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Abstract

Training time-series forecasting models poses unique challenges in loss func-
tion design. Most existing approaches adopt temporal mean squared error, but
this study reveals two critical limitations: ❶ it ignores the presence of label
autocorrelation, which biases it from the true label sequence likelihood; ❷ it
involves excessive number of tasks, which complicates optimization, especially
for long-term forecasting. To address these issues, we introduce Time-o1, a
transform-enhanced loss function for time-series forecasting. The central idea
is to transform the label sequence into decorrelated components with discrimi-
nated significance. Models are then trained to align the most significant com-
ponents, thereby effectively mitigating label autocorrelation and reducing task
amount. Experiments demonstrate that Time-o1 achieves state-of-the-art per-
formance and is compatible with various forecast models. Code is available at
https://github.com/Master-PLC/Time-o1.

1 Introduction

Time-series forecasting involves predicting future data from historical observations [62, 24] and
has been applied across diverse domains, such as air quality prediction in meteorology [29], user
behavior analysis in e-commerce [3], and process monitoring in manufacturing [49, 52]. To build
effective forecasting models, two questions warrant investigation: (1) How to design a neural network
architecture to encode historical observations, and (2) How to devise a loss function to train the
neural network. Both are critical for forecast model performance.

Recent research has primarily focused on developing neural network architectures [57, 61]. The key
challenge lies in exploiting the autocorrelation in history sequences. To this end, various architectures
have been proposed [25, 41, 53, 31]. Current progress centers on a debate between Transformers
and simple linear models. Transformers, equipped with self-attention mechanisms, offer superior
scalability [28, 35, 30]. In contrast, linear models, which encapsulate temporal dynamics using linear
layers, are straightforward to implement and demonstrate strong performance [67, 44, 65, 63]. These
advancements showcase the rapid evolution in neural architecture design for time-series forecasting.

∗This work was done in the internship at Xiaohongshu Inc. Both authors have equal contribution.
†Corresponding author.
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In contrast, the design of loss functions has received less attention [51, 40, 23]. Most studies adopt the
temporal mean squared error (TMSE) as the loss function, which calculates the step-wise difference
between the forecast and label sequences [28, 35]. While it is effective in various scenarios, it exhibits
two limitations in time-series forecasting: ❶ it ignores the presence of label autocorrelation,
treating each label step as independent, which renders it biased from the true likelihood of the label
sequence [51]; ❷ it involves excessive number of tasks, where the task amount corresponds to the
forecast horizon, which complicates optimization especially in long-term forecast scenarios [69].

To handle these challenges, we propose a transform-enhanced loss function for time-series forecasting
(Time-o1). The key idea is to transform the label sequence into decorrelated components ranked
by significance. By aligning the most significant decorrelated components, Time-o1 mitigates label
autocorrelation and reduces the number of tasks. Our main contributions are summarized as follows:

• We formulate two critical challenges in designing loss functions for time-series forecasting: the
label autocorrelation that induces bias, and the excessive number of tasks that impedes optimization.

• We propose Time-o1, a novel loss function for training time-series forecast models. It transforms
label and forecast sequences into decorrelated components ranked by significance and subsequently
align them, which effectively addresses challenges ❶-❷ with theoretical guarantees.

• We validate the efficacy of Time-o1 through extensive experiments, where Time-o1 consistently
outperforms existing loss functions and enhances the performance of various forecast models.

2 Preliminaries

This paper focuses on the time-series forecasting problem [39, 56]. In general, we adhere to standard
notational conventions: uppercase bold letters (e.g., X) denote matrices, lowercase bold letters (e.g.,
x) denote vectors, and lowercase normal letters (e.g., x) denote scalars. Since the autocorrelation
property central to our analysis manifests independently within each variate, we adopt the univariate
setting for problem formulation [35], which generalizes naturally to the multivariate setting.

A time series, denoted by s = {s1, . . . , sM} ∈ RM, consists of a sequence of chronologically ordered
observations. At any time step n, the history sequence is represented by x = [sn−H+1, . . . , sn] ∈ RH,
and the corresponding label sequence is y = [sn+1, . . . , sn+T] ∈ RT, where H denotes the history
length and T is the forecast horizon. The goal of time-series forecasting is to learn a model
g : RH → RT that produces a forecast sequence ŷ closely matching the ground truth label sequence.

There are two aspects to building forecast models: (1) neural network architectures that effectively
encode history sequences, and (2) loss functions for training these neural networks. While this paper
focuses on the loss function, we provide a brief review of both aspects for contextualization.

2.1 Model architectures for time-series forecasting

Neural networks are widely employed to encode history sequences [32, 60] due to their ability to
automatically model feature interactions and capture complex nonlinear autocorrelation [31, 12, 11].
Notable examples include recurrent neural networks (e.g., S4 [10], Mamba [9], P-sLSTM [16]),
convolutional neural networks (e.g., SCINet [27], TimesNet [58], MICN [54]), and graph neural
networks (e.g., MTGNN [34], StemGNN [2]), each tailored to encode the autocorrelations within
input sequences. The current progress centers on comparisons between Transformer-based and
linear architectures. Transformers (e.g., PatchTST [35], iTransformer [28], FreeFormer [66]) exhibit
substantial scalability with increasing data size but entail high computational costs. In contrast, linear
architectures (e.g., DLinear [67], RLinear [44], OLinear [65], TimeBase [13]) are generally more
efficient but less scalable with larger datasets and struggle to handle varying input lengths.

2.2 Loss functions for time-series forecasting

Modern time-series models predominantly adopt the direct forecast paradigm, generating T-step
forecasts simultaneously using a multi-output head [22, 28, 67]. The standard loss function is the
temporal mean squared error (TMSE) between the forecast and label sequences, given by:

LMSE =
∥∥∥Y − Ŷ

∥∥∥2
2
=

N∑
n=1

T∑
t=1

(yn,t − ŷn,t)
2
, (1)
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where N is the number of samples. LMSE is widespread in recent studies (e.g., FreTS [64], Fred-
Former [37], iTransformer [28], DUET [41]); however, it proves biased in the presence of label
autocorrelation [51]. To address this bias, one line of works performs shape alignment between the
forecast and label sequences (e.g., Soft-DTW [4], Dilate [18], and STRIPE [19]). While these meth-
ods heuristically exploit label autocorrelation, they lack theoretical guarantees regarding unbiasedness
and empirical evidence of improved performance [18]. A more recent and notable approach aligns
the label and forecast sequence in the frequency domain [51, 23]; this strategy offers theoretical
guarantees for bias reduction [51] and empirical improvements across scenarios [55, 20, 70].

3 Methodology

3.1 Motivation

The design of loss function is pivotal in training forecast models. Most previous studies employ LMSE

in (1) as the default loss function [28, 35, 65]. However, it suffers from two limitations stemming
from the inherent properties of time series. ❶ It ignores the presence of label autocorrelation.
Specifically, each observation in time-series is dependent on its past values [67]; this leads to label
autocorrelation, i.e., different steps in the label sequence are correlated. However, LMSE assumes each
label step is independent, which disregards label autocorrelation and thus yields a biased loss function,
as formulated in Theorem 3.1. ❷ It involves excessive number of tasks. Specifically, the number of
forecast tasks in LMSE corresponds directly to the forecast horizon T. While large forecast horizons
are crucial for applications such as manufacturing (requiring long-horizon planning [50, 48]) and
transportation (facilitating proactive traffic control [68, 33]), they introduce optimization challenges,
e.g., gradient conflicts [69, 26], which impedes convergence and leads to suboptimal performance.

Theorem 3.1 (Autocorrelation bias). Given a univariate label sequence y ∈ RT where Σ ∈ RT×T

denotes the step-wise correlation coefficient, the loss function LMSE in (1) is biased from the true
negative log-likelihood of the label sequence, which is given by:

Bias = ∥y − ŷ∥2Σ−1 − ∥y − ŷ∥2 − 1

2
log |Σ| . (2)

where ∥v∥2Σ−1 = v⊤Σ−1v. The bias vanishes if different steps in y are decorrelated.3

Designing a loss function to handle the two limitations is challenging. Our previous work [51]
proposes a frequency-domain loss, which transforms the label and forecast sequences into frequency
components and then aligns them. It is motivated by Theorem 3.1: bias vanishes if different
components are decorrelated. However, the decorrelation of frequency components holds only
when the forecast horizon T → ∞ (see Theorem 3.3 in [51]). In real-world settings with a finite
horizon, frequency components remain correlated, rendering FreDF ineffective to fully eliminate bias.
Moreover, optimization difficulty remains, since transforming to the frequency domain retains the
label length. Consequently, FreDF does not fully address the limitations ❶-❷ discussed in this paper.

Given the significance of loss function in training forecast models and the limitations of existing
methods, it is compelling to develop an innovative loss function to address the limitations and advance
forecast performance. Concretely, two questions warrant investigation. How to devise a loss function
to eliminate autocorrelation bias and reduce task amount? Does it improve forecast performance?

3.2 Transforming label sequence with optimized projection matrix

In this section, we present a method for transforming label sequences into latent components to elimi-
nate autocorrelation and distinguish significant components. Suppose Y ∈ RN×T contains univariate
label sequences of N samples, P = [p1,p2, ...,pK] is the projection matrix; the components are
produced as Z = YP. The target is for Z to be decorrelated and ranked by significance. For example,
FreDF specifies P as a Fourier matrix, which does not adapt to specific data properties and thus fails
to decorrelate the components and distinguish the significant components4.

3The pioneering work [51] identifies the bias under the first-order Markov assumption on the label sequence.
This study generalizes this bias without the first-order Markov assumption.

4In the multivariate case, different variates can be treated separately to produce decorrelated components.
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(a) Autocorrelation in label sequence and components.
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(b) Volume of label sequences and latent components.

Figure 1: The autocorrelations and volumes in the label sequence Y and latent components Z.

A natural approach to obtaining P with the desired properties is constructing optimization problem
with constraints. Specifically, to find the k-th component, the projection vector p∗

k can be defined as:

p∗
k = argmax

pk

(Ypk)
⊤
(Ypk)

subject to
{
∥pk∥2 = 1

p⊤
k pk′ = 0, ∀ k′ < k if k > 1

(3)

where zk = Ypk is the k-th component, the normalization constraint ∥pk∥2 = 1 is imposed to
avoid trivial solution: pk →∞. The optimization target is to maximize the variance of zk, which
is equivalent to maximizing its significance, as components with larger variance contain richer
information. For k > 1, the projection axis is required to be orthogonal to the previous axes to avoid
redundancy. By solving the optimizations above from k = 1 to K ≤ T sequentially, we obtain the
projection matrix P∗ = [p∗

1, ...,p
∗
K]. The components are then produced as Z = YP∗.

Lemma 3.2 (Decorrelated components). Suppose Y ∈ RN×T contains normalized label sequences
for N samples, Z = [z1, ..., zK] are the obtained components; for any k ̸= k′, we have z⊤k zk′ = 0.

Lemma 3.3. The projection matrix P∗ can be obtained via singular value decomposition (SVD):
Y = UΛ(P∗)⊤, where U ∈ RN×N and P∗ ∈ RK×K consist of singular vectors, and the diagonal
of Λ ∈ RN×K consists of singular values.

Theoretical Justification. By Theorem 3.1, the autocorrelation bias vanishes as the label corre-
lations are eliminated. Since the obtained components Z are decorrelated (Lemma 3.2), applying
step-wise difference to align them suffers from little autocorrelation bias. Moreover, component signif-
icance decreases from z1 to zK as they are derived under sequentially added constraints. Furthermore,
P∗ can be computed via SVD (Lemma 3.3), offering an efficient strategy to obtain P∗.

Case study. To showcase the implications of the obtained components, a case study was conducted
on the ETTh1 dataset. Implementation details are provided in Appendix A. The results are illustrated
in Fig. 1, with key observations summarized as follows:

• Decorrelation property: Fig. 1 (a) compares the autocorrelation volume in the label sequence
and the transformed components obtained by (3). In the left panel, the value at row i and column j
represents the correlation between the i-th and j-th steps in the label sequence. A large number
of non-diagonal elements exhibit substantial values, with approximately 50.5% exceeding 0.25,
indicating significant label autocorrelation. In contrast, the right panel shows negligible values for
the non-diagonal elements. This demonstrates that transforming the label sequence into components
effectively eliminates correlation, which empirically validates Lemma 3.2.

• Significance discrimination: Fig. 1 (b) compares the variance of the label sequence and the
transformed components in (3). In the left panel, the variance of the label sequence is almost
uniform across different steps (ranging from -1.5 to 1.5), indicating that different steps contribute
similarly to the overall information and are almost equally significant. In the right panel, a small
number of components has large variance. This demonstrates that the transform yields components
with ranked significance. As a result, one can balance minor information loss with substantial
decreases in optimization complexity by concentrating learning on the most significant components.

The transformation is highly inspired by principal component analysis (PCA) [36]. However, one
key distinction warrants emphasis. Existing works dominantly employ principal component analysis
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on input features for obtaining informative representations [8, 6], in contrast, we adapt it to label
sequence, specifically aiming to reduce autocorrelation bias and simplify optimization for time-series
forecasting. To our knowledge, this remains a technically innovative strategy.

3.3 Model implementation

Algorithm 1 The workflow of Time-o1.

Input: Ŷ: forecast sequences, Y: label sequences.
Parameter: α: the relative weight of the transformed
loss, γ: the ratio of retained components.
Output: Lα,γ : the obtained loss function.

1: Y ← standardize(Y).
2: K← round(γ · T)
3: P∗ ← SVD(Y; K)

4: Z← YP∗, Ẑ← ŶP∗

5: Lortho,γ ← ∥Ẑ− Z∥1
6: LMSE ← ∥Ŷ −Y∥22
7: Lα,γ := α · Lortho,γ + (1− α) · LMSE.

In this section, we present the implementation
details of Time-o1. The approach centers on
extracting the latent components from the label
sequence, then optimizing the forecast model
using the most significant components.

Given N history sequences X ∈ RN×H and la-
bel sequences Y ∈ RN×T, the forecast model
generates forecast sequences Ŷ = g(X). In line
with prior practices [28, 67, 37], we standardize
Y (step 1), which is a prerequisite for ensuring
the decorrelation of the resulting components
(see Lemma 3.2). Next, following Lemma 3.3,
we compute the optimal projection matrix P∗ by
applying SVD to Y, retaining only the K right
singular vectors corresponding to the largest sin-
gular values (steps 2-3). Subsequently, both Y and Ŷ are projected into the latent component
space (step 4). In this space, significance is strictly ordered: the first column captures the greatest
significance (variance), which successively diminishes across subsequent columns.

Afterwards, we compute the transformed loss to align Y and Ŷ in the transformed space (step 5):

Lortho,γ : = ∥Z− Z∥1 , (4)

where γ controls the ratio of components retained, such that K = round(γ · T); ∥·∥1 computes the
sum of element-wise absolute differences. Notably, we use the ℓ1 norm instead of the squared norm
following [51], since different latent components vary greatly in scale (see Fig. 1), which makes the
squared norm unstable. The ℓ1 norm provides a more stable and robust optimization landscape.

Finally, we fuse the two loss functions, with 0 ≤ α ≤ 1 controlling the relative contribution (step 7):

Lα,γ := α · Lortho,γ + (1− α) · LMSE. (5)

By transforming both forecasts and labels into decorrelated components, Time-o1 effectively re-
duces autocorrelation bias. By focusing exclusively on the most significant components, Time-o1
reduces optimization difficulty with minimal information loss. Time-o1 is model-agnostic, offering
practitioners the flexibility to employ the most suitable forecast model for each specific scenario.

4 Experiments

To demonstrate the efficacy of Time-o1, there are six aspects empirically investigated:

1. Performance: Does Time-o1 work? We compare Time-o1 with state-of-the-art baselines us-
ing public datasets on long-term forecasting in Section 4.2 and short-term forecasting tasks in
Appendix E.1. Moreover, we compare Time-o1 with other loss functions in Section 4.3.

2. Gain: How does it work? Section 4.4 offers an ablative study to dissect the contributions of the
individual factors of Time-o1, elucidating their roles in enhancing forecast accuracy.

3. Generality: Does it support other forecast models? Section 4.5 verifies the adaptability of
Time-o1 across different forecast models, with additional results in Appendix E.4.

4. Flexibility: Does it support alternative transformations? Section 4.5 also investigates generating
latent components with other transformations to showcase flexibility of implementation.

5. Sensitivity: Does it require careful fine-tuning? Section 4.6 presents a sensitivity analysis of the
hyperparameter α, where Time-o1 maintains efficacy across a broad range of parameter values.

6. Efficiency: Is it efficient? Section D shows the running time of Time-o1 in diverse settings.
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Table 1: Long-term forecasting performance.

Models
Time-o1 Fredformer iTransformer FreTS TimesNet MICN TiDE DLinear FEDformer Autoformer Transformer
(Ours) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2021) (2017)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.380 0.393 0.387 0.398 0.411 0.414 0.414 0.421 0.438 0.430 0.396 0.421 0.413 0.407 0.403 0.407 0.442 0.457 0.526 0.491 0.799 0.648

ETTm2 0.272 0.317 0.280 0.324 0.295 0.336 0.316 0.365 0.302 0.334 0.308 0.364 0.286 0.328 0.342 0.392 0.308 0.354 0.315 0.358 1.662 0.917

ETTh1 0.431 0.429 0.447 0.434 0.452 0.448 0.489 0.474 0.472 0.463 0.533 0.519 0.448 0.435 0.456 0.453 0.447 0.470 0.477 0.483 0.983 0.774

ETTh2 0.359 0.388 0.377 0.402 0.386 0.407 0.524 0.496 0.409 0.420 0.620 0.546 0.378 0.401 0.529 0.499 0.452 0.461 0.448 0.460 2.688 1.291

ECL 0.170 0.260 0.191 0.284 0.179 0.270 0.199 0.288 0.212 0.306 0.192 0.302 0.215 0.292 0.212 0.301 0.214 0.328 0.249 0.354 0.265 0.358

Traffic 0.419 0.280 0.486 0.336 0.426 0.285 0.538 0.330 0.631 0.338 0.529 0.312 0.624 0.373 0.625 0.384 0.640 0.398 0.662 0.416 0.692 0.379

Weather 0.241 0.280 0.261 0.282 0.269 0.289 0.249 0.293 0.271 0.295 0.264 0.321 0.272 0.291 0.265 0.317 0.326 0.372 0.319 0.365 0.699 0.601

PEMS03 0.097 0.208 0.146 0.260 0.122 0.233 0.149 0.261 0.126 0.230 0.106 0.223 0.316 0.370 0.216 0.322 0.152 0.275 0.411 0.475 0.122 0.226

PEMS08 0.141 0.237 0.171 0.271 0.149 0.247 0.174 0.275 0.152 0.243 0.153 0.258 0.318 0.378 0.249 0.332 0.226 0.312 0.422 0.456 0.240 0.261

Note: We fix the input length as 96 following [28]. Bold and underlined denote best and second-best results, respectively. Avg indicates
average results over forecast horizons: T=96, 192, 336 and 720. Time-o1 employs the top-performing baseline on each dataset as its
underlying forecast model.

4.1 Setup

Datasets. In this work, we conduct experiments on ETT (4 subsets), ECL, Traffic, Weather, and
PEMS [28] for long-term forecasting task, and M4 for short-term forecasting task [58]. All datasets
are split chronologically into training, validation, and testing sets following their official settings.

Baselines. We compare Time-o1 with a range of established models, including Transformer [45],
Autoformer [59], FEDformer [71], iTransformer [28], Fredformer [37], DLinear [67], TiDE [5],
FreTS [64], TimesNet [58], and MICN [54]. As a loss function, Time-o1 is model-agnostic and can
be integrated with any model architecture. By default, Time-o1 employs the best-performing baseline
model on each dataset as its underlying model architecture for fair comparison.

Implementation. The baseline models are reproduced using the scripts provided by Fredformer [37].
All baseline models are trained using the Adam [14] optimizer to minimizeLMSE in (1). Following the
prestigious benchmark [38], the dropping-last trick is disabled during the test phase. When integrating
Time-o1 to enhance an established model, we adhere to the associated hyperparameter settings in
the public benchmark [37, 28], only tuning α, γ and learning rate conservatively. Experiments are
conducted on Intel(R) Xeon(R) Platinum 8383C CPUs and NVIDIA RTX H100 GPUs.

4.2 Overall performance

Table 1 presents the long-term forecasting results. Time-o1 consistently improves base model
performance. For example, on ETTh1, it reduces Fredformer’s MSE by 0.016. Similar gains across
other datasets further validate its effectiveness. These results suggest that modifying the loss function
can yield improvements comparable to, or even exceeding, those from architectural advancements. We
attribute this to two key aspects of Time-o1: its decorrelation property for eliminating autocorrelation
bias and its discrimination on significant components for simplifying optimization.

Showcases. We visualize the forecast sequences and the generated components to showcase the
improvements of Time-o1 in forecast quality. A snapshot on ETTm2 with historical window H = 96
and forecast horizon T = 336 is depicted in Fig. 2. Although the model trained using canonical DF
captures general trends, its forecast struggles with large variations (e.g., peaks within steps 100-400).
This reflects its difficulty in modeling significant, high-variance components. In contrast, Time-o1,
by explicitly discriminating and aligning these significant components, generates a forecast that
accurately captures these large variations, including the peaks within steps 100-400.
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(a) The generated forecast with DF.
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(b) The generated forecast with Time-o1.

Figure 2: The visualization of label and forecast sequences generated by models trained with TMSE
versus Time-o1. In both (a) and (b), the left panels display the time-domain sequences (Y and Ŷ),
while the right panels illustrate their corresponding latent components (Z and Ẑ).

Table 2: Comparable results with other loss functions for time-series forecast.

Loss Time-o1 FreDF Koopman Dilate Soft-DTW DPTA DF

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Fr
ed

fo
rm

er ETTm1 0.379 0.393 0.384 0.394 0.389 0.400 0.389 0.400 0.397 0.402 0.396 0.402 0.387 0.398
ETTh1 0.431 0.429 0.438 0.434 0.452 0.443 0.453 0.442 0.460 0.449 0.460 0.449 0.447 0.434
ECL 0.178 0.270 0.179 0.272 0.190 0.282 0.187 0.280 0.206 0.298 0.202 0.294 0.191 0.284
Weather 0.255 0.276 0.256 0.277 0.257 0.279 0.258 0.280 0.261 0.280 0.260 0.280 0.261 0.282

iT
ra

ns
fo

rm
er ETTm1 0.395 0.401 0.405 0.405 0.413 0.416 0.407 0.412 0.417 0.415 0.416 0.415 0.411 0.414

ETTh1 0.438 0.434 0.442 0.437 0.455 0.451 0.452 0.448 0.470 0.457 0.463 0.454 0.452 0.448
ECL 0.170 0.260 0.176 0.264 0.178 0.269 0.178 0.269 0.175 0.266 0.177 0.267 0.179 0.270
Weather 0.251 0.272 0.257 0.276 0.289 0.313 0.286 0.309 0.292 0.316 0.291 0.313 0.269 0.289

Note: Bold and underlined denote best and second-best results, respectively. The reported results are averaged over forecast horizons: T=96,
192, 336 and 720.

4.3 Loss function comparison

Table 2 compares Time-o1 against other time-series loss functions: FreDF [51], Koopman [17], Di-
late [18], Soft-DTW [4], and DPTA [42]. We integrate their official implementations into Fredformer
and iTransformer. Overall, shape alignment losses (Dilate, Soft-DTW, DPTA) offer little performance
gain over canonical DF (using TMSE loss), consistent with the findings in [18]. This phenomenon is
rationalized by the fact that they do not mitigate the label autocorrelation nor reduce task amounts for
simplifying optimization. FreDF improves performance by partly addressing autocorrelation bias.
However, as discussed in Section 3.1, FreDF does not fully eliminate this bias, nor does it distinguish
significant components to simplify the optimization landscape. Time-o1 directly addresses these two
limitations of FreDF, leading to its superior overall performance.

4.4 Ablation studies

Table 3 presents an ablation study dissecting the contributions of critical factors in Time-o1: the
decorrelation property and the task reduction effect. The main findings are summarized as follows.

• Time-o1† improves DF by reducing the number of tasks to optimize. To this end, it employs a
randomized matrix as the projection matrix to generate components and aligns only a subset of
the obtained components. The involution ratio γ is finetuned on the validation set. It consistently
improves over DF (e.g., −0.012 MAE on Weather). This demonstrates that reducing tasks with a
minimal loss of label information can reduce optimization difficulty and improve performance.

• Time-o1‡ improves DF by aligning decorrelated components. To this end, the loss function is
calculated in (5) with γ = 1. It also outperforms DF, achieving the second-best results overall. This
demonstrates aligning decorrelated label components to mitigate bias benefits forecast performance.

• Time-o1 integrates both factors above by aligning the most significant decorrelated components
and achieves the best overall performance, demonstrating the synergistic effect of these two factors.
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Table 3: Ablation study results.

Model Decorrelation Reduction Data T=96 T=192 T=336 T=720 Avg

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DF % %

ETTm1 0.326 0.361 0.365 0.382 0.396 0.404 0.459 0.444 0.387 0.398
ETTh1 0.377 0.396 0.437 0.425 0.486 0.449 0.488 0.467 0.447 0.434
ECL 0.150 0.242 0.168 0.259 0.182 0.274 0.214 0.304 0.179 0.270
Weather 0.174 0.228 0.213 0.266 0.270 0.316 0.337 0.362 0.249 0.293

Time-o1† % !

ETTm1 0.338 0.366 0.369 0.383 0.397 0.403 0.458 0.441 0.391 0.398
ETTh1 0.376 0.395 0.437 0.430 0.478 0.450 0.469 0.467 0.440 0.436
ECL 0.150 0.239 0.164 0.253 0.178 0.268 0.210 0.296 0.175 0.264
Weather 0.170 0.216 0.213 0.259 0.262 0.300 0.332 0.351 0.244 0.281

Time-o1‡ ! %

ETTm1 0.324 0.359 0.362 0.379 0.390 0.400 0.451 0.438 0.382 0.394
ETTh1 0.373 0.395 0.433 0.423 0.476 0.445 0.474 0.463 0.439 0.431
ECL 0.147 0.238 0.162 0.252 0.174 0.267 0.205 0.294 0.172 0.263
Weather 0.172 0.220 0.211 0.259 0.261 0.301 0.331 0.353 0.244 0.283

Time-o1 ! !

ETTm1 0.321 0.357 0.360 0.378 0.389 0.400 0.447 0.435 0.379 0.393
ETTh1 0.368 0.391 0.424 0.422 0.467 0.441 0.465 0.463 0.431 0.429
ECL 0.145 0.235 0.159 0.249 0.173 0.264 0.203 0.292 0.170 0.260
Weather 0.169 0.219 0.210 0.258 0.259 0.297 0.327 0.349 0.241 0.280

Note: Bold and underlined denote best and second-best results, respectively.

Table 4: Varying transformations results.
ECL Weather

Transformation MSE ∆ MAE ∆ MSE ∆ MAE ∆
None 0.179 - 0.270 - 0.249 - 0.293 -
RPCA 0.171 4.31% ↓ 0.261 3.16% ↓ 0.244 1.78% ↓ 0.286 2.38% ↓
SVD 0.175 2.24% ↓ 0.264 2.18% ↓ 0.248 0.34% ↓ 0.290 0.93% ↓
FA 0.175 2.35% ↓ 0.265 1.82% ↓ 0.245 1.35% ↓ 0.287 1.97% ↓
Ours 0.170 4.86%↓ 0.260 3.57%↓ 0.241 2.94%↓ 0.280 4.28%↓
Note: ∆ refers to the relative error reduction compared to the baseline (None). Bold and underlined denote best and second-best results.

4.5 Generalization studies

In this section, we investigate the utility of Time-o1 with different transformation strategies and
forecast models, to showcase the generality of Time-o1. In the bar-plots, the forecast errors are
averaged over forecast lengths (96, 192, 336, 720), with error bars as 50% confidence intervals.

Varying transformations. We select alternative approaches to transform the label sequence into
latent components and report the forecast performance in Table 4. The selected transformation
methods include robust principal component analysis (RPCA) [1], SVD [7], and factor analysis [15].
Noting that the output of SVD yields components here, not a projection matrix as in Section 3.2.
Implementation details are in Appendix C. Overall, all these transformation methods outperform
canonical DF without transformation. However, the components obtained by these methods, including
RPCA, cannot be guaranteed to be decorrelated. Consequently, autocorrelation bias may persist.
In contrast, our approach ensures full decorrelation of the derived components (see Lemma 3.2),
effectively addressing autocorrelation bias and leading to the best overall performance.

Varying forecast models. We explore the versatility of Time-o1 in augmenting representative
forecast models: Fredformer [37], iTransformer [28], FreTS [64], and DLinear [67]. As illustrated in
Fig. 3, Time-o1 improves forecast performance in all cases. For instance, on the Weather dataset,
iTransformer and FreTS with Time-o1 achieve substantial reductions in MSE—up to 6.9% and 2.9%,
respectively. Further evidence of Time-o1’s versatility can be found in Appendix E.4. These results
confirm Time-o1’s potential as a plug-and-play strategy to enhance diverse forecast models.

4.6 Hyperparameter sensitivity

In this section, we examine the impact of critical hyperparameters on the performance of Time-o1.
The results are presented in Table 5 and Table 6. Additional trends across different datasets and
forecast lengths are provided in Appendix E.5. The primary observations are summarized as follows:

• The coefficient α determines the relative importance of the proposed transform-enhanced loss in
(5). When α is set to 1, Time-o1 exclusively uses the transform-enhanced loss. Overall, increasing
α from 0 to 1 leads to improved forecast accuracy, with the best results typically achieved when
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Figure 3: Improvement of Time-o1 applied to different forecast models, shown with colored bars for
means over forecast lengths (96, 192, 336, 720) and error bars for 50% confidence intervals.

Table 5: Hyperparameter results on α.

ETTm1 ETTh2 Weather

α MSE MAE MSE MAE MSE MAE

0 0.3867 0.3979 0.3766 0.4019 0.2486 0.2930

0.3 0.3871 0.3983 0.3742 0.3982 0.2439 0.2851

0.5 0.3864 0.3976 0.3703 0.3964 0.2432 0.2833

0.7 0.3831 0.3959 0.3674 0.3943 0.2433 0.2849

1 0.3850 0.3933 0.3606 0.3890 0.2753 0.3209

Note: Bold and underlined denote best and second-best results.

Table 6: Hyperparameter results on γ.

ETTm1 ETTh2 Weather

γ MSE MAE MSE MAE MSE MAE

0.1 0.3915 0.4002 0.3816 0.4029 0.2437 0.2845

0.3 0.3849 0.3964 0.3694 0.3961 0.2424 0.2825

0.5 0.3817 0.3943 0.3651 0.3923 0.2466 0.2877

0.7 0.3798 0.3930 0.3603 0.3886 0.2443 0.2861

1 0.3814 0.3940 0.3624 0.3903 0.2491 0.2924

Note: Bold and underlined denote best and second-best results.

α is close to 1. The performance improvement is significant, e.g., MSE reduction on ETTh2 by
0.016, showcasing the utility of the transform-enhanced loss to improve forecast performance.

• The coefficient γ determines the ratio of retained components for training. The results demonstrate
that preserving all label information (γ = 1) does not necessarily yield optimal performance.
Instead, the best results are obtained at γ < 1, such as 0.7 on ETTs and 0.3 on Weather. This phe-
nomenon can be attributed to the trade-off between information loss and optimization complexity:
by focusing on the top components, optimization is simplified due to reduced task amount. Besides,
since the top components contain most information, the information loss by dropping the other
components is negligible. These factors synergistically contribute to improved performance.

5 Conclusion

In this study, we highlight the importance of designing loss functions for training time-series fore-
casting models. Two critical challenges are formulated: label autocorrelation, which induces bias,
and number of tasks, which determines optimization complexity. To address these challenges, we
introduce a model-agnostic loss function called Time-o1. This method transforms the label sequence
into decorrelated components with discernible significance. Then, it trains forecast models to align
the most significant components, which simultaneously mitigates label autocorrelation and reduces
task amount. Empirically, Time-o1 improves forecast performance across diverse datasets.

Limitations & future works. In this work, we investigate the challenges of label autocorrelation and
excessive number of tasks in time-series forecasting. Nevertheless, these issues also manifest in areas
such as speech generation, target recognition, and dense image prediction. Applying Time-o1 in
these contexts is a promising avenue for future research. Additionally, history sequence also exhibits
autocorrelation and contains redundancy. Transforming inputs to derive decorrelated, compact
representations could offer additional performance gains and also warrants investigation.
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A On the Implementation Details of Label Correlation Estimation

In this section, we introduce the motivation and implementation details of the label autocorrelation
estimation techniques in Fig. 1. Measuring label autocorrelation yt → yt′ is indeed challenging due
to the presence of confounding effect [47, 46, 21]. Specifically, the fork structure yt ← x → yt′
introduces spurious correlations between yt and yt′ , thereby distorting the true strength of the label
autocorrelation yt → yt′ of interest. This structural confounding undermines the validity of traditional
measures such as Pearson correlation for quantifying label autocorrelation.

The previous work [51] employs the double machine learning (DML) method to estimate the ground-
truth correlation while mitigating the influence of the fork structure. We adopt this in our experiments.
DML is a statistical technique designed to estimate the causal effect of a treatment on an outcome
while controlling for fork variables. Specifically, suppose we have a treatment variable T , an outcome
variable Y , and a set of fork variables X . The goal is to estimate the causal effect of T on Y while
controlling for the influence of X . To this end, DML first orthogonalizes both the treatment and
outcome with respect to the fork variables. Two parametric models are employed to predict the
treatment and outcome based on the fork variables. These predictions capture the impact of X on Y
and T . Subsequently, such impact of X is eliminated by calculating the residuals. Finally, the DML
method regresses the outcome residuals on the treatment residuals, thereby measuring the causal
effect of T on Y while removing the influence of the fork variables.

In our experiments, we measure label autocorrelation by treating the input sequence x as the fork
variable and different steps of the label sequences yt and yt′ as the treatment and outcome variables,
respectively. Then, we estimate the treatment effect of yt on yt′ controlling x. Similarly, when
measuring the correlation between different components, we use different components zk and zk′ as
the treatment and outcome variables. Linear regression model is employed as the parametric model
for both the treatment and outcome variables for efficiency, which is consistent with [51].
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(a) Correlation between different steps in label sequence.
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(b) Correlation between different extracted components.

Figure 4: The label autocorrelation in the original label sequence and the extracted components. The
datasets are ETTh1, ETTh2, ETTm1, and Weather from left to right. The forecast length is set to 96.

To further complement the case study in Fig. 1, we analyzed the correlation matrices of the label
sequences and the extracted components across multiple datasets, with the results presented in Fig. 4.
The main observations are summarized as follows.

• Panel (a) displays the correlation matrix of the label sequence, characterized by substantial non-
diagonal elements, which highlight the strong autocorrelation among the labels. In contrast, panel
(b) shows the correlation matrix of the extracted components, where the non-diagonal elements are
nearly zero, indicating effective decorrelation.

• Compared to the results reported in [51], where some obtained components remain correlated, the
non-diagonal elements in panel (b) are fully eliminated. This difference arises because the Fourier
transform in [51] achieves decorrelation only when the original label sequence is nearly infinitely
long (T→∞), a condition that is not met in real-world applications with finite forecast horizons.
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This limitation stems from the predefined nature of the projection matrix, which lacks adaptation
to the specific properties of the data. In contrast, our method ensures decorrelation by solving a
constrained optimization problem, without relying on an infinitely long forecast horizon, thereby
providing a more reliable approach for handling autocorrelation bias.

B Theoretical Justification

Theorem B.1 (Autocorrelation bias, Theorem 3.1 in the main text). Given a univariate label sequence
y ∈ RT where Σ ∈ RT×T denotes the step-wise correlation coefficient, the loss function LMSE

in (1) is biased from the true negative log-likelihood of the label sequence, which is given by:

Bias = ∥y − ŷ∥2Σ−1 − ∥y − ŷ∥2 − 1

2
log |Σ| . (6)

where ∥v∥2Σ−1 = v⊤Σ−1v. The bias vanishes if different steps in y are decorrelated.5

Proof. The proof follows our previous work [51] but relaxes the first-order Markov assumption.

Suppose the label sequence follows a multivariate normal distribution with mean vector µ = ŷ and
covariance matrix Σ, where the off-diagonal entries are Σij = ρijσ

2 for i ̸= j. Here, ρij denotes the
partial correlation between yi and yj . The log-likelihood of the label sequence Y can be expressed as:

log p(y) =
1

2

(
T log(2π) + log |Σ|+ (y − ŷ)⊤Σ−1(y − ŷ)

)
.

Removing the constant terms unrelated to ŷ, we obtain the practical negative log-likelihood (PNLL):

PNLL = (y − ŷ)⊤Σ−1(y − ŷ).

On the other hand, the TMSE loss can be expressed as:

TMSE = ∥y − ŷ∥22 = (y − ŷ)⊤I−1(y − ŷ).

where I is the identity matrix. The difference between TMSE and PNLL can be expressed as:

Bias = PNLL− TMSE = (y − ŷ)⊤Σ−1(y − ŷ)− (y − ŷ)⊤I(y − ŷ),

which immediately vanishes if the label sequence is decorrelated, i.e., Σ = I. The proof is completed.

Lemma B.2 (Lemma 3.3 in the main text). The projection matrix P∗ can be obtained via singular
value decomposition (SVD): Y = UΛ(P∗)⊤, where U ∈ RN×N and P∗ ∈ RK×K consist of
singular vectors, and the diagonal of Λ ∈ RN×K consists of singular values.

Proof. The proof is available in Section 7.3 in [43].

Lemma B.3 (Decorrelated components, Lemma 3.2 in the main text). Suppose Y ∈ RN×T contains
normalized label sequences for N samples, Z = [z1, ..., zK] are the obtained components; for any
k ̸= k′, we have z⊤k zk′ = 0.

Proof. For any two latent components zk and zk′ with k ̸= k′, we have:

z⊤k zk′ = (Ypk)
⊤(Ypk′) = p⊤

k Y
⊤Ypk′ (7)

Noting that pk and pk′ are eigenvectors of Y⊤Y [43], we have

Y⊤Ypk = λkpk, Y⊤Ypk′ = λk′pk′ , (8)

which immediately follows by z⊤k zk′ = λk′p⊤
k pk′ . Recalling that different projection bases are

constrained to orthogonal, i.e., p⊤
k pk′ = 0 for k ̸= k′, we have

z⊤k zk′ = 0 for all k ̸= k′, (9)

which completes the proof.
5The pioneering work [51] identifies the bias under the first-order Markov assumption on the label sequence.

This study generalizes this bias without the first-order Markov assumption.
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C Generalized Orthogonalization and Decorrelation Methods

In this section, we introduce alternative transforms for obtaining latent components, each with distinct
characteristics such as dimensionality reduction and noise isolation. A comparatively empirical study
is provided in Section 4.5.

RPCA. The robust principal component analysis decomposes the data into a low-rank informative
component and a sparse noise component, effectively separating structured signals from noise.
Specifically, given Y ∈ RN×T, it is achieved by solving:

min
V,S
∥V∥∗ + λ∥S∥1, subject to Y = V + S, (10)

where ∥·∥∗ is the nuclear norm, ∥·∥1 is the element-wise ℓ1 norm, and λ is a regularization parameter.
Afterwards, it performs the principal component analysis on the obtained informative component
V to derive the projection matrix P. The latent components are generated by Z = YP. While this
approach enhances noise elimination, it does not guarantee decorrelation of the derived components,
as the projection matrix P is derived from V instead of the original data matrix Y.

SVD. The singular value decomposition provides a method to decompose the matrix into different
components. Given Y ∈ RN×T, we have:

Y = UΛV⊤, (11)

where U ∈ RN×r and V ∈ RT×R are singular vectors, Λ ∈ Rr×r is diagonal with rank r. The right
singular vector is used as the projection matrix, and the latent components are generated by Z = YV.
One key distinction here needs to be highlighted. Unlike the workflow in the main text (Algorithm 1),
the label sequence is not normalized after window generation before computing SVD here, resulting
in non-decorrelated components.

FA. Factor analysis models the observed data as linear combinations of a small number of latent
factors plus noise, capturing the covariance structure through these unobserved factors. Specifically,
given mean-centered Y ∈ RN×T, the model assumes:

Y = VF⊤ +E, (12)

where V ∈ RN×K is the factor loading matrix, K is the number of latent factors (K≪ N), F ∈ RT×K

contains the latent factor scores for each sample, and E ∈ RN×T is the noise matrix. The standard
assumption is that each factor fi ∼ N (0, I) and noise ϵi ∼ N (0,Ψ), where Ψ is a diagonal covariance
matrix. The loadings V and factor scores F are typically estimated via maximum likelihood. The
latent components are given by the estimated factor scores, i.e., Z = YΨ−1F(I+ F⊤Ψ−1F)−1 :=
YP 6. This approach captures the covariance structure of Y via a small number of factors, but does
not necessarily guarantee uncorrelated or noise-isolated components.

D Complexity Analysis

In this section, we analyze the running cost of Time-o1. The core computation of Time-o1 involves
(a) calculating the projection matrix P∗ via SVD, and (b) performing transformation on both Y and
Ŷ followed by calculating their point-wise MAE loss. Given the target matrix Y ∈ RN×T, the SVD
step decomposes Y with an established complexity of O(NT2) (assuming N ≥ T and K = T).
For the sequence transformation, each sample (row) in Y is multiplied by the projection matrix
P∗ ∈ RT×T, resulting in a total complexity of O(NT2). The computation of point-wise MAE loss
across all samples and forecast steps is O(NT), which is negligible compared to the complexity
of previous steps. Thus, the overall complexity per batch is dominated by the SVD and projection
operations, both scaling as O(NT2). The main findings from the empirical evaluations are as follows.

• Fig. 5 (a) presents the computational cost for calculating the projection matrix. Overall, it increases
linearly with the sample size and quadratically with the prediction length, which aligns with the
theoretical complexity. Importantly, this operation is performed only once before training begins,
rendering the associated overhead acceptable.

6Adapted from source code of sklearn: https://github.com/scikit-learn/scikit-learn/blob/
98ed9dc73/sklearn/decomposition/
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• Fig. 5 (b) presents the computational cost for the sequence transformation. The cost increases
quadratically with the prediction length, but remains below 2 ms. This cost is comparable to that of
a linear projection. Furthermore, sequence transformation is not required during inference.

In conclusion, Time-o1 does not add complexity to model inference, and the additional complexity
during the training stage is negligible.
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Figure 5: Running cost for projection matrix calculation (left panel with varying number of samples,
right panel with varying prediction length) and sequence transformation (left panel for forward pass,
right panel for backward pass, with average and shaded areas for 95% confidence intervals).

E More Experimental Results

E.1 Long-term forecast performance

Additional results on long-term forecast performance are available in Table 7.

E.2 Short-term forecast performance

Additional results on short-term forecast performance are available in Table 8, where Fredformer [37]
serves as the forecast model.

E.3 Showcases

Additional results on showcases are available in Fig. 6 and Fig. 7.

E.4 Generalization studies

Additional results on varying forecast models and transformations are available in Fig. 8 and Table 9.

E.5 Hyperparameter sensitivity

Additional results on hyperparameter sensitivity are available in Fig. 9 for α and Fig. 10 for γ.

E.6 Comparison with different loss functions

Additional results on comparing different loss functions are available in Table 10.

E.7 Varying input length results

Additional results on varying input lengths are available in Table 11—complementing the fixed length
of 96 used in the main text.

E.8 Random seed sensitivity

Additional results on varying random seeds are available in Table 12.
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Table 7: The comprehensive results on the long-term forecasting task.

Models
Time-o1 Fredformer iTransformer FreTS TimesNet MICN TiDE DLinear FEDformer Autoformer Transformer
(Ours) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2022) (2021) (2017)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.321 0.357 0.326 0.361 0.338 0.372 0.342 0.375 0.368 0.394 0.319 0.366 0.353 0.374 0.346 0.373 0.401 0.434 0.485 0.468 0.503 0.482
192 0.360 0.378 0.365 0.382 0.382 0.396 0.385 0.400 0.406 0.409 0.364 0.395 0.391 0.393 0.380 0.390 0.415 0.446 0.504 0.482 0.807 0.664
336 0.389 0.400 0.396 0.404 0.427 0.424 0.416 0.421 0.454 0.444 0.395 0.425 0.423 0.414 0.413 0.414 0.432 0.450 0.520 0.489 0.847 0.678
720 0.447 0.435 0.459 0.444 0.496 0.463 0.513 0.489 0.527 0.474 0.505 0.499 0.486 0.448 0.472 0.450 0.522 0.500 0.594 0.523 1.037 0.771

Avg 0.379 0.393 0.387 0.398 0.411 0.414 0.414 0.421 0.438 0.430 0.396 0.421 0.413 0.407 0.403 0.407 0.442 0.457 0.526 0.491 0.799 0.648

E
T

T
m

2

96 0.172 0.251 0.177 0.260 0.182 0.265 0.188 0.279 0.184 0.262 0.178 0.277 0.182 0.265 0.188 0.283 0.205 0.289 0.218 0.300 0.386 0.441
192 0.235 0.294 0.242 0.300 0.257 0.315 0.264 0.329 0.257 0.308 0.266 0.343 0.247 0.304 0.280 0.356 0.271 0.334 0.282 0.340 1.410 0.881
336 0.293 0.333 0.302 0.340 0.320 0.354 0.322 0.369 0.315 0.345 0.299 0.354 0.307 0.343 0.375 0.420 0.327 0.366 0.335 0.370 1.940 1.070
720 0.388 0.389 0.399 0.397 0.423 0.411 0.489 0.482 0.452 0.421 0.489 0.482 0.408 0.398 0.526 0.508 0.428 0.425 0.423 0.420 2.914 1.276

Avg 0.272 0.317 0.280 0.324 0.295 0.336 0.316 0.365 0.302 0.334 0.308 0.364 0.286 0.328 0.342 0.392 0.308 0.354 0.315 0.358 1.662 0.917

E
T

T
h1

96 0.368 0.391 0.377 0.396 0.385 0.405 0.398 0.409 0.399 0.418 0.381 0.416 0.387 0.395 0.389 0.404 0.391 0.433 0.449 0.465 1.028 0.778
192 0.424 0.422 0.437 0.425 0.440 0.437 0.451 0.442 0.452 0.451 0.497 0.489 0.439 0.425 0.442 0.440 0.418 0.448 0.459 0.469 1.010 0.789
336 0.467 0.441 0.486 0.449 0.480 0.457 0.501 0.472 0.488 0.469 0.589 0.555 0.482 0.447 0.488 0.467 0.487 0.484 0.511 0.500 0.908 0.743
720 0.465 0.463 0.488 0.467 0.504 0.492 0.608 0.571 0.549 0.515 0.665 0.617 0.484 0.471 0.505 0.502 0.494 0.514 0.488 0.498 0.987 0.785

Avg 0.431 0.429 0.447 0.434 0.452 0.448 0.489 0.474 0.472 0.463 0.533 0.519 0.448 0.435 0.456 0.453 0.447 0.470 0.477 0.483 0.983 0.774

E
T

T
h2

96 0.282 0.330 0.293 0.344 0.301 0.349 0.315 0.374 0.321 0.358 0.351 0.398 0.291 0.340 0.330 0.383 0.351 0.391 0.355 0.397 1.485 0.959
192 0.359 0.381 0.372 0.391 0.383 0.397 0.466 0.467 0.418 0.417 0.492 0.489 0.376 0.392 0.439 0.450 0.456 0.456 0.478 0.471 4.218 1.585
336 0.394 0.414 0.420 0.433 0.425 0.432 0.522 0.502 0.464 0.454 0.656 0.582 0.417 0.427 0.589 0.538 0.477 0.492 0.459 0.469 2.775 1.361
720 0.400 0.427 0.421 0.439 0.436 0.448 0.792 0.643 0.434 0.450 0.981 0.718 0.429 0.446 0.757 0.626 0.522 0.505 0.499 0.502 2.274 1.257

Avg 0.359 0.388 0.377 0.402 0.386 0.407 0.524 0.496 0.409 0.420 0.620 0.546 0.378 0.401 0.529 0.499 0.452 0.461 0.448 0.460 2.688 1.291

E
C

L

96 0.145 0.235 0.161 0.258 0.150 0.242 0.180 0.266 0.170 0.272 0.170 0.281 0.197 0.274 0.197 0.282 0.187 0.302 0.189 0.304 0.253 0.350
192 0.159 0.249 0.174 0.269 0.168 0.259 0.184 0.272 0.183 0.282 0.185 0.297 0.197 0.277 0.197 0.286 0.207 0.322 0.271 0.371 0.262 0.356
336 0.173 0.264 0.194 0.290 0.182 0.274 0.199 0.290 0.203 0.302 0.190 0.298 0.212 0.292 0.209 0.301 0.211 0.326 0.243 0.352 0.269 0.363
720 0.203 0.292 0.235 0.319 0.214 0.304 0.234 0.322 0.294 0.366 0.221 0.329 0.254 0.325 0.245 0.334 0.253 0.361 0.295 0.388 0.277 0.365

Avg 0.170 0.260 0.191 0.284 0.179 0.270 0.199 0.288 0.212 0.306 0.192 0.302 0.215 0.292 0.212 0.301 0.214 0.328 0.249 0.354 0.265 0.358

Tr
af

fic

96 0.393 0.265 0.461 0.327 0.397 0.271 0.531 0.323 0.590 0.316 0.498 0.298 0.646 0.386 0.649 0.397 0.588 0.367 0.575 0.356 0.689 0.396
192 0.410 0.275 0.470 0.326 0.416 0.279 0.519 0.321 0.624 0.336 0.521 0.309 0.599 0.362 0.598 0.371 0.613 0.377 0.647 0.394 0.710 0.388
336 0.421 0.280 0.492 0.338 0.429 0.286 0.529 0.327 0.641 0.345 0.529 0.314 0.606 0.363 0.605 0.373 0.640 0.398 0.694 0.446 0.687 0.366
720 0.451 0.298 0.521 0.353 0.462 0.303 0.573 0.346 0.670 0.356 0.567 0.326 0.643 0.383 0.646 0.395 0.718 0.450 0.731 0.468 0.681 0.366

Avg 0.419 0.280 0.486 0.336 0.426 0.285 0.538 0.330 0.631 0.338 0.529 0.312 0.624 0.373 0.625 0.384 0.640 0.398 0.662 0.416 0.692 0.379

W
ea

th
er

96 0.169 0.219 0.180 0.220 0.171 0.210 0.174 0.228 0.183 0.229 0.179 0.244 0.192 0.232 0.194 0.253 0.235 0.310 0.233 0.306 0.423 0.448
192 0.210 0.258 0.222 0.258 0.246 0.278 0.213 0.266 0.242 0.276 0.242 0.310 0.240 0.270 0.238 0.296 0.295 0.353 0.286 0.347 0.664 0.585
336 0.259 0.297 0.283 0.301 0.296 0.313 0.270 0.316 0.293 0.312 0.273 0.330 0.292 0.307 0.282 0.332 0.364 0.397 0.346 0.385 0.848 0.686
720 0.327 0.349 0.358 0.348 0.362 0.353 0.337 0.362 0.366 0.361 0.360 0.399 0.364 0.353 0.347 0.385 0.411 0.429 0.412 0.420 0.861 0.685

Avg 0.241 0.280 0.261 0.282 0.269 0.289 0.249 0.293 0.271 0.295 0.264 0.321 0.272 0.291 0.265 0.317 0.326 0.372 0.319 0.365 0.699 0.601

PE
M

S0
3

12 0.070 0.176 0.081 0.191 0.072 0.179 0.085 0.198 0.094 0.201 0.096 0.217 0.117 0.226 0.105 0.220 0.108 0.229 0.233 0.366 0.106 0.206
24 0.087 0.198 0.121 0.240 0.104 0.217 0.129 0.244 0.116 0.221 0.095 0.210 0.233 0.322 0.183 0.297 0.131 0.255 0.405 0.485 0.117 0.221
36 0.105 0.219 0.180 0.292 0.137 0.251 0.173 0.286 0.134 0.237 0.107 0.223 0.379 0.418 0.258 0.361 0.159 0.285 0.327 0.415 0.127 0.233
48 0.124 0.238 0.201 0.316 0.174 0.285 0.207 0.315 0.161 0.262 0.125 0.242 0.535 0.516 0.319 0.410 0.209 0.331 0.679 0.634 0.139 0.245

Avg 0.097 0.208 0.146 0.260 0.122 0.233 0.149 0.261 0.126 0.230 0.106 0.223 0.316 0.370 0.216 0.322 0.152 0.275 0.411 0.475 0.122 0.226

PE
M

S0
8

12 0.081 0.183 0.091 0.199 0.084 0.187 0.096 0.205 0.111 0.208 0.161 0.274 0.121 0.233 0.113 0.225 0.163 0.258 0.232 0.334 0.204 0.232
24 0.117 0.218 0.138 0.245 0.123 0.227 0.151 0.258 0.139 0.232 0.127 0.237 0.232 0.325 0.199 0.302 0.197 0.288 0.545 0.550 0.232 0.251
36 0.157 0.253 0.199 0.303 0.170 0.268 0.203 0.303 0.168 0.260 0.148 0.252 0.376 0.427 0.295 0.371 0.241 0.326 0.379 0.436 0.246 0.263
48 0.207 0.294 0.255 0.338 0.218 0.306 0.247 0.334 0.189 0.272 0.175 0.270 0.543 0.527 0.389 0.429 0.302 0.375 0.531 0.502 0.278 0.297

Avg 0.141 0.237 0.171 0.271 0.149 0.247 0.174 0.275 0.152 0.243 0.153 0.258 0.318 0.378 0.249 0.332 0.226 0.312 0.422 0.456 0.240 0.261

1st Count 43 42 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Note: We fix the input length as 96 following [28]. Bold typeface highlights the top performance for each metric, while underlined text denotes
the second-best results. Avg indicates the results averaged over forecasting lengths: T=96, 192, 336 and 720.
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Table 8: The comprehensive results on the short-term forecasting task.

Models
Time-o1 Fredformer iTransformer FreTS MICN DLinear Fedformer
(Ours) (2024) (2024) (2023) (2023) (2023) (2023)

Metric SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

Yearly 13.485 3.010 0.791 13.509 3.028 0.794 13.797 3.143 0.818 13.576 3.068 0.801 14.594 3.392 0.873 14.307 3.094 0.827 13.648 3.089 0.806
Quarterly 10.105 1.180 0.889 10.140 1.185 0.893 10.503 1.248 0.932 10.361 1.223 0.916 11.417 1.385 1.023 10.500 1.237 0.928 10.612 1.246 0.936
Monthly 12.649 0.930 0.875 12.696 0.931 0.878 13.227 1.013 0.935 13.088 0.990 0.919 13.834 1.080 0.987 13.362 1.007 0.937 14.181 1.105 1.011
Others 4.852 3.274 1.027 4.848 3.230 1.019 5.101 3.419 1.076 5.563 3.71 1.17 6.137 4.201 1.308 5.12 3.649 1.114 4.823 3.243 1.019
Average 11.841 1.585 0.851 11.879 1.590 0.854 12.298 1.68 0.893 12.169 1.66 0.883 13.044 1.841 0.962 12.48 1.674 0.898 12.734 1.702 0.914

1st Count 4 4 4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Note: Bold typeface highlights the top performance for each metric, while underlined text denotes the second-best results. Avg indicates the
results averaged over forecasting lengths: yearly, quarterly, and monthly.
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(a) Fredformer with ETTm2 case 1
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(b) iTransformer with ETTm2 case 1

0 100 200 300 400

−0.8

−0.4

0.0

0.4

0.8
GroundTruth
Prediction

0 100 200 300 400

−0.8

−0.4

0.0

0.4

0.8
GroundTruth
Prediction

0 10 20 30 40
−10

−5

0

5

GroundTruth
Prediction

0 10 20 30 40
−10

−5

0

5

GroundTruth
Prediction

(c) Fredformer with ETTm2 case 2
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(d) iTransformer with ETTm2 case 2

Figure 6: The forecast sequences generated with DF and Time-o1. The forecast length is set to 336
and the experiment is conducted on ETTm2.

19



0 100 200 300

−1.2

0.0

1.2

2.4 GroundTruth
Prediction

0 100 200 300

−1.2

0.0

1.2

2.4 GroundTruth
Prediction

0 10 20 30 40

−10

−5

0

5

GroundTruth
Prediction

0 10 20 30 40

−10

−5

0

5

GroundTruth
Prediction

(a) Fredformer with ECL case 1
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(c) Fredformer with ECL case 2
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(d) iTransformer with ECL case 2

Figure 7: The forecast sequences generated with DF and Time-o1. The forecast length is set to 192
and the experiment is conducted on ECL.
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Figure 8: Performance of different forecast models with and without Time-o1. The forecast errors
are averaged over forecast lengths and the error bars represent 50% confidence intervals.
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Table 9: Varying transformation results.
Trans PCA RPCA SVD FA DF

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

C
L

96 0.1449 0.2348 0.1450 0.2349 0.1450 0.2350 0.1478 0.2385 0.1500 0.2415
192 0.1592 0.2487 0.1594 0.2487 0.1595 0.2490 0.1619 0.2517 0.1681 0.2591
336 0.1731 0.2645 0.1732 0.2646 0.1730 0.2643 0.1789 0.2711 0.1823 0.2744
720 0.2033 0.2920 0.2066 0.2960 0.2214 0.3066 0.2095 0.2975 0.2145 0.3035

Avg 0.1701 0.2600 0.1710 0.2611 0.1747 0.2637 0.1745 0.2647 0.1787 0.2696

W
ea

th
er

96 0.1692 0.2185 0.1715 0.2199 0.1723 0.2223 0.1717 0.2247 0.1737 0.2277
192 0.2102 0.2575 0.2116 0.2590 0.2116 0.2597 0.2125 0.2636 0.2128 0.2661
336 0.2586 0.2971 0.2631 0.3072 0.2676 0.3110 0.2613 0.2997 0.2705 0.3159
720 0.3271 0.3487 0.3303 0.3581 0.3394 0.3681 0.3354 0.3610 0.3372 0.3623

Avg 0.2413 0.2805 0.2441 0.2860 0.2477 0.2903 0.2452 0.2872 0.2486 0.2930
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Figure 9: Time-o1 improves Fredformer performance given a wide range of transformed loss strength
α. These experiments are conducted on ETTh1 (a), ETTh2 (b), ETTm1 (c), ETTm2 (d), ECL (e),
Weather (f) datasets. Different columns correspond to different forecast lengths (from left to right:
96, 192, 336, 720, and their average with shaded areas being 15% confidence intervals).
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Figure 10: Time-o1 improves Fredformer performance given a wide range of rank ratio γ. These
experiments are conducted on ETTh1 (a), ETTh2 (b), ETTm1 (c), ETTm2 (d), ECL (e), and Weather
(f) datasets. Different columns correspond to different forecast lengths (from left to right: 96, 192,
336, 720, and their average with shaded areas being 15% confidence intervals).
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Table 10: Comparable results with different loss functions.

Loss Time-o1 FreDF Koopman Dilate Soft-DTW DPTA DF

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Forecast model: FredFormer

E
T

T
m

1

96 0.321 0.357 0.326 0.355 0.335 0.368 0.337 0.367 0.332 0.363 0.332 0.364 0.326 0.361
192 0.360 0.378 0.363 0.380 0.366 0.384 0.364 0.384 0.370 0.386 0.370 0.386 0.365 0.382
336 0.389 0.400 0.392 0.400 0.399 0.408 0.397 0.406 0.406 0.409 0.409 0.410 0.396 0.404
720 0.447 0.435 0.455 0.440 0.456 0.441 0.457 0.443 0.478 0.450 0.476 0.448 0.459 0.444

Avg 0.379 0.393 0.384 0.394 0.389 0.400 0.389 0.400 0.397 0.402 0.396 0.402 0.387 0.398

E
T

T
h1

96 0.368 0.391 0.370 0.392 0.375 0.397 0.378 0.399 0.376 0.398 0.378 0.399 0.377 0.396
192 0.424 0.422 0.436 0.437 0.438 0.434 0.439 0.435 0.439 0.435 0.438 0.433 0.437 0.425
336 0.467 0.441 0.473 0.443 0.473 0.455 0.481 0.453 0.484 0.455 0.486 0.455 0.486 0.449
720 0.465 0.463 0.474 0.466 0.523 0.487 0.516 0.482 0.542 0.510 0.538 0.510 0.488 0.467

Avg 0.431 0.429 0.438 0.434 0.452 0.443 0.453 0.442 0.460 0.449 0.460 0.449 0.447 0.434

E
C

L

96 0.151 0.245 0.152 0.247 0.166 0.263 0.158 0.253 0.168 0.266 0.158 0.253 0.161 0.258
192 0.166 0.256 0.166 0.257 0.174 0.267 0.170 0.263 0.218 0.313 0.216 0.307 0.174 0.269
336 0.181 0.274 0.183 0.278 0.188 0.280 0.190 0.286 0.197 0.291 0.199 0.295 0.194 0.290
720 0.213 0.304 0.216 0.304 0.232 0.318 0.229 0.316 0.240 0.322 0.235 0.322 0.235 0.319

Avg 0.178 0.270 0.179 0.272 0.190 0.282 0.187 0.280 0.206 0.298 0.202 0.294 0.191 0.284

W
ea

th
er

96 0.171 0.208 0.174 0.213 0.174 0.214 0.173 0.214 0.173 0.213 0.179 0.219 0.180 0.220
192 0.219 0.253 0.219 0.254 0.220 0.256 0.225 0.260 0.220 0.255 0.223 0.257 0.222 0.258
336 0.277 0.295 0.278 0.296 0.280 0.298 0.280 0.299 0.281 0.296 0.281 0.298 0.283 0.301
720 0.353 0.346 0.354 0.347 0.354 0.347 0.355 0.348 0.369 0.355 0.356 0.347 0.358 0.348

Avg 0.255 0.276 0.256 0.277 0.257 0.279 0.258 0.280 0.261 0.280 0.260 0.280 0.261 0.282
Forecast model: iTransformer

E
T

T
m

1

96 0.323 0.358 0.334 0.365 0.350 0.382 0.342 0.376 0.339 0.373 0.341 0.375 0.338 0.372
192 0.371 0.388 0.381 0.390 0.389 0.400 0.381 0.396 0.383 0.395 0.383 0.395 0.382 0.396
336 0.408 0.407 0.417 0.412 0.425 0.423 0.418 0.418 0.429 0.423 0.429 0.423 0.427 0.424
720 0.477 0.450 0.489 0.453 0.489 0.458 0.487 0.457 0.516 0.469 0.512 0.467 0.496 0.463

Avg 0.395 0.401 0.405 0.405 0.413 0.416 0.407 0.412 0.417 0.415 0.416 0.415 0.411 0.414

E
T

T
h1

96 0.378 0.393 0.378 0.395 0.392 0.411 0.385 0.405 0.387 0.405 0.386 0.405 0.385 0.405
192 0.428 0.423 0.428 0.423 0.446 0.442 0.440 0.437 0.443 0.439 0.441 0.439 0.440 0.437
336 0.473 0.450 0.470 0.447 0.483 0.461 0.480 0.457 0.494 0.464 0.489 0.462 0.480 0.457
720 0.473 0.469 0.490 0.484 0.501 0.491 0.504 0.492 0.557 0.520 0.538 0.509 0.504 0.492

Avg 0.438 0.434 0.442 0.437 0.455 0.451 0.452 0.448 0.470 0.457 0.463 0.454 0.452 0.448

E
C

L

96 0.145 0.235 0.149 0.238 0.151 0.243 0.150 0.241 0.149 0.241 0.149 0.240 0.150 0.242
192 0.159 0.249 0.163 0.251 0.167 0.257 0.168 0.259 0.164 0.255 0.166 0.257 0.168 0.259
336 0.173 0.264 0.179 0.268 0.182 0.275 0.181 0.274 0.180 0.274 0.180 0.272 0.182 0.274
720 0.203 0.292 0.212 0.297 0.212 0.300 0.212 0.300 0.207 0.296 0.212 0.300 0.214 0.304

Avg 0.170 0.260 0.176 0.264 0.178 0.269 0.178 0.269 0.175 0.266 0.177 0.267 0.179 0.270

W
ea

th
er

96 0.163 0.202 0.170 0.208 0.206 0.257 0.208 0.259 0.207 0.252 0.209 0.258 0.171 0.210
192 0.214 0.248 0.219 0.252 0.264 0.300 0.252 0.285 0.264 0.303 0.258 0.291 0.246 0.278
336 0.274 0.294 0.279 0.296 0.309 0.326 0.311 0.328 0.314 0.333 0.312 0.331 0.296 0.313
720 0.351 0.344 0.358 0.347 0.377 0.369 0.374 0.364 0.384 0.377 0.383 0.373 0.362 0.353

Avg 0.251 0.272 0.257 0.276 0.289 0.313 0.286 0.309 0.292 0.316 0.291 0.313 0.269 0.289
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Table 11: Varying input sequence length results on the Weather dataset.
Models Time-o1 iTransformer Time-o1 PatchTST

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

In
pu

ts
eq

ue
nc

e
le

ng
th

96

96 0.163 0.202 0.171 0.210 0.175 0.213 0.200 0.244
192 0.214 0.248 0.246 0.278 0.224 0.257 0.229 0.263
336 0.274 0.294 0.296 0.313 0.276 0.296 0.287 0.303
720 0.351 0.344 0.362 0.353 0.353 0.346 0.363 0.353

Avg 0.250 0.272 0.269 0.289 0.257 0.278 0.270 0.291

192

96 0.163 0.205 0.168 0.215 0.158 0.199 0.164 0.208
192 0.210 0.248 0.213 0.253 0.204 0.242 0.225 0.269
336 0.259 0.287 0.265 0.294 0.257 0.286 0.287 0.308
720 0.334 0.338 0.341 0.345 0.332 0.337 0.341 0.345

Avg 0.241 0.270 0.247 0.277 0.238 0.266 0.254 0.283

336

96 0.157 0.203 0.162 0.213 0.150 0.196 0.156 0.206
192 0.199 0.246 0.211 0.256 0.196 0.241 0.222 0.277
336 0.251 0.287 0.260 0.295 0.246 0.282 0.251 0.285
720 0.324 0.338 0.332 0.341 0.320 0.333 0.327 0.338

Avg 0.233 0.268 0.241 0.276 0.228 0.263 0.239 0.277

720

96 0.161 0.213 0.172 0.225 0.152 0.201 0.154 0.207
192 0.205 0.250 0.220 0.268 0.198 0.248 0.205 0.254
336 0.254 0.292 0.282 0.311 0.248 0.284 0.248 0.288
720 0.318 0.339 0.337 0.351 0.313 0.335 0.317 0.339

Avg 0.235 0.274 0.253 0.289 0.228 0.267 0.231 0.272

Table 12: Experimental results (mean±std) with varying seeds (2021-2025).

Dataset ECL Weather

Models Time-o1 DF Time-o1 DF

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

96 0.145±0.000 0.235±0.000 0.150±0.001 0.242±0.001 0.164±0.001 0.203±0.001 0.190±0.012 0.232±0.014

192 0.160±0.001 0.249±0.001 0.166±0.002 0.257±0.002 0.216±0.002 0.250±0.001 0.240±0.011 0.272±0.010

336 0.174±0.002 0.266±0.002 0.181±0.001 0.273±0.001 0.274±0.001 0.294±0.001 0.293±0.003 0.310±0.003

720 0.205±0.001 0.293±0.001 0.216±0.004 0.303±0.003 0.353±0.002 0.344±0.001 0.361±0.002 0.352±0.001

Avg 0.171±0.001 0.261±0.001 0.178±0.001 0.269±0.001 0.252±0.001 0.273±0.001 0.271±0.003 0.292±0.003
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detail our training and evaluation protocols in the experimental setting
section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use open access data, and the code is provided in an anonymous link.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We detail our training and evaluation protocols in the experimental setting
section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Figure 3 which are crucial for evaluating the efficacy of TransDF, we report
the error bars to make the results more rigorous and comprehensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the type of compute workers, memory in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Since it is an algorithm-oriented research, there is no societal impact of the
work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve these issues.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in
the paper, are properly credited. The license and terms of use are explicitly mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new datasets and benchmarks in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We use open-access datasets and do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We use open-access datasets and do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not involve LLMs as any important, original, or non-standard compo-
nents in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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