literature review to
experimental design and complex problem solving in materials science.

2 Related Work

2.1 LLM in Materials Science

The convergence of language modeling and computational materials science has unlocked transfor-
mative potential for rapid discovery. Recent breakthroughs in domain-specific architectures (e.g.
hierarchical attention mechanisms [[15]] and multimodal fusion networks [[16]) have addressed critical
challenges in crystal structure prediction [[17] and phase diagram analysis [18]. As evidenced by
the Materials Genome Initiative benchmarks [[19], three main research thrusts have emerged: (1)
structured information extraction from heterogeneous corpora, (2) knowledge graph embeddings
for composition-property relationships, and (3) neurosymbolic reasoning for synthesis pathway
optimization [[10-14]].

Building upon these foundations, knowledge-enhanced systems have achieved state-of-the-art perfor-
mance through two complementary paradigms: graph-based approaches employing heterogeneous
graph neural networks (HGNNs) now attain 89.7% accuracy on multi-hop material property queries
[20], while agent-based frameworks demonstrate 18.7% improvement in autonomous experimental
design through chain-of-thought prompting [21-24]].

The field’s maturation is further evidenced by systematic resource development: (i) The SciQAG
framework [25]] introduces a novel curriculum learning paradigm for generating 120K domain-specific
QA pairs, reducing expert annotation requirements by 78%; (ii) Standardized evaluation now spans
chemical synthesis (ChemLLMBench’s reaction yield prediction task [26]), biomedical applications
(MultiMedQA’s toxicity prediction challenge [27]]), and cross-domain reasoning (SciEval’s materials-
device co-design track [28]]).
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Figure 1: The pipeline of Perovskite-KG construction and Perovskite-LLM.

2.2 Knowledge Graph in Materials Science

Domain-specific knowledge graphs have evolved into structured semantic frameworks that sys-
tematically consolidate heterogeneous multi-source data through machine-readable representations,
allowing cross-domain knowledge integration to accelerate discovery pipelines [29-33]]. In materials
informatics, current implementations manifest two distinct paradigms: literature-derived systems
exemplified by MatKG [34] and DISCOMAT [35], which employ NLP and graph techniques to
extract material compositions from textual sources, while empirical architectures represented by
MatSciKB [36], Propnet [37]], MekG [38], and MOF-KG [39] focus on encoding experimental
provenance and computational models through graph-based representations of material lineages.
However, these approaches face the challenges that manual curation processes face with resource
burdens, while existing extraction methods exhibit limited granularity in resolving complex synthesis-
process-property relationships from unstructured text. To address these limitations, we propose
an LLM-driven framework specifically optimized for perovskite materials research that features a
hybrid architecture that synergizes domain ontologies with self-supervised relationship extraction,
augmented by automated quality control pipelines that enforce materials science constraints.

In this section, we collect 1,517 paper in perovskite domain to build Perovskite-KG and design
the automatic knowledge graph construction pipeline including three stages document filtering,
knowledge extracting and knowledge graph organization [37], as shown in the Appendix

2.3 Reasoning alignment

Recent advances in parameter-efficient alignment have witnessed multiple research teams pursue
different methodologies to align the performance of ol [40]]. Contemporary approaches bifurcate
along two technical axes: (1) reinforcement learning paradigms exemplified by DeepSeek-R1’s
adversarial preference optimization [41] and K1.5’s multi-objective reward shaping [42], versus
(2) supervised fine-tuning strategies employing distilled datasets at scale (> 10* examples) as
demonstrated in [43H45]. In particular, S1 [46] and LIMO [47] operationalize the Superficial
Alignment Hypothesis [48] through curriculum-based sparse fine-tuning, achieving comparable
reasoning capabilities with merely 1,000-2,000 carefully curated examples, a 92% reduction in
annotation costs relative to conventional SFT approaches. In a contrasting analysis, Sun et al.[49]]
find that performance on difficult reasoning tasks follows a logarithmic scaling law with respect to
the amount of SFT data, suggesting that increasing dataset size is more effective than careful curation.
Their work identifies a "ladder" of problem difficulties and concludes that current models uniformly
struggle with the highest tier of questions, which require unconventional problem-solving skills not
gained through SFT.

3 Perovskite-KG

e Document Filtering. Drawing upon expert knowledge, we have developed the schema for
perovskite materials. This schema, shown in the Appendix Table [5] integrates three ontologies
{0; | 0; € schema}: fabrication, parameters, and performance. The fabrication ontology encompasses
the procedures and conditions required to synthesize perovskite materials. The parameters ontology



defines the ingredients, structural components, and other compositional aspects of the device. The
performance ontology is concerned with the efficiency and functional characteristics of perovskite

devices. Each ontology o; is further divided into sub-ontologies sogj ), where o; = U;L:1 sogj ) and
n; represents the number of sub-ontologies within o;. Each sub-ontology sol(»j) provides a domain-

specific description, denoted as dl(»j ), along with a corresponding data type, denoted as tEj ), that is
relevant to its particular scope.

For each sub-ontology [sogj ), dl(j ), tgj )} (e.g., "Coating Parameter" - "Details about the coating
method used in the material deposition process" - "Float"), we create the prompts to query documents
D ={Dy | k=1,...,m} using a large language model. These prompts facilitate the extraction of

relevant information for each sub-ontology. The output Déi’{?ed is defined as:

Dl ={Dy e D |50 C Dy}, W

filtere:
where Df(ﬁt’ejr)ed represents the set of filtered documents containing pertinent details for sub-ontology
soz(:” across the collection. This approach ensures a systematic and efficient retrieval of targeted
information for each sub-ontology.

¢ Knowledge Extracting. We employ a prompt function, denoted as fyrompt(-), to transform the
sub-ontology [sol(] ), dgj ), tgj )] into a document prompt, represented as fpmmpt(sogj ), dz(-J ), tgj )). To
extract the potential domain knowledge K, we utilize a pre-trained large language model (LLM),
expressed as LLM(+; #), under a zero-shot setting where the parameters 6 remain fixed. The whole

pipeline can be formulated as below:

K= sea(;rc)h LLM(fpmmp[(sol(-j),dl(-j),tgj));é?), 2)
ﬁllér]ed

where the search function search(-) may involve an argmax operation to identify the highest-scoring

output or a sampling approach to generate outputs according to the probability distribution specified

by the adopted LLM(+; 6).

After extracting knowledge, we conduct quality control procedures to ensure accuracy and reliability.
These procedures include entity disambiguation and relationship deduplication. Entity disambiguation
in a knowledge graph aims to resolve ambiguity by identifying the unique entity that corresponds to
an ambiguous mention, denoted as epention, Within a subgraph. The objective is to determine a distinct
entity e* that accurately represents epenion- Relationship deduplication involves identifying and
merging redundant relations in the knowledge graph. For instance, given two relations r; = (e, 7, e2)
and r; = (e}, 77, e5), if they convey the same semantic meaning—that is, if (eq, e2) and (e}, e5) refer
to identical entities and the relations r and r’ are equivalent.

o Knowledge Graph Organization. We construct the Perovskite Knowledge Graph (Perovskite-KG)
using a graph database. The Perovskite-KG consists of 23, 789 entities and 22, 272 relationships. By
incorporating citation relationships between papers, we enable our LLM to provide references for its
responses, enhancing credibility and reducing hallucination.

4 Instruction Tuning Dataset Generation

In this section, we collect 2, 214 the top level publications papers in the perovskite domain and design
the instruction tuning dataset including question answering and multiple choice questions, containing
55,101 instances around 4.4 million tokens, named Perovskite-Chat. Our experiments show that our
perovskite instruction tuning dataset can effectively improve the performance of LLMs on perovskite
related tasks.

Figure [I] illustrates this multi-agent framework for the generation of instruction tuning dataset.
The process begins with expert guidance and academic literature from various sources (including
Science, Nature, Elsevier, Springer, arXiv, and others) as input. Expert guidance is provided by the
domain expert focused on 7 research categories, 21 research questions. Table[6] further expands this
classification by presenting 21 specific research questions (Q1-Q21) organized within these seven
categories; more details can be found in Appendix [D.I] These inputs feed into a multi-agent system:
(1) an Information Extraction Agent that processes the raw content, (2) a Quality Validation Agent
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Figure 2: The distribution of question categories in the instruction tuning dataset.

that ensures data accuracy and relevance, and (3) a Document Summarization Agent that condenses
and structures the information. This framework ensures systematic, high-quality data processing
through multiple validation and refinement stages.

Let D = {dy,...,d,} represent the collection of academic literature from various sources, and
E = {cy, ..., c7 } denote the expert guidance categories with the corresponding research questions
Q = {q1,-..,q21}. The multi-agent framework processes these inputs through three specialized
agents:

Information Extraction:

Aexlract(di) = {2171, ey xk} 3)
Quality Validation:
1, if valid
Avatdare (17) = {0 otherwise )
Document Summarization:
Asummarize(Xvalid) =Y (5)

The final instruction tuning dataset D is constructed as:

D={(¢i,y:i) | @ € Q,
Yi = Asummaxize (Avalidale (Aextracl (dz ) ) ) } (6)

Next, we introduce Perovskite-Reasoning, a collection of 2,217 high-quality questions from materials
science textbooks, designed to enhance reasoning capabilities in the perovskite and materials science
domains. The questions were sourced from hundreds of widely used materials science and engineering
textbooks, with a focus on perovskite solar cells and fundamental materials science concepts. Our
rigorous selection process applied three key criteria: clarity of problem statements, completeness
of solution, and alignment with core materials science principles. Materials science professors
conducted expert assessments to categorize questions by difficulty level, validated through student
performance data and baseline model testing. To develop comprehensive solution paths, we employed
advanced language models like DeepSeek-R1 [41] and O1 [40] in a multi-step reasoning approach.
This methodology involved decomposing complex problems into logical steps, applying key physical
and chemical principles, and implementing systematic solution strategies with result validation. The
resulting dataset features detailed reasoning chains that demonstrate step-by-step problem-solving
processes, making it valuable for training models in scientific reasoning and materials science
problem-solving.

Training Dataset Figure[2](a) presents the distribution of the question categories in the Perovskite-
Chat instruction tuning data set. Device Structure dominates with 43.9% of all questions, followed
by Performance Enhancement at 20.4%. Device & Recom. comprises 13.1%, while Metrics accounts
for 8.2%. The remaining categories include Stability (9.8%), Materials (2.9%), and Interface (1.7%).



Figure[2](b) displays a wordcloud visualization of the dataset’s most frequent terms, with "perovskite
solar" and "solar cell" appearing as predominant phrases, reflecting the dataset’s core focus. Other
frequently occurring terms such as "device structure," "configuration," and "stability" underscore
the key technical aspects addressed. This distribution demonstrates the dataset’s strong emphasis on
device structural aspects, with performance-related queries forming the second largest category.

Evaluation Dataset For better evaluation, we design the evaluation dataset including multiple
choice questions and question answering in the perovskite domain. The evaluation dataset also extract
from the top level publications in perovskite domain with our multi-agent framework and extral
expert double check. The evaluation dataset contains 1,103 question answering named Perovskite
QA and 1,103 multiple choice questions named Perovskite MCQ.

For question answering, we set the Rouge-L. score and the LLM-as-a-Judge [50]] score as the
evaluation metric. In our experiments, we find that both metrics can effectively measure the quality
of question answering and consistency with each other.

For multiple choice questions, we set the Table 1: Performance of Perovskite-Chat-LLM on
accuracy as the evaluation metric. Using Perovskite QA

LLaMA-3.1-8B-Instruct [51]] as the base- Perovskite QA

line model, the difficulty level of each PPL| Rouge-L T LLM-Judge t
question is determined by its zero shot  GPT-3.5-Turbo - 11.24 1.24

Model ‘

performance. Specifically, if LLaMA-3.1- ~ GPT-40-Mini - 11.90 1.34

GPT-40 - 11.36 1.41
8B-Instruct can correctly answer a ques-

; ; _ ; ; LLaMA-3.1-8B 6.77 13.18 1.28
tion in a zero s.h(.)t setting (Wlthou.t any e 3 0B 498 1738 180
task-specific training or prompt engineer-  oyen 2578 623 1122 139
ing), we classify it as an "easy" question.  Qwen-2.5-72B 5.12 10.17 1.31
Conversely, questions that LLaMA-3.1-8B-  Perovskite-Chat-LLM  2.97 41.25 2.97

+Perovskite-KG 2.80 43.10 3.15

Instruct fails to answer correctly are catego-
rized as "Hard". This classification method
resulted in 823 easy questions and 280 hard questions in our evaluation dataset, providing a balanced
assessment of model capabilities across different difficulty levels.

To evaluate the performance of Perovskite-Reasoning, we incorporated Minerva [52] and GPQA
Diamond [53]] as a benchmark. These contain undergraduate and PhD level science questions from
biology, chemistry, and physics.

5 Perovskite-LLM

5.1 Experiment Design Table 2: Performance of Perovskite-Chat-LLM

on Perovskite MCQ. The LLaMA-3.1-8B baseline

In this section, we conduct the instruction .
model’s performance defines Easy/Hard question

tuning experiments on the Perovskite-Chat

and Perovskite-Reasoning dataset. We select categories.

the LLaMA-3.1-8B-Instruct [51] and Qwen-  njodel Perovskite MCQ
2.5-7B-Instruct [54] as the baseline model, Easy Hard AllT
and Perovskite-Chat-LLLM and Perovskite-  GPT-3.5-Turbo 86.63 49.29 77.15
Reasoning-LLLM are fine-tuned version of = GPT-40-Mini 89.79 61.79 82.68
LLaMA-3.1-8B-Instruct and Qwen-2.5-7B-  GPT-4o 91.37  65.00 84.68
Instruct with Perovskite-Chat and Perovskite- [ 1aMA-3.1-8B 100.00 0.00 7421
Reasoning dataset. LLaMA-3.1-70B 93.44 6643 86.58
For the training process, we used the full pa- 832%2;21313 g%g% gigg gg??
rameter fine-tuning method to fine-tune the Perovskite-Chat-LLM | 95.50 62.86 87.22
Perovskite-LLM. The experiment is carried out +Perovskite-KG 9732 65.10 89.21

on the A800 GPU server, with flash atten-
tion [S5] and mixed precision training for efficient training. For more details on the training process,
please refer to Appendix [E]

For the evaluation process, we use the perplexity (PPL), Rouge-L score, LLM-Judge, and Human-
Judge score to evaluate the performance on the Perovskite QA benchmark, the accuracy to evaluate
the performance on the Perovskite MCQ benchmark, and the pass@1 rate on Minerva and GPQA



benchmarks to evaluate the performance on the Perovskite-Reasoning-LLM. All experiments are
conducted with zero-shot settings and three times to get the average results.

5.2 Results and analysis

Perovskite-Chat-LLM  Table|[T| presents the evaluation results of various models on the Perovskite
QA dataset. The baseline models include GPT-3.5-Turbo, GPT-40-Mini, GPT-40, LLaMA-3.1-8B.
Among these, Perovskite-Chat-LLM demonstrates superior performance across all metrics, achieving
a perplexity of 2.97, a Rouge-L score of 41.25, and an LLM-Judge score of 2.97. This represents a
significant improvement over the baseline LLaMA-3.1-8B model. The GPT family of models, while
competitive in terms of LLM-Judge scores, showed lower performance in Rouge-L scores compared
to Perovskite-Chat-LLM, with GPT-40 achieving 11.36 for Rouge-L and 1.41 for LLM-Judge. With
the case study in Figure[6] we can see that Perovskite-Chat-LLM can generate more accurate and
consistent answers compared to other models, and ChatGPT only can offer a general and nonspecific
answer which leads to low performance on the Rouge-L and LLM-Judge metrics.

To further validate the effectiveness and credibility of our model, we incorporated human expert
evaluation into our assessment methodology. Table [3] presents the results of this human expert
evaluation alongside the automatic metrics. Notably, Perovskite-Chat-LLM achieved the highest
scores in both LLM-Judge (2.97) and Human Expert (3.12) assessments, outperforming baseline
models such as GPT-40 and LLaMA-3.1-8B. This consistency across both human and LLM-Judge
evaluations demonstrates the robustness and reliability of our model, as well as its ability to generate
responses that are not only accurate but also align with expert expectations in the field.

Table [2] presents the evaluation results of Table 3: Comparison of automatic and human expert
various models on the Perovskite MCQ evaluation scores on the Perovskite QA dataset.

dataset, categorized into Easy, Hard, and ~ Model | LLM-Judge * Human Expert 1
All difficulty levels. Among these, GPT 40  “Gprao 141 173
achieves the highest overall score of 84.68,  LLaMA-3.1-8B 1.28 1.17
with scores of 91.37 for Easy and 65.00  Perovskite-Chat-LLM 2.97 3.12

for Hard questions. Perovskite-Chat-LLM,
highlighted in red, shows strong performance with a score of 62.86 on Hard questions, the highest in
this category, and an overall score of §7.22.

Perovskite-Reasoning-LLM Ta- Table 4: We evaluate the performance of Perovskite-
ble [] presents the evaluation results of Reasoning-LLM on the GPQA and Minerva bench-
Perovskite-Reasoning-LLM  compared marks. * indicates the results are from our evaluation.
against various baseline models on # ex = number of examples used for fine-tuning. #
the GPQA and Minerva benchmarks. Perovskite-R-LLM : Perovskite-Reasoning-LLM

In the 7B-scale model category, our  Model | #ex GPQA{1 Minervat | Avg?

Perovskite-Reasoning-LLM achieves API Models

state-of-the-art performance with remark- — B 7730 ) N

able data efficiency over 7B models,  ol-preview - 73.30 47.10 60.20

requiring only 2K training examples  ol-mini - 60.00 - -

compared to 800K for R1-Qwen2.5-7B _Deepseek-Rl - 71.50

and 114K for OpenThinker-7B. Our 32B

model achieves 43.95 on GPQA and  Qwen25-32B-Instruct | - 48.00 41.20 44.60

44.4 n Minerva. mpar: 2B QwQ-32B-preview - 65.10 39.00 52.05
d910 hil erva Ggo Apa ec} to 3 LIMO-32B* 08K  66.70 4490 | 55.80

models, while our GPQA performance g 35p- 1K 59.60 4779 | 53.69

shows room for improvement (suggesting B

GPQA’s sensitivity to model size), our R1-OweZ 575 S0k 2449 5595 T
. . .. . -Qwens.o- o . .

Minerva score §44.49) is competitive with o "l cps Q00K 19.19 30.51 24’85

larger models like LIMO-32B (44.90) and ~ OpenThinker-7B* 114K 42.90 41.10 42.00

approaches S1-32B (47.79). This shows  Perovskite-R-LLM 2K 43.95 44.49 44.22

that our efficient training approach can
achieve strong performance on STEM reasoning tasks even with a smaller model architecture.



5.3 Integrate Perovskite-KG with Perovskite-Chat-LLM

To ensure the Perovskit-Chat-LLM possesses current and specialized knowledge, we employ retrieval-
augmented generation (RAG) to dynamically integrate information from our Perovskite-KG. A
key advantage of this approach is the continuous and automatic updating of the LLM’s knowledge
base, which is directly facilitated by the automated construction methodology of the Perovskite-KG
itself. The technical implementation of this integration leverages the LightRAG framework [56].
The performance improvements resulting from the integration of Perovskite-KG with Perovskite-
Chat-LLM ("+Perovskite-KG") are presented in Table [T|and Table [2] When enhanced by the
Perovskite-KG, the Perovskite-Chat-LLM demonstrates improved scores in both Perovskite QA
(2.97 — 3.15) and Perovskite MCQ (87.22 — 89.21). Representative case studies illustrating these
benefits are detailed in Figure [3|and Figure [I0} The Perovskit-Chat-LLM, when augmented with
this knowledge integration, demonstrates an enhanced capability to access up-to-date information
and deliver fine-grained, domain-specific responses compared to its baseline version lacking such
integration. For instance, when presented with a query such as, “Can you tell me what is CuO? And
give me 5 usage in perovskite?”, the enhanced model provides the requested details, with each stated
usage accompanied by a citation from the underlying knowledge source.

5.4 Case Study

To illustrate the practical advantages of Perovskite-LLM over existing models, Figure 6| presents a
comparative analysis of the responses of Perovskite-Chat-LLM and ChatGPT to a question about the
fabrication of high-efficiency perovskite solar cells. The responses demonstrate a clear distinction
in the depth and specificity of knowledge provided by each model. For instance, Perovskite-Chat-
LLM specifies precise conditions for the HTL preparation (150°C for 15 minutes) and details a
two-step spin-coating procedure (1,000 rpm for 10 seconds, followed by 6,000 rpm for 30 seconds)
with specific process modifications like anisole addition. This level of detail reflects Perovskite-
Chat-LLM’s specialized training on domain-specific literature and its ability to provide practical,
implementation-ready guidance for researchers in the field. For more details, please refer to Appendix

)2
6 Conclusion

In this work, we present a comprehensive
knowledge-enhanced system for perovskite so-

lar cell research, integrating three key compo- 8:: sytcl,?,n';e” me what is CuO? And give
nents: (1) Perovskite-KG, a domain-specific me 5 usage in perovskite.

knowledge graph containing 23,789 entities

and 22,272 relationships; (2) multi-agent sys- Perovskite-Chat-LLM:

tem for generating two complementary datasets,

: . : 1. Hole Ti t Material: CuO act
Perovskite-Chat and Perovskite-Reasoning, de- ole Transport Matenia: U acts

as an effective hole transport material

signed for domain-specific knowledge assis- (HTM) due to its suitable work function
tance and scientific reasoning respectively; and and high hole mobility. It is often used
(3) two specialized large language models in conjunction with other materials, such
that demonstrate superior performance in both i IOk, (29 GHIEIED L3 ST

. . of PSCs by facilitating efficient charge
knowledge retrieval and reasoning tasks. Our extraction [1].
experimental results show significant improve-
ments over existing models, with Perovskite- References: _
Chat-LLM achieving state-of-the-art perfor- [1] Inorganic Materials as Hole Selec-

tive Contacts and Intermediate Tunnel

mance on doma1n-spec1ﬁc tasks and, PerOVSklte_ Junction Layer for Monolithic Perovskite-
Reasoning-LLM showing competitive perfor- CIGSe Tandem Solar Cells, Wang, Yaje:

mance on scientific reasoning benchmarks de- Wenisch, Robert; Schlatman
spite using substantially fewer training exam-

ples. The system provides researchers with ef- ) i
fective tools to review the literature, design ex- Figure 3: A case study of Perovskite-Chat-LLM’s

periments, and solve complex problems in PSC  ability to provide detailed and accurate information
research. Our work demonstrates the potential ~With references.

of LLMs to accelerate innovation and discovery

in materials science by enabling more efficient knowledge access and reasoning capabilities.




Limitations

Although our current system demonstrates encouraging outcomes, it is not without several constraints
that necessitate further exploration: Knowledge Coverage. Our knowledge graph encompasses a
significant part of the PSC literature, yet it might not fully incorporate new research trends and
innovative experimental methods. Future research ought to concentrate on devising methods for
the automatic expansion and updating of the knowledge base to ensure continued relevance. Such
enhancements will render the system more resilient, current, and easily accessible to researchers at
large.
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A Additional Related Work

A.1 Multi-agent systems

The landscape of Al system architectures encompasses two distinct paradigms: multi-agent systems
and autonomous agents [57H60]. While autonomous agents rely on independent decision-making
capabilities, multi-agent systems excel through structured collaboration between specialized compo-
nents. The latter approach offers practical advantages by building upon established expertise rather
than requiring complex behavioral modeling.

Research in multi-agent frameworks has evolved along two primary trajectories. The first focuses on
domain-agnostic systems that leverage collective intelligence for general problem-solving [61H63].
The second pathway explores domain-specific applications, with notable implementations in:

* Code generation and debugging [66-68]]
* Data analytics [69H72]

* Mathematical reasoning [73}[74]

* Knowledge retrieval [75,[76]

Despite significant progress in identifying effective agent configurations for specific use cases, the
field still faces the challenge of developing systematic approaches for new domains. This highlights
the importance of research into automated methods for framework design and optimization.

B Schema in Perovskite-KG

Table [5 presents a comprehensive schema for the Perovskite-KG, organized into three main ontologi-
cal categories: Fabrication, Parameters, and Performance. The Fabrication ontology encompasses
process-related attributes such as coating parameters, methods, and annealing conditions. The Param-
eters ontology covers structural and compositional aspects including solvents, device architecture,
and additives. The Performance ontology captures various stability metrics and efficiency parameters
like thermal stability, light stability, and power conversion efficiency. Each category is further detailed
with specific data types and examples to ensure precise knowledge representation. This structured
schema enables systematic organization and retrieval of perovskite solar cell information while
maintaining data consistency across the knowledge graph.

Ontology \ Sub-Category Data Type Description Example
’C(?aung Float Th§ specnﬁ(fs of‘the coa‘t.lr}g melhod‘ ‘used 5000 rpm, 1001
- Parameter in the material deposition process.
Fabrication -
Method String . l?lfferen} f?br{cfi‘lon tec.hmquesj. . spin coating
involving variations in material deposition.
Annealing Refers to the heating conditions applied to the perovskite, o .
‘ Parameter Float which are essential for crystallization and stability. 120°C, 10min
Solvent String the hq}ud medium use(_i to dlssolve. precursors, Dimethylformamide (DMF)
helping to form a uniform perovskite layer
Parameters
Device Patterned The architecture of the device ITO/S AM/perovskite
Structure String (e.g., layer order, material interfaces) /C60/BCP/Cu
\ Additive String Any additional materials or chemicals potassium ions
% of initiz sienc 9
Thermal . The material’s ability to >98% of initial efficiency ‘.)f >24%
™ String B s L after 1,500 hours of continuous
Stability withstand heat without degrading . h X
maximum power point tracking
. L ST >92% of initial performance for 1,200 hours
Performance St];i)élllqltt String t(?o:z];e;lsc[;‘;;th;lrﬁ?f:ﬂl l}’:t under the damp-heat test
abriity prolonged expos ght. (85°C and 85% relative humidity)
Moisture The material’s resilience against Initial PCE of control, target-1 and target-2
Stabilit String hum;dit Or‘ wa}er ex osire i devices is 21.73%, 24.42% and 24.11%, respectively.
Y Y p . Degraded to 78% of initial PCE after 1,500 hours at 55+5°C
‘ Flli/;::;lor Float A measure of the device’s maximum power output. 0.88
Open-Circuit Float The maximum voltage the device can 12V
Voltage Value oa produce under open-circuit conditions. :
Short-Circuit Float The current density when the circuit is closed. 25 mA/cm?
Current Value
‘ Power Conversion Float The efficiency with which the device 25%

Efficiency Value converts sunlight into electricity.

Table 5: Schema in Perovskite-KG.
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Category | Rationale

Device Structure Fundamental aspects focusing on high-efficiency (>25% PCE) device architec-
ture and fabrication processes (Q1-Q3)

Perf. Enhancement Analysis of problem-solving approaches and strategic choices in high-
performance devices (Q4-QS5)

Metrics Key performance indicators (Voc, FF, Jsc) and their optimization methods
(Q6-Q9)

Stability Critical stability aspects addressing main degradation pathways: moisture,
thermal, and light stability (Q10-Q12)

Defect & Recom. Fundamental mechanisms affecting device efficiency through defect passivation

and recombination control (Q13-Q14)

Interface

Interface engineering and charge transport optimization (Q15-Q17)

Materials Comprehensive analysis of functional materials and their characteristics in
different device components (Q18-Q21)

Table 6: Classification of Research Questions in Perovskite Solar Cell Studies

C Prompts

The system employs four specialized agents, each with carefully designed prompts to perform specific
tasks in the perovskite solar cell knowledge processing pipeline:

1. Information Extraction Agent (Table [7): Processes research papers using a structured set
of 20 predefined questions across seven key categories, including device structure, performance
enhancement, stability, and materials. The agent returns answers in a standardized JSON format,
marking unavailable information as "Not mentioned" to maintain data quality.

2. Verification Agent (Table[8): Validates extracted information by comparing it with source texts,
focusing on maintaining accuracy of technical details like numerical values and material names. The
agent provides both corrected content and justification for any modifications made.

3. Organization Agent (Table [J): Synthesizes verified information from multiple sources into
coherent, topic-focused responses. This agent ensures that complex technical information is presented
in a logical and accessible manner.

4. LLM-Judge (Table[I0): Evaluates response quality across four key criteria: accuracy, complete-
ness, relevance, and clarity. Using a 1-5 scoring system, this agent provides detailed assessments and
explanations for each criterion, along with an overall evaluation summary.

For LLM using in Perovskite-KG and Perovskite-Chat, we mainly using GPT-40 and GPT-40-Mini
for extraction and verification.

D Instruction Tuning Dataset

D.1 Dataset Statistics

The research questions in perovskite solar cell studies are systematically categorized in Tables [6]and
[TT} Table [6] provides a high-level overview of seven major research categories, including Device
Structure and Fabrication, Performance Enhancement Strategies, Performance Metrics Improvement,
Stability Improvements, Defect and Recombination Management, Interface and Extraction Layer
Enhancements, and Materials Used in Perovskite Solar Cells. Each category is accompanied by a
detailed rationale explaining its scope and relevance. Table[TT]further expands this classification
by presenting 21 specific research questions (Q1-Q21) organized within these seven categories.
The questions cover a wide range of technical aspects, from device architecture optimization and
performance enhancement strategies to material characteristics and stability improvements. Each
research question is paired with its corresponding technical focus, providing a comprehensive
framework for understanding the key areas of investigation in high-performance perovskite solar cell
research.
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Figure 4: Distribution of prompt and response lengths across different categories in our dataset.
The y-axis represents density (e-3), and the x-axis shows the word count in logarithmic scale. Each
category’s distribution is independently normalized.

Table [T2] shows the distribution of research categories in perovskite solar cells. Device Structure
and Fabrication dominates the field, accounting for 24,198 entries (43.8% of total). Performance
Enhancement Strategies represents the second largest category with 11,233 entries (20.3%), followed
by Defect and Recombination Management with 7,209 entries (13.0%). Stability Improvements, a
crucial aspect of perovskite solar cell development, comprises 5,399 entries (9.8%), while Perfor-
mance Metrics Improvement accounts for 4,527 entries (8.2%). Materials Used in Perovskite Solar
Cells and Interface and Extraction Layer Enhancements represent smaller but significant portions of
the research focus, with 1,586 (2.9%) and 952 (1.7%) entries respectively.

Figure [] shows the length distribution patterns across categories in our perovskite instruction tuning
dataset. All categories display similar characteristics, with sequence lengths predominantly ranging
from 100 to 500 tokens and a median length of 400 tokens. This analysis informs our model
design decisions, particularly regarding sequence length limitations and tokenization strategies. The
distributions are independently normalized for each category, enabling direct pattern comparison
despite varying sample sizes.

Figure [3] illustrates the length distribution patterns across different categories in our perovskite
instruction tuning dataset.

E Instruction Tuning

Table [[3] presents the training hyperparameters for Perovskite-LLM.

F More Case Study

For this section, we provide more cases for our model.

G License

GPQA [53]] and Minerva [52]] are under MIT license.
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Figure 5: Distribution of prompt and response lengths across different categories in our dataset (top:
prompt, bottom: response).
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Question:
How to fabricate the perovskite solar cells those can reach PCE over 25%7?

Perovskite-Chat-LLM:

For the hole transport layer (HTL), materials like PEDOT:PSS are commonly
used. These materials are spin-coated onto the substrate and annealed at a tem-
perature of 150°C for 15 minutes. The perovskite precursor solution is then pre-
pared using a mixed cation and halide composition, and spin-coated onto the
HTL. The spin-coating process involves a two-step procedure: first at 1,000 rpm
for 10 seconds, followed by 6,000 rpm for 30 seconds, with anisole added during
the second step to facilitate crystallization.

ChatGPT:

Perovskite Material Quality: The quality of the perovskite material is crucial for
achieving high efficiency. Use high-quality perovskite precursors and optimize the
fabrication process to ensure uniform and defect-free perovskite films.

Figure 6: Comparison of responses between Perovskite-LLM and ChatGPT: Perovskite-LLM provides
detailed operational steps with specific parameters, while ChatGPT only offers general conceptual
guidance.
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Table 7: Prompts for Information Extraction Agent.

Prompts for Information Extraction Agent:

Answer the following questions based on the provided text.
{
"Device Structure and Fabrication": [
"Q1: Summarize the device structures or configurations of the perovskite solar cells those can reach
PCE over 25%.",
"Q2: How to prepare the perovskite precursor solutions those can reach PCE over 25%7",
"Q3: How to fabricate the perovskite solar cells those can reach PCE over 25%?"
1,
"Performance Enhancement Strategies": [
"Q4: What are problems solved in literatures that report perovskite solar cells those can reach PCE over
25%?",
"Q5: What are the reasons to choose the strategies that can enhance performance of the perovskite solar
cells in literatures that report perovskite solar cells those can reach PCE over 25%?"
1
"Performance Metrics Improvement": [
"Q6: How to improve the VOC of perovskite solar cells?",
"Q7: How to improve the FF of perovskite solar cells?",
"Q8: How to improve the Jsc of perovskite solar cells?"
1
"Stability Improvements": [
"Q9: How to improve the moisture stability of perovskite solar cells?",
"Q10: How to improve the thermal stability of perovskite solar cells?",
"Q11: How to improve the illumination or light stability of perovskite solar cells?"
1,
"Defect and Recombination Management": [
"Q12: How to passivate or reduce defects/traps of perovskite solar cells?",
"Q13: How to reduce recombination of perovskite solar cells?"
1
"Interface and Extraction Layer Enhancements": [
"Q14: How to improve the wettability of the buried interface in perovskite solar cells?",
"Q15: How to improve the hole extraction ability of HTL in perovskite solar cells?",
"Q16: How to improve the electron extraction ability of ETL in perovskite solar cells?"
1,
"Materials Used in Perovskite Solar Cells": [
"Q17: What are the HTL materials used in perovskite solar cells and the common features of them?",
"Q18: What are the ETL materials used in perovskite solar cells and their features?",
"Q19: What are the hole blocking layer materials in perovskite solar cells and their features?",
"Q20: What are the passivation materials used in perovskite solar cells and their common features?"
]
}
Below is the text: {paper_text}
Response: Return a JSON object with the following structure, if the text does not contain the answer, return
"Not mentioned":

{
"questions": [
{
"question": "Q1",
"answer": "Answer to Question 1"
|
{
"question": "Q2",
"answer": "Not mentioned"
1
]
}
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Table 8: Prompts for Verification Agent.

Prompts for Verification Agent:

You need to verify the accuracy of the extracted information from a perovskite paper. Compare the extracted
data with the original text to ensure consistency and correctness. Highlight any discrepancies and fix them.
Moreover, maintain the original meaning of the text and the original information, such as numbers and
material names.

Input:
Paragraph {Section_name}:{Text_of_the_section}
Extracted: {Extracted_information}
Output: Verified information with notes on any discrepancies or confirmation of accuracy.
Please return a JSON object with the following structure only return one item:
{
"verified_info": {
"fixed_content": "The fixed paragraph",
"reason": "The reason for the fix"

Table 9: Prompts for Organization Agent.

Prompts for Organization Agent:

Your task is to organize the verified information from a perovskite paper related to the question:
{question}.

Below is the information split into paragraphs that answers the question:

{answers}

Output: The organized and continuous answer to the question.

Return a JSON object with the following structure:

{

"answer": "The organized and continuous answer to the question."

}
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Table 10: Prompts for LLM-Judge.

Prompts for LLM-Judge:

You are an expert evaluator. Your task is to compare a model’s response to the ground truth answer and
provide a detailed evaluation.

Model’s response:
{model_response}

Ground truth:
{ground_truth}

Please evaluate the model’s response based on the following criteria:

1. Accuracy: How factually correct is the model’s response compared to the ground truth?

2. Completeness: Does the model’s response cover all the key points mentioned in the ground truth?
3. Relevance: How well does the model’s response address the implied question or task?

4. Clarity: Is the model’s response clear and easy to understand?

For each criterion, provide a score from 1 to 5, where 1 is the lowest and 5 is the highest. Also, provide a
brief explanation for each score.

Finally, give an overall score from 1 to 5 and a summary of your evaluation.

Format your response as a JSON object with the following structure:

{
"accuracy": { "score": 0, "explanation": "" },
"completeness": { "score": 0, "explanation": "" },
"relevance": { "score": 0, "explanation": "" },
"clarity": { "score": 0, "explanation": "" },
"overall": { "score": 0, "summary": "" }

}
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1D Research Question

Technical Focus

L. Device Structure and Fabrication

Device architecture optimization
Solution chemistry and processing

Manufacturing processes

Q1 Summarize device structures for PCE >25%

Q2 Perovskite precursor solution preparation for
PCE >25%

Q3 Fabrication methods for PCE >25%

I1. Performance Enhancement Strategies

Q4 Problems solved in high-efficiency (>25%) de-
vices

Q5 Rationale for performance enhancement strate-
gies

Critical challenges and solutions

Strategic approach justification

I11. Performance Metrics Improvement

Q6 Voc improvement methods
Q7 FF improvement methods
Q8 Jsc improvement methods
Q9 PLQY-1V( relationship

Open-circuit voltage optimization
Fill factor enhancement
Short-circuit current density opti-
mization

Photoluminescence quantum yield
correlation

1V, Stability Improvements

Q10 Moisture stability enhancement
Ql1 Thermal stability enhancement
Q12 Light stability enhancement

Water resistance strategies
Temperature tolerance methods
Photo-stability improvement

V. Defect and Recombination Management
QI3 Defect/trap passivation methods
Ql4 Recombination reduction approaches

Defect control strategies
Charge recombination suppression

VI. Interface and Extraction Layer Enhancements

Q15 Buried interface wettability improvement
Q16 HTL hole extraction enhancement
Q17 ETL electron extraction enhancement

Interface engineering
Hole transport optimization
Electron transport optimization

VII. Materials Used in Perovskite Solar Cells

Q18 HTL materials and features Hole transport materials
Q19 ETL materials and features Electron transport materials
Q20 Hole blocking layer materials Blocking layer characteristics
Q21 Passivation materials and features Surface passivation materials
Table 11: Systematic Classification of Research Questions in High-Performance Perovskite Solar
Cell Studies
Abbreviated Name Full Name Count
Perf. Enhancement ~ Performance Enhancement Strategies 11,233
Stability Stability Improvements 5,399
Defect & Recom. Defect and Recombination Management 7,209
Device Structure Device Structure and Fabrication 24,198
Metrics Performance Metrics Improvement 4,527
Materials Materials Used in Perovskite Solar Cells 1,586
Interface Interface and Extraction Layer Enhancements 952

Table 12: Correspondence between abbreviated and full names of research categories in perovskite

solar cells
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Parameter | Chat-LLM  Reasoning-LLM

Learning Rate le-6 Se-6
Batch Size 8 32
Number of Epochs 3 15
Optimizer AdamW AdamW
Learning Rate Scheduler Cosine Cosine
Warmup Steps 20 20

Table 13: Training Hyperparameters for Perovskite-Chat-LLM and Perovskite-Reasoning-LLM

Question:
How to fabricate the perovskite solar cells those can reach PCE over 25%7?

Perovskite-Chat-LLM:

To fabricate perovskite solar cells that can achieve a power conversion efficiency
(PCE) over 25%, several key steps and considerations are essential. First, the fab-
rication process should start with a clean and dry substrate, typically glass or flex-
ible substrates, which are cleaned thoroughly using a combination of detergents
and solvents. The substrates are then treated with UV ozone to enhance their
wetting properties.

For the hole transport layer (HTL), materials like PEDOT:PSS are commonly
used. These materials are spin-coated onto the substrate and annealed at a tem-
perature of 150°C for 15 minutes. The perovskite precursor solution is then pre-
pared, typically using a mixed cation and halide composition, and spin-coated
onto the HTL. The spin-coating process involves a two-step procedure: first at
1,000 rpm for 10 seconds, followed by 6,000 rpm for 30 seconds, with anisole
added during the second step to facilitate crystallization.

After spin-coating, the perovskite films are annealed at 100°C for 10 minutes.
The electron transport layer (ETL) is then deposited, often using a solution of
PC61BM in chlorobenzene, which is spin-coated at 1,000 rpm for 30 seconds
and annealed at 100°C for 10 minutes. Finally, a metal electrode, typically gold,
is deposited through thermal evaporation. The entire process is conducted in a
nitrogen-filled glovebox to minimize exposure to moisture.

ChatGPT:

To fabricate perovskite solar cells with a power conversion efficiency (PCE) over
25%, several key factors need to be considered and optimized in the fabrication
process. Here are some steps that can help in achieving high-efficiency perovskite
solar cells:

1. Perovskite Material Quality: The quality of the perovskite material is crucial
for achieving high efficiency. Use high-quality perovskite precursors and optimize
the fabrication process to ensure uniform and defect-free perovskite films.

2. Optimal Perovskite Layer Thickness: The thickness of the perovskite layer
plays a significant role in determining the efficiency of the solar cell. Optimize
the thickness of the perovskite layer to maximize light absorption and charge car-
rier generation.

3. Tuning the Bandgap: By engineering the composition of the perovskite mate-
rial, you can tune the bandgap to match the solar spectrum for better light ab-
sorption and improved efficiency.

4. Interface Engineering: Pay attention to the interfaces between different lay-
ers in the solar cell structure. Optimize the interfaces to minimize recombination
losses and improve charge carrier transport.

5. Passivation Layers: Use passivation layers to reduce defects and trap states in
the perovskite layer, which can improve the overall performance of the solar cell.
6. Electron and Hole Transport Layers: Choose suitable electron and hole trans-
port materials to facilitate efficient charge extraction and transport within the
solar cell.

Figure 7: A full conversation between Perovskite-LLM and ChatGPT, Perovskite-LLM provides
detailed operational steps with specific parameters, while ChatGPT only offers general conceptual
guidance.
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Question:
What are the ETL materials used in perovskite solar cells and the features of
them?

Perovskite-Chat-LLM:

In perovskite solar cells, various electron transport layer (ETL) materials are uti-
lized, each with distinct features. Common ETL materials include:

1. Tin Oxide (Sn02): SnO2 is a popular choice for ETLs due to its high elec-
tron mobility, low-temperature process ability, and compatibility with flexible sub-
strates. It is often used in n-i-p structured perovskite solar cells.

2. Zinc Oxide (Zn0O): ZnO is another widely used ETL material, known for its
high electron mobility and low-temperature processing. It is commonly used in
both n-i-p and p-i-n structured perovskite solar cells.

3. Tungsten Oxide (WO3): WO3 is utilized as an interlayer between the per-
ovskite layer and the ETL, enhancing charge extraction and improving device sta-
bility. It is particularly effective in p-i-n structured devices.

4. Phenyl-C61-Butyric Acid Methyl Ester (PCBM): PCBM is a fullerene deriva-
tive used as an ETL in p-i-n structured perovskite solar cells. It offers high elec-
tron mobility and is compatible with various perovskite compositions.

5. Tin Oxide Doped with Fluorine (F-Sn0O2): This material is used to enhance
the performance of SnO2 ETLs, improving their electron mobility and stability,
which leads to higher efficiency in perovskite solar cells.

6. Cesium Lead Halide (CsPbX3): CsPbX3 is employed as a wide-bandgap ETL
in all-inorganic perovskite solar cells, contributing to improved stability and effi-
ciency.

ChatGPT:

ETL (Electron Transport Layer) materials play a crucial role in perovskite solar
cells by facilitating the efficient extraction and transport of electrons generated by
the perovskite layer. Some commonly used ETL materials in perovskite solar cells
include:

1. TiO2 (Titanium Dioxide): TiO2 is one of the most widely used ETL materials
in perovskite solar cells. It has good electron transport properties, high electron
mobility, and is chemically stable. TiO2 can be easily processed into thin films,
making it suitable for large-scale production of solar cells.

2. Sn0O2 (Tin Oxide): SnO2 is another popular ETL material in perovskite solar
cells. It has a high electron mobility, good transparency, and can be deposited at
low temperatures. SnO2 films can also be easily doped to improve their conduc-
tivity and electron extraction efficiency.

Figure 8: A full conversation between Perovskite-LLM and ChatGPT, Perovskite-LLM provides
detailed information about the ETL materials and their features, while ChatGPT only offers general
information about the ETL materials.
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Question:
How to improve the thermal stability of perovskite solar cells?

Perovskite-Chat-LLM:

Improving the thermal stability of perovskite solar cells involves several strategies.
One effective approach is the use of thermally stable materials for the charge
transporting layer, such as nickel oxide (NiO) and copper thiocyanate (CuSCN),
which can enhance the thermal stability of the devices. Additionally, the incor-
poration of additives like 1,8-diodoctane (DIO) and 1-chloronaphthalene (CN)
has been shown to improve the morphology of perovskite films, leading to bet-
ter thermal stability. Furthermore, the use of thermally stable hole transport ma-
terials (HTMs) and electron transport materials (ETMs) is crucial, as they can
withstand high temperatures without degrading the perovskite layer. The devel-
opment of new HTMs, such as poly(3-hexylthiophene) (P3HT), has also con-
tributed to improved thermal stability. Lastly, the introduction of interfacial lay-
ers, like graphene oxide, can enhance the thermal stability of the perovskite layer
by reducing defects and improving charge transport.

ChatGPT:

Improving the thermal stability of perovskite solar cells is crucial for their long-
term performance and reliability. Here are some strategies to enhance their ther-
mal stability:

1. Encapsulation: One of the most effective ways to improve the thermal stability
of perovskite solar cells is to encapsulate them with protective materials. Encap-
sulation helps to shield the cells from environmental factors such as moisture, oxy-
gen, and heat, which can degrade the perovskite material.

2. Improved Perovskite Composition: Researchers are constantly working on de-
veloping new perovskite compositions that are more stable at high temperatures.
By tweaking the chemical composition of the perovskite material, it is possible to
enhance its thermal stability.

Figure 9: A full conversation between Perovskite-LLM and ChatGPT, Perovskite-LLM provides
detailed information about the thermal stability of perovskite solar cells, while ChatGPT only offers
general information about the thermal stability of perovskite solar cells.
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Question:
Can you tell me what is CuO? And give me 5 usage in perovskite.

Perovskite-Chat-LLM:

CuO refers to copper(ll) oxide, a chemical compound that plays a significant role
in various applications, particularly in perovskite solar cells (PSCs). Here are five
key usages of CuO in perovskite technology:

1. Hole Transport Material: CuO acts as an effective hole transport material
(HTM) due to its suitable work function and high hole mobility. It is often used
in conjunction with other materials, such as N0, to enhance the performance
of PSCs by facilitating efficient charge extraction [1].

2. Interface Optimization: The use of CuO helps in optimizing the interfaces
within perovskite solar cells. By depositing CuO films on top of perovskite layers,
it can improve the interfacial properties and reduce recombination losses at these
critical junctions[2].

3. Thermal Stability Enhancement: Copper oxide (CuO) has been shown to pro-
vide thermal stability to perovskite materials, which is crucial for maintaining high
efficiency during prolonged operation under elevated temperatures. This property
makes it an attractive choice for applications where environmental stability is a
concern [3].

4. Doping and Passivation: CuO can be utilized as a dopant in other materials
used in PSCs, such as SnO2, enhancing their electrical properties like conductivity
and mobility. Additionally, the doping effects can lead to improved passivation of
defects at the perovskite layer, contributing to better performance metrics [4].

5. Integration with Other Materials: In bifacial solar cells, CuO has been
integrated with materials such as carbon nanotubes (CNTs) to create high-
performance architectures that benefit from synergistic effects. This integration
not only enhances charge transport but also improves the overall efficiency of the
devices [5].

References:
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Cells: From Theoretical Insights to Experimental Validation, Sun, Qingde; Sadhu,
Anupam; Lie, Stener; Wong, Lydia Helena, Advanced Materials, 2024

[3] Processing-Performance Evolution of Perovskite Solar Cells: From Large Grain
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Figure 10: A case study of Perovskite-Chat-LLM’s ability to provide detailed and accurate information
with references.
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