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Summary
Offline reinforcement learning (RL) aims to learn an optimal policy from a static dataset,

making it particularly valuable in scenarios where data collection is costly, such as robotics. A
major challenge in offline RL is distributional shift, where the learned policy deviates from the
dataset distribution, potentially leading to unreliable out-of-distribution actions. To mitigate
this issue, regularization techniques have been employed. While many existing methods uti-
lize density ratio-based measures, such as the f-divergence, for regularization, we propose an
approach that utilizes the Wasserstein distance, which is robust to out-of-distribution data and
captures the similarity between actions. Our method employs input-convex neural networks
(ICNNs) to model optimal transport maps, enabling the computation of the Wasserstein dis-
tance in a discriminator-free manner, thereby avoiding adversarial training and ensuring stable
learning. Our approach demonstrates comparable or superior performance to widely used ex-
isting methods on the D4RL benchmark dataset.

Contribution(s)
1. We introduce a novel regularization method with the Wasserstein distance via optimal trans-

port maps for offline RL, eliminating the need for adversarial training and a discriminator
through ICNNs.
Context: Wu et al. (2019); Asadulaev et al. (2024) performed regularization using the
Wasserstein distance in offline reinforcement learning through adversarial learning with a
discriminator. Makkuva et al. (2020); Korotin et al. (2021b;a); Mokrov et al. (2021) mod-
eled the Wasserstein distance in a discriminator-free manner using ICNNs in a non-RL
domain.

2. We evaluate our proposed method on the D4RL benchmark dataset and find that it achieves
performance comparable to or even surpassing that of widely used methods. Addition-
ally, by comparing it with an adversarial training-based approach, we show that our
discriminator-free method incorporates Wasserstein distance regularization more effectively
for these tasks.
Context: We compared our method with Kostrikov et al. (2022), which serves as a com-
ponent of our approach, and a Wu et al. (2019)-based method that performs regularization
using the Wasserstein distance via discriminator-based adversarial learning. By keeping the
value function learning consistent across these existing methods and the proposed method,
we fairly evaluated the effect of our proposed regularization on the policy.
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Abstract

Offline reinforcement learning (RL) aims to learn an optimal policy from a static1
dataset, making it particularly valuable in scenarios where data collection is costly, such2
as robotics. A major challenge in offline RL is distributional shift, where the learned3
policy deviates from the dataset distribution, potentially leading to unreliable out-of-4
distribution actions. To mitigate this issue, regularization techniques have been em-5
ployed. While many existing methods utilize density ratio-based measures, such as the6
f-divergence, for regularization, we propose an approach that utilizes the Wasserstein7
distance, which is robust to out-of-distribution data and captures the similarity between8
actions. Our method employs input-convex neural networks (ICNNs) to model optimal9
transport maps, enabling the computation of the Wasserstein distance in a discriminator-10
free manner, thereby avoiding adversarial training and ensuring stable learning. Our11
approach demonstrates comparable or superior performance to widely used existing12
methods on the D4RL benchmark dataset.13

1 Introduction14

In offline reinforcement learning (RL), learning is conducted solely using a pre-collected dataset to15
maximize return. When the learned policy deviates from the behavior policy of the dataset, issues16
such as overestimation of values in unseen states and actions arise (Levine et al., 2020). Preventing17
such divergence remains a central challenge in offline RL. Prior studies introduced regularization18
methods to mitigate distributional shift, including those based on the f-divergence (Wu et al., 2019;19
Garg et al., 2023; Sikchi et al., 2024).20

Regularization measures based on the density ratio of distributions such as f-divergence can become21
unstable when the supports of the distributions do not overlap, and these measures do not consider22
the similarity between variables. Thus, we employ the Wasserstein distance as a regularization23
term, as it is robust to out-of-distribution data and can incorporate the metric of the variable space.24
When we apply the Wasserstein distance to RL, we can take into consideration the distances in the25
continuous action space and can handle out-of-distribution actions.26

The Wasserstein distance between probability distributions P and Q is defined as the infimum of27
the expected value of the distance between corresponding samples over all possible couplings of P28
and Q. For the 2-Wasserstein distance, if P is absolutely continuous with respect to the Lebesgue29
measure, there exists a convex function ψ whose gradient ∇ψ acts as the unique optimal transport30
map from P to Q. In this setting, the coupling induced by P and the mapping ∇ψ is the optimal31
coupling (Brenier, 1991).32

Here, we consider the case where P is fixed, and Q is optimized within an objective function that33
includes W 2

2 (P,Q). When Q is directly modeled using a generator and the Wasserstein distance is34
computed with a discriminator, as in WGAN (Arjovsky et al., 2017), additional instability occurs35
due to adversarial training. Moreover, since controlling the Lipschitz constant of the discriminator36
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is inherently difficult, accurately computing the Wasserstein distance is challenging. To address37
this issue, we propose optimizing a convex function ψ in place of Q, based on Brenier’s theorem38
(Brenier, 1991). Since ψ is learned by minimizing the L2 distance instead of using adversarial39
training, the learning process is relatively stable. Furthermore, as long as ψ remains convex, it is40
guaranteed to approximate the Wasserstein distance between P and some distribution Q, ensuring41
that the exact Wasserstein distance is consistently computed, even during training.42

We apply this approach to policy regularization in offline RL by applying Wasserstein distance43
regularization to the visitation distribution. Specifically, we model the visitation distribution dπ(s, a)44
of the learned policy as the distribution transported from the dataset distribution dD(s, a) through45
the gradient of a convex function. This transport map corresponds to the optimal transport map in the46
2-Wasserstein distance W 2

2 (d
D, dπ). By learning a parameterized convex function that maximizes47

the objective regularized by the Wasserstein distance, we can obtain dπ without adversarial training.48
The policy π is then learned from samples drawn from dπ(s, a).49

We employ input-convex neural networks (ICNNs) (Amos et al., 2017) as the parameterized convex50
function. By integrating this policy learning method with existing in-sample value function learning51
methods, we propose a simple Wasserstein regularized algorithm that only requires additional ICNN52
training. We refer to our approach as Q-learning regularized by Direct Optimal Transport modeling53
(Q-DOT) and evaluate its performance through experiments.54

We conduct experiments using the D4RL benchmark dataset (Fu et al., 2020) and compare our55
method with widely used existing approaches. The results demonstrate that our proposed method56
achieves performance comparable or superior to existing methods. Furthermore, we compare our57
method with adversarial training-based Wasserstein distance regularization methods that use a dis-58
criminator, confirming that our discriminator-free approach is more stable and effective.59

Our study makes the following key contributions:60

• We introduce a novel regularization method with the Wasserstein distance via optimal transport61
maps for offline RL, eliminating the need for adversarial training and a discriminator through62
ICNNs.63

• We evaluate our proposed method on the D4RL benchmark dataset and find that it achieves perfor-64
mance comparable to or even surpassing that of widely used methods. Additionally, by comparing65
it with an adversarial training-based approach, we show that our discriminator-free method incor-66
porates Wasserstein distance regularization more effectively for these tasks.67

2 Preliminaries68

2.1 Reinforcement Learning69

Reinforcement learning (RL) is a framework for sequential decision-making, where an agent inter-70
acts with an environment modeled as a Markov decision process (MDP). An MDP is defined by the71
tuple (S,A, P, r, γ, d0), where S and A are the state and action spaces, P (s′|s, a) is the transition72
probability distribution, r(s, a) is the reward function, γ ∈ (0, 1) is the discount factor and d0 is the73
probability distribution of initial states. The agent follows a policy π(a|s), which defines a proba-74
bility distribution over actions given a state, aiming to maximize the expected cumulative reward:75
E[
∑T
t=0 γ

tr(st, at)], where T is a task horizon.76

2.2 Offline RL with Regularization77

Offline RL focuses on learning an optimal policy purely from a fixed dataset D = {(s, a, r, s′)}78
collected by an unknown behavior policy πD. Since the learned policy π may select actions outside79
the support of D, distributional shift issues arise, causing erroneous value estimates and degraded80
performance.81
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To mitigate distributional shift, regularization techniques are employed to constrain the learned pol-82
icy. Regularization is sometimes applied to the divergence between the learned policy π and the83
dataset policy πD (Garg et al., 2023; Xu et al., 2023). In this study, following Nachum & Dai84
(2020); Sikchi et al. (2024), we consider regularization based on the visitation distributions dD and85
dπ . In this case, the optimization problem with regularization is formulated as follows:86

max
d⩾0

Ed(s,a)[r(s, a)]− αD(d(s, a)∥dD(s, a))

s.t.
∑
a

d(s, a) = (1− γ)d0(s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′), (1)

where D is a divergence that measures the deviation between distributions, and α is a hyperparame-87
ter that adjusts the strength of regularization. From Lagrange duality, this constrained optimization88
problem is equivalent to the following min-max problem (Nachum & Dai, 2020; Sikchi et al., 2024):89

min
V

max
d⩾0

E(s,a)∼d
[
r(s, a)− αD

(
d(s, a)∥dD(s, a)

)]
+
∑
s

V (s)

(1− γ)d0(s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)−
∑
a∈A

d(s, a)

 , (2)

= min
V

max
d⩾0

(1− γ)Ed0(s)[V (s)] + E(s,a)∼d

[
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s)

]
− αD

(
d(s, a)∥dD(s, a)

)
, (3)

= min
V

max
d⩾0

(1− γ)Ed0(s)[V (s)] + E(s,a)∼d[Q(s, a)− V (s)]− αD(d(s, a)∥dD(s, a)). (4)

In the next section, we introduce a discriminator-free regularization method using this equation with90
the Wasserstein distance.91

2.3 Wasserstein Distance92

The Wasserstein distance, particularly the 2-Wasserstein distance, is widely used to measure the93
discrepancy between two probability distributions. Given two distributions P and Q on RD with94
finite second order moments, the 2-Wasserstein distance is defined as follows:95

W 2
2 (P,Q) := min

ξ∈Π(P,Q)

∫
RD×RD

∥x− y∥22 dξ(x, y), (5)

where Π(P,Q) denotes the set of all joint distributions whose marginals are P and Q. The Wasser-96
stein distance captures the geometric discrepancy between probability distributions. Unlike density-97
ratio-based measures such as the KL divergence, which can diverge when the supports of the distri-98
butions do not overlap, the Wasserstein distance is less prone to divergence and serves as a robust99
measure for out-of-distribution data.100

Brenier (1991) showed that if P is absolutely continuous with respect to the Lebesgue measure,101
there exists a convex function ψ : RD → R ∪ {∞} whose gradient ∇ψ : RD → RD serves as102
the unique optimal transport map from P to Q. Consequently, the unique optimal transport plan103
is ξ∗ = [idRD , T ∗]♯P, with T ∗ = ∇ψ. Here, for any measurable mapping T : RD → RD, T♯P104
denotes the push-forward of P under T , and idRD is the identity map on RD. Then, Q = ∇ψ♯P ,105
and the 2-Wasserstein distance can be expressed as:106

W 2
2 (P,Q) =

∫
RD

∥x−∇ψ(x)∥22 dP (x). (6)

The convex function ψ(x) can be modeled using ICNNs (Amos et al., 2017), and its gradient can107
be used as a mapping to compute the Wasserstein distance (Makkuva et al., 2020; Korotin et al.,108
2021a;b; Mokrov et al., 2021).109
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3 Offline RL with Wasserstein Regularization via Optimal Transport Maps110

In this section, we propose a method for regularization using the Wasserstein distance in offline RL111
without relying on a discriminator. This algorithm involves learning a value function Qθ(s, a) and112
Vϕ(s), a generator dω(s, a) corresponding to the visitation distribution, and a policy πρ(a | s). The113
parameters θ, ϕ, ω, ρ represent the respective neural network parameters.114

3.1 Learning the Visitation Distribution and Policy115

We begin by describing the key component of this approach: learning the visitation distribution116
dω(s, a). From Eq. (4), the objective function for dω when the regularization measure is the squared117
2-Wasserstein distance is given by:118

J(ω) = Es,a∼dω [Qθ(s, a)− Vϕ(s)]− αW 2
2 (dω(s, a)∥dD(s, a)). (7)

That is, the learned policy’s visitation distribution is optimized to maximize the advantage while119
being regularized to prevent excessive deviation from the dataset distribution dD.120

To model dω , we apply Brenier’s theorem. Specifically, we parameterize a convex function ψω using121
an ICNN and define dω as the push-forward from dD through the gradient: dω = ∇ψω♯dD. This122
means that samples from dω are obtained as the gradient of the convex function ∇ψω(x), where123
samples x are drawn from the offline distribution dD. Consequently, the Wasserstein distance can124
be evaluated as:125

W 2
2 (dω, d

D) = Ex∼dD
[
∥x−∇ψω(x)∥22

]
, (8)

where x represents a state-action pair vector. Accordingly, the objective function for dω is formu-126
lated as:127

Jψ(ω) = E(s,a)∼dω

[
Qθ̂(s, a)− Vϕ(s)

]
− αEx∼dD

[
∥x−∇ψω(x)∥22

]
. (9)

where θ̂ represents the parameters of the target network. There are design choices regarding how128
to treat x as a combination of state and action and how to model ψ. Since our primary focus when129
learning a policy from d is on changes in action rather than changes in state, we opt to keep the130
state unchanged. Instead, we condition on the state and only modify the action. Specifically, for131
(s, a) ∼ dD, we derive a′ = ∇ψs(a) and treat (s, a′) as a sample from d, where ∇ψs(a) represents132
the gradient of a convex function with respect to a, conditioned on the state s. In this setup, the133
Wasserstein distance is computed based on the visitation distribution conditioned on the state. Since134
this conditioned distribution is equivalent to the policy, it serves as a form of policy regularization,135
akin to the method proposed by Wu et al. (2019).136

In this manner, Wasserstein distance regularization is incorporated into learning without requiring137
a discriminator. This modeling approach offers additional benefits. Makkuva et al. (2020) reported138
that while mappings using conventional neural networks, such as those in Arjovsky et al. (2017),139
are constrained to be continuous, gradient-based modeling allows for the learning of discontinuous140
mappings. Our method also benefits from this property. However, in general settings, gradient-based141
methods face challenges, such as the inability to generate more samples than those available in the142
offline dataset and the tendency to collapse into an identity mapping when return maximization is143
absent, preventing the generation of new data. Nevertheless, in offline RL, it is reasonable to use144
only reliable data transformed from the offline dataset to avoid out-of-distribution issues. Moreover,145
the hyperparameter α allows for adjustment between behavior cloning, which corresponds to the146
identity mapping, and RL. In other words, this method enables discriminator-free modeling without147
significant issues, making it well-suited for offline RL.148

For policy learning from the learned dω , we utilize Advantage Weighted Regression (AWR) (Nair149
et al., 2021), a method commonly used in offline RL. While existing approaches such as Nair et al.150
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(2021); Kostrikov et al. (2022); Garg et al. (2023) maximize the log-likelihood of offline dataset151
state-action pairs weighted by the advantage, our method instead maximizes the log-likelihood of152
state-action pairs sampled from the learned dω , which are obtained as transformed versions of offline153
data through ∇ψω . Thus, the loss function is formulated as follows:154

Lπ(ρ) = −E(s,a)∼dω [exp (β(Qθ(s, a)− Vϕ(s))) log πρ(a|s)] . (10)

3.2 Learning the Value Function155

There are two common approaches to incorporating regularization into policy learning: value156
penalty and policy regularization (Wu et al., 2019). Value penalty methods introduce a penalty157
term into the value function, whereas policy regularization directly applies a penalty to the policy158
itself. Although value penalty-based learning can be implemented by optimizing the value function159
according to Eq. (4), this results in an adversarial learning setup where dω is maximized while V is160
minimized, leading to instability.161

To address this issue, we adopt policy regularization instead. Specifically, the policy is trained using162
the method derived from the regularized objective, as mentioned above, while the value function163
is learned without regularization. For the learning of the value function, we employed Implicit164
Q-Learning (IQL) (Kostrikov et al., 2022) for stability. The IQL enables Q-learning-based value165
function learning through the expectile regression, allowing us to avoid out-of-distribution samples166
while maintaining an in-sample learning approach. The loss functions for Q and V are formulated167
as follows:168

LV (ϕ) = E(s,a)∼D
[
L2
τ (Qθ̂(s, a)− Vϕ(s))

]
, (11)

169
LQ(θ) = E(s,a,s′)∼D

[
(r(s, a) + γVϕ(s

′)−Qθ(s, a))
2
]
. (12)

By integrating this value function learning approach with the previously described learning of dω170
and πρ, we achieve a policy regularization-based method that incorporates the Wasserstein distance171
regularization without relying on a discriminator or adversarial training.172

We name this method Q-learning regularized by Direct Optimal Transport modeling (Q-DOT) and173
evaluate it through experiments. The corresponding pseudocode is presented in Algorithm 1.174

4 Experiments175

4.1 Experimental Setup176

Algorithm 1 Q-DOT

1: Input: Offline dataset D = {(s, a, r, s′)}
2: Initialize: Qθ, Vϕ, πρ and ICNN ψω
3: for each update step do
4: Sample mini-batch {(s, a, r, s′)} from D
5: Update Vϕ by minimizing Eq. (11)
6: Update Qθ by minimizing Eq. (12)
7: Update ψω by maximizing Eq. (9)
8: Update πρ by minimizing Eq. (10)
9: end for

In this section, we evaluate the effectiveness of177
the proposed method using the D4RL bench-178
mark (Fu et al., 2020). For comparison, we179
consider widely used offline RL methods (Fu-180
jimoto & Gu, 2021; Kostrikov et al., 2022; Ku-181
mar et al., 2020; Chen et al., 2021), and refer to182
the scores reported in Kostrikov et al. (2022).183
In addition, we implement and experiment with184
an adversarial learning-based method that in-185
corporates regularization using the Wasserstein186
distance, which we refer to as Adversarial187
Wasserstein (AdvW). In AdvW, the policy is188
updated based on Wu et al. (2019), and its ob-189
jective is defined as follows:190

max
π

Es∼D,a∼π [Q(s, a)− αW (π(·|s), πD(·|s))] . (13)
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Table 1: The average normalized return on D4RL tasks. For our method, Q-DOT, the mean and
standard error over six random seeds are reported.

Dataset BC 10%BC DT TD3+BC CQL IQL AdvW Q-DOT (Ours)
halfcheetah-medium-v2 42.6 42.5 42.6 48.3 44.0 47.4 48.6 47.9±0.1

hopper-medium-v2 52.9 56.9 67.6 59.3 58.5 66.3 61.2 76.7±3.2

walker2d-medium-v2 75.3 75.0 74.0 83.7 72.5 78.3 80.7 83.0±0.8

halfcheetah-medium-replay-v2 36.6 40.6 36.6 44.6 45.5 44.2 44.2 43.7±0.6

hopper-medium-replay-v2 18.1 75.9 82.7 60.9 95.0 94.7 48.1 97.4±1.2

walker2d-medium-replay-v2 26.0 62.5 66.6 81.8 77.2 73.9 68.9 70.7±4.0

halfcheetah-medium-expert-v2 55.2 92.9 86.8 90.7 91.6 86.7 22.6 89.6±1.7

hopper-medium-expert-v2 52.5 110.9 107.6 98.0 105.4 91.5 17.6 93.1±13.0

walker2d-medium-expert-v2 107.5 109.0 108.1 110.1 108.8 109.6 92.5 110.3±0.1

locomotion total 466.7 666.2 672.6 677.4 698.5 692.4 480.1 712.4
antmaze-umaze-v0 54.6 62.8 59.2 78.6 74.0 87.5 83.2 87.8±1.1

antmaze-umaze-diverse-v0 45.6 50.2 53.0 71.4 84.0 62.2 51.0 70.2±3.8

antmaze-medium-play-v0 0.0 5.4 0.0 10.6 61.2 71.2 46.0 68.2±1.5

antmaze-medium-diverse-v0 0.0 9.8 0.0 3.0 53.7 70.0 42.5 66.2±5.5

antmaze-large-play-v0 0.0 0.0 0.0 0.2 15.8 39.6 12.5 49.0±4.2

antmaze-large-diverse-v0 0.0 6.0 0.0 0.0 14.9 47.5 8.2 40.7±4.9

antmaze total 100.2 134.2 112.2 163.8 303.6 378.0 243.3 382.0
kitchen-complete-v0 65.0 - - - 43.8 62.5 4.2 64.2±3.4

kitchen-partial-v0 38.0 - - - 49.8 46.3 24.6 71.3±1.3

kitchen-mixed-v0 51.5 - - - 51.0 51.0 21.7 42.9±4.3

kitchen total 154.5 - - - 144.6 159.8 50.4 178.3

where πD represents the behavior policy used for dataset collection. The Wasserstein regulariza-191
tion is computed using the dual form with a discriminator g, following Arjovsky et al. (2017):192
W (p, q) = supg:∥g∥L≤1 (Ex∼p[g(x)]− Ex∼q[g(x)]). The training of both the discriminator and the193
policy follows the official implementation of Wu et al. (2019). The discriminator is trained with a194
gradient penalty to enforce the Lipschitz constraint. For value function training, we observed that195
on-policy training, as in Wu et al. (2019), failed to achieve decent learning in the D4RL benchmark.196
Therefore, we adopted in-sample learning of IQL, similar to our proposed method, resulting in a fair197
comparison. The hyperparameter α in AdvW was tuned using the values (0.3, 1, 3, 10, 30) specified198
in Wu et al. (2019). However, we found that the learned policy outputs sometimes deviated signifi-199
cantly from the dataset actions. To address this, we further tested larger values (102, 152, 202).200

The expectile parameter τ used for value function estimation in both our proposed method and201
AdvW is a hyperparameter, and we adopted the same values as in Kostrikov et al. (2022). The202
implementation of ICNN utilizes Cuturi et al. (2022). The network consists of a two-layer fully con-203
nected architecture with 256 hidden units per layer, identical to the other actor and critic networks.204
Additional implementation details and other hyperparameters are provided in the Supplementary205
Materials.206

4.2 Results on the D4RL Benchmark207

Table 1 presents the results on the D4RL benchmark, which consists of the locomotion, antmaze,208
and kitchen domains. In terms of total return, our proposed method consistently achieved the best209
or comparable performance across all domains compared to the baselines. When analyzing individ-210
ual datasets, our method attained the highest return on several datasets. Notably, it outperformed the211
best existing methods by significant margins in hopper-medium-v2 and kitchen-partial-v0, achieving212
improvements of +10.4 and +21.5, respectively. For the Antmaze domain, our method performed213
similarly to IQL. Since Antmaze requires trajectory stitching (Zhuang et al., 2024), regularization214
alone does not substantially enhance stitching ability. This suggests that further performance im-215
provements would require incorporating additional techniques beyond regularization.216

On the other hand, AdvW exhibited lower performance across all domains in terms of total score. In217
particular, it performed poorly on datasets that contain successful trajectories, such as halfcheetah-218
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Figure 1: The relationship between trajectory quality and transport-induced distance. The x-axis
represents the cumulative reward of each trajectory, while the y-axis shows the average L2 norm of
state-action pair differences before and after transport.

medium-expert-v2, hopper-medium-expert-v2, and kitchen-complete-v0, where strong regulariza-219
tion is crucial. This was the case even when using large values for α (e.g., 102, 152, 202). These220
AdvW results are similar to the BRAC results reported in Zhang et al. (2021) using a discrimina-221
tor with f-divergence, suggesting that behavior cloning generally becomes more challenging when222
adversarial learning is involved.223

These results suggest that adversarial learning-based regularization via Wasserstein distance is inher-224
ently unstable and challenging. In contrast, the discriminator-free training approach of our proposed225
method demonstrates effectiveness in achieving high scores consistently.226

4.3 Trajectory Quality and Transport Distance227

We analyze the relationship between trajectory quality and state-action pair transformations induced228
by a trained ICNN mapping. Specifically, we visualize the relationship between the cumulative229
rewards of trajectories in the offline dataset and the average transport-induced distance over state-230
action pairs. The horizontal axis represents the cumulative reward of each trajectory, while the231
vertical axis indicates the average L2 norm of the difference between state-action pairs before and232
after transport.233

The results from three tasks show that lower-reward trajectories exhibit greater transport distances234
for their state-action pairs. This suggests that the optimization objective in Figure 1 effectively regu-235
larizes state-action transformations by primarily modifying low-quality trajectories while preserving236
high-quality ones. Additional results for other tasks are provided in the Supplementary Material.237

238

5 Related Work239

Offline RL aims to learn policies solely from pre-collected data. A central challenge in this setting240
is addressing the distributional shift between the state-action distribution of the learned policy and241
that of the offline dataset. When the distributional shift is large, the value of actions not observed242
in the offline dataset may be overestimated (Levine et al., 2020). A particularly simple approach to243
mitigating this discrepancy is presented in (Fujimoto & Gu, 2021). Fujimoto & Gu (2021) propose244
a policy regularization method based on TD3, an off-policy technique commonly used in online RL,245
by incorporating a behavior cloning term into the policy learning process. The behavior cloning term246
is defined as the squared error between the action output by the learned policy and the action in the247
dataset. This corresponds to the 2-Wasserstein distance between the dataset policy and the learned248
policy in cases where the learned policy is deterministic. The promising performance of this simple249
method suggests the effectiveness of using a notion of action similarity, such as the Wasserstein250
distance, as a regularization term.251
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Wu et al. (2019) experimented with value penalty and policy regularization using various divergence252
measures. Regularization based on f-divergence and the Wasserstein distance was also explored,253
where optimization was performed using a dual-form discriminator-based approach. However, as254
demonstrated with AdvW, even when in-sample maximization was incorporated into value function255
learning, adversarial learning with a discriminator did not perform well on the D4RL dataset, high-256
lighting the necessity of discriminator-free learning. Asadulaev et al. (2024) proposed a method257
that extends BRAC with Wasserstein distance regularization. Similar to BRAC, their approach em-258
ploys adversarial learning using a discriminator. However, their main proposed method is based259
on Tarasov et al. (2023), which incorporates a large network and multiple techniques, making a260
fair comparison challenging. Their approach, which formulates offline RL as an Optimal Transport261
problem, could incorporate our ICNN-based modeling, which may be considered a future direction.262

Several studies, including Kostrikov et al. (2022); Xu et al. (2023); Garg et al. (2023); Sikchi et al.263
(2024), have proposed in-sample maximization approaches. These methods avoid overestimation264
caused by out-of-distribution actions by training exclusively with dataset actions, without sampling265
actions from the learned policy. Kostrikov et al. (2022) treat the value function as a distribution with266
inherent action-related randomness and estimates an expectile with τ ≈ 1 using expectile regression267
to approximate the optimal value function in an in-sample manner, similar to Q-learning. The policy268
is learned through Advantage Weighted Regression (Nair et al., 2021), where behavior cloning is269
weighted by an advantage function derived from the learned value function, ensuring that regular-270
ization is applied only during policy learning. Garg et al. (2023); Xu et al. (2023) propose algorithms271
that incorporate regularization terms based on reverse KL divergence and other f-divergence mea-272
sures into the RL objective. Sikchi et al. (2024) employ a regularization term based on the visitation273
distribution of each policy, following Nachum & Dai (2020), where f-divergence is used as a mea-274
sure. Since these in-sample maximization approaches decouple value function learning from policy275
learning and propose novel methods for value function training, they can be combined with our276
policy learning method.277

Input Convex Neural Networks (ICNNs) (Amos et al., 2017) are neural networks designed such278
that their outputs form a convex function with respect to the inputs. Based on Brenier’s theorem279
(Brenier, 1991), the gradient of an ICNN can be utilized as a push-forward map, enabling the mod-280
eling of the Wasserstein distance even in high-dimensional data settings (Makkuva et al., 2020;281
Korotin et al., 2021a;b; Mokrov et al., 2021). The use of an ICNN-based generator for minimizing282
the Wasserstein distance involves transforming existing data. If there is no objective such as re-283
turn maximization when minimizing the Wasserstein distance using the ICNN-based generator, the284
transport map simply becomes an identity mapping, rendering it incapable of generating new data285
and thus meaningless. However, when an objective is introduced, the strength of the regularization286
term can be adjusted via a hyperparameter α, allowing for a gradual increase in the deviation from287
the identity mapping. These characteristics make Wasserstein regularization using ICNNs especially288
well-suited to offline RL. To the best of our knowledge, our proposed approach is the first to intro-289
duce discriminator-free Wasserstein distance regularization with ICNNs in RL. This method has the290
potential for further development beyond offline RL, extending to other RL settings.291

6 Conclusion292

In this study, we proposed a novel offline RL method that leverages Wasserstein distance as a reg-293
ularization technique without requiring adversarial learning with a discriminator. By utilizing the294
gradient of input-convex neural networks (ICNNs) to model the optimal transport mapping, our ap-295
proach effectively regularizes the learned policy while maintaining stability and efficiency. Through296
experiments using the D4RL benchmark dataset, we demonstrated that our method performs com-297
parably to or better than established baseline approaches, including adversarial Wasserstein distance298
regularization methods that rely on a discriminator. These results highlight the effectiveness of299
our discriminator-free approach in mitigating distributional divergence while ensuring robust policy300
learning in offline RL settings. Our findings suggest that Wasserstein distance regularization via301
ICNN-based optimal transport mapping offers a promising direction for future research in RL.302
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7 Experimental Details390

In AdvW and Q-DOT, the actor, critic, discriminator (for AdvW), and ICNN (for Q-DOT) are all391
two-layer MLPs with ReLU activations and 256 hidden units. The learning rate for all updates was392
set to 3× 10−4 using the Adam optimizer (Kingma & Ba, 2015). The expectile parameter τ was set393
to the same value as in IQL: 0.7 for Mujoco locomotion tasks and Kitchen tasks, and 0.9 for Antmaze394
tasks. For AdvW, the parameter α was selected from the values explored in Wu et al. (2019) as well395
as larger values, choosing the optimal one from (0.3, 1, 3, 10, 30, 102, 152, 202). The selected values396
for Mujoco locomotion, Antmaze, and Kitchen were 3, 1, and 30, respectively. In Q-DOT, α was397
selected from (1, 5, 10, 20, 102, 202), which includes large values, because W 2

2 was often computed398
as the squared difference of values below 1, resulting in extremely small values. Meanwhile, β was399
swept over the range (0.5, 3, 10, 20), which is close to the values reported in Kostrikov et al. (2022).400
The selected (α, β) pairs for Mujoco locomotion, Antmaze, and Kitchen were (20, 3), (20, 20), and401
(202, 0.5), respectively. Other implementation details follow Kostrikov et al. (2022). The code is402
provided in the Supplementary Materials.403

8 Trajectory Quality and Transport Distance404

The results of other locomotion task are shown in Figure 2. In the Walker2d environment, similar to405
the Hopper environment, the transport distance was larger for lower-quality trajectories. In contrast,406
this tendency was not as clearly observed in the HalfCheetah environment. A smaller transport407
distance indicates that the transport that increases the advantage is not being identified by the value408
function. Thus, learning a value function capable of effectively transforming low-quality trajectories409
remains a challenge for future research in such tasks.410
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Figure 2: The relationship between trajectory quality and transport-induced distance.
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