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Abstract
Global routing (GR) is a fundamental task in mod-
ern chip design and various learning techniques
have been devised. However, a persistent chal-
lenge is the inherent lack of a mechanism to guar-
antee the routing connectivity in network’s predic-
tion results, necessitating post-processing search
or reinforcement learning (RL) to enforce the con-
nectivity. In this paper, we propose a neural GR
solver called DSBRouter, leveraging the Diffu-
sion Schrödinger Bridge (DSB) model for GR.
During training, unlike previous works that learn
the mapping from noise to routes, we establish
a bridge between the initial pins and the routing
via DSB, which learns the forward and backward
mapping between them. For inference, based on
the evaluation metric (e.g. low overflow), we fur-
ther introduce a sampling scheme with evaluation-
based guidance to enhance the routing predictions.
Note that DSBRouter is an end-to-end model that
does not require a post-step to ensure connectiv-
ity. Empirical results show that it achieves SOTA
performance on the overflow reduction in ISPD98
and part of ISPD07. In some cases, DSBRouter
can even generate routes with zero overflow.

1. Introduction
Global routing (GR) (McMurchie et al., 1995; Liao et al.,
2020; Cheng et al., 2022) has emerged as one of the most
intricate and time-consuming phases in the modern design
flow of Very Large Scale Integration (VLSI) (Kramer &
Van Leeuwen, 1984), distinct from other stages such as
logic synthesis (Neto et al., 2021), floorplannning (Li et al.,
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Figure 1. Global routing in chip design via different methods. (a) a
real chip canvas from ISPD07. (b) The raw data is fed into DPM in
HubRouter. The red stripe represents the congestion in the existing
chip, while the green stripe is the stripe mask. (c) predicted hubs.
(d) generated routes by RL or other post-processing algorithms.
(e) Input pins of DSBRouter. (f) generated routes by DSBRouter.

2022a), placement (Hao et al., 2021; Shi et al., 2023c),
etc. With VLSI netlists containing millions or billions of
nets, global routers must interconnect pins while minimizing
wirelength and avoiding overflow in a limited area. However,
even in the simplified ‘2-pin’ scenario that connects each
net with only two pins under specific constraints, has proven
to be NP-complete (Paulus et al., 2021).

Traditional works (Cho et al., 2007; Kastner et al., 2002)
often rely on heuristics to solve greedily. However, the diver-
sity and scale in the modern chip design industry, introduce
new challenges for classical algorithms, requiring continu-
ous updates and improvements by human experts. To reduce
reliance on manual efforts and enhance overall design au-
tomation and quality, learning-based methods have been
introduced, yet these methods suffer from notable limita-
tions as shown in Tab. 1. For instance, approaches like (Liao
et al., 2020) leverage deep reinforcement learning (RL) to
obtain solutions but require substantial time for route gen-
eration. Others, e.g. HubRouter (Du et al., 2023) produce
solutions directly via generative methods (Li et al., 2022b;
Yan et al., 2018; Li et al., 2021). However, the generated re-
sults often rely on second-stage heuristics or RL techniques
to ensure global connectivity. This raises a natural question:
Can we directly generate high-quality, connected routes in
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an End-to-End manner without second-phase corrections?
This property is algorithmically nice as it aligns the training
and inference without additional steps in inference.

In this paper, we propose DSBRouter, which utilizes the Dif-
fusion Schrödinger Bridge (DSB) model (De Bortoli et al.,
2021) for route generation. Unlike previous generative mod-
els (Du et al., 2023) that treat initial pins as conditions and
learn a mapping from noise to routes, the proposed DS-
BRouter learns both the forward and backward mappings
between initial pins and routing results, enhancing perfor-
mance through alternating parameter learning. During the
inference process, to better align with the final evaluation
metrics (e.g., low overflow) for the routing task, we fur-
ther introduce an evaluation-based guidance technique that
improves the accuracy of the generated results. Extensive
experiments show that DSBRouter significantly improves
overflow and achieves state-of-the-art performance on pub-
lic benchmarks. This paper contributes as follows:

1) To our best knowledge, we are the first to successfully
introduce DSB (De Bortoli et al., 2021) to the global routing
problem while incorporating the alignment of data, and the
devised DSBRouter establishes the forward and backward
mappings between the initial pins and the routing.

2) We show how to effectively integrate optimization
evaluation-based guidance into the DSB model, with direct
gradient feedback from the instance-wise objective score,
enabling it to optimize while ensuring general feasibility
(i.e. connectivity in this paper).

3) It achieves strong performance without post-processing
techniques for the feasibility of final results. In particu-
lar, DSBRouter achieves SOTA performance and, in some
datasets, even achieves an overflow reduction of 100%.

2. Related Work
2.1. Global Routing

The Task of Global Routing. Given the intricate nature of
VLSI routing dilemmas, the circuit layout, such as Fig. 1a,
is divided into rectangular regions termed global cells (Cho
et al., 2007). The challenge of global routing can be con-
ceptualized as a grid graph G(V,E), where each GCell is
depicted as a vertex (v ∈ V ), and neighboring GCells are
linked by an edge (e ∈ E) symbolizing their shared bound-
ary. Chip designs commonly incorporate two or more metal
layers for routing purposes. Each metal layer is assigned to
either a horizontal or vertical orientation, and their mapping
onto a two-dimensional grid graph is illustrated in Fig. 1b.
The global router will designate a cluster of interconnected
GCells, connected by multiple edges, to each net as its rout-
ing outcome to link all pins, typically forming a Rectilinear
Steiner Tree (RST) (Chu & Wong, 2005). The principles

of Hanan grid (Hanan, 1966) and escape graph (Ganley &
Cohoon, 1994) are frequently utilized to formulate the short-
est RSMT while circumventing obstacles (Liu et al., 2012),
considering the intersection points within these graphs as
potential locations for Steiner points.

Traditional Global Router. Global routing is actually a
combinatorial problem and can be formulated as a 0-1 inte-
ger linear programming problem thus one can solve it with
a general solver. Traditional routing algorithms commonly
split global routing into two primary stages to manage con-
gestion: Steiner topology generation and rip-up and reroute
(RRR). The former employs the FLUTE algorithm (Chu &
Wong, 2005), utilizing lookup tables to create Steiner trees
with minimal wirelength for each net. However, FLUTE
does not consider congestion. During this phase, most
routers use edge shifting to alleviate congestion by mov-
ing edges out of congested regions (Chu & Wong, 2005),
while Nthu-Route 2.0 (Chang et al., 2008) introduces a novel
history-based cost function that records and analyzes previ-
ous routing congestion, dynamically adjusting the routing
cost to enhance overall routing quality and efficiency. To re-
solve congestion within the RSTs, traditional routers employ
RRR, iteratively removing initially routed nets in congested
zones and utilizing maze routing to optimize wirelength and
congestion simultaneously. This process becomes signifi-
cantly time-consuming as chip design complexity and scale
increase. Thus, accelerating congestion resolution through
deep learning-based methods can improve the overall per-
formance of global routing algorithms.

Learning-based Router. Various works have explored
the feasibility and benefits of optimizing wire length, as
well as the effectiveness of applying neural networks to
global routing. These studies include generating pin-
connection orders (Liao et al., 2020), segments (Cheng et al.,
2022), or customized hub points for rectilinear Steiner trees
(RST) (Du et al., 2023). However, the primary challenges
in practical global routing lie in managing the complexity
of large-scale nets and preventing overflow when routing
resources are limited. In such cases, detours play a critical
role in mitigating congestion, since the shortest RST—such
as the one shown in Fig.1 produced by HubRouter (Du et al.,
2023)—may not be feasible in practice. The chip layout can
be analogized to an image, where each pixel signifies a tile
in global routing. Images of varying channels denote pin
locations and grid edge capacities. The resultant points can
also be represented as a binary image.

2.2. Diffusion Schrödinger Bridges and Applications

Given two marginal distributions and a reference stochas-
tic process between them, the Schrödinger Bridge
(SB) (Schrödinger, 1932) aims to find a process that mini-
mizes the Kullback-Leibler divergence relative to the refer-
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Table 1. Characteristics of global routing approaches. Classical and RL-based methods are sensitive to pin scale, while existing generative
based methods typically decompose the task into a two-stage point generation and connection pipeline. DSBRouter, in this paper, only
one model is needed to ensure end-to-end generation from large-scale pins to routes, while also considering the quality and connectivity
of the generated routes, without any post-processing.

MODEL TYPE MULTI-PIN CONNECTIVITY SCALABILITY END-TO-END

DRL (Liao et al., 2020) RL ✗ ✓ ✗ ✓
PRNet (Cheng et al., 2022) GENERATIVE ✓ ✗ △∗

✓
HubRouter (Du et al., 2023) GENERATIVE + RL ✓ ✓ ✓ ✗
NeuralSteiner (Liu et al., 2024) ML + CLASSICAL POST-PROCESSING ✓ ✓ ✓ ✗
DSBRouter (Ours) GENERATIVE ✓ ✓ ✓ ✓

△∗
SCALABLE FOR ONE-SHOT GENERATION, BUT NOT SCALABLE FOR POST-PROCESSING.

ence process in path spaces, which is a generalization of en-
tropic optimal transport (Shi et al., 2023a; 2024b). Although
a closed-form solution for the SB problem is generally not
available, it can be approached numerically via Iterative
Proportional Fitting (IPF) (Fortet, 1940) or Iterative Marko-
vian Fitting (IMF) (Shi et al., 2023b). (De Bortoli et al.,
2021) propose the Diffusion Schrödinger Bridge (DSB),
viewed as a numerical approximation of IPF. The first it-
eration of DSB recovers the score-based generative model
(SGM) introduced by Song et al. (2021b). With further it-
erations, DSB parametrizes not only the backward process
but also the forward process. Subsequent studies (Shi et al.,
2023b; Peluchetti, 2023) have built upon DSB, introducing
refinements that further improve its theoretical foundations
and practical applicability. In particular, Tang et al. (2024)
proposes a theoretical simplification of DSB that integrates
SGM as the initialization for DSB, accelerating its conver-
gence. However, existing DSB algorithms generally fail to
utilize the aligned data (Somnath et al., 2023).

Shi et al. (2023b) investigates the performance of DSB in
various application scenarios, including generative mod-
eling (De Bortoli et al., 2021), optimal transport (Villani
et al., 2009; Peyré et al., 2019), and high-dimensional data
transition (Chen, 2023; Hoogeboom et al., 2023). Unlike
optimal transport (Shi et al., 2024c;a; 2025a), focusing on
optimizing the transport path between two distributions, and
unconstrained high-dimensional data transition problems
(e.g., converting images of cats to those of dogs), our study
addresses the Global Routing problem. It involves generat-
ing high-quality connected routing image distributions from
the original circuit image distribution under constraints such
as geometric and resource limitations. It represents a high-
dimensional data transition problem with optimization con-
straints. The trained DSB can directly perform transitions
between seen distributions. However, the Global Routing
problem, with the incorporation of geometric and resource
constraints, also requires transition on unseen circuit distri-
butions, generating high-quality connected routes, which is
undoubtedly a significant challenge. In this paper, a Router
based on DSB and an objective-oriented gradient feedback
optimization (i.e., DSBRouter) is proposed to address this
challenge.

3. Methodology
In this section, we present our proposed DSBRouter, starting
with an approach overview.

3.1. Preliminaries and Approach Overview

Overflow (OF). Let edge e(u, v) represent the boundary
between GCell u and GCell v. The capacity c(u, v) is the
available routing resource on edge e, while the demand
d(u, v) is the number of routes that traverse it. The resource
r(u, v), which can actually be utilized for routing is defined:

r(u, v) = c(u, v)− d(u, v). (1)

When r(u, v) < 0, overflow occurs. Global routing results
with excessive overflow may require a time-consuming rip-
up and reroute process (Chen & Chang, 2009) or even place-
ment adjustments to ensure successful routing. Hence, in
addition to finding the shortest paths for each net, the global
router must also aim to minimize overflow occurrences. To
reduce OF in the generated routes. DSBRouter proposes an
OF-oriented objective score function to perform sampling
with guidance in the inference stage, which will be intro-
duced in Sec. 3.3. The overview of DSBRouter is illustrated
in Fig. 2. As an End-to-End learning model, DSBRouter
takes the initial pins with congestion heatmap as inputs and
directly outputs a route with strong connectivity. During
training, defined in dsb as the backward process from pins to
routes, we provide the model with distribution XN and train
it to produce distribution X0. The transition of XN to X0

also relies on the noiser scheduler introduced in Tang et al.
(2024), besides the backbone neural network of DSBRouter.
In the inference stage, we introduce an RSMT-based ap-
proach to output the Steiner map Ms(shown in the right
part of Fig. 2) based on the predicted routing results S0 at
any given timestamp. Then the suboptimal intermediate ex-
pected route S1 is generated given Ms through algorithm 1.
The objective score function g∗ is then employed to com-
pute the gradient on any corner or Steiner pins (Liu et al.,
2024; Du et al., 2023) in S1 to perform the evaluation-based
guidance, as detailed in algorithm 2. After several rounds of
optimization guidance by above-mentioned steps, the final
generated route is refined, preserving connectivity while
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Figure 2. Overview of DSBRouter. During training, DSBRouter straightly learns the transition between initial pins with congestion
heatmap XN and connected routes X0, in bi-direction. The bottom blue part shows how DSBRouter generates a transition trajectory
between two marginal distributions, through a noiser scheduler A.3.2. During the inference stage, DSBRouter performs transitions from
initial pins to connected routes guided by the objective as shown in the left purple part. The right part shows that, in every step, DSBRouter
constructs the Steiner map, based on the existing predicted routing results S0 to output the suboptimal expected routing results S1. Then
the optimal objective g∗ is computed, and the gradient of Equation 11 is employed to refine the generated route with low connectivity.
After several rounds of optimization, the final routing results SN is derived. α: coefficient parameter, X ′

0: predicted X0.

optimizing overflow and wirelength. In general combina-
torial optimization problems, it is often very difficult—or
even practically infeasible—to directly specify the objective
score of a given instance. However, in the Global Routing
problem, DSBRouter can output a solution at each infer-
ence step to make the computation of the objective score
for the given instance possible, even if the routing solution
is disconnected. We respectively introduce the details of
DSB training and gradient feedback in Sec. 3.2 and Sec. 3.3.
Training and inference phases are detailed in Appendix A.6.

3.2. Global Routing Learning via Schrödinger Bridge

The SB problem is a famous entropy regularized (OT) prob-
lem first introduced in (Schrödinger, 1932) and further dis-
cussed in De Bortoli et al. (2021); Tang et al. (2024). Given
a reference diffusion pref ∈ ϕN+1 with finite N steps, the
data distribution (i.e. the distribution of routes pr in this
paper) and the prior (i.e. the distribution of initial pins with
congestion ps) are often set as known to solve the SB to
find the closest diffusion π to the reference (w.r.t. Kull-
back–Leibler divergence on path spaces) which satisfies

π∗ = argminπ{KL(π|pref ) : π ∈ ϕN+1, π0 = pr, πN = ps},
(2)

where π0 and πN are the marginals of π at time step 0 and
N , respectively. Upon acquiring the optimal solution of π∗,
we can sample x0 ∼ pr (e.g., the backward transition) by

initially drawing xN ∼ ps and iterate the ancestral sampling
πt|t+1(xt|xt+1). Conversely, the sampling of xN ∼ ps (e.g.,
the forward transition) is also feasible. To solve the SB
problem, many researchers employ the Iterative Proportional
Fitting (IPF) (Ruschendorf, 1995) to address it and (Tang
et al., 2024) dissect the optimization of the joint density
into a series of conditional density optimization problems
by introducing the Diffusion technologies:

π2n+1 = argmin
π
{KL(πk|k+1|π2n

k|k+1) : π ∈ ϕN+1, πN = ps},

π2n+2 = argmin
π
{KL(πk+1|k|π2n+1

k+1|k) : π ∈ ϕN+1, π0 = pr}.
(3)

To optimize Eq. 3, DSB follows the common practice em-
ployed in SGM (Ho et al., 2020; Song & Ermon, 2019) to
assume πt+1|t, πt|t+1 as Gaussian distributions and model
the bi-directional transitions. The training loss of DSB is:

LBn
k+1

=E(xk,xk+1)∼pnk,k+1

[
∥Bnk+1(xk+1)− xk+1 + ν1∥2

]
,

LF̃n+1
k

=E(xk,xk+1)∼qnk,k+1

[
∥Fn+1

k (xk)− xk + ν2∥2
]
,

(4)
where ν1 = Fnk (xk+1) − Fnk (xk), ν2 =
Bnk+1(xk) − Bnk+1(xk+1), qn = π2n and
pn = π2n+1 denote the forward and backward
joint densities, respectively. More specifically,
qnk+1|k(xk+1|xk) = N (xk+1;xk + γk+1f

n
k (xk), 2γk+1I)

is the forward process and pnk|k+1(xk|xk+1) =

N (xk;xk+1 + γk+1b
n
k+1(xk+1), 2γk+1I) is the backward
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Algorithm 1 Expectation Route Generate
1: Input: Initial pins η0; route distribution xk+1 at the

timestamp k;
2: Output: Expected route distribution S1;
3: Initialize Sj = ∅;
4: Compute predicted route distribution

xk = pθ(xk|xk+1);
5: for instance j ∈ xk do
6: Extract routing result Sj for instance j;
7: Extract hubs hj (Du et al., 2023) in Sj and merge hj

with ηj0 to ηj0 ←− η
j
0 ∪ hj ;

8: for combation c(i, e) in ηj(xk) where i ∈ ηj(xk) ∧
e ∈ ηj(xk) ∧ i ̸= e do

9: if i.x ̸= e.x or i.y ̸= e.y then
10: ηj(xk)←− ηj(xk) ∪ (i.x, e.y) ∪ (e.x, i.y);
11: end if
12: end for
13: Construct the steiner map Mj

s utilizing ηj(xk);
14: Obtain the RST Sj1 from Mj

s through algorithm 3;
15: Update S1 ←− S1 ∪ Sj1;
16: end for
17: Return S1.

Algorithm 2 Evaluation-Based Guidance
1: Input: Expected route distribution S1; Predicted route

distribution xk at timestamp k; Noiser N ;
2: Output: Noiser distribution xk+1;
3: ObtainEoxk∼pr(xk|xk+1)

(η(xk)) from S1 andO(η(xk))
from xk;

4: Compute p(g∗|xk) as
exp([▽xk+1

(Eoxk+1∼pr(xk+1|xk+2)
(η(xk+1))-

O(η(xk+1)))]
⊺xk);

5: Update xk with Proposition 3.1;
6: xk+1 = N(xk).
7: Return xk+1.

process, where fnk (x) and bnk+1(xk+1) are drift functions.
Normally, DSB uses two separate neural networks to
approximate Bθ1(k,x) ≈ Bnk (x) = x + γkb

n
k (x) and

Fθ2(k,x) ≈ Fnk (x) = x + γk+1F
n
k (x), θ

1 and θ2 denote
the network parameters. In DSBRouter, we employ the
terminal reparameterized DSB used in Tang et al. (2024) to
tailor loss by Eq. 4 into:

LB̃n
k+1

= E(x0,xk+1)∼pn0,k+1

[
∥B̃nk+1(xk+1)− x0∥2

]
,

LF̃n+1
k

= E(xk,xN )∼qnk,N

[
∥F̃n+1

k (xk)− xN∥2
]
. (5)

In practice, DSBRouter uses two uvit-b based SGM to ap-
proximate the transitions between ps and pr. For (2n+1)-th
epoch of DSB, we refer to the optimization of the backward
network B and we optimize the forward network in F with
(2n+ 2)th epoch. During the inference stage, we focus on

the backward process (i.e., ps → pr), and use the sampling
method in Tang et al. (2024):

pnθ1(xk|xk+1) =N (xk;µ
n
k+1(xk+1,x0), σk+1I),

µnk+1(xk+1,x0) ≈xk+1 +
γk+1

γ̄k+1
(x0 − xk+1),

σk+1 =
2γk+1γ̄k
γ̄k+1

.

(6)

3.3. DSBRouter with Gradient Feedback

The incorporation of objective optimization is necessary and
important, which enables the direct involvement of objective
and effective search over the solution space towards mini-
mizing the score. Note that our task focus on the backward
process pnθ1(xk|xk+1) : ps → pr. At each step k, the model
is to estimate pθ(xk|xk+1). For the purpose of objective
optimization, we aim to estimate pθ(xk|xk+1,g

∗) where
g∗ is the optimal objective score given route distribution
x̄k:

g∗ = argmin
x̄k

S(x̄k) (7)

to effectively guide the backward inference process toward
p∗
r = argmin

x̄k

S(x̄k). We will later show that this guidance

can be realized by the model trained in Sec. 3.2 without
relying on additionally trained nets.

Objective. As the generated samples x̄k ∼ pr(xk|xk+1)
at any given step k are not guaranteed to satisfy the con-
straints, we propose an easy RSMT algorithm 3 to cor-
rect the predicted routes so that we can obtain the expec-
tation of overflow Eox̄k∼pr(x̄k|xk+1)

(η(x̄k)) and wirelength
Ewx̄k∼pr(x̄k|xk+1)

(η(x̄k)) given x̄k ∼ pr(x̄k|xk+1) where
η(x̄k) represents pins in given routes x̄k. The implementa-
tion of the algorithm is detailed in Appendix A.6. Then the
objective function can be defined as:

S(x̄k) =
|Eox̄k∼pr(x̄k|xk+1)

(η(x̄k))−O(η(x̄k)) + c(x̄k)|,
(8)

where c(x̄k) = Ewx̄k∼pr(x̄k|xk+1)
(η(x̄k))−W (η(x̄k)) rep-

resents the penalty function that focuses on minimizing
the wirelength. O(η(x̄k)) and W (η(x̄k)) represent the
overflow and wirelength of predicted samples x̄k out-
put by the model at timestamp k + 1. To enhance the
model’s ability to generate highly connected probabil-
ity matrices with low overflow, at step k, we aim to
bridge the gap between the overflow O(η(x̄k)) and the
expected overflow Eox̄k∼pr(x̄k|xk+1)

(η(x̄k)) given density
x̄k ∼ pr(x̄k|xk+1) with the gap between W (η(x̄k)) and
Ewx̄k∼pr(x̄k|xk+1)

(η(x̄k)) as the penalty.

Evaluation-based Guidance in Backward Transitions.
With the optimization objective prepared, we aim to estimate
pθ(xk|xk+1,g

∗). While pθ(xk|xk+1,g
∗) can be estimated
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Table 2. Correctness rate and generation time on ISPD07 benchmark. Comparison with 3 hubrouter variants w/o RL as post-process.

METRIC CASE
HUBROUTER

(VAE)
HUBROUTER

(GAN)
HUBROUTER

(DPM) DSBROUTER

Correctness
Rate

SMALL-4 0 ± 0 0.44 ± 0.009 0.38 ± 0.008 1.000
SMALL 0 ± 0 0.09 ± 0.003 0.06 ± 0.005 1.000

LARGE-4 0 ± 0 0 ± 0 0 ± 0 1.000
LARGE 0 ± 0 0 ± 0 0 ± 0 1.000

Wirelength
Ratio

SMALL-4 1.101 ± 0.018 1.012 ± 0.003 1.060 ± 0.010 1.015
SMALL 1.041 ± 0.004 1.002 ± 0.001 1.172 ± 0.011 1.001

LARGE-4 1.114 ± 0.036 1.005 ± 0.002 1.100 ± 0.019 1.001
LARGE 1.044 ± 0.011 1.001 ± 0.000 1.244 ± 0.022 1.450

Generation Time
(GPU Sec)

SMALL-4 6.11 ± 0.23 6.96 ± 0.07 742.33 ± 4.41 2643
SMALL 8.88 ± 0.13 9.10 ± 0.15 739.04 ± 8.20 2671

LARGE-4 7.39 ± 0.41 8.01 ± 0.09 741.09 ± 3.19 2687
LARGE 11.01 ± 0.11 12.34 ± 0.26 742.11 ± 4.20 2571

via the following proposition 3.1, which is adapted in the
classifier guidance technique (Dhariwal & Nichol, 2021):

Proposition 3.1. The optimization-enforced denois-
ing probability estimation pθ(xk|xk+1,g

∗) equals to
Zpθ(xk|xk+1)p(g

∗|xk) (Z is a normalizing constant).

Though DSB is not a denoising-based model, this proposi-
tion still works well as Ho & Salimans (2021) points out
that guidance can also be applied to the SDE process and
DSB uses SGM (Song et al., 2021b) as the backbone. The
proof is listed in Appendix A.5. While pθ(xk|xk+1) can
directly obtained from the trained neural network, the main
challenge is to estimate p(g∗|xk). Since xk is not accessible
at step k + 1, we apply Taylor expansion to approximate
p(g∗|xk+1) around xk = xk+1, given that xk ∼ xk+1:

log p(g∗|xk) ≈
log p(g∗|xk+1) + [▽xk+1

log p(g∗|xk+1)]
⊺(xk − xk+1)

= [▽xk+1
log p(g∗|xk+1)]

⊺xk + log p(g∗|xk+1)

− [▽xk+1
log p(g∗|xk+1)]

⊺xk+1, (9)

where log p(g∗|xk+1) − [▽xk+1
log p(g∗|xk+1)]

⊺xk+1 is
irrelevant to xk. By exponentiation, we have:

p(g∗|xk) ∝ exp([▽xk+1
log p(g∗|xk+1)]

⊺xk). (10)

To determine p(g∗|xk+1), we use energy-based model (Le-
Cun et al., 2006) to describe the density p(g∗|xk+1) and use
former part of the objective of Eq. 8 as the energy function:

E(E,xk) = Eoxk∼pr(xk|xk+1)
(η(xk))−O(η(xk)). (11)

It measures how closely O(η(xk)) aligns with expectation
Eoxk∼pr(xk|xk+1)

(η(xk)). This design aligns with our goal
of optimizing the overflow naturally Then, Gibbs distribu-
tion is employed to tailor the probability density:

p(g∗|xk+1) =
exp(−E(E,xk+1))∫
E′ exp(−E(E′,xk+1))

. (12)

Set Z =
∫
E′ exp(−E(E′, xk+1)), then we have

log p(g∗|xk+1) = (13)
Eoxk+1∼pr(xk+1|xk+2)

(η(xk+1))−O(η(xk+1))− logZ.

The gradient of Eq. 12 can be obtained as

▽xk+1
log p(g∗|xk+1) = (14)

▽xk+1
(Eoxk+1∼pr(xk+1|xk+2)

(η(xk+1))−O(η(xk+1))).

Thus, in this framework, p(g∗|xk) can be estimated as
p(g∗|xk) ∝ exp([▽xk+1(E

o
xk+1∼pr(xk+1|xk+2)

(η(xk+1)) −
O(η(xk+1)))]

⊺xk) by Eq. 10 and 13. Finally, the guided
backward transition is achieved by Proposition 3.1.

4. Experiment and Analysis
4.1. Datasets and Setups

Datasets. For training, We use ISPD07 benchmarks (Nam
et al., 2007) to build the marginal distribution ps and
nthurouter (Chang et al., 2008) to perform routing to con-
struct distribution pr. The size of figures in the training
set is fixed to 64 × 64, following the settings in Du et al.
(2023). Additionally, we also introduce the ISPD98 routing
benchmarks (Alpert, 1998) to perform global routing and
compare metrics between different methods.

Metrics. For ISPD07 routing benchmarks, we select the
metrics: correctness rate (Crrt, the percentage of routes
where all pins are connected within a single route), wire-
length ratio (WLR (Cheng et al., 2022), the ratio of the gen-
erated route length to the GT length), generation time (taken
to generate the route), and connectivity ratio (percentage
of the routes of complete connection). In the experiments
involving ISPD98, we use wirelength (WL), overflow (OF),
and runtime as metrics.

Baselines. Three traditional routers (Geosteiner (Juhl et al.,
2018), Labyrinth (Kastner et al., 2002), Flute (Wong &
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Table 3. Wirelength (WL) & overflow (OF) on ISPD98 & ISPD07. Comparison of 3 classical global routing and 4 ml-based methods.

METRICS MODEL IBM01 IBM02 IBM03 IBM04 IBM05 ADA03 ADA04

WL

GEOSTEINER* 60142 165863 145678 162734 409709 9330748 8865643
LABYRINTH* 75909 201286 187345 195856 420581 - -
FLUTE+ES* 61560 168841 146819 167233 412816 9422071 8883791

HR-VAE 64703 ± 1498 176492 ± 6830 159968 ± 3281 179895 ± 5274 434942 ± 2916 - -
HR-DPM 66464 ± 1586 190588 ± 2337 168454 ± 2486 183696 ± 1736 475820 ± 5516 - -
HR-GAN 61056 ± 151 167545 ± 236 147050 ± 208 164298 ± 326 411857 ± 472 9347032 8879952

NEURALSTEINER* 61735 170405 148036 166648 415684 9459117 9003952
DSBROUTER(OURS) 61435 174016 152862 163942 420464 29478326 24276147

OF

GEOSTEINER* 3342 7399 3944 7420 401 142254 45050
FLUTE+ES* 3100 7121 3699 6889 317 136661 41996

HR-VAE 4721 ± 667 9919 ± 801 7311 ± 692 10433 ± 1299 909 ± 106 - -
HR-DPM 4933 ± 700 14117 ± 1309 9344 ± 818 11471 ± 871 2390 ± 126 - -
HR-GAN 3491 ± 64 7481 ± 31 4010 ± 42 7551 ± 22 419 ± 7 142119 45411

NEURALSTEINER* 2200 3800 2100 2700 18 728 97
DSBROUTER(OURS) 1430 0 4 10 0 0 0

* EXPERIMENTAL RESULTS CITED FROM (LIU ET AL., 2024)

Table 4. Training epochs of DSBRouter and inference time (sec-
onds) with varying inferencing steps on ibm01.

Steps Training (epochs) Inference (s) OF WL

10 64 2774 924 64237
24 64 4378 784 68982
50 64 10881 421 70172
24 192 4491 1428 61433

Table 5. Module ablation in DSBRouter. Comparison of the
unchanged DSBRouter with modified models removing gradient
guidance (GD) module and neural network (NN), respectively.

METRICS MODEL IBM01

OF
WITHOUT GD 3561
WITHOUT NN 5971
DSBROUTER 1430

WL
WITHOUT GD 61003
WITHOUT NN 75975
DSBROUTER 61435

Chu, 2008) and ES (Chu & Wong, 2005)) as well as two
ML-based state-of-the-art methods (HubRouter (Du et al.,
2023) and NeuralSteiner (Liu et al., 2024)) are employed
as baselines. However, Neural’s preprocessing steps using
CUGR (Liu et al., 2020) and the corresponding core code
have not been made publicly available. Consequently, for
NeuralSteiner, we only report the results provided in its
original paper (Liu et al., 2024).

Other Implementation Details. Details of training/test
datasets and other protocols are given in Appendix A. Addi-
tional results are listed in Appendix B.

4.2. Correctness/Connectivity on Unconnected Cases

We conducted the Crrt and WLR evaluation on the same
test cases from part of ISPD07 benchmarks and compared
DSBRouter with three different structures of HubRouter

without RL as post-processing. For HubRouter, we repeat
the experiments 3 times and present the mean values. The
ISPD07 benchmarks, outside the training set, are divided
into ‘small-4’, ‘small’, ‘large-4’, and ‘large’. ‘4’ in their
names represents no more than 4 pins in the chip. ‘small’
and ‘large’ represent the Half-perimeter wirelength of the
net is less or more than 16. Additionally, we cancel RL
as post-processing while using the generated routes as the
terminal distribution for HubRouter. As an e2e model, DS-
BRouter not only maintains strong connectivity but also
generates competitively shorter routes. Tab. 2 highlights
DSBRouter’s ability to generate routes with high Crrt, all
100% connected across all tested cases. However, all vari-
ants of HubRouter achieve an average connectivity ratio of
only 27% in the smallest-scale route generation (small-4).
In other route generation cases, the connectivity ratio is
approximately or exactly 0. And the third line in Tab. 2
shows DSBRouter’s ability to generate routes in low WLR.
Due to the gradient recomputation and multiple inferencing
steps, DSBRouter is behind in generation time. It needs to
be mentioned that we do not include PRNet (Cheng et al.,
2022) as it shows poor connectivity in (Du et al., 2023).

4.3. Routing Results on Real-World Benchmarks

WL, OF, and generation time are evaluated on ISPD98
(ibm01-05) and ISPD07 (adaptec 3 and 4) across various
methods. As shown in Tab. 3, DSBRouter significantly
reduces the total overflow compared to all other tested meth-
ods. Compared with the SOTA ML-based method Neu-
ralSteiner, DSBRouter hits an average reduction of 90.4%
and up to 100% on ibm02, ibm05, ada03, and ada04. For
wirelength, DSBRouter has better performance on median
and small-scale benchmarks. DSBRouter does not incur
too many additional nets on ISPD98, maintaining it within
3.2% compared with NeuralSteiner and even outperforming
NeuralSteiner on ibm01 and ibm04. However, on ISPD07,
DSBRouter produces a longer wirelength compared to Neu-
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Table 6. Generation time on ISPD98 and ISPD07 benchmark. Generation time is evaluated across all tested methods.
METRIC MODEL IBM01 IBM02 IBM03 IBM04 IBM05 ADA03 ADA04

TIME

GEOSTEINER 1.00 2.25 1.66 2.10 3.70 331.23 266.51
LABYRINTH 7.11 11.08 11.61 42.03 12.70 - -

FLUTE+RES 3.14 4.90 5.88 15.49 7.88 403.61 371.11
HR-VAE 10.14 ± 0.07 9.81 ± 0.12 11.20±0.05 10.98±0.11 12.39±0.30 - -
HR-DPM 1833.48 ± 42.11 2816.77 ± 22.21 3009.18 ± 19.00 3842.61 ± 24.41 4191.71 ± 36.29 - -
HR-GAN 39.22 ± 1.03 44.41 ± 0.92 49.79 ± 1.99 68.11 ± 3.38 76.28 ± 3.42 1442.71 1501.11

DSBROUTER(OURS) 4491 5667 8418 10745 11313 115438 125589

ralSteiner. We declare that this is reasonable because the
ISPD07 test set (ada03 and ada04) we choose includes a
massive number of pins and even contains nets with an
HPWL exceeding 2000, and thus, it is much larger in scale
than the training set. The evaluation-based guidance used
by DSBRouter during sampling imposes a constraint on op-
timizing overflow, which may allow it to bypass congested
areas and generate routes with longer WL but lower OF. In
terms of generation time, as shown in Tab. 6, DSBRouter
lags behind other methods, which we attribute to the longer
sampling steps required by DSB during inference.

4.4. Ablation Study

Influence of EG and NN. To study the influence of the
introduced evaluation-based guidance (EG) module in DS-
BRouter, we ablate the guidance module from the model
architecture. Additionally, to study the role of predicted
routes at any timestamp during inference of DSB, we also
ablate the output of the neural network (NN). The modi-
fied models are tested in comparison with the unchanged
DSBRouter on ibm01. We state that the modified model
without EG cannot guarantee connectivity of the generated
route in the testing case so we employ Geosteiner as the
post-processing to complete the routing. Tab. 5 indicates
that OF is affected by both EG and the output of the NN. We
can witness a significant increase both in WL and OF from
the output of model without NN. We also claim that the
model without EG but with Geosteiner as post-processing
can generate a shorter route all due to the inherent devotion
of Geosteiner optimizing WL as an increase of OF is con-
firmed. The results on ibm01 imply that both EG and DSB
can help DSBRouter acquire congestion-avoiding routes.

Influence of inferencing steps. In DSB, the forward and
backward processes share the same number of inferencing
steps. The number of inferencing steps determines the step
size required for the DSB to transform the marginal distribu-
tion ps (or pr) to pr (or ps). We conduct evaluations on the
inferencing steps of DSB to study the effect of inferencing
steps on the generation time, OF, and WL. We fixed the
training (inferencing) steps to 64 (192 in all other exper-
iments mentioned above) and set the inferencing steps to
10, 24 (the default value in all other experiments mentioned
above), and 50, respectively, to train three different DSB

backbones. Results in Tab. 4 indicate that as the number of
inferencing steps increases, inference time also increases,
from 2774 to 10881 as inferencing steps increase from 10 to
50. As the number of inferencing steps increases, the infer-
encing time naturally increases as well. When the number
of inferencing steps increases from 10 to 50, the inferencing
time increases from 2774 to 10881. However, under the
same training step size, the effect of increasing the number
of inferencing steps is not entirely negative. As shown in the
first three rows of Tab. 4, with the same training depth, as
the number of inferencing steps increases, DSBRouter can
generate routes with lower OF, but correspondingly, the WL
also increases. As the training depth increases, DSBRouter
generates routes with shorter WL at the cost of OF.

5. Further Discussion and Conclusions
End-to-End design for global routing. We have investi-
gated the potential of DSB for the global routing task in
VLSI. In supervised scenarios, DSB can directly establish
a bidirectional transformation bridge between data Distri-
bution and prior Distribution. Meanwhile, we introduce
the goal-oriented sampling with evaluation-based guidance
technique from SGM into the inference phase of DSB, en-
abling DSBRouter to produce high-quality, connected routes
even in unsupervised settings. To the best of our knowledge,
DSBRouter is the first learning–based, end-to-end router.

Conclusion. In this paper, we propose an End-to-End ml-
based DSBRouter for the global routing problem in VLSI.
DSBRouter is the first End-to-End router to perform routing
tasks and outperforms other state-of-art two-stage routers in
reduction of overflow by an average of 90%.

Limitations. Due to the non-monotonically noise injection
strategy and meaningful pr, ps in the DSB-based sampling
process, accelerated sampling techniques such as DDIM
in DPM cannot be directly applied. Also, at each step
k, computing the g∗ and subsequent gradients based on
the network’s reparameterized outputs requires substantial
computational resources. Consequently, despite employing
parallel processing techniques, DSBRouter still suffer from
long running time. In the future, we will accelerate the
inference with the distillation-based models (Song et al.,
2023; Shi et al., 2025b) to improve the efficiency.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and Artificial Intelligence for Elec-
tronic Design Automation (AI4EDA). There are many po-
tential societal consequences of our work, none of which
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References
Alpert, C. J. The ispd98 circuit benchmark suite. In Proceed-

ings of the 1998 international symposium on Physical
design, pp. 80–85, 1998.

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313–
326, 1982.

Chang, Y.-J., Lee, Y.-T., and Wang, T.-C. Nthu-route 2.0:
A fast and stable global router. In 2008 IEEE/ACM In-
ternational Conference on Computer-Aided Design, pp.
338–343. IEEE, 2008.

Chen, H.-Y. and Chang, Y.-W. Global and detailed routing.
In Electronic Design Automation, pp. 687–749. Elsevier,
2009.

Chen, T. On the importance of noise scheduling for diffusion
models. arXiv preprint arXiv:2301.10972, 2023.

Chen, Z., He, G., Zheng, K., Tan, X., and Zhu, J.
Schrodinger bridges beat diffusion models on text-to-
speech synthesis. arXiv preprint arXiv:2312.03491, 2023.

Cheng, R., Lyu, X., Li, Y., Ye, J., Hao, J., and Yan, J.
The policy-gradient placement and generative routing
neural networks for chip design. Advances in Neural
Information Processing Systems, 35:26350–26362, 2022.

Cho, M., Lu, K., Yuan, K., and Pan, D. Z. Boxrouter
2.0: Architecture and implementation of a hybrid and
robust global router. In 2007 IEEE/ACM International
Conference on Computer-Aided Design, pp. 503–508.
IEEE, 2007.

Chu, C. and Wong, Y.-C. Fast and accurate rectilinear steiner
minimal tree algorithm for vlsi design. In Proceedings
of the 2005 international symposium on Physical design,
pp. 28–35, 2005.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. Diffu-
sion schrödinger bridge with applications to score-based
generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Du, X., Wang, C., Zhong, R., and Yan, J. Hubrouter: Learn-
ing global routing via hub generation and pin-hub connec-
tion. Advances in Neural Information Processing Systems,
36, 2023.

Fortet, R. Résolution d’un système d’équations de m.
schrödinger. Journal de Mathématiques Pures et Ap-
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A. Implementation Details
A.1. Connection between SGMs and Simpiflied Diffusion Schrödinger Bridges

We incorporate the simpiflied diffusion schrödinger Bridge (Tang et al., 2024) as the backbone of our generator in DSBRouter.
In this section, we will take an insight into the connection between generative models (especially SGMs) and DSB to pave
the way for the tailored gradient search brought into DSB.

In earlier studies (Schrödinger, 1932; Léonard, 2013), it has been demonstrated that the optimal solution to the Schrödinger
Bridge problem can be characterized by the following stochastic differential equation (SDE):

dXt = (f(Xt, t) + g2(t)▽ logψ(Xt, t))dt+ g(t)dWt, X0 ∼ pdata,
dXt = (f(Xt, t)− g2(t)▽ log ψ̂(Xt, t))dt+ g(t)dW̄t, XT ∼ pprior,

(15)

where Wt is Wiener process and W̄t its time reversal. ψ, ψ̂ ∈ C2,1([0, T ),Rd) are time-varying energy potentials that
constrained by the interconnected PDEs:{

∂ψ
∂t = −▽x ψ⊤f − 1

2Tr(g
2 ▽2

x ψ)
∂ψ̂
∂t = −▽x ·(ψ̂f) + 1

2Tr(g
2 ▽2

x ψ̂),

s.t. ψ(x, 0)ψ̂(x, 0) = pdata,

ψ(x, T )ψ̂(x, T ) = pprior.

(16)

More generally, we can achieve the distribution of SB at time t by:

pt = ψ(x, t)ψ̂(x, t). (17)

Score-based Generative Models (SGMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021a; Song & Ermon,
2019) connect two densities through a dual process: a forward process that transitions the data distribution, pdata, toward
a prior distribution pprior and a reverse process, typically guided by neural networks, that converts the prior back to the
data distribution. These two processes can be modeled as Markov chains. Given an initial data distribution pdata and a
target prior distribution pprior, the forward process pk+1|k(xk+1|xk) is designed to transition from p0 = pdata step-by-step
t.pproximation of pprior. This process generates a sequence x0:N from the (N+1) intermediate steps. This trajectory’s joint
probability distribution is then formally defined as:

p(x0:N ) = p0(x0)

N−1∏
k=0

pk+1|k(xk+1|xk). (18)

Through the backward process, the joint density can also be reformulated as a time-reversed distribution:

p(x0:N ) = pN (xN )

N−1∏
k=0

pk|k+1(xk|xk+1), (19)

however, directly computing pk|k+1(xk|xk+1) is typically challenging. SGM utilizes a simplified approach that regard the
forward process as a gradual adding of Gaussian noise:

pk+1|k(xk+1|xk) = N (xk+1;xk + γk+1fk(xk), 2γk+1I). (20)

It follows that for a sufficiently extensive N , the distribution pN will converge to Gaussian distribution, which we set as
pprior. Moreover, the temporal inversion in Equation 19 can be analytically approximated (Anderson, 1982; Hyvärinen
& Dayan, 2005; Vincent, 2011) as 9. Subsequently, SGM employs neural networks sθ(xk+1, k + 1) to approximate the
score term▽ log pk+1(xk+1), thus the reverse process can be effectively modeled. By sampling xN ∼ pprior, followed by
iteratively applying ancestral sampling vua xk ∼ pk|k+1(xk|xk+1), culminating in the estimation of x0 ∼ pdata. While
the diffusion and denoising processes modeled in SGM (Song & Ermon, 2019) can also be formulated as continuous-time
Markov chains. The forward process can be represented as a continuous-time SDE:

dXt = ft(Xt)dt+
√
2dBt. (21)
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Table 7. Summary of the test dataset. We respectively show the scale size, verticalhorizontal capacity, number of nets, and aver-
age/maximum number of pins for each net.

CASE IBM01 IBM02 IBM03 IBM04 IBM05 ADA03 ADA04

SIZE 64 × 64 80 × 64 80 × 64 96 × 64 128 × 64 774 × 779 774 × 779
CAP.(V/H) 24/28 44/68 40/60 40/46 84/126 62/62 62/62

NETS 11507 18429 21621 26163 27777 466295 515304
AVG.PINS 4.31 4.88 4.10 3.86 5.25 4.02 3.71

MAX.PINS 42 134 55 46 17 3713 3974

Figure 3. Similarities and differences between SGM and DSB. In SGMs, the marginal distribution x0 is gradually transformed into an
approximate standard Gaussian distribution xT by introducing niose through SDE. During the inference (denoising) phase, the reverse
SDE is then used to recover the original distribution from the approximated Gaussian distribution. In contrast, DSB learns a conditional
probability density, thus enabling a direct transition between the two maginal distributions x0 and x1, during inferencing. Regardless
of whether SGMs or DSB, the inferencing xk at timestamp k always depends on the preceding xk−1 (or xk+1 in DSB) or the original
distribution x0 (or xN in DSB).

Upon close inspection, one can observe that Equation 21 and Equation 15 differ only by the additional non-linear drift term
g2(t)▽ logψ(Xt, t). Notably, SGMs may be regarded as a particular instantiation of DSB when the non-linear drift terms
are set to zero (i.e. ψ(Xt, t) ≡ C). For Variance Preserving (VP) (Ho et al., 2020) and Variance Exploding (VE) (Song &
Ermon, 2019) noise schedule in SGMs, f(Xt, t) ≡ −αtXt where αt ∈ R≥0, and the denoising model is essentially sloving
Equation 15 using a learnable network.

More general, other dynamic generative models, e.g., Flow Matching (FM) (Lipman et al., 2023), I2SB (Liu et al., 2023),
Bridge-TTS (Chen et al., 2023), can be encapsulated within the framework of Equation 15 by selecting appropriate functions
for f(Xt, t) and ψ(Xt, t). In addition, as depicted in FIG. 3, both DSB and other SGMs, during their inference phase,
exhibit actions that can be categorized as predicting the next distribution xk−1 (or xk+1 in DSB) based on the current
distribution xk, which only relies on xk and is independent of g∗. This means that the derivation (Equation 22) still works
in DSB. This unification of dynamic generative models suggests the possibility of a more profound linkage between DSB,
SGM and other dynamic generative models, which suggests the rationality to bring the commonly used gradient search
scheme in SGM into DSB.
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Figure 4. Linear schedule for γt

A.2. Experimental protocols

A.2.1. DATASETS AND HARDWARE FOR EXPERIMENTS

Real-world Datasets ISPD07 (Nam et al., 2007) and ISPD98 (Alpert, 1998) are employed in this work. In line with (Du
et al., 2023), we construct the expert training datasets with low overflow using nthurouter (Chang et al., 2008) to route on
parts of ISPD07 benchmarks, including bigblue4, newblue4, newblue5, newblue6 and newblue7. Each case has about 60k
samples. Thus the training datasets have a total of nearly 300K samples. We initialize the capacity given by the benchmarks
and sequentially route the nets using the results of (Chang et al., 2008). Each time the capacity is updated, a condition
image, consisting of the current capacity and the positions of pins to be routed in the next net, is generated. Meanwhile, a
ground-truth route image is generated and saved correspondingly. By clipping them to the same scale 64 × 64 (if possible)
randomly. For the tested cases in Tab. 2, we choose newblue1, newblue2, bigblue1 and bigblue2 from ISPD07, outside
the training sets, with a total 10k samples. Summary of tested cases in ISPD98 are shown in Tab. 7. We follow the same
processing steps introduced in (Du et al., 2023) to have the tested ISPD98 cases prepared.

Training of the backbone of DSB is conducted on a machine with an Intel Xeon Platinum 8480+ CPU, 8 NVIDIA H800
GPUs, and 2.0TB RAM. All experiments in this work are conducted on a machine with an Intel Xeon Platinum 8480+ CPU,
8 NVIDIA RTX 4090 GPUs, and 460GB RAM.

A.3. DSBRouter Network Architecture

A.3.1. BACKBONE

We use the uvit b architecture, based on the ViT structure (Dosovitskiy et al., 2021), as the backbone for our model. The
input to our model is an image of size batch size×3×64×64. The first channel represents the pin map, the second channel
represents the horizontal congestion heatmap, and the third channel represents the vertical congestion heatmap. The final
output is also a three-channel image, where the second and third channels remain unchanged, and the first channel contains
the predicted map that reveals the locations of all the pins in the predicted route. After being input into the model, the image
is first divided into non-overlapping 4×4 patches, resulting in (64/4)×(64/4) patches in total. Each patch is then mapped to a
512-dimensional embedding vector. These encoded vectors are subsequently fed into a Transformer layer (13 layers) to
learn and capture spatial and contextual information between patches. Finally, the vector is resized to match the original
input size for image output.

A.3.2. NOISE SCHEDULER

Noise scheduler determines how the data between the two distributions is transformed, which is equivalent to the noise
addition method used in SGM. In the DSB framework, both the prior and posterior distributions represent meaningful data
distributions, rather than the standard Gaussian distribution. Therefore, the noise intensity γt cannot monotonically change
in either the forward or reverse process. Consequently, in DSB, we adopt the same approach as in (Tang et al., 2024), where
the noise scale γt undergoes a symmetric linear variation: γt increases first and then decreases linearly, with the magnitude
of increase and decrease being the same, as depicted in Fig. 4
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A.3.3. MOEL PARAMETERS

We use a fixed learning rate of lr = 0.001 and a batch size of 256. During each epoch, we repeat the training process for
each batch 4 times.

A.4. Baselines

The baselines referred in Tab. 3 are introduced as follows:

1) GeoSteiner (Juhl et al., 2018): the optimal RSMT construction solver.

2) Labyrinth (Kastner et al., 2002): A classical routing algorithm that explores how the concept of pattern routing can be
utilized to guide the router toward a solution that minimizes interconnect delay while preserving the routability of the circuit.

3) FLUTE (Wong & Chu, 2008): A fast and accurate RSMT construction method using a look-up table. It is important to
note that this approach can achieve the optimal solution for nets with up to 9 degrees.

4) Eege Shifting (Chu & Wong, 2005): A fast, practical RSMT-based algorithm that leverages a specialized lookup table for
small nets and a refined recursive splitting approach for larger nets.

5) HubRouter (Du et al., 2023): A global router for RST construction based on reinforcement learning. The hub is generated
using a diffusion model, followed by reinforcement learning for RST construction.

6) NeuralSteiner (Liu et al., 2024): A state-of-the-art two-stage global router. The candidate points are predicted using an
RCCA-enhanced CNN, and routing is performed using an RST construction algorithm based on a greedy strategy.

A.5. Proof of Proposition 3.1

Proof. The density p(xk|xk+1,g
∗) can be derived by:

p(xk|xk+1,g
∗) =

p(xk+1,xk,g
∗)

p(xk+1,g∗)
=

p(xk+1,xk,g
∗)

p(g∗|xk+1)p(xk+1)

=
p(g∗|xk+1,xk)p(xk|xk+1)p(xk+1)

p(g∗|xk+1)p(xk+1)

=
p(g∗|xk+1,xk)p(xk|xk+1)

p(g∗|xk+1)
(22)

as p(g∗|xk+1) is not depend on xk, thus it can be regarded as a constant. Now we can obtain pθ(xk|xk+1,g
∗) ∝

Zpθ(xk|xk+1)p(g
∗|xk).

A.6. Algorithms

Algorithm 1 extends the route output by model at timestamp k by expanding routes with poor connectivity to incorporate
potential steiner points, thereby generating routes with lower OF. After obtaining the Steiner Map Ms, we have a greedy
disjoint-set based RSMT construct method to derive an OF-minimium RST given Ms and S. The proposed method is
detailed in algorithm 3. The training process and inferencing process are detailed as follows:

B. Additional Results
B.1. Route Generation Results

Examples of the initial pins, generated routing results by DSB and real routes are depicted in 5.

B.2. Relative Error on Part of ISPD98 cases

To judge the improvement of gaining on the optimal wirelength rather than the absolute value, we further compare the
relative error in Tab. 8, where the relative error is computed as (WL− LB)/LB. Here, LB denotes the theoretical lower
bound. As shown in the table, the WL promotion of DSBRouter can hit the lowest on the cases of ibm01 and ibm04.
However, as the scale increases, the realtive error of DSBRouter also increases dramatically, which leaves improvement
space for DSBRouter.
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Algorithm 3 RSMT Construct
1: Input: Steiner Map Mj

s; Routing result Sj ;
2: Output: OF-minimium RST Sj1;
3: Initialize disjoint-set U1 given Sj ;
4: if len(U1.find) == 1 then
5: Sj1 ←− Sj ;
6: end if
7: Initialize disjoint-set U2 by assigning pin p ∈Mj

s to themselves;
8: Construct edges set (i, e) ∈ E ; i ∈Mj

s; e ∈Mj
s where pin i and pin e are always vertically or horizontally two nearest

points;
9: Initialize Sj1;

10: while len(U2.find) ̸= 1 do
11: Edge (i, e) = argmin

OF
E ;

12: Sj1 ←− Sj1 ∪ (i, e);
13: Update U2;
14: end while
15: Return Sj1.

Algorithm 4 Training of DSB
1: Input: Number of training iterations iters; training steps (inference steps) steps; repeat times rtimes; batch size bc;

noise scheduler N ; Target distribution pr;
2: Output: Model Parameters θ;
3: Initialize model parameters θ;
4: for iter = 0 to iters do
5: Sample a batch x ⊂ ps where |x| = bc;
6: for r = 0 to rtimes do
7: for s = 0 to steps do
8: Apply nosise adding to xs = N(x, s);
9: Obtain target xN from pr;

10: Descend the stochastic gradient loss of 5;
11: end for
12: end for
13: end for
14: Return Model Parameters θ.

Table 8. Relative error on ISPD98. The routing results of (Juhl et al., 2018) are treated as the theoretical lower bound. Optimal results
are in bold.

MODEL IBM01 IBM02 IBM03 IBM04 IBM05 ADA03 ADA04

LOWER BOUND 60142 165863 145678 162734 409709 9330748 8865643

LABYRINTH 0.262 0.213 0.286 0.203 0.026 - -
FLUTE+RES 0.023 0.017 0.007 0.027 0.007 0.009 0.002

HR-VAE 0.075 ± 0.024 0.064 ± 0.04 0.098 ± 0.022 0.105 ± 0.032 0.061 ± 0.007 - -
HR-DPM 0.105 ± 0.026 0.149 ± 0.014 0.156 ± 0.017 0.128 ± 0.010 0.161 ± 0.013 - -
HR-GAN 0.022 ± 0.002 0.010 ± 0.001 0.009 ± 0.001 0.009 ± 0.002 0.005 ± 0.001 0.001 0.001

NEURALSTEINER 0.026 0.027 0.016 0.024 0.014 0.013 0.015
DSBROUTER(OURS) 0.021 0.049 0.049 0.007 0.026 3.15 2.73
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Algorithm 5 Sampling Routes with evaluation-based guidance
1: Input: Initial distribution ps; inference steps (training steps) stpes; Model parameters θ; batch size bc; noise scheduler
N ;

2: Output: Generated routing distribution x̄N ;
3: Initialize x̄N = ∅;
4: Obtain size size of ps;
5: for size > 0 do
6: for s = 0 to steps do
7: if s == 0 then
8: xs+1 = xs;
9: xs+2 = xs;

10: end if
11: Obtain routing result xs = pθ(xs|xs+1);
12: Obtain Expected routes S1 given xs through algorithm 1;
13: Compute▽xs+1

(Eoxs+1∼pr(xs+1|xs+2)
(η(xs+1))−O(η(xs+1)));

14: Obtain▽xs+1 log p(g
∗|xs+1) through equation 14;

15: Obatin refined routing result pθ(xs|xs+1,g
∗) through proposition 1;

16: Apply noise adding to xs = N(x, s);
17: if s ̸= steps then
18: xs+1 = xs;
19: end if
20: end for
21: x̄N ←− x̄N ∪ xs;
22: end for
23: Return x̄N .

Figure 5. Initial pins (first line), Generated routing results by DSB (second line), and the real routes (third line). All were randomly
sampled in ‘small-4’, ‘small’, ‘large-4’, and ‘large’.
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