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ABSTRACT

Deep learning has achieved strong results in modeling sequential data, includ-
ing event sequences, temporal point processes, and irregular time series. Re-
cently, transformers have largely replaced recurrent networks in these tasks. How-
ever, transformers often underperform RNNs in sequence classification tasks that
aim to predict future targets. The reason behind this performance gap remains
largely unexplored. In this paper, we identify a key limitation of transformers:
the absence of a single state vector that provides a compact and effective rep-
resentation of the entire sequence. Additionally, we show that contrastive pre-
training of embedding vectors fails to capture local context, which is crucial for
accurate prediction. To address these challenges, we introduce history tokens,
a novel concept that facilitates accumulating historical information during next-
token prediction pretraining. Our approach significantly improves transformer-
based models, achieving impressive results in finance, e-commerce, and health-
care tasks. The code is publicly available on GitHub: https://github.com/
anonymous-10647849/ht-transformer-submission.

1 INTRODUCTION

Many real-world problems involve predicting future events from historical observations. In gener-
ative tasks, the goal is to forecast events similar to those previously observed (Xue et al., 2024).
However, many practical applications require anticipating events not explicitly appearing in the
training history. Examples include loan default, customer churn, and disease onset. These scenarios
are typically addressed using classical machine learning models, such as logistic regression or gra-
dient boosting, applied to handcrafted features or unsupervised model-based embeddings derived
from historical data (Osin et al., 2024; Synerise, 2025).

Deep learning has shown significant success in modeling sequential structures, including event se-
quences, temporal point processes, and time series data. A prominent trend is the adoption of
pretrained Transformer architectures due to their ability to capture long-range dependencies and
complex temporal patterns (Padhi et al., 2021; Zuo et al., 2020). Unlike recurrent neural networks,
however, Transformers lack a canonical mechanism for extracting a fixed-size embedding from a se-
quence, as information is distributed across the activations of all tokens. This issue is commonly mit-
igated through auxiliary objectives during pretraining, such as contrastive learning (BehnamGhader
et al., 2024), sentence order prediction (Lan et al., 2020), or next-sentence prediction (Devlin et al.,
2019). However, each of these approaches introduces limitations. For instance, it is well docu-
mented that contrastive pretraining may overemphasize “easy features”, compromising downstream
quality (Robinson et al., 2021). Consequently, the problem of learning robust and informative se-
quence embeddings, including methods based on the next-token prediction (NTP) objective (Yenduri
et al., 2024), remains an open research question.

In this work, we propose a novel approach to pretraining Transformer-based embeddings without
relying on auxiliary tasks. Our method draws inspiration from recurrent architectures and leverages
sparse attention masks to guide the accumulation of historical information (Bulatov et al., 2022).
Specifically, we introduce history tokens that gather and summarize contextual information during
training via a standard next-token prediction objective, as illustrated in Figure 1. We empirically

1

https://github.com/anonymous-10647849/ht-transformer-submission
https://github.com/anonymous-10647849/ht-transformer-submission


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A B <H> C <H> D

B C D ETarget

Hidden

layers

Input

(a) History Token serves as a bottleneck during pre-
training.

A B C <H>D

Embedding

Causal Transformer

Input

Downstream task

(gradient boosting)

E

Model

(b) The embedding of History Token is used in down-
stream tasks.

Figure 1: History tokens accumulate prefix information during pretraining via next-token-prediction.
The embedding of the History Token is later used in downstream tasks.

evaluate the resulting embeddings across multiple domains, including finance, e-commerce, and
healthcare, and show that they offer strong predictive performance, especially for tasks focused on
forecasting future events rather than global sequence classification.

The contributions of this paper are as follows:

1. We propose a novel HT-Transformer architecture that employs history tokens to accumulate
past information during pretraining using only the next-token prediction objective.

2. We develop advanced strategies for history tokens position selection and attention masking
for improved downstream quality.

3. We introduce strong baselines for embedding extraction by utilizing adapted variants of
Recurrent Memory Transformer and Longformer.

4. We demonstrate that the proposed HT-Transformer is particularly effective for tasks fo-
cused on predicting future events and establish new state-of-the-art results across multiple
benchmarks in finance, e-commerce, and healthcare.

2 PRELIMINARIES ON EVENT SEQUENCES

This work focuses on modeling sequences of discrete events S = {si}Ni=1, where each event si is
represented by a collection of fields, including a timestamp ti, optional numerical attributes, and
categorical variables. Each sequence typically corresponds to a single entity, such as a user or client,
and the events are ordered chronologically by their timestamps: t1 ≤ t2 ≤ · · · ≤ tN . An illustration
of such sequences is provided in Figure 2.

Data preprocessing. Before inputting data into a deep model, each event in the sequence must
be transformed into an embedding in a latent space. In a typical preprocessing pipeline, each data
field is encoded independently, and the resulting embeddings are concatenated to form a single event
representation (Gorishniy et al., 2021). Categorical features are transformed by assigning a trainable
embedding vector to each possible value. Numerical features are incorporated directly into the event
embedding without additional preprocessing.

We apply time-based positional encoding when using Transformer models, following the approach
proposed in prior work (Yang et al., 2022). Specifically, for each timestamp t, we compute a posi-
tional embedding PEi(t) of dimension d as:

PEi(t) =

sin
(
t/(m ∗ ( 5Mm )

i
d )
)
, if i is even

cos
(
t/(m ∗ ( 5Mm )

i−1
d )

)
, otherwise

(1)

where m and M are constants determined from the distribution of timestamp values. We refer the
reader to the original work for implementation details and parameter selection.
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Assets

Timestamp Category Amount

2025-03-05 5 8.3

2025-03-08 1 1.5

...

2025-03-11 4 3.2

Input sequence (ID: 718, label: 5) Embeddings

Causal

Transformer

Δt Category emb. Amount

...

 

Positional encoding

Projection

Figure 2: Event sequences preprocessing.

Pretraining. We consider sequence-level classification tasks, where each sequence S is associated
with a single target label l. Because labels are assigned at the sequence level rather than the event
level, the number of labeled examples is often much smaller than the total number of events. This
imbalance motivates the development of unsupervised pretraining algorithms that can leverage the
abundance of unlabeled sequential data to improve downstream performance.

Unsupervised pretraining on event sequences is typically based on either generative or contrastive
learning objectives.

In the generative approach, the model is trained to predict the next event si+1 given the historical
context s1, . . . , si, encouraging the model to capture temporal dependencies and sequence struc-
ture. A typical generative loss is formulated as a weighted sum of individual losses over each data
field (Shchur et al., 2019; Padhi et al., 2021; McDermott et al., 2023). Timestamps can be pre-
dicted using standard regression losses such as Mean Absolute Error (MAE) or Mean Squared Error
(MSE), or through more expressive temporal point process models based on intensity functions (Ri-
zoiu et al., 2017; Zuo et al., 2020). In our work, we adopt the MAE loss for timestamp prediction:

LMAE(∆t̂,∆t) = |∆t̂−∆t|, (2)

where ∆t̂ is the predicted inter-event time and ∆t is the ground truth. We apply the same MAE
objective to other numerical fields and use the cross-entropy loss for categorical attributes.

An alternative to generative modeling is contrastive learning (Babaev et al., 2022), which aims to
learn sequence representations by maximizing agreement between different augmented views of
the same sequence and pushing apart views from different sequences. Typically, each sequence is
divided into multiple, possibly overlapping, subsequences Rk ⊂ S for k = 1, . . . ,K. Let ID(R)
denote the index of the original sequence from which a chunk R was derived. Then the contrastive
loss (Chopra et al., 2005) is defined as:

Lcont(Ri, Rj) =

{
∥f(Ri)− f(Rj)∥2, if ID(Ri) = ID(Rj)

max (0, ϵ− ∥f(Ri)− f(Rj)∥)2 , otherwise
(3)

where f(R) ∈ Rd is the embedding of a subsequence R produced by the model. Following prior
work (Babaev et al., 2022), we use ϵ = 0.5 and K = 5 subsequences per sequence.

Both generative and contrastive paradigms have been successfully adapted to neural architectures
such as recurrent neural networks (RNNs) and Transformers. However, while effective for specific
tasks, these approaches exhibit notable limitations, especially when the goal is to anticipate future
events rather than to summarize past behavior. Overcoming these limitations is a key motivation
behind the approach proposed in this work.

Downstream tasks. Embeddings obtained from a pretrained model are typically applied to down-
stream classification and regression tasks, either through a fully connected head (Synerise, 2025) or
via gradient boosting methods (Babaev et al., 2022). Following prior work on event sequences (Osin
et al., 2024), we employ gradient boosting models for classification.

3 PROPOSED METHOD

The core idea of the proposed method is the introduction of special history tokens into Transformer
models. These tokens are designed to accumulate information from preceding tokens in the se-
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quence. A carefully constructed attention mask ensures that these tokens act as an information
bottleneck, similar in function to the hidden states in RNNs. In the following, we describe the
training procedure and the application of history tokens to downstream classification tasks.

3.1 UNSUPERVISED PRETRAINING WITH HISTORY TOKENS

The proposed approach is compatible with any Transformer architecture that employs a causal at-
tention mask (Fig. 3a), where each token attends only to preceding tokens. Transformers for event
sequences typically have three primary components: an event embedder, a backbone, and a predic-
tion head. History tokens are inserted into the backbone input after event embeddings are computed,
as shown in Figure 1a. Each history token is assigned the timestamp of a preceding event. These
timestamps are then used for positional encoding.

To enable history tokens to serve as memory units, we modify the attention mask used by the back-
bone. Each history token is allowed to attend to all preceding event tokens (except other history
tokens), thereby accumulating prefix information. In contrast, event tokens can attend only to his-
tory tokens and to events between the current position and the most recent history token. This
attention pattern is illustrated in Figure 3d. When multiple history tokens are present, we introduce
two attention strategies. In the Last strategy, each event token is restricted to attend only to the most
recent preceding history token. In the Random strategy, illustrated in Figure 3e, each event token
randomly selects one of the prior history tokens during attention computation. As demonstrated in
our experiments, the Random strategy consistently yields better performance across various tasks.

(a) Causal. (b) Rec. Memory. (c) Longformer. (d) HT Last. (e) HT Random.

Figure 3: Comparison of attention masks. Special tokens are orange-colored.

The proposed method provides considerable flexibility in selecting both the number and the place-
ment of history tokens. For a given sequence of length L, the number of history tokens is computed
as max(1, ⌊fL⌉), where ⌊·⌉ is a rounding operator and f is a tunable hyperparameter referred to as
the frequency.

We also implement two strategies for inserting history tokens into the sequence. The Uniform strat-
egy inserts history tokens at uniformly sampled positions. However, this approach can lead to a
discrepancy between training and inference, as history tokens are typically positioned near the end
of the sequence during evaluation. To address this issue, we introduce the Bias-End strategy, which
places history tokens closer to the sequence’s end. Specifically, it samples positions uniformly
within the range [µ/2, L], where µ is the mean sequence length in the batch, and L is the maximum
sequence length. Our experiments show that the Bias-End strategy consistently leads to improved
downstream performance.

At inference time, the history token is inserted only at the end of the sequence. In this setting, event
tokens cannot access any preceding history tokens, creating a mismatch with the pretraining setup,
where history tokens may appear throughout the sequence. To mitigate this discrepancy, we apply
history tokens in only a subset of pretraining batches with some application probability p (typically
50%). This partial application encourages the model to remain robust across both configurations.

3.2 CLASSIFICATION

During embedding extraction, a single history token is appended to the end of the input sequence,
and the average of its hidden activations across Transformer layers is used as the sequence level
embedding (Figure 1b). This embedding then serves as an input feature for a downstream gradient
boosting classifier.
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4 RELATED WORK

Transformer models have a long and successful application history to sequence classification and re-
gression tasks, particularly in natural language processing (NLP) (Vaswani et al., 2017). One of the
main challenges in this setting is the limited availability of labeled data, which has driven the devel-
opment of effective unsupervised pretraining strategies (Muennighoff et al., 2023). A notable early
approach is BERT (Devlin et al., 2019), which introduced a masked language modeling (MLM) ob-
jective alongside a next sentence prediction (NSP) task to enable powerful sequence representations.
These pretrained models proved highly effective for downstream classification tasks such as natural
language understanding (NLU) (Wang et al., 2019).

A central issue in applying Transformers to NLU is extracting a compact, semantically meaningful
representation of an entire sequence. In BERT, this was addressed by introducing a special clas-
sification token trained via the NSP objective. However, subsequent work such as RoBERTa (Liu
et al., 2019) challenged the necessity of the NSP task, demonstrating that it could be omitted without
degrading performance.

Beyond BERT-style objectives, other works have explored contrastive pretraining techniques, such
as LLM2Vec (BehnamGhader et al., 2024), which aim to bring semantically similar sequences closer
in embedding space. While contrastive learning can yield strong performance when carefully imple-
mented, it suffers from notable limitations. In particular, models can rely on “easy” features, such
as surface-level similarities, to distinguish positive pairs, bypassing the need for deeper semantic
understanding. Furthermore, contrastive pretraining tends to bias models toward capturing global
sequence properties at the expense of local or up-to-date information. This bias poses a particular
challenge in event sequence modeling, where the most recent context is often essential for accurate
prediction, in contrast to many natural language processing tasks emphasizing global semantics.

Alternative methods for sequence embedding extraction include averaging token activations across
specific layers or using the final token’s activation (Stankevičius & Lukoševičius, 2024). How-
ever, these approaches generally underperform compared to specialized embedding pretraining tech-
niques, particularly in tasks requiring nuanced or fine-grained representations.

In contrast, RNNs naturally summarize sequences through the hidden state at the final timestep,
which compactly encodes the information needed for future prediction. This property has inspired
the integration of recurrent principles into Transformer architectures, particularly for modeling long
sequences. For instance, Recurrent-Memory Transformers (RMT) recursively apply a Transformer
model to chunks of the input sequence, using special tokens to pass information between successive
segments (Bulatov et al., 2022). The corresponding attention mask is shown in Figure 3b. Similar
ideas are adopted in architectures such as Longformer (Beltagy et al., 2020), where global tokens
aggregate and propagate information across extended contexts (Figure 3c). More recently, recurrent-
style Transformers have been combined with contrastive learning objectives to attain strong results
on natural language understanding (NLU) tasks, while retaining the generative abilities of causal
models (Zhang et al., 2025).

Our work extends the Recurrent Transformer paradigm (Bulatov et al., 2022) by introducing a novel
mechanism for representation learning from event sequences. We propose the use of history tokens
to accumulate and summarize contextual information during NTP pretraining. Unlike RMT, the HT-
Transformer processes a sequence in a single pass while retaining activations from all layers, rather
than only the last, for subsequent token processing. In contrast to Longformer, HT-Transformer em-
ploys special tokens instead of solely modifying the attention matrix. Moreover, it restricts attention
to future tokens, forcing history tokens to accumulate local information.

5 EXPERIMENTS

We conduct experiments on datasets spanning multiple domains. The Churn1, AgePred2, and Alfa-
battle3 datasets represent a range of downstream tasks in the financial domain. The Taobao dataset4

1https://boosters.pro/championship/rosbank1/
2https://ods.ai/competitions/sberbank-sirius-lesson
3https://boosters.pro/championship/alfabattle2/overview
4https://tianchi.aliyun.com/dataset/46
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Dataset # Seq. Events Fields Mean Mean Time Downstream
length duration unit Target Classes Metric

Churn 10217 1M 6 99.3 80.5 Day Churn 2 ROC AUC
AgePred 50000 44M 3 875 718 Day Age group 4 Accuracy
Alfabattle 1466527 343M 15 234 275 Day Default 2 ROC AUC
MIMIC-III 52103 23M 3 407 108 Day Mortality 2 ROC AUC
Taobao 9904 5M 3 527 12.9 Day Activity 2 ROC AUC

Table 1: Datasets statistics

represents user interactions in e-commerce, and MIMIC-III (Johnson et al., 2016) is a widely used
collection of medical records. Summary statistics for these datasets are provided in Table 1.

We evaluate three primary baseline approaches: supervised learning, NTP pretraining (Radford
et al.), and contrastive learning using CoLES (Babaev et al., 2022). Each method is applied to
two backbone architectures. For RNN-based models, we use a GRU backbone (Cho et al., 2014),
while Transformer-based models employ a decoder-only architecture (Radford et al.).

All models are trained using the Adam optimizer (DP & J, 2015) with a fixed learning rate of
0.001. The maximum number of training epochs varies by dataset and ranges from 60 to 120.
Early stopping is applied based on validation performance to prevent overfitting. Experiments were
conducted on NVIDIA A100 GPUs. For all datasets except Alfabattle, training was performed on
a single GPU. Due to the larger size of the Alfabattle dataset, some experiments were accelerated
using 2 GPUs to reduce training time.

Hyperparameters, including the loss weights for the NTP objective and model size, are optimized
using a Bayesian optimizer (Snoek et al., 2012) applied to the NTP RNN baseline. The resulting
configurations are reused across all other RNN settings. For Transformer models, we separately
tune the number of layers and the hidden dimension using the NTP configuration and apply these
settings consistently across all Transformer-based variants.

For each method, we report the mean and standard deviation of evaluation metrics across five differ-
ent random seeds. An exception is made for the Alfabattle dataset, where three seeds were used due
to computational constraints.

To assess the quality of extracted embeddings, we train a gradient boosting classifier for each down-
stream task using the LightGBM library (Ke et al., 2017). The classifier is trained on frozen embed-
dings and uses the same hyperparameters as in the CoLES baseline (Babaev et al., 2022).

Baselines implementation details. Two of our baselines, Recurrent Memory Transformer Syner-
ise (2025) and Longformer Beltagy et al. (2020), were originally proposed to address the lim-
ited scalability of standard Transformers, whose complexity grows quadratically with input length.
These models were not specifically designed for embedding extraction, and therefore require addi-
tional modifications when applied to classification tasks.

The Recurrent Memory Transformer was originally applied to fixed-length chunks of the input se-
quence. We follow the same procedure during pretraining but append memory tokens to the end of
each chunk for embedding extraction. The final embedding is obtained by averaging activations of
the memory tokens.

The Longformer architecture was introduced for bidirectional Transformers, which are incompati-
ble with next-token prediction pretraining. To adapt it, we modify the attention mask by enforcing
causality for regular tokens, while allowing global tokens to attend to all tokens, including future
ones. Conversely, all tokens can attend to global tokens regardless of relative position. An illus-
tration of our modified Longformer mask is provided in Figure 3c. In addition, we observed that
convolutional attention leads to suboptimal performance. Instead, we integrate global tokens di-
rectly into the causal attention mask. We further found that using a single global token at the end
of each sequence consistently outperforms configurations with multiple tokens placed at regular or
random positions. As a result, our final Longformer variant employs a single global token without
convolutional masking, and the sequence embedding is obtained by averaging the activations of the
last token.
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To the best of our knowledge, we at the first time apply Recurrent Memory Transformers and Long-
former for embedding extraction in event sequences classification tasks.

5.1 CLASSIFICATION OF EVENT SEQUENCES

Classification results are presented in Table 2. Among baselines in the unsupervised setting, the
standard NTP Transformer significantly outperforms its RNN counterpart only on the MIMIC-III
dataset, while performing worse on Churn, AgePred, and Alfabattle. This highlights the limitations
of traditional Transformer architectures in learning compact and informative sequence representa-
tions for downstream tasks.

The proposed HT-Transformer effectively addresses these limitations. It consistently outperforms
the NTP Transformer in all comparisons. At the same time, contrastively pretrained RNN (CoLES)
surpasses HT-Transformer on AgePred and Taobao datasets, however on Taobao the difference is
not statistically significant.

The AgePred task differs from the others because it requires predicting a global property, specifically
the client’s age group, using historical event data. As discussed in the following section, history
tokens are designed to capture recent and predictive information, which is beneficial for forecasting
future events but less effective for tasks that require encoding global sequence properties. As a
result, embeddings extracted from HT-Transformer underperform CoLES RNN.

Method Churn AgePred Alfabattle MIMIC-III Taobao
Supervised RNN 79.10 ± 0.80 61.18 ± 0.49 76.47 ± 1.13 91.46 ± 0.10 84.91 ± 1.17
Supervised Transformer 80.92 ± 0.66 54.88 ± 2.37 74.90 ± 0.08 77.48 ± 1.22 79.71 ± 1.68
NTP RNN 81.56 ± 0.59 60.05 ± 0.29 79.83 ± 0.05 90.68 ± 0.07 83.28 ± 1.42
NTP Transformer 80.92 ± 0.66 56.16 ± 0.51 78.63 ± 0.12 91.28 ± 0.10 83.39 ± 1.43
NTP Rec. Mem. Transf. 80.23 ± 0.21 58.43 ± 0.39 80.25 ± 0.05 91.82 ± 0.04 80.54 ± 0.76
NTP Longformer 81.48 ± 0.66 57.64 ± 0.29 65.91 ± 0.34 89.26 ± 0.18 84.76 ± 1.67
CoLES RNN 82.82 ± 0.28 62.42 ± 0.33 79.30 ± 0.08 87.44 ± 0.20 85.56 ± 1.14
CoLES Transformer 78.92 ± 0.49 59.92 ± 0.30 78.40 ± 0.00 87.06 ± 0.38 82.03 ± 0.98
HT-Transformer 83.34 ± 0.42 60.10 ± 0.39 80.42 ± 0.12 92.00 ± 0.09 84.65 ± 1.07
Impr. over NTP Transf. +2.42 +3.94 +1.79 +0.72 +1.26

Table 2: Pretrained models classification results.

5.2 GLOBAL CLASSIFICATION AND FUTURE-ORIENTED TASKS

While the concept of history tokens is broadly applicable, we observe certain limitations when com-
bined with next token prediction during pretraining. The next token prediction objective encourages
the model to focus on extracting recent information that is directly relevant for forecasting upcoming
events. In contrast, downstream tasks involving classification based on global or persistent proper-
ties, such as long-term user characteristics, may benefit more from contrastive pretraining or simpler
aggregation strategies, such as averaging Transformer outputs across the sequence.

To investigate this effect, we conduct experiments on a synthetic dataset specifically designed to
evaluate the suitability of different representation learning methods for local versus global tasks. In
this dataset, we sample ten distinct transition matrices, each defining a Markov process by specifying
the probability of transitioning from one label to another. We then construct nonstationary sequences
by concatenating multiple segments, each generated using a different transition matrix, as illustrated
in Figure 4.

We introduce two classification tasks for our synthetic dataset. The global classification task requires
predicting the total number of transition matrices used in a sequence ranging from 1 to 5. This
task demands that the model capture information across the entire sequence. In contrast, the local
classification task involves identifying the index of the transition matrix used in the final segment,
which depends only on the most recent data.

The results of classification experiments with Transformer-based models are reported in Table 3.
The NTP Last and NTP Avg baselines correspond to Transformer models with different embedding
extraction strategies. NTP Last uses the activations of the final token, whereas NTP Avg com-
putes the average activations across all input tokens. The results show that Last aggregation and

7
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Transition matrices

0.8 0.0 0.2

0.0 0.7 0.3

0.3 0.2 0.5

Stationary processes Non-stationary process

Figure 4: Markovian generative process for the toy dataset.

Method Local
(Last part)

Global
(Num. parts)

Supervised 0.71 1.00
NTP Last 0.53 0.73
NTP Avg 0.40 0.88
CoLES 0.33 0.94
NTP HT 0.55 0.85

Table 3: Toy dataset classification
accuracy.

HT-Transformer achieve superior accuracy on the local task, while average aggregation and con-
trastive pretraining yield the highest accuracy on global classification. These findings suggest that
history tokens are particularly effective for tasks that depend on recent context, such as future event
prediction, whereas contrastive pretraining and embedding averaging are more suitable for global
classification tasks that require holistic sequence understanding

5.3 ABLATION STUDIES

Training Strategies. In the introduction of HT-Transformer, we outlined alternative strategies for
history token placement and selection. Table 4 compares these alternatives with the default HT-
Transformer configuration, which employs the Bias-End placement strategy and Last selection of
history tokens. The results indicate that the default configuration yields superior downstream per-
formance on considered datasets.

Method Churn MIMIC Taobao AVG
Uniform pl. 83.23 91.92 83.72 86.29
Last sel. 82.92 91.90 83.78 86.20
Bias-End + Random 83.34 92.00 84.65 86.66

Table 4: Comparison of history token placement and selection strategies.

Hyperparameters. HT-Transformer introduces two key hyperparameters: the insertion frequency
f of history tokens and the application probability p. The insertion frequency determines the number
of history tokens relative to the input length, while the application probability specifies the propor-
tion of training batches in which history tokens are applied.

Figure 5a shows that the model’s performance is not highly sensitive to the exact value of f . On the
Churn and MIMIC-III datasets, even a single history token achieves performance comparable to that
of more frequent insertions. For AgePred and Alfabattle, however, increasing the number of history
tokens leads to consistent improvements in performance.

Figure 5b illustrates the effect of varying the application probability p. The results indicate that
setting p too low significantly degrades performance, with an exception on the Churn dataset. Using
the maximum value p = 1 on the Churn dataset also results in a modest performance drop. Interest-
ingly, training with p = 0 still outperforms a standard NTP Transformer. Our analysis revealed that
embeddings of a randomly initialized [CLS] token at the end of the sequence performs better than
using the final token’s output representation.

Based on these observations, we recommend setting the history token frequency to 10% of the input
length and the application probability p to 50%, as used in our default configuration. This setting
provides the most stable and consistent performance across all evaluated datasets.

6 LIMITATIONS AND FUTURE WORK

In this paper, we demonstrate the effectiveness of using history tokens for event sequence clas-
sification. We introduce a new Transformer-based architecture, evaluate multiple design choices,
and identify configurations that lead to strong downstream performance across a range of domains.
However, several aspects of the method remain open for further exploration.
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Figure 5: Evaluation results under different hyperparameter settings.

First, as shown in our ablation studies, the placement of history tokens affects downstream perfor-
mance. We compared two strategies: uniform placement and the Bias-End approach. Future work
could pursue a more detailed analysis of token positioning and sampling policies.

Second, our current implementation relies on the standard PyTorch multi-head attention module.
This component may not be optimal for working with the custom attention masks required by the
HT-Transformer. Future technical improvements could focus on optimizing the attention mecha-
nism, particularly by exploiting the mask’s sparsity. Since only a small subset of tokens participates
in the complete self-attention computation, the total computational cost can be reduced. As a re-
sult, the HT-Transformer has the potential to offer faster training compared to conventional causal
Transformers.

Our experiments demonstrate that HT-Transformer may be suboptimal for global classification tasks.
Future research could explore the design of architectures that effectively address both global and
local tasks within a unified framework. One promising direction is to combine embeddings extracted
from the model using different algorithms, thereby leveraging their complementary strengths.

Overall, the proposed architecture offers a promising direction for highly efficient and accurate mod-
eling of event sequences. Future work can continue to improve the method’s predictive performance
and computational scalability.

7 CONCLUSION

This paper introduced HT-Transformer, a novel architecture designed to enhance Transformer-based
models for event sequence classification by explicitly accumulating historical information through
learnable history tokens. We identified the inherent limitations of standard Transformers in tasks
requiring future event prediction, specifically the lack of a unified representation that effectively
captures sequential context. To address this limitation, we proposed a simple yet effective mech-
anism where history tokens act as information bottlenecks during NTP pretraining, analogous to
hidden states in recurrent neural networks.

Our method eliminates the need for auxiliary objectives such as contrastive learning, instead lever-
aging sparse attention patterns to ensure efficient information aggregation. Extensive empirical
evaluations across real-world financial, healthcare, and e-commerce datasets demonstrate that HT-
Transformer consistently outperforms conventional Transformer baselines. Moreover, the proposed
method achieves the highest accuracy on three datasets, surpassing all competing methods.

Overall, HT-Transformer represents a significant step toward bridging the performance gap between
recurrent and Transformer-based models for future-oriented sequence modeling, combining high-
quality embeddings with the long-context modeling capabilities of Transformer architectures.
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REPRODUCIBILITY STATEMENT

The full source code, together with training configurations, hyperparameters, and evaluation outputs,
is released on GitHub (see reference link in the Abstract) to facilitate reproducibility of our results.
All experiments are conducted on publicly available datasets, except MIMIC-III. Access to MIMIC-
III requires registration and successful completion of the official ethics training, as mandated by the
dataset providers. No proprietary or restricted-access resources were used in this work.
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