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Abstract— Visible-infrared person re-identification (VI-ReID)
is the task of matching the same individuals across the vis-
ible and infrared modalities. Its main challenge lies in the
modality gap caused by the cameras operating on different
spectra. Existing VI-ReID methods mainly focus on learning
general features across modalities, often at the expense of
feature discriminability. To address this issue, we present a novel
cycle-construction-based network for neutral yet discriminative
feature learning, termed CycleTrans. Specifically, CycleTrans
uses a lightweight knowledge capturing module (KCM) to cap-
ture rich semantics from the modality-relevant feature maps
according to pseudo anchors. Afterward, a discrepancy modeling
module (DMM) is deployed to transform these features into
neutral ones according to the modality-irrelevant prototypes.
To ensure feature discriminability, another two KCMs are further
deployed for feature cycle constructions. With cycle construction,
our method can learn effective neutral features for visible
and infrared images while preserving their salient semantics.
Extensive experiments on SYSU-MM01 and RegDB datasets
validate the merits of CycleTrans against a flurry of state-of-
the-art (SOTA) methods, +1.88% on rank-1 in SYSU-MM01
and +1.1% on rank-1 in RegDB. Our code is available at
https://github.com/DoubtedSteam/CycleTrans.

Index Terms— Cross-modality retrieval, deep learning, person
re-identification.
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I. INTRODUCTION

VISIBLE-INFRARED person re-identification (VI-ReID)
[1] aims at matching visible and infrared images of

pedestrians with the same identity, which are captured by the
cameras operating on different spectra. As more and more
infrared cameras are deployed in real-world scenarios, the
research of VI-ReID has attracted increasing attention from
both academia and industry [1], [2], [3], [4], [5], [6], [7],
[8]. In addition to the intrinsic challenges of traditional Re-ID
tasks, such as the variations of viewpoints and body poses,
VI-ReID also suffers from the obvious appearance difference
between pedestrian images of different modalities [9], [10],
[11], [12]. Meanwhile, besides the blur of image [13] and
occlusion of human body [14], feature extraction is also
hindered by the characteristics of cameras, e.g., the appearance
of the same person in different modalities only has limited
shared information.

This issue is also coined as modality gap [1], [15], [16],
[17], as illustrated in Fig. 1(a). Specifically, under different
types of cameras, the pedestrian will exhibit notable differ-
ences in visual characteristics, e.g., the color and texture of
clothes. And this gap will be further reflected in the features
extracted by deep neural networks, as shown in Fig. 1(b).
In this case, the traditional Re-ID methods [18], [19], [20],
[21], which identify pedestrians mainly based on the appear-
ance, often fail to accomplish this task.

In recent years, a bunch of methods have been proposed
for VI-ReID and achieved remarkable progress [2], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31]. The prevalent
solution [22], [23], [24], [25], [32] to modality gap is aligning
the feature or pixel distributions of two modalities, which,
however, usually comes at the expense of feature discrim-
inability. To explain, the feature alignment needs to cluster
the samples of the same modality in the joint semantic space.
This optimization process also reduces the semantic distances
between the samples of different identities, as shown in Fig. 1.
Meanwhile, the salient semantics of pedestrian images tend to
be lost during alignment, e.g., the details of cloths, which also
greatly reduce the descriptive power of learned features. In this
case, how to make a trade-off between the generality and
discriminability of multi-modal features is the key to VI-ReID.

To address this issue, we propose a novel cycle-
construction-based network (CycleTrans) for VI-ReID.
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Fig. 1. Illustrations of the examples of VI-ReID and the feature spaces of
different Re-ID methods. (a) In VI-ReID, pedestrians with the same identity
exhibit notable appearance differences between visible and infrared images,
which is often termed modality gap. (b) Traditional methods (left) often fail
to match pedestrians across modalities, and only cross-modality alignment
(middle) often narrows down the decision boundaries between samples of
different identities. So, the idea semantic space for VI-ReID (right) should be
neutral yet discriminative.

The main principle of CycleTrans is to enhance the descriptive
power of transformed neutral features via semantical cycle
reconstructions. As shown in Fig. 2, the proposed CycleTrans
consists of three knowledge capturing modules (KCMs)
sharing the same parameters, and a discrepancy modeling
module (DMM). Specifically, the first KCM extracts
discriminative semantics from convolution feature maps
according to modality-specific anchors. Afterward, DMM
is applied to transform these features into neutral ones
for visible and infrared images, which is achieved by
using modality-irrelevant prototypes as the transfer targets.
To ensure discriminability, another two KCMs are further
applied to reconstruct the modality-relevant features learned
before. Based on this, two cycle constructions are built. The
cycle construction ends with the original modality, which
can benefit the discriminability. When cycle construction
ends with another modality, it helps alleviate the modality
gap. Through these cycle construction process, the proposed
method can well model general features across modalities
while preserving their salient semantics for fine-grained
pedestrian identification.

To validate the proposed CycleTrans, we conduct extensive
experiments on two benchmarks, namely SYSU-MM01 [1]
and RegDB [17]. The experimental results not only show its
obvious performance gains over the state-of-the-art (SOTA)
methods, e.g., +1.88% Rank-1 on SYSU-MM01 and +1.1%
Rank-1 on RegDB than DEEN [33], but also greatly confirm
its effectiveness in bridging the modality gap.

Overall, our main contributions are threefold.

1) We propose a novel cycle-construction-based network
for VI-ReID, termed CycleTrans. CycleTrans applies
shared prototypes as transferring targets to mitigate
the modality gap, and adopts the cycle construction to
enhance feature discriminability.

2) To alleviate the modality gap while preserving salient
semantics, two novel modules are proposed, namely

KCM and DMM, which can help the model learn
discriminative yet neural features.

3) The proposed CycleTrans achieves new SOTA perfor-
mance on multiple benchmark datasets, e.g., 76.58%
on Rank-1 in SYSU-MM01 under all-search single-shot
setting. And the experimental results also well validate
its effectiveness toward the modality gap.

II. RELATED WORK

VI-ReID is an essential task that aims to match individuals
across the visible and infrared modalities, effectively com-
pensating for the deficiencies of visible cameras in low-light
conditions. This task introduces unique challenges beyond
those found in traditional ReID, such as varying viewpoints,
illumination, and body poses, while also contending with
the modality gap–the marked appearance differences when
captured by different camera types [34], [35], [36], [37].

To address these initial challenges, Wu et al. [1] introduced
the foundational SYSU-MM01 dataset and proposed a deep
zero-padding network specifically designed for cross-modality
matching. Building on this foundation, two-stream models
were explored to process each modality independently, aiming
to minimize variations at both the feature and prediction
levels [38], [39], [40]. These methods set the stage for more
advanced strategies like MSO [41] and CoAL [42], which
further honed the capture of intra-modality information and
enhanced feature discriminability. The integration of GANs
marked a significant evolution in the field, with CmGAN [2]
being the first to employ these networks for VI-ReID. Sub-
sequent innovations followed, including AlignGAN [23] and
JSIA [24], which leveraged GANs to generate images for
the missing modality and align cross-modal distributions at
multiple levels. In parallel, D2RL [22] proposed a novel
four-dimensional image space that encompasses both RGB and
infrared data. As the field progressed, researchers introduced
the concept of an intermediate modality with works like
X-modality [25], cm-SSFT [5], SFANet [43], and MSA [44],
which served as a bridge between the visible and infrared
spectra. Besides, PartMix [45] generates the middle modality
through a novel data augmentation way. However, a drawback
emerged in that cm-SSFT required additional modality infor-
mation even during the testing phase. In an effort to circumvent
this issue, FBP-AL [46] and FMCNet [47] concentrated on
extracting features that transcend modalities, with FMCNet
utilizing a memory bank approach and MAUM [48] focusing
on information aggregation from alternate-modality memory
banks. Further refining this approach, MSCLNet [49] sought
to combine representations from both modalities to increase
discriminability and suppress noise. Meanwhile, MPANet [50]
delved into the subtleties of inter-modality differences without
supplementary supervision. Most recently, DEEN [51] and
SMCL [33] have innovated by generating diverse embeddings
and applying modality mixup constraints, respectively, to miti-
gate the modality gap while preserving discriminability. In the
realm of part-based approaches, SCS+ [52] and MHSA-Net
[53] brought new insights by focusing on the comparison
of identical body parts, with the former using a clustering
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Fig. 2. Overview of the proposed CycleTrans. Given an image of arbitrary modality, CycleTrans first uses the proposed KCM to gather salient yet task-related
semantics from convolution feature maps based on the modality-relevant pseudo anchors. Afterward, the DMM is deployed to transform these features into
neutral ones via modeling the discrepancy to modality-irrelevant prototypes. To ensure feature discriminability, a cycle construction stage is implemented
(bottom), where another two KCMs are used to transform neutral features into the original modality-relevant representations.

algorithm for part detection and the latter ensuring feature
consistency within the same head. Distinguishing itself from
the former methods, the proposed CycleTrans method sets
a new precedent by transforming features of both modali-
ties onto a shared distribution, guided by modality-irrelevant
prototypes. It maintains discriminability through innovative
semantic-cycle constructions, offering a novel perspective on
the persistent challenge of the modality gap in VI-ReID.

III. PRELIMINARY

Let D = {(xi , yi ,mi )}
N
i=1 denotes the VI-ReID dataset

which has N samples in total. For each example, denoted as
(xi , yi ,mi ), the image xi has a corresponding identity label
yi ∈ Y = {y j }

Np

j=1 and a modality label mi ∈ M = {v, r},
where Np is the number of identities, and v and r denote the
visible and infrared modalities, respectively.

Given a pedestrian image, VI-ReID aims to match the same
person in the other modality by ranking the similarity to
instances in the gallery set,1 and its objective can be defined
as

argmin
2

∑
i, j,k

I
(
d2
(
xi , x j

)
> d2(xi , xr )

)
,

where, yi = y j , yi ̸= yr ,mi ̸= m j ,mi ̸= mr . (1)

Here, I (·) is an indicator function that returns 1 if the condition
is satisfied and 0 otherwise. d2(·, ·) measures distance between
two features extracted by the model with parameters 2.

IV. METHOD

A. Overview

The overall structure of the proposed cycle-construction-
based network (CycleTrans) is depicted in Fig. 2. Its main
principle is to maintain the descriptive power of the trans-
formed neutral features via feature cycle constructions.

1In testing, gallery set contain a series of pedestrian images whose identity
is known.

Specifically, for a visible or infrared image xi , we first apply
a convolutional backbone to extract its feature map, denoted
as FI ∈ Rh×w×d , where h ×w denotes the resolution and d is
dimensionality. Afterward, we use the proposed KCM to mine
rich semantics from FI

F′

I = KCM(FI ,C) (2)

where C ∈ Rk×d denotes the trainable pseudo anchors of
the corresponding modality. After the process of KCM, the
obtained features F′

I ∈ Rk×d contain descriptive semantics for
Re-ID, but it is still modality-relevant.

To this end, we further transform F′

I into neutral features
via a novel DMM

FN = DMM
(
P,F′

I

)
(3)

where P ∈ Rn×d are modality-irrelevant prototypes. Neutral
features FN ∈ Rk×d are further flattened to a representation
vector and then used for cross-modal retrieval.

To ensure the discriminability of the transformed FN , we use
it to reconstruct the modality-relevant features F′

I via another
two KCMs. To keep the model compact, three KCMs share
the same parameters.

Overall, through this cycle-construction paradigm, the pro-
posed CycleTrans can well capture salient semantics from each
modality, while learning effective neutral representations for
cross-modal retrieval.

B. Knowledge Capturing Module

KCM is a novel and lightweight module for learning
discriminative and task-related semantics from convolutional
feature maps.

Concretely, given the feature map of an arbitrary modality
FI ∈ Rh×w×d , we first reshape it to a 2-d tensor F̂I ∈ Rhw×d .
Then, we apply a dot-product attention to refine the features
by aggregating semantics from similar regions

F̃I = Softmax
(

norm
(
F̂I
)
norm

(
F̂I
)T
)

F̂I (4)
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where norm(·) denotes l-2 normalization. The obtained feature
map F̃I mainly represents the general semantics of a given
image, while the relevant ones for pedestrian identification still
need to be enhanced.

Then we implement a cross-attention operation to mine
task-related semantics based on the learn-able pseudo anchors
C ∈ Rk×d

F′

I = Softmax

(
CWθ

(
F̃I Wτ

)T

√
c

)
F̃I (5)

where Wθ and Wτ are weight matrices. To adaptively select
the pattern that is most relevant to the task, we apply pseudo
anchors to filter information from the original feature maps.
Since the pseudo anchors C are highly task-related, they can
well help the model mine useful semantics for VI-ReID via (4)
and (5) from the candidate FI , resulting in more discriminative
modality-relevant features.

Notably, in our CycleTrans, KCM first serves to extract
modality-relevant features based on the pseudo anchors for VI-
ReID. And two modalities share the pseudo anchors for the
aligned semantic. During the cycle construction, KCM is used
as a module to reconstruct modality-relevant features based on
neutral features, which can be achieved by placing different
feature maps as the candidate. In KCM, the process of gradient
backward is very similar to that in self-attention [54].

C. Discrepancy Modeling Module

DMM acts to mitigate the modality gap of VI-ReID.
Instead of directly embedding the modality-relevant features
into a common semantic space, DMM learns the neutral
features via aggregating information from a set of modality-
irrelevant prototypes. The prototypes P ∈ Rn×d consist of
a set of learnable vectors that represent the semantics of
appearance [55]. Considering the actual appearance of the
pedestrian is modality-independent, so the two modalities
share the prototypes.

Concretely, given the discriminative modality-relevant fea-
tures learned by KCM, denoted as F′

I , we first calculate their
discrepancy to the trainable prototypes, where n is the number
of prototypes

P′
= P − f̂I . (6)

Here, P′
∈ Rn×d refers to the obtained discrepancy tensor and

f̂I denotes the averaged feature of F′

I . The gradient will not
be zero due to the difference between the average feature f̂I

and the modality-dependent feature F′

I . Afterward, the neutral
features FN ∈ Rk×d are obtained via a residual connection and
a cross attention

FN = F′

I + AP′,

where A = Softmax

(
F′

I Wψ (PWσ )
T

√
c

)
. (7)

Here, the attention weights A ∈ Rk×n are also the weighted
adjacent matrix between F′

I and P. The Wψ and Wσ here
are weight matrices. A can reformulate semantics in a general
space according to the modality-relevant features F′

I .

Note that the sum of each row in A equals to 1, and P′
=

P − f̂I . Thus, (7) can be rewritten as

FN = F′

I + A
(
P − f̂I

)
(8)

FN =
(
F′

I − f̂I
)
+ AP. (9)

Considering that f̂I is the averaged vector of F′

I , the term of
(F′

I − f̂I ) in (9) will result in an informative sparse tensor.
In this case, FN is mainly composed of the newly aggregated
prototype features, i.e., AP, thereby achieving the alignment
of cross-modality distributions.

To enhance the neutral features, we also place trainable
weights to adaptively adjust the contribution of each pattern
in FN , which is achieved by

FNi →
ewi∑k
j=1 ew j

FNi (10)

where w j is the weight for j th pattern of neutral feature. And
“→” refers to weighting up the neutral feature FNi extracted
according to the i th pseudo anchor. In this way, the path of
gradient backward in DMM is similar to cross-attention [55].

From (8) and (9), we can see that FN contains a certain
amount of discriminative information form F′

I − f̂I , but it
is still hard to ensure that they are discriminative enough
for VI-ReID. In this case, we further implement Cycle Con-
structions to enhance their descriptive power.

D. Cycle Construction

The main assumption of Cycle Construction is that if the
learned neutral features can recover modality-relevant informa-
tion well, they are capable of both cross-modality alignment
and prominent feature discrimination.

Specifically, the proposed cycle construction consists of two
processes, which transform the neutral features into visible and
infrared ones, respectively. Taking a visible image for example,
of which feature maps are denoted as FvI ∈ Rhw×c, we apply
the proposed KCM to reconstruct its modality-relevant features

FvRe = KCM
(
FvI ,FN

)
(11)

where FvRe is the recovered features and FN acts the role
of pseudo anchors described in (5). During training, we will
minimize the l-1 distance between the recover features FvRe
and the modality-relevant ones Fv′

I defined in (5) for the
discriminability of neutral features FN

I .
In the other stream, CycleTrans project the neutral features

to the other modality through KCM, i.e., the infrared one here,
defined as

Fr
Re = KCM

([
Fk1

I ,Fk2
I , . . . ,Fkh

I

]
,FN

)
where yi = yk j ,mi ̸= mk j , j = 1, 2, . . . , h. (12)

Here, Fr
Re denotes the recovered infrared features and

[Fk1
I ,Fk2

I , . . . ,Fkh
I ] denotes h feature maps that have the same

identity but from the infrared modality in the batch.
In (12), the neutral features are regarded as the pseudo

anchors for KCM to aggregate semantics from all feature maps
that may provide valuable information. It can help to rule out
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the factors that may affect appearance discrepancy between
samples for more accurate reconstruction, e.g., viewpoints,
body poses, and obstructions.

To ensure the reconstruction, we also minimize the semantic
distance between two generated features, i.e., F′

I , and Fr
Re.

This objective is also beneficial for alleviating the modality
gap. For an infrared image, the process of cycle construction
is the same. To maintain the compactness of CycleTrans,
we share the parameters of the three KCMs. The gradient is
only backward through the anchor features to the backbone.

E. Optimization

During training, we apply the following objectives to opti-
mize CycleTrans.

1) Cross-Entropy Loss: As the main objective of VI-ReID,
cross-entropy loss is used to learn the identities of samples
with classifier C(·) under the supervision of the label yi

Lid = −
1
B

B∑
i=1

logP
(

yi |C
(

f(i)N

))
(13)

where C(f(i)N ) is the predicted identity based on the flattened
neutral feature f(i)N ∈ Rkd of the sample xi .

2) Metric Loss: To semantically separate the obtained neu-
tral features, we apply a metric loss to CycleTrans

Lme =
1
B2

B∑
i=1

B∑
j=1,yi ̸=y j

[
ρ − d

(
f(i)N , f( j)

N

)
+d
(

f(i)N , f̄(i)N

)
+ d

(
f( j)

N , f̄( j)
N

)]
+

(14)

where [·]+ represents max{·, 0}, B denotes the batch size.
d(·) is the distance function, which is l-2 here. c(i) denotes
the center of class f(i)N belong to, which is calculated in each
batch, and ρ is the least margin between two classes. Via (14),
CycleTrans can well separate the neural features of different
identities and minimize the distance between the example and
its multi-modality anchor, i.e., the class center c. In this case,
it is much easier to obtain the general and cross-modality
representation, which is critical in VI-ReID.

3) Separation Loss: To learn neutral features with more
diverse patterns, we define the following regularization term:

Lsep =
1
k2

k−2∑
i=1

k−1∑
i= j+1

FNi FN j

|FNi |2|FN j |2
(15)

where FNi is the i th pattern of the neutral feature. Note that,
the last pattern of neutral features FN is not involved in the
Lsep, which plays the role of global representation.

4) Modality Fusion Loss: We also apply the Multikernel
Maximum Mean Discrepancy (MMD) [56] with Gaussian
kernel to make features following a similar distribution:

LMMD = ||Ev
[
φ
(
FvN
)]

− Er
[
φ
(
Fr

N

)]
||

2
Hk

(16)

where φ(·) is an implicit feature mapping function and
Hk represents the Reproducing Kernel Hilbert Space (RKHS).
FvN and Fr

N denote the neutral features of visible and infrared
images, respectively. Equation (16) can ensure the consistency
between the neural features of different modalities.

5) Reconstruction Loss: To ensure the discriminability of
neutral features and the quality of reconstructions, we propose
a distance-based reconstruction loss

Lrec = |FvRe − Fv
′

I |1. (17)

Here, the | · |1 represents the l-1 distance. By decreas-
ing the distance between reconstructed features FvRe and
modality-relevant features Fv′

I , we can keep semantic consis-
tency during transformation.

6) Alignment Loss: We also introduce an Alignment loss to
ensure the quality of recovered cross-modality features, which
is defined by

Laln = |Fr
Re − Fv

′

I |2 (18)

where | · | denote the l-2 distance. Equation (18) can also
serve to reduce the gap between visible and infrared images
by aligning two types of features.

Notably, in (17) and (18), we use the reconstruction of
visible features as an example. During training, these loss
terms are also applied to infrared images.

In summary, the overall objective function of the proposed
CycleTrans is defined as

L = Lid + Lme + λ1Lsep + λ2LMMD + λ3Lrec + λ4Laln

(19)

where λ1, λ2, λ3 and λ4 are hype-parameters. They are
set mainly based on our empirical knowledge and put the
cross-entropy loss at the center. Specifically, both λ3 and λ4 are
directly set to 0.1 based on their scales of gradients. Only
λ1 and λ2 will be tuned during experiments.

V. EXPERIMENTS

A. Datasets and Metrics

We validate the proposed CycleTrans on two VI-ReID
benchmarks, namely SYSU-MM01 [1] and RegDB [17].

SYSU-MM01 is a large-scale dataset consisting of both
indoor and outdoor images captured by four visible cameras
and two near-infrared ones. The training set contains 395 iden-
tities with 22 258 visible images and 11 909 infrared ones. The
query set has 3803 infrared images and the gallery set shares
96 identities. Under the single-shot and multishot setting, there
are 301 and 3010 randomly sampled visible images in the
gallery, respectively.

RegDB is a small-scale dataset with images captured by
a pair of aligned cameras (one visible and one thermal).
It contains 8240 images of 412 identities, each with ten visible
and ten thermal images. The dataset is randomly divided into
two splits, i.e., images of 206 identities for training and the
rest of 206 identities for testing.

For two VI-ReID datasets, the cumulative matching char-
acteristic (CMC) [57], including Rank-1, Rank-10, and
Rank-20 accuracies, and mean average precision (mAP) met-
rics are used as the evaluation metrics. All comparisons use
the same metrics.
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TABLE I
HYPERPARAMETER SELECTION ON SYSU-MM01

UNDER ALL-SEARCH SINGLE-SHOT SETTING

B. Implementation Details

For CycleTrans, we use ResNet-50 [64] as the backbone,
and the stride of the last convolutional layer is set to 1 for
more fine-grained information. The classifier C(·) consists
of a BN neck [4] and an FC layer without bias. The
input images are resized to 384 × 192 and are randomly
flipped and erased [65] with 50% probability. The λ hyper-
parameter sets are [0.3, 0.7, 0.15, 0.2] for SYSU-MM01, and
[0.2, 0.8, 0.1, 0.1] for RegDB. The margin ρ in Lme is set
to 0.5. The number of prototypes is set to 1024. We apply
seven pseudoanchors for both SYSU-MM01 and RegDB to
extract neutral features from both two modalities’ images.
Both anchors and prototypes are trainable vectors and are
initialized by a normal distribution with a mean of 0.0 and
a variance of 0.02. During training, each mini-batch contains
64 images of eight identities. We randomly sample four
visible images and four infrared images for each identity.
The proposed model is trained for a total of 140 epochs
and optimized by Adam [66] with an initial learning rate of
3.5 × 10−4. The learning rate decays at the 40th and 70th
epoch with a decay factor of 0.1.

C. Ablation Study

We first evaluate the influence of prototypes and anchors by
adjusting their numbers. As shown in Table I, more or fewer
prototypes both degrade the performance of our CycleTrans.
The more prototypes make features from two modalities
that have no common representation and cannot alleviate the
modality discrepancy. While too few prototypes are missing to
represent the necessary information about a person. Similarly,
too much anchors cause the conflict in (15) and less anchors
capture inadequate information for a person to decline the
performance.

We then ablate our CycleTrans on SYSU-MM01 under all-
search single-shot setting [1], of which results are given in
Table II. Here, baseline denotes that the model only consists
of the convolution backbone and is trained merely with the
cross-entropy loss Lid .

Table II shows the cumulative results of each design
in CycleTrans. From this table, we can first observe that
the proposed KCM and DMM can significantly improve
model performance, achieving +3.33% and +1.67% gains on
Rank-1, respectively. The use of cycle construction, i.e., +Lrec

and +Laln , can also improve performance to a large extent,
e.g., +4.56% on Rank-1 compared to “+DM M .” Meanwhile,

TABLE II
ABLATION STUDY ON SYSU-MM01 UNDER

ALL-SEARCH SINGLE-SHOT SETTING

TABLE III
IMPACT OF DIFFERENT ALTERNATIVES OF DMM ON SYSU-MM01

UNDER ALL-SEARCH SINGLE-SHOT SETTING

we also notice that the metric loss Lme can also bring
improvements on all metrics, suggesting its benefits for neutral
features. Lastly, combining all designs proposed in CycleTrans
can improve the baseline by up to +12.97% Rank-1, strongly
validating their effectiveness.

We also examine different alternatives of the proposed
DMM, i.e., (7), of which results are given in Table III. The
second block of Table III shows the different choices of DMM,
including the one aggregating prototypes without residual
connection, i.e., FN = AP, and the one without discrepancy
modeling, i.e., FN = F′

I + AP. We also use a Transformer
layer [67] for comparison.

The first alternative only uses the aggregated prototypes
as neutral features, which can strictly follow the distribu-
tion of prototype information. However, this alternative will
make the convolution backbone hard to optimize, since the
image features are not directly involved in the objective
functions. Meanwhile, the lack of fine-grained image seman-
tics from residual connection also limits its performance
upper-bound. Compared to DMM, the second alternative does
not include discrepancy modeling, which leads to obvious
performance degradation. One hypothesis is that without dis-
crepancy modeling, the obtained neutral features are still
highly modality-relevant, making the model fail in cross-
modal retrieval. The use of a Transformer layer is a good
choice for neutral feature transformation, which takes the
modality-relevant features as queries and the prototypes as
keys and values. However, its performance is still inferior to
our DMM, e.g., −3.52% Rank-1 and −3.69% mAP. Overall,
these designs well confirm the effectiveness of our DMM in
neutral feature learning for VI-ReID.

D. Comparison With SOTA Methods

We then compare our CycleTrans with a set of SOTAs
on SYSU-MM01 and RegDB, of which results are given in
Tables IV and V, respectively.
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TABLE IV
COMPARISON BETWEEN CYCLETRANS AND THE SOTA METHODS ON SYSU-MM01.THE BEST PERFORMANCE IS BOLD, AND THE SECOND

BEST IS UNDERLINED.THE METHODS THAT TAKE THE SAME BACKBONE AND SETTINGS AS AGW [17] ARE MARKED WITH “*”

1) Comparisons on SYSU-MM01: As shown in Table IV,
the proposed CycleTrans outperforms existing SOTAs by large
margins on SYSU-MM01. Specifically, compared to the latest
method, i.e., SMCL [33], CycleTrans can obviously improve
the performance of all metrics under All-Search setting, e.g.,
+4.57% on Rank-1 and +5.46% on mAP. Under the setting
of Indoor-Search, the advantages of CycleTrans are further
expanded. For instance, the SOTA performance on Single-
shot Rank-1 and Multi-shot Rank-1 is improved by +9.99%
and +9.71% by our method, which is indeed very significant.
When taking the same backbone and settings as AGW [17],
our CycleTrans maintains its advantage. Specifically, com-
pared to DEEN [51], CycleTrans improves performance under
All-Search Single-Shot, e.g., +1.88% on Rank-1 and +0.82%
on mAP.

2) Comparisons on RegDB: Similar advantages of Cycle-
Trans can be also witnessed on RegDB in Table V, which
is a smaller-scale dataset. Under two cross-modality settings,
our method achieves new SOTA performance on all met-
rics. Notably, the latest method FMCNet [47] has already
achieved obvious gains over previous VI-ReID methods, but
our CycleTrans can further improve performance, e.g., +2.2%
and +1.9% Rank-1 on two settings. When taking the same
backbone and settings as AGW [17], the proposed CycleTrans

achieves competitive performance. Under both Infrared to Vis-
ible and Visible to Infrared settings, the proposed CycleTrans
improve mAP by +2.2% and +1.9%, compare to DEEN [51].

Considering SYSU-MM01 and RegDB are two highly
competitive benchmarks, these significant performance gains
strongly validate the effectiveness of the proposed CycleTrans
and our motivation about the modality gap.

E. Quantitative Analysis

1) Impact of Hyper-Parameters: In Fig. 3, we report
the impact of hyper-parameters in the proposed CycleTrans.
We can first observe that CycleTrans is reasonably robust to
the values used to control the impact of different modules
in cycle construction and identification (i.e., λ1, λ2, λ3, and
λ4). In particular, the most significant difference appears
in λ1, when the difference between 0.3 and 0.5 reaches
3.23% in Rank-1. Especially when the value is too large,
the performance reduction is particularly obvious. Since the
model gives up some valuable information, it ensures that
the information captured by each anchor is not duplicated.
We can also observe that the loss function used to eliminate
modality differences is not sensitive to their weights, i.e.,
λ2 and λ4. This shows that the proposed KCM and DMM
play an effective role in alleviating modality gap. As for
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TABLE V
COMPARISON WITH SOTA METHODS ON REGDB.THE BEST

PERFORMANCE IS BOLD, AND THE SECOND BEST IS
UNDERLINED. THE METHODS THAT TAKE THE SAME

BACKBONE AND SETTINGS AS AGW [17]
ARE MARKED WITH “*”

Fig. 3. Impact of hyper-parameters λ1, λ2, λ3 and λ4. The performances
are evaluated on SYSU-MM01 under all-search single-shot.

reconstruction loss, the λ2 is limited to a small range to ensure
that the model can be optimized normally. Experimental results
well confirm the effectiveness of the proposed CycleTrans in
alleviating modality gap and extracting discriminative features.

2) Inference Efficiency: We further compare the actual
inference efficiencies of CycleTrans and representative meth-
ods. The computation overhead during both the training and

TABLE VI
COMPUTATION OVERHEAD OF THE PROPOSED CYCLETRANS.

THE METHODS THAT TAKE THE SAME BACKBONE AND
SETTINGS AS AGW [17] ARE MARKED WITH “*”

testing stages are reported in Table VI. We can first observe
that the proposed CycleTrans significantly improves the per-
formance, i.e., +17.59% and +18.33% on Rank-1 and mAP,
with limited increase in the computation overhead, i.e., +0.6h
in training. As for the representative method, e.g., DEEN [51],
CycleTrans* achieves +1.88% and +0.82% on Rank-1 and
mAP with 33.3% training time. Overall, the proposed Cycle-
Trans method is an effective and efficient way to address the
visible-infrared person ReID.

F. Qualitative Analysis

To gain deep insight into the proposed CycleTrans, we fur-
ther visualize the distributions of different features extracted
by the baseline and our CycleTrans in Fig. 4. We randomly
visualize samples of ten identities from the testing set via
t-SNE [68]. Fig. 4(a) shows the feature distribution of the
baseline. We can see that although these features can be
mapped to different clusters, images of the same identity but
different modalities are still hard to distinguish. For instance,
the blue and yellow features of the same modalities are
closely distributed in this space and hard to identify. Fig. 4(b)
shows the results of CycleTrans without Cycle Construc-
tion. It illustrates that CycleTrans can well transform these
modality-relevant features into neutral ones with the help of
the proposed DMM, resulting in better clusters than Fig. 4(a).
However, due to the lack of enough feature discriminability,
the cross-modality features of some identities still do not
exhibit clear semantic margins, e.g., the yellow and blue
examples. With cycle construction, this problem is greatly
alleviated, as shown in Fig. 4(c). From this figure, we can see
that our CycleTrans can learn clear margins between features
of different identities. Meanwhile, the better clustering result
of CycleTrans than the other two methods suggests a stronger
descriptive power.

Furthermore, cycle construction can also improve discrim-
inability by effectively expanding the model’s attention scopes.
We visualize the attention results of CycleTrans and its alter-
natives with Grad-CAM [69] in Fig. 5. Fig. 5(a) shows the
heat maps of the baseline. It only focuses on the information
of a small region that can be generalized across modali-
ties. However, such information is not sufficient for ReID.
Fig. 5(b) and (c) show the results of CycleTrans without
and with cycle construction. Benefiting from the first KCM,
alternative (b) can capture more information for VI-ReID. But
without cycle construction, its attention is likely to become
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Fig. 4. Feature visualizations. Circles and triangles denote the features of visible and infrared images, respectively, and the colors represent different identities.
(a) Baseline refers to the basic setting described in Table II. The middle plot shows the results of our CycleTrans (b) without cycle construction. Compared
to the other two models, our (c) CycleTrans can well cluster features of different modalities but with the same identity. It also exhibits more clear semantic
margins between identities.

Fig. 5. Visualizations of attention results. (a) Baseline refers to the basic
setting described in Table II. (b) w/o Cycle refers to the CycleTrans without
cycle construction. Compared to the other two alternatives, (c) CycleTrans
can grasp more details for VI-ReID.

noisy and sparse, e.g., attending to the background areas.
In stark contrast, CycleTrans [Fig. 5(c)] can grasp more
comprehensive and salient visual cues, and this visual informa-
tion can also be well aligned across modalities. Furthermore,
we can observe from Fig. 5(c) that the source of the knowledge
captured by CycleTrans is the appearance of a pedestrian.
According to (7), prototypes are aggregated based on their
correlation with modality-relevant features. To this end, heat
maps can well illustrate where the knowledge in a prototype
comes from.

Overall, the visualization results well confirm the effec-
tiveness of the proposed CycleTrans toward neutral yet
discriminative feature learning for VI-ReID.

VI. CONCLUSION

In this article, we aim to address the modality gap in
VI-ReID via learning neutral yet discriminative features.
To approach this target, we propose a cycle-construction-based
model for VI-ReID, termed CycleTrans. Specifically, Cycle-

Trans first use a novel KCM to mine salient semantics from
convolution feature maps based on pseudo anchors. Afterward,
we propose a DMM to transform these semantics into neutral
features based on the modality-irrelevant prototypes. To ensure
the descriptive power of the neutral features, feature cycle
constructions are performed via another two KCMs sharing
the same parameters. To validate our CycleTrans, we conduct
extensive experiments on two highly competitive benchmarks,
namely SYSU-MM01 and RegDB. The experimental results
not only report the new SOTA performance achieved by
CycleTrans with great advantages to existing methods, e.g.,
+1.88% Rank-1 and +1.1% Rank-1 on SYSU-MM01 and
RegDB, but also greatly validate the effectiveness of our
method toward the modality gap.
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