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Abstract
In this position paper, we observe that empirical
evaluation in Generative AI is at a crisis point
since traditional ML evaluation and benchmark-
ing strategies are insufficient to meet the needs
of evaluating modern GenAI models and systems.
There are many reasons for this, including the
fact that these models typically have nearly un-
bounded input and output spaces, typically do not
have a well defined ground truth target, and typi-
cally exhibit strong feedback loops and prediction
dependence based on context of previous model
outputs. On top of these critical issues, we argue
that the problems of leakage and contamination
are in fact the most important and difficult issues
to address for GenAI evaluations. Interestingly,
the field of AI Competitions has developed effec-
tive measures and practices to combat leakage for
the purpose of counteracting cheating by bad ac-
tors within a competition setting. This makes AI
Competitions an especially valuable (but under-
utilized) resource. It is now time for the field to
view AI Competitions as the gold standard for em-
pirical rigor in GenAI evaluation, and to harness
and harvest their results with according value.

1. Introduction
As Generative AI (GenAI) models such as Large Language
Models (LLMs) become ever more important to the field
and to the world, it has become clear that performing em-
pirical evaluation of these models and methods is extremely
difficult to do in a rigorous and comprehensive way. This
difficulty is of course not due to lack of effort or expertise
by researchers. Indeed, enormous effort and resources have
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been poured into creating myriad benchmarks and test cases
(Chiang et al., 2024b; Fourrier et al., 2024; Hendrycks et al.,
2021; Cobbe et al., 2021; Zellers et al., 2019; Chen et al.,
2021b). However, even accounting for these many important
efforts and achievements, our position is that the current
state of evaluation is insufficient to meet the needs of this
moment in GenAI for the field and for the world.

In our view, the root cause of this insufficiency is that the
evaluation needs of GenAI models fundamentally break the
paradigm of traditional benchmarking that served the field
of machine learning (ML) so well during decades of re-
markable progress. This breakage goes beyond the familiar
difficulty of defining what, exactly, is in the training data
for an LLM. In our view, we need a broader conception
of generalization for GenAI that moves beyond the idea of
generalizing to new independently drawn examples from a
stationary distribution, and instead refers to performing well
on tasks that are entirely novel from a model’s perspective.
This higher bar is rooted in commonsense standards for
human intelligence (Chollet, 2019; Dennett, 1991), but has
far reaching consequences, most notably that it implies the
problems of data leakage and contamination in evaluation
are the most pressing concerns.

Together, these factors imply that rigorous and robust
evaluation of GenAI models requires a steady source of
novel tasks structured to avoid leakage, contamination,
and other forms of inadvertent “cheating”. Fortunately,
AI Competitions—such as those hosted on platforms like
Kaggle and others—act as a solution to GenAI evaluation
challenges by providing a continual source of new tasks for
evaluation and significant structures to avoid leakage and
related issues. We define an AI Competition as a problem
or task with an objective evaluation function for ranking
solutions or models in which multiple parallel attempts are
made during a time-bound period by independent teams.

1.1. Summarizing Our Position

Our position can be summarized by the following points:

• Traditional paradigms for ML evaluation are ill-
equipped to meet the demands of GenAI Evaluation.
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• Leakage should be viewed by the field as the most
important pitfall to avoid in evaluations.

• GenAI evaluations should be considered leaked the
moment test data has been shared online or sent over
the wire to models.

• If we have to choose between reproducibility and ro-
bustness in GenAI evaluations, we should choose to
prioritize robustness.

• We should replace the notion of reproducible static
benchmarks with repeatable processes and procedures.

• The field should use established AI Competitions plat-
forms as a renewable stream of novel evaluation tasks.

• The standards and practices developed that help AI
Competitions guard against cheating should be viewed
by the field as the gold standard for empirical rigor in
evaluation.

• Meta-analyses across evaluations should be valued as
highly in the field of AI as they are in fields such as
medicine.

1.2. Structure of This Paper

In the remainder of this paper, we will first review the most
typical structure and assumptions in traditional ML evalua-
tion and discuss why they are insufficient for GenAI eval-
uations. We will examine the nature of generalization for
GenAI, how this leads to specific concerns around leakage,
and additionally show how goals of reproducibility and ro-
bustness in evaluation may be fundamentally at odds. We
will then show how difficult the problem of leakage is even
for traditional ML evaluations with some brief case studies,
and look at current GenAI benchmarks that are aiming to
overcome leakage and contamination. We finish with an
examination of the ways that AI Competitions address these
issues, discuss our recommendations, and examine alternate
viewpoints. Our goal is to provide convincing support of
the view that AI Competitions do indeed provide a gold
standard for empirical rigor in evaluating GenAI models,
and that the field should place accordingly high value and
attention on their results.

2. Background: Revisiting Benchmarking
Traditional ML benchmarking has been founded on the idea
of a test-train split, in which an evaluation is structured by
training a model from scratch on a given portion of training
data and then evaluating that trained model on a holdout set
of test data (Mitchell, 1997). This conceptual structure is so
fundamental to modern ML practice that it may sometimes
be taken for granted. So let us take a moment to examine
this basic structure and its implications.

In classical supervised ML, the most common traditional
setup is to evaluate a model f(x) → y, with x ∈ ℜd as fea-
ture vectors in some d dimensional feature space and y ∈ Y
as a space of possible labels, such as {0, 1} for binary clas-
sification or (0, 1) for regression on probabilities. Labeled
examples (x, y) are assumed to have come from some distri-
bution D. The training set Dtrain and test set
Dtest are each independently and identically drawn (IID)
from D, with only the examples in the training set
used to fit the model f(x) and only the examples in the
test set used to evaluate the model (Mitchell, 1997).

The IID requirement on test-train splits is often taken as
a footnote in practice, but in reality it is a cornerstone of
the robustness of this setup. The reason for this is that
we fundamentally wish our evaluations to be interpretable
as statements on the generalization ability of our models:
we wish to know how the model will perform on future,
previously unseen data. But achieving this is harder than it
may sound, because the ML models in question are often
of extremely high dimensionality and thus may be prone to
overfitting.

One approach for assessing generalization ability lies in the
classic literature on statistical learning theory, providing
generalization bounds for models based on qualities like
their VC dimension and observed error during training that
do not require the use of an additional holdout set (Vapnik,
1999). However, these theoretical bounds are unfortunately
much too loose to be of practical value—all the more so in
the age of ever larger models.

A second approach is to use additional data for evaluation.
The issue here to be aware of is the classical statistical trap
that correlation does not necessarily imply causation, and
that trying to assess generalization ability of a model that
has no specific mechanism for disambiguating correlation
from causal factors may lead to wildly unreliable perfor-
mance estimates. It is this issue that the IID assumption
addresses. When we know that all test data is drawn IID
from the same distribution as the training data, we know that
all correlations that held at training time will reappear with
the same characteristics at test time, and thus we can take
performance on holdout test data as a reasonable estimate
of generalization ability. The IID assumption has, in many
ways, enabled modern ML research to advance as a field,
because it forms the theoretical underpinning of all evalu-
ations. And indeed, it is a truism that moving ML models
from research to deployed production is difficult precisely
because of the fact that the IID assumption often does not
hold in practice (Chen et al., 2021a).

2.1. The Rise of Reproducible Benchmarks

One statistical shortcut that immediately became standard
practice was instead of drawing a new training set
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Figure 1. IID Evaluations vs. Novelty-Centric Evaluations. In the IID evaluation, left, both training and test data are drawn from the
same distribution, resulting in significant overlap in examples in each set. In the novelty-centric version, right, no test example is allowed
to be too similar to any given training example. We argue that the latter conceptualization more closely mirrors desired behavior for
GenAI evaluations, where generalization is expected to connote the ability to respond well on totally novel inputs.

and test set from D for every new evaluation, re-
searchers would make one draw of each and use them as
a canonical train / test set. The primary benefit of this
approach (besides convenience) was that these paired test-
train splits could now be used as reproducible benchmarks.
All future researchers could replicate the exact problem
setup, giving a new untrained model the same training data
for training and the same test data for evaluation, allow-
ing for full apples-to-apples comparisons. This approach
was wildly successful, with canonical benchmarks such as
MNIST (LeCun & Cortes, 2010) and ImageNet (Deng et al.,
2009) responsible for driving incredibly rapid progress in
computer vision, for instance, and benchmarks such as those
of Rajpurkar et al. (2016); Marcus et al. (1993); Diemert
Eustache, Betlei Artem et al. (2018) moving forward email
spam classification, natural language processing, and many
other domains. Websites such as the UCI Machine Learning
Repository (Kelly et al., 2025) and OpenML (Vanschoren
et al., 2014) among many others have been remarkably valu-
able to the field for this reason.

2.2. Surprisingly, Overfitting Was Not the Main Issue

Given that one of the fundamental concerns in evaluating
models was ensuring that we could properly address general-
ization and avoid overfitting, it is reasonable to ask whether
widespread reuse of the same standard benchmark datasets
in thousands of papers might not lead to overfitting. As
authors, we were deeply surprised by the work of Roelofs
et al. (2019b) showing that in practice, this appears to ac-
tually not have been a problem. Recht et al. (2019) shows
that the rank ordering of ImageNet models when evaluated
on brand new data was remarkably consistent with the rank
ordering of those models on the benchmark data, despite
wide reuse. And in follow-up work, Roelofs et al. (2019a)
similarly show that evaluation on public leaderboard data
on Kaggle competitions was a remarkably good indicator
of rank ordering on private holdout data, despite the risk of

overfitting when many thousands of teams participate in the
same challenge.

3. Reconsidering Generalization for GenAI
As we recalled above, the IID assumption in traditional ML
evaluations gives a clear conception of the idea of general-
ization: a model generalizes well if it accurately predicts the
true-but-hidden label y for labeled examples (x, y) drawn
IID from the same fixed and stationary distribution D from
which the model’s training data was drawn. This was a
cornerstone allowing the field of ML to progress effectively
by narrowing the problem and enabling tractable statistical
theory. But if we reflect on broader notions of intelligence,
including those first proposed in the seminal paper by Tur-
ing (1950), it is clear that this narrow-but-useful notion of
generalization does not adequately reflect the deeper goals
that GenAI is aiming to deliver on.

Instead, we believe the form of generalization the field
should most care about for GenAI is novelty-based
generalization—that is, generalizing well to problems and
tasks that have truly never been seen before by the system
in training or development.

More deeply, evaluations of reasoning and understanding
that have been in our view easiest to design as tests often
have the quality that solving the problems is hard (in a
formal sense) or expensive, while answer verification is
significantly easier or cheaper. This experience holds true
in planning, solving mathematics problems, doing coding
problems, solving riddles, and even formulating essays, and
mirrors the fundamental quality of NP-hard problems. Once
an answer for a problem is known to a subject, the ability to
use that problem or very similar problems for that subject
again in the future is fundamentally compromised.

In order to assess novelty-centric generalization, we need
novelty-based evaluations. Informally, the goal of a novelty-
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based evaluation is to ensure that no evaluation task or ex-
ample is too closely similar (for some definition of similar
and some measure of too close) to any instance previously
known to the model or system. We illustrate the distinction
between IID-based generalization and novelty-based gen-
eralization in Figure 1 visually. We can imagine a small
conceptual ring around each training example and ensure
that no evaluation instance crosses any of those rings.

In our view, this novelty-centric view of generalization has
already been implicitly adopted by many in the field as the
true aspirational goal, and influences the design of important
benchmarks including the LM Arena (Chiang et al., 2024a)
among others; we are simply writing this de facto standard
down. We will now examine some of the implications.

3.1. The IID Assumption is Broken

While the IID assumption has often been broken in prac-
tice for traditional ML systems in real-world deployment
with only modest harm, we believe that the IID assumption
and the overall framework of neatly labeled examples (x, y)
is broken beyond repair for GenAI evaluation. In particu-
lar, the novelty-centric view of generalization strongly
implies that evaluation examples should not be drawn
from some identical distribution used for training, but
should instead be chosen or constructed with the explicit
goal of avoiding high similarity with examples or data that
the model has previously been exposed to.

We also note that the nature of typical GenAI models them-
selves leads to other ways that the IID assumption is broken.
In particular, GenAI outputs are often far from independent,
and instead use context of previous responses (for exam-
ple, in multi-turn chat-style interfaces) to inform future
responses, creating feedback loops that fully break ideas of
stationarity. Finally, because the input spaces and output
spaces are so vast (such as the space of all possible strings of
up to a given size), the very notion of testing distributional
equivalence is arguably vacuous.

3.2. Leakage and Contamination Are the Biggest Pitfalls

While the potential pitfall of overfitting receives strong at-
tention, practitioners have long understood that leakage is
an equally important and often more difficult problem in
practice (Nisbet et al., 2009; Kaufman et al., 2012) Intu-
itively, leakage is any issue or structure in the construction
of evaluation data that allows a model to “cheat” by using
information that it should not have access to. In Section 4
we will look at a number of case studies on leakage and
will show how hard it is to prevent leakage and how vigilant
we must be even for traditional ML evaluations to avoid
this pitfall. Here, we point out that leakage is an especially
large problem for novelty-centric GenAI evaluations. This
is because novelty-centric GenAI evaluations have all of

the leakage risks that traditional ML evaluations do, but
also carry the additional burden of novelty assurance.

A novelty-centric evaluation rests on assurance that a model
has never before been exposed to data that is too close to
the evaluation problems or tasks. While this may seem
obvious, in practice it can be extremely difficult, as GenAI
models like LLMs are often trained on enormous amounts
of data and it can be extremely difficult to say for sure what
similar data may or may not have been included. Indeed,
leakage for GenAI is so important that specific forms of it
have been given an additional name: contamination (Magar
& Schwartz, 2022; Oren et al., 2023; Sainz et al., 2023;
Balloccu et al., 2024). Contamination is said to occur when
evaluation datasets and benchmarks appear in training data.

To help give intuition for the breadth of this issue, consider
that every major LLM we have tested so far (both open
and proprietary) shows extensive detailed knowledge of the
contents of standard test datasets from Kaggle. Consider the
remarkably strong performance on many static benchmarks
by LLMs that do not seem to correlate with strong perfor-
mance on other tasks (Fourrier et al., 2024; Muennighoff
et al., 2023; Zheng et al., 2023). Consider the question: if a
model does particularly well on qualification exam normally
given to humans, is this because the model has gained strong
expertise or because example examinations have appeared
in its training data, and how would we be able to disam-
biguate? Consider the difficulty in teasing apart exactly
which data sources are or are not part of an openly shared
dataset such as the widely used Nectar dataset (Zhu et al.,
2024), which includes the description:

Nectar’s prompts are an amalgamation of diverse
sources, including lmsys-chat-1M, ShareGPT,
Antropic/hh-rlhf, UltraFeedback, Evol-Instruct,
and Flan. Nectar’s 7 responses per prompt
are primarily derived from a variety of mod-
els, namely GPT-4, GPT-3.5-turbo, GPT-3.5-
turbo-instruct, LLama-2-7B-chat, and Mistral-7B-
Instruct, alongside other existing datasets and
models.

Together, these practical realities and considerations force
leakage to the forefront of problems that must be addressed
by any serious GenAI evaluation.

4. Leakage Case Studies
Because leakage and contamination are the most impor-
tant hurdles to solve for GenAI evaluations, it is useful to
study them in depth, beginning with leakage from tradi-
tional ML evaluations. Here, we draw on lessons learned
surveying more than a decade of Kaggle competitions, in
which a broad range of leakage issues have been identified
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through intense scrutiny of a large community. Experience
has shown that the risk of leakage is compounded in open
ML challenge benchmarks, where teams will exploit (know-
ingly or unknowingly) anything that gives an advantage on
the leaderboard.

Leakage can occur simply by how observations are or-
dered. An extreme example occurred during the SETI Break-
through Listen competition (Siemion et al., 2021), where
data was processed in order of its class label. The file times-
tamps were not reset, and competitors found it trivial to
make predictions based on file metadata. A more subtle ex-
ample occurred during the TalkingData AdTracking Fraud
Detection Challenge (Yin et al., 2018), where the data was
mistakenly sorted so that if multiple events were present
within the same timestamp, any positive labels occurred
after negative labels.

Ironically, randomization can also be a source of leakage.
An example occurred during the Predict AI Model Runtime
competition (Phothilimthana et al., 2023) where teams had
to rank order the runtimes of 5 different subsets of data,
each subset requiring a different model. Two of the buckets
were randomized using the same seed, and teams discovered
that using ordering of one bucket on another improved their
scores.

Any data that is synthetically generated is highly prone to
having artifacts that leak information. Again, in the SETI
Breakthrough Listen competition, synthetically-created “ET”
signals were injected into real radio telescope signals. Care
was taken with normalization to ensure the averages and
standard deviations of the injections matched the back-
ground signals. However, the code that created the injected
signals used FP16 while the background signals were FP32.
This created a minute difference in the mean and standard de-
viations between positive and negative samples, but enough
to differentiate the classes based on this information alone.

Private evaluation data leaking to the public during an open
challenge is a risk that needs to be considered. During the
LANL Earthquake Prediction challenge (RL et al., 2019),
for example, the test dataset was described in a research
paper, including some summary statistics and a graph. A
few teams discovered this and were able to utilize it to their
advantage.

Space precludes a larger set of case studies, but experience
from practitioners in preparing competitions shows that
each AI Competition has more ways to go wrong than to go
right, and that paranoia and vigilance are helpful practices.
In addition to the failure modes highlighted above, other
broad categories include future data leaks, the many ways
metadata can leak information (e.g., the model of a medi-
cal machine being correlated to disease incidence, medical
images that include a hand-drawn circle around a concern-

ing skin lesion, image aspect ratio, file size on disk, etc.),
old versions of the private evaluation dataset that were not
kept private, the ability of teams to reverse a synthetic data
generation process or to re-assemble data that has been split
up, reverse engineering data obfuscation, near duplication
between training and test observations, etc. These are not
hypothetical; they have all occurred in challenges created
by competent, careful teams, and highlight the very real dif-
ficulty of creating leak-free competitions and benchmarks.

4.1. Reproducibility and Robustness in Conflict

Because of the importance of leakage and the practical diffi-
culty in ensuring that leakage does not impact GenAI eval-
uations, we argue that it is simplest and safest to adopt a
leakage rule of thumb that an evaluation should be con-
sidered leaked the moment it has been shared online
or sent over the wire. Adopting this rule of thumb signifi-
cantly improves our ability to trust the results of evaluations
and gives them substantially more robustness. However, it
also critically weakens the notion of reproducibility. It is
the position of this paper that this is a fundamental tension,
analogous to the Heisenberg Uncertainty Principle from
quantum physics, and that we simply cannot have a pub-
lished static benchmark that is robust to leakage. No matter
the good intentions of the researchers, it is just too hard to
avoid contamination and to broadly trust results from such
a benchmark.

Instead, we must seek alternative strategies and structures
to create leak-proof evaluations.

5. Evaluations Aiming to Avoid Leakage
Conscientious researchers have been aware of the issue of
leakage in novelty-based evaluations for GenAI and have
proposed new benchmarks that attempt to control or miti-
gate leakage through various design mechanisms. Here we
review key examples, the mechanisms used to control for
leakage, and briefly discuss their benefits and drawbacks.

5.1. Unreleased Holdout Sets

The SEAL Leaderboards (Scale AI, 2024), ARC-AGI (Chol-
let, 2019), FrontierMath (Glazer et al., 2024), and Human-
ity’s Last Exam (Phan et al., 2025) benchmarks are com-
posed of private test questions manually created by domain
experts. The test sets, model responses, and evaluation runs
are not published publicly to prevent leakage of test data.

Unreleased holdout sets can be effective at mitigating risks
of leakage. However, they may have limitations in evalu-
ating proprietary API-based models where test data must
necessarily be sent over the internet to third party servers.
While many leading AI model providers grant controls pre-
venting logging or storage of user prompts, this still requires
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Figure 2. Comparing sequential and parallelized evaluation structures. In the traditional research structure, top, each new idea is
evaluated in a linear sequence that typically requires several months for a single pass. The parallelized structure, bottom, allows hundreds
or thousands of approaches to be simultaneously.

a level of trust. In particular, providers must be trusted not
to change their policies, but even more importantly all re-
searchers touching the evaluation data must be trusted to
follow these practices without error.

Additionally, as holdout sets and evaluation runs must nec-
essarily be kept private, results are not reproducible by re-
searchers. To mitigate this, some benchmarks take a hybrid
approach. For example, the FACTS Grounding Leaderboard
(Jacovi et al., 2025) publishes half the test set publicly which
enables partial reproducibility and better understanding of
the benchmark. A model’s performance can be compared
between the private and public parts of test sets to identify
models that may have (intentionally or not) trained on test
data or leakage.

5.2. Dynamic Benchmarks

LiveBench (White et al., 2025), LiveCodeBench (Jain et al.,
2024), and SWE-Bench (Jimenez et al., 2024) benchmarks
frequently update test sets from sources that refresh natu-
rally over time. For example, LiveBench test set questions
are updated weekly from sources such as fresh news articles
or papers on arXiv. By using only very recent data, bench-
marks can mitigate if not eliminate the risk that such data
was included in model training. LiveBench also does not
release the most recently added test data so that a significant
percentage of questions are always private and heldout.

Dynamic benchmarks have some advantages over unre-
leased holdout sets. By frequently refreshing data, older
test sets can be released publicly to improve reproducibility
and trust. However, using data that is publicly available on
the internet—even if only very recently—does not pass our
rule of thumb in 4.1 and is a potential source of leakage.
Moreover, by changing the test set frequently, benchmark
creators must be careful to ensure they are not “moving
the goal posts.” Additionally, dynamic benchmarks come
with higher maintenance costs and sources of frequently
refreshing data are not available in many domains and may
be infeasible to collect.

5.3. Community Benchmarks

The LM Arena (Chiang et al., 2024a), formerly known as
LMSYS Chatbot Arena, is a collection of benchmarks that
draws on community votes of head-to-head match-ups be-
tween LLMs on user prompts or tasks. By outsourcing
test data collection and evaluation to users at test time, the
benchmark has a constant fresh source of novel test ques-
tions.

Community benchmarks are difficult to build and maintain.
To evaluate many models, the number of votes required
can be very large, necessitating a large and constant pool of
voters. Community benchmarks also don’t work for all tasks.
For example, tasks that require very specialized knowledge
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or which might take humans many days to verify will not
scale to human rating. Community benchmarks are also
necessarily biased by any sampling effects; the diversity and
distribution of voters can affect results and great attention
and care is required to filter out low quality, duplicate, or
contaminated results.

6. AI Competitions as Structural Solution
AI Competitions typified by platforms like Kaggle and oth-
ers offer an “embarrassingly parallel” structure to empirical
evaluation shown in Figure 2 that hearkens back to the clas-
sic MapReduce structure from parallel computing (Dean
& Ghemawat, 2008). In this structure, independent teams
of researchers—often numbering in the thousands—each
compete to solve a given problem, and in so doing create
an evaluation of many different approaches in one massive
parallel effort. Here we show ways that this structure offers
useful benefits to the problem of GenAI evaluation at large.

6.1. Parallelization Improves Robustness

The risk of leakage and contamination starts as soon as
an evaluation is shared publicly or evaluation data is sent
across the wire. This leads to a problem: how can we fairly
compare different models and systems in a valid way that
ensures robustness and avoids inadvertent invalidation of
results from leakage and contamination?

The parallelized structure of AI Competitions provides a
useful solution to this issue. Novelty-centric evaluations
can happen simultaneously, in parallel, ensuring that
each new task is indeed novel to each of the thousands of
models at time of testing. Because the independent teams
each pursue different models, ideas, and approaches, this
structure yields direct apples-to-apples benchmarking and a
form of real-time reproduction of results.

In addition, competition platforms such as Kaggle can serve
as trusted keepers of hidden test data by running isolated
code competitions, where competitors submit their models
to be run on an isolated, secure backend without network ac-
cess. By evaluating all models securely offline, competitions
platforms can guarantee no hidden test data is leaked.

Finally, competitions hosted on large community platforms
offer additional non-structural characteristics which rep-
resent best practices the industry should adopt to further
improve empirical rigor. Competitions encourage or often
require open sharing of code, data, and experimental details,
including both successes and failures. Competitors are often
more motivated by the status and recognition gained from
sharing valuable and insightful resources and ideas than
by winning prizes. In fact, the median number of forum
messages per Kaggle featured competition last year was
1,400 (data is available in the Meta Kaggle dataset (Risdal &

Bozsolik, 2022). This transparency facilitates reproduction
of results, fosters trust in new baselines, and accelerates
the dissemination of knowledge within the research and
practitioner communities.

6.2. Leak-Proof Competition Structures

While preventing traditional leakage remains a challenge
for competition-style evaluation as it does everywhere, com-
petitions can be uniquely structured to mitigate this issue
particularly well. Furthermore, the structure of competi-
tions with many thousands of research teams ensures that
when issues of leakage do occur, they are rapidly discovered,
shared, and addressed simultaneously across all research
efforts happening on the task in parallel.

We provide some examples of competitions that demonstrate
the feasibility of leak-proof evaluation design. Employing
strategies such as prospective ground truth, novel task gener-
ation, and post-deadline data collection, generally combined
with test data that is directly inaccessible to competitors,
competitions can provide a robust and reliable platform
for novel evaluation of GenAI models. Overall, the main
method for creating leak-proof competitions involves eval-
uating models based on data that does not exist at training
time. These best practices should be considered and adapted
as blueprints for future competition and benchmark design.

Prospective Ground Truth Prospective ground truth is a
strategy for leakage mitigation whereby test set labels are
completely unknown to the world during the active training
phase of a competition.

The Critical Assessment of protein Function Annotation
(CAFA) 5 challenge (Friedberg et al., 2023) is an example
of a competition that uses a prospective ground truth to mit-
igate leakage. The competition took as its test set proteins
whose sequences were known, but whose functional annota-
tions had not yet been determined in a wet lab. Nearly two
thousand participants across 1,625 independent teams there-
fore effectively developed models predicting the function
of a set of proteins without any ground truth yet available
to any human or model during an active training phase.
Months later, the final evaluation was determined following
a “curation phase” on the basis of newly published protein
functions. This novelty makes the competition reasonably
leak-proof.

Novel Task Generation Another approach to designing
leak-proof competitions is generating novel tasks altogether
in which test data doesn’t resemble training data and there-
fore demands meaningful generalization.

The AI Mathematical Olympiad (AIMO) challenges (XTX
Investments, 2024; Frieder et al., 2024), designed to moti-
vate open progress on human-level mathematical reasoning
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capabilities in GenAI systems, used this approach. In these
challenges, competitors were tasked with solving national-
level math challenges. Because many, if not all, AI models
used by competitors were trained on internet-scale data, test-
train leakage poses a significant challenge in the evaluation
of their mathematical reasoning capabilities. Fresh sets of
novel math problems were therefore created specifically for
the competition by an international team of mathematicians,
making it highly unlikely that the data has been leaked or
contaminated.

Post-Deadline Data Collection Post-deadline data col-
lection is a leakage mitigation strategy used in a number of
competitions which are similar to prospective ground truth
competitions except rather than evaluating on newly avail-
able labels, solutions are evaluated on completely newly
generated data. There are many examples of this competi-
tion design, two of which are described below.

In the WSDM Cup – Multilingual Chatbot Arena compe-
tition (Chiang et al., 2024a) hosted by LMSYS.org, partic-
ipants were tasked with building solutions predicting hu-
man preferences between LLMs in head-to-head match-ups
based on multilingual conversation and rating data from LM
Arena. Similar to CAFA 5, this competition was designed
with an active training phase followed by a data collection
phase after which final models were evaluated against brand
new conversations after the submission deadline in order to
prevent leakage.

The Konwinski Prize (Konwinski et al., 2024) is another
form of post-deadline data collection. This competition,
hosted by Andy Konwinski, is a contamination-free version
of SWE-Bench which evaluates LLMs on their ability to
resolve real-world GitHub issues. It uses a time-based hold-
out strategy in which submitted models are frozen for three
months and then evaluated on fresh GitHub issues that have
been collected during the intervening time.

7. Recommendations for the Field
As a field, we need to overhaul our standard practices to
ensure that GenAI evaluations are rigorous and reliable—
and that they continue to be viewed as such by the field and
the broader world.

Move away from static benchmarks and towards ever-
green repeatable processes. Due to the risks of leakage and
contamination, we believe that static benchmarks should
be de-emphasized in importance for GenAI evaluations.
(Indeed, anecdotally we see that both researchers and practi-
tioners are taking results from such benchmarks with ever
larger grains of salt.) Instead, we need a steady renewable
pipeline of novel tasks and problems, and we need to evalu-
ate hundreds or thousands of models in parallel on each of

them so that the results are directly comparable and avoid
the risks of later contamination and leakage. In this way,
evaluations are best viewed as results from a point in time
rather than an an immutable final conclusion.

View the steady stream of AI Competitions as a resource
for the field. Using the pipeline of high quality AI Compe-
titions hosted on platforms like Kaggle is one way to create
a renewable pipeline. These structures already exist and are
already being used to some degree in this way. However, as
a field, we can do more to distill, analyze, and share findings
from these competitions through meta-analyses. Indeed,
while meta-analysis is a common and highly valued form
of academic contribution in fields such as medicine, such
papers are extremely rare in our field. We can and should
change this through mechanisms that include specialized
workshops, conference tracks, journal special topics, and
though updated language in calls for papers emphasizing
the value of meta-analyses.

Areas for fruitful meta-analysis include but are not limited
to:

• Studying Problems: Exploring the nature and number
of problems addressed via AI Competitions. Are there
underrepresented problems? How well do AI Compe-
titions connect to real-world performance on similar
problems (i.e., ecological validity)?

• Summarizing Results: Aggregating and synthesizing
trends across AI Competition results within similar
domains or against similar tasks, including investigat-
ing trends (including longitudinal) in techniques, tools,
models, etc. One example of this is the annual State of
ML Competitions report (Carlens, 2025).

• Improving AI Competition Design: Meta-analyses
of AI competition design including choice of ob-
jective evaluation metrics, anti-cheating and anti-
contamination mechanisms, etc. to help the field de-
velop and adopt better methodologies for AI evaluation
and model building.

• Analyses of Team and Social Collaborative-
Competitive Dynamics: Identifying patterns from
the “parallelized attempts”, i.e., the teams working
together and against one another in competition. What
characterizes successful teams and individuals across
competitions?

Adopt and improve on the anti-cheating structures from
AI Competitions to improve standard practice for GenAI
evaluations. Furthermore, as a field, we can learn from the
best practices that have been developed by AI Competitions.
The techniques and practices that have been created to com-
bat intentional cheating by bad actors are equally valuable
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in creating evaluation structures that combat unintentional
issues such as leakage and contamination that may invali-
date empirical results. A cheat-proof structure is one that
provides assurance to researchers that they will not acci-
dentally cheat themselves. We also need to augment and
further improve these structures, for example by creating
a field-wide standard that major API-based model creators
agree to follow to explicitly avoid collecting or training on
data that may appear in evaluations.

8. Alternative Views
All position papers should consider opposing views, and
ours is no exception. One reasonable alternative view is
that the current state of benchmarking is proceeding well
without the need for additional intervention. The many
new static benchmarks appearing on platforms like Hugging
Face, OpenML, and Kaggle on a near-daily basis may serve
as the steady stream of novel tasks that we described as
necessary for the field. While we applaud all efforts to create
new benchmarks, we do fundamentally believe that static
benchmarks should be considered to have been effectively
invalidated once they have been published, and thus it is the
time component of AI Competitions that provides unique
additional value.

Another possible critique of AI Competitions compared to
“evergreen” static benchmarks is that an artificial deadline
may prohibit valuable submissions. We’ve found that every
time we’ve ensembled submissions, we obtain little-to-no
improvement to top ranked solutions. In other words, com-
petitions at least on Kaggle extract (near) maximal signal
from the data within the competition’s constraints.

Furthermore, AI Competition hosts are strongly incentivized
to design good evaluation metrics, and we observe that
outcomes where solutions correlate with real-world perfor-
mance are more likely. For example, in the OpenVaccine
Challenge (Wayment-Steele et al., 2022), competitors im-
proved the state-of-the-art in mRNA vaccinate degradation
rate prediction by 25% within just 4 weeks, and the hosts fur-
ther validated that the solutions generalized to much longer
RNA sequences not seen as part of the competition dataset.

Another reasonable viewpoint is that current existing bench-
marks that attempt to be leak-proof are sufficient. The most
notable one to consider for this viewpoint are the Elo-based
side-by-side rankings produced by human raters via LM-
SYS.org’s LMArena. Having an open-loop for the com-
munity to provide an unbounded stream of new inputs and
judgments is indeed appealing and is a strong step towards
solving many of these issues. However, we believe there
are limits to what can be achieved in terms of novelty and
rigor with an anonymous crowd-based source of tasks and
problems, and that AI Competitions allow for the injec-

tion of specific domain expertise and carefully crafted test
cases that will fully stress test the next generation of GenAI
models.

A third reasonable viewpoint is that the metaphorical ship
has sailed on the value of academic evaluations for GenAI
models. In this paradigm, performance on literal real-world
tasks in production deployments may offer the most valid
test of GenAI capabilities. In this alternative viewpoint, in-
dependent evaluations have little value and each practitioner
or group should evaluate fully on their own terms. While
this approach is unavoidable for highly specialized domains
and applications, we do believe that there is compelling
reason to continue independent evaluations of models in
general, as the history of the field has shown that these
forms of evaluation drive progress in the broadest and most
rapid ways. Without controlled, empirical study we as a
field risk losing broadly shared knowledge into why models
perform well or poorly on certain tasks. Openly sharing
this understanding is critical for unlocking paths to further
progress in this rapidly advancing field.
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Leak, Cheat, Repeat: Data Contamination and Evalua-
tion Malpractices in Closed-Source LLMs, 2024. URL
https://arxiv.org/abs/2402.03927.

Carlens, H. State of Machine Learning Compe-

9

https://arxiv.org/abs/2402.03927


AI Competitions Provide the Gold Standard for Empirical Rigor in GenAI Evaluation

titions in 2024. ML Contests Research, 2025.
https://mlcontests.com/state-of-machine-learning-
competitions-2024.

Chen, C., Murphy, N. R., Parisa, K., Sculley, D., and Under-
wood, T. Reliable Machine Learning. ” O’Reilly Media,
Inc.”, 2021a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W. Evaluating Large Language Models Trained
on Code, 2021b. URL https://arxiv.org/abs/
2107.03374.

Chiang, W.-L., Zheng, L., Dunlap, L., Gonzalez, J. E., Sto-
ica, I., Mooney, P., Dane, S., Howard, A., and Keating,
N. LMSYS - Chatbot Arena Human Preference Predic-
tions. https://kaggle.com/competitions/
lmsys-chatbot-arena, 2024a. Kaggle.

Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N.,
Li, T., Li, D., Zhang, H., Zhu, B., Jordan, M., Gonzalez,
J. E., and Stoica, I. Chatbot Arena: An Open Platform
for Evaluating LLMs by Human Preference, 2024b. URL
https://arxiv.org/abs/2403.04132.

Chollet, F. On the Measure of Intelligence, 2019. URL
https://arxiv.org/abs/1911.01547.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training Verifiers to
Solve Math Word Problems, 2021. URL https://
arxiv.org/abs/2110.14168.

Dean, J. and Ghemawat, S. MapReduce: simplified data
processing on large clusters. Commun. ACM, 51(1):
107–113, January 2008. ISSN 0001-0782. doi: 10.
1145/1327452.1327492. URL https://doi.org/
10.1145/1327452.1327492.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Dennett, D. C. Consciousness Explained. Penguin Books,
1991.

Diemert Eustache, Betlei Artem, Renaudin, C., and Massih-
Reza, A. A Large Scale Benchmark for Uplift Modeling.
In Proceedings of the AdKDD and TargetAd Workshop,
KDD, London,United Kingdom, August, 20, 2018. ACM,
2018.

Fourrier, C., Habib, N., Lozovskaya, A., Szafer,
K., and Wolf, T. Open LLM Leaderboard
v2. https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_
leaderboard, 2024.

Friedberg, I., Radivojac, P., Paolis, C. D., Pi-
ovesan, D., Joshi, P., Reade, W., and Howard,
A. CAFA 5 Protein Function Prediction.
https://kaggle.com/competitions/
cafa-5-protein-function-prediction,
2023. Kaggle.

Frieder, S., Bealing, S., Nikolaiev, A., Smith, G. C., Buz-
zard, K., Gowers, T., Liu, P. J., Loh, P.-S., Mackey, L.,
de Moura, L., Roberts, D., Sculley, D., Tao, T., Balduzzi,
D., Coyle, S., Gerko, A., Holbrook, R., Howard, A.,
and Markets, X. AI Mathematical Olympiad - Progress
Prize 2. https://kaggle.com/competitions/
ai-mathematical-olympiad-progress-prize-2,
2024. Kaggle.

Glazer, E., Erdil, E., Besiroglu, T., Chicharro, D., Chen,
E., Gunning, A., Olsson, C. F., Denain, J.-S., Ho, A.,
de Oliveira Santos, E., Järviniemi, O., Barnett, M., San-
dler, R., Vrzala, M., Sevilla, J., Ren, Q., Pratt, E., Levine,
L., Barkley, G., Stewart, N., Grechuk, B., Grechuk, T.,
Enugandla, S. V., and Wildon, M. FrontierMath: A
Benchmark for Evaluating Advanced Mathematical Rea-
soning in AI, 2024. URL https://arxiv.org/
abs/2411.04872.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring Massive
Multitask Language Understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Jacovi, A., Wang, A., Alberti, C., Tao, C., Lipovetz, J., Ol-
szewska, K., Haas, L., Liu, M., Keating, N., Bloniarz,
A., Saroufim, C., Fry, C., Marcus, D., Kukliansky, D.,
Tomar, G. S., Swirhun, J., Xing, J., Wang, L., Guru-
murthy, M., Aaron, M., Ambar, M., Fellinger, R., Wang,
R., Zhang, Z., Goldshtein, S., and Das, D. The FACTS
Grounding Leaderboard: Benchmarking LLMs’ Ability
to Ground Responses to Long-Form Input, 2025. URL
https://arxiv.org/abs/2501.03200.

10

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://kaggle.com/competitions/lmsys-chatbot-arena
https://kaggle.com/competitions/lmsys-chatbot-arena
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://kaggle.com/competitions/cafa-5-protein-function-prediction
https://kaggle.com/competitions/cafa-5-protein-function-prediction
https://kaggle.com/competitions/ai-mathematical-olympiad-progress-prize-2
https://kaggle.com/competitions/ai-mathematical-olympiad-progress-prize-2
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2501.03200


AI Competitions Provide the Gold Standard for Empirical Rigor in GenAI Evaluation

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-
CodeBench: Holistic and Contamination Free Evaluation
of Large Language Models for Code. arXiv preprint
arXiv:2403.07974, 2024.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. SWE-bench: Can Language
Models Resolve Real-World GitHub Issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Kaufman, S., Rosset, S., Perlich, C., and Stitelman, O.
Leakage in data mining: Formulation, detection, and
avoidance. ACM Transactions on Knowledge Discovery
from Data (TKDD), 6(4), December 2012. ISSN 1556-
4681. doi: 10.1145/2382577.2382579. URL https:
//doi.org/10.1145/2382577.2382579.

Kelly, M., Longjohn, R., and Nottingham, K. UCI Machine
Learning Repository, 2025. URL https://archive.
ics.uci.edu.

Konwinski, A., Rytting, C., Shaw, J. F. A., Dane,
S., Reade, W., and Demkin, M. Konwinski
Prize. https://kaggle.com/competitions/
konwinski-prize, 2024. Kaggle.

LeCun, Y. and Cortes, C. MNIST handwritten digit
database, 2010. URL http://yann.lecun.com/
exdb/mnist/.

Magar, I. and Schwartz, R. Data Contamination: From
Memorization to Exploitation. In Muresan, S., Nakov,
P., and Villavicencio, A. (eds.), Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 157–165,
Dublin, Ireland, May 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.acl-short.
18. URL https://aclanthology.org/2022.
acl-short.18/.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of English: The
Penn Treebank. Computational Linguistics, 19(2):313–
330, 1993. URL https://aclanthology.org/
J93-2004/.

Mitchell, T. M. Machine Learning, volume 1. McGraw-hill
New York, 1997.

Muennighoff, N., Tazi, N., Magne, L., and Reimers, N.
MTEB: Massive Text Embedding Benchmark, 2023.
URL https://arxiv.org/abs/2210.07316.

Nisbet, R., Elder, J., and Miner, G. Handbook of Statisti-
cal Analysis & Data Mining Applications. Elsevier, Inc,
2009.

Oren, Y., Meister, N., Chatterji, N., Ladhak, F., and
Hashimoto, T. B. Proving Test Set Contamination in
Black Box Language Models, 2023. URL https:
//arxiv.org/abs/2310.17623.

Phan, L., Gatti, A., Han, Z., Li, N., Hu, J., Zhang, H., Shi,
S., Choi, M., Agrawal, A., Chopra, A., Khoja, A., Kim,
R., Hausenloy, J., Zhang, O., Mazeika, M., Anderson, D.,
Nguyen, T., Mahmood, M., Feng, F., Feng, S. Y., Zhao,
H., Yu, M., Gangal, V., Zou, C., Wang, Z., Wang, J. P.,
Kumar, P., Pokutnyi, O., Gerbicz, R., Popov, S., Levin,
J.-C., Kazakov, M., Schmitt, J., Galgon, G., Sanchez,
A., Lee, Y., Yeadon, W., Sauers, S., Roth, M., Agu, C.,
Riis, S., Giska, F., Utpala, S., Giboney, Z., Goshu, G. M.,
of Arc Xavier, J., Crowson, S.-J., Naiya, M. M., Burns,
N., Finke, L., Cheng, Z., Park, H., Fournier-Facio, F.,
Wydallis, J., Nandor, M., Singh, A., Gehrunger, T., Cai,
J., McCarty, B., Duclosel, D., Nam, J., Zampese, J., Ho-
err, R. G., Bacho, A., Loume, G. A., Galal, A., Cao, H.,
Garretson, A. C., Sileo, D., Ren, Q., Cojoc, D., Arkhipov,
P., Qazi, U., Li, L., Motwani, S., de Witt, C. S., Taylor,
E., Veith, J., Singer, E., Hartman, T. D., Rissone, P., Jin,
J., Shi, J. W. L., Willcocks, C. G., Robinson, J., Mikov,
A., Prabhu, A., Tang, L., Alapont, X., Uro, J. L., Zhou,
K., de Oliveira Santos, E., Maksimov, A. P., Vendrow, E.,
Zenitani, K., Guillod, J., Li, Y., Vendrow, J., Kuchkin, V.,
Ze-An, N., Marion, P., Efremov, D., Lynch, J., Liang, K.,
Gritsevskiy, A., Martinez, D., Pageler, B., Crispino, N.,
Zvonkine, D., Fraga, N. W., Soori, S., Press, O., Tang,
H., Salazar, J., Green, S. R., Brüssel, L., Twayana, M.,
Dieuleveut, A., Rogers, T. R., Zhang, W., Li, B., Yang, J.,
Rao, A., Loiseau, G., Kalinin, M., Lukas, M., Manolescu,
C., Mishra, S., Kamdoum, A. G. K., Kreiman, T., Hogg,
T., Jin, A., Bosio, C., Sun, G., Coppola, B. P., Tarver, T.,
Heidinger, H., Sayous, R., Ivanov, S., Cavanagh, J. M.,
Shen, J., Imperial, J. M., Schwaller, P., Senthilkuma, S.,
Bran, A. M., Dehghan, A., Algaba, A., Verbeken, B., No-
ever, D., V, R. P., Schut, L., Sucholutsky, I., Zheltonozh-
skii, E., Lim, D., Stanley, R., Sivarajan, S., Yang, T.,
Maar, J., Wykowski, J., Oller, M., Sandlin, J., Sahu, A.,
Hu, Y., Fish, S., Heydari, N., Apronti, A., Rawal, K.,
Vilchis, T. G., Zu, Y., Lackner, M., Koppel, J., Nguyen,
J., Antonenko, D. S., Chern, S., Zhao, B., Arsene, P.,
Goldfarb, A., Ivanov, S., Poświata, R., Wang, C., Li, D.,
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