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Abstract

Monte Carlo Tree Search (MCTS), which leverages Upper Confidence Bound
for Trees (UCTs) to balance exploration and exploitation through randomized
sampling, is instrumental to solving complex planning problems. However, for
multi-agent planning, MCTS is confronted with a large combinatorial action space
that often grows exponentially with the number of agents. As a result, the branching
factor of MCTS during tree expansion also increases exponentially, making it very
difficult to efficiently explore and exploit during tree search. To this end, we
propose MALinZero, a new approach to leverage low-dimensional representational
structures on joint-action returns and enable efficient MCTS in complex multi-
agent planning. Our solution can be viewed as projecting the joint-action returns
into the low-dimensional space representable using a contextual linear bandit
problem formulation. We solve the contextual linear bandit problem with convex
and p-smooth loss functions — in order to place more importance on better joint
actions and mitigate potential representational limitations — and derive a linear
Upper Confidence Bound applied to trees (LinUCT) to enable novel multi-agent
exploration and exploitation in the low-dimensional space. We analyze the regret
of MALinZero for low-dimensional reward functions and propose an (1 — 1)-
approximation algorithm for the joint action selection by maximizing a sub-modular
objective. MALinZero demonstrates state-of-the-art performance on multi-agent
benchmarks such as matrix games, SMAC, and SMACv2, outperforming both
model-based and model-free multi-agent reinforcement learning baselines with
faster learning speed and better performance.

1 Introduction

Monte Carlo Tree Search (MCTS) has demonstrated great performance in solving complex planning
problems such as game playing [LL], robotic control [2]], and optimization [3]]. It achieves much higher
data efficiency than value- or policy-based reinforcement learning (RL) [4] by leveraging Upper
Confidence Bound for Trees (UCTs) to balance exploration and exploitation through randomized
sampling and cumulative regret minimization [3]]. Integrated with deep learning (e.g., AlphaZero [6]
and MuZero [4]), MCTS algorithms have achieved groundbreaking results in solving complex games,
such as Go, Chess and Shogi [4], relying on little knowledge of domain expertise or game rules.

However, for planning problems involving multiple agents, MCTS is confronted with a large combi-
natorial action space that often grows exponentially with the number of agents [7, 18]]. As the number
of candidate actions increases, the branching factor of MCTS (during tree expansion) also increases
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exponentially, making it very difficult to efficiently explore and exploit during tree search [9} [10].
Existing works either focus on single-agent problems or limit tree search to a small set of state-
conditioned action abstractions [9} [11]]. As a result, MCTS can get stuck in local optima or become
slow to explore optimal actions. Recent proposals like MAZero [10] facilitate distributed represen-
tation of state transitions and reward prediction in multi-agent MCTS, but again do not address the
challenges relating to the combinatorial action space in multi-agent planning.

In this work, we propose MALinZero, a new approach to leverage low-dimensional representational
structures and enable efficient MCTS in complex cooperative multi-agent planning. The main idea
of MALinZero is to model the joint returns through a low-dimensional linear combination of the
(latent) per-agent action rewards. Thus, by observing the joint returns resulted from multi-agent
actions, we can formulate a contextual linear bandit problem [12] — with the per-agent action rewards
as an unknown parameter vector 6 — and derive a linear Upper Confidence Bound applied to trees
(LinUCT), to enable novel LinUCT-based exploration and exploitation in this low-dimensional space
of (latent) per-agent action rewards. The idea of enforcing representational structures on joint returns
has been instrumental in multi-agent reinforcement learning (MARL), e.g., VDN [13]] with linear
representations, and QMIX [14], NDQ [15], and PAC [16] with monotonic representations, as well
as policy factorizations like DOP [17]] and FOP [18]]. However, these MARL results do not apply to
multi-agent MCTS, which requires not only factorized action-values but also the use of concentration
inequalities [19] to bound their probability distributions given observed samples, like in our LinUCT.

For a planning problem with n agents and d actions per agent, MALinZero effectively reduces the
tree search from considering d™ independent joint-action returns to learning nd latent per-agent
action rewards. Our solution can be viewed as projecting the returns into the low-dimensional space
represented by MALinZero using a contextual linear bandit problem formulation [[12, 20]. To mitigate
the potential representational limitations, we further introduce a strongly-convex, p-smooth distance
measure f into the projection (as a new contextual bandit loss), in order to place more importance
on not underestimating the better joint actions, while not overestimating the less attractive joint
actions [21]]. We solve the resulting contextual linear bandit problem with this convex loss and prove
that our LinUCT achieves an cumulative regret of Ry = O(nd AT - ln(T)) after T’ steps for low-
dimensional rewards. We further show that the joint action selection problem in our MALinZero is a
maximization of a submodular objective and can be solved using an (1 — %)—approximation algorithm.
MALinZero achieves state-of-the-art performance in our evaluations on matrix games, SMAC [22],
and SMACv2 [23]], by enabling multi-agents MSCT via low-dimensional representations.

The primary contributions of this paper are as follows:

* We propose MALinZero to leverage low-dimensional representational structures on joint-
action returns and enable efficient MCTS in complex multi-agent planning.

* We solve the resulting contextual linear bandit problem with a convex loss function and
derive a novel LinUCT to facilitate exploration and exploitation in low-dimensional space.

» We analyze the regret of MALinZero for low-dimensional rewards and proposes an (1 — %)-
approximation algorithm for joint action selection via a submodular maximization.

* MALinZero demonstrates state-of-the-art performance on multi-agent planning benchmarks
such as MatGame, SMAC, and SMACYV2, outperforming both multi-agent RL and MCTS
baselines in terms of faster learning speed and better performance.

2 Related Works and Background

Multi-agent planning with joint rewards can be modeled as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP), as a tuple (Z, S, {A}icz, P, R, {Q}iez, {O}iez, ) [24],
where Z = 1,2, ..., nis the set of n agents, S the global state space, A; the action space of agent
i, P the state transition probability distribution, R the joint reward function, 2; the individual
observation space of agent 7, O the global observation function and ~y the discount factor to weigh
future rewards. At times step t, agent i gets state s; thus acquiring local observation 0! = O(s;),
then chooses action a; € A; based on the acquired local observation o’,. Given a joint action

a; = (a%, e a{v ), the environment transits to the next state s;y; and returns a reward r =
R(st,ar). Agents aim to learn a joint policy 7r that maximizes the expectation of discounted return
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MARL with factorized representations. Factorization-based methods have been commonly
used to cope with the exponentially growing joint state-action space in MARL. Under the notion
of Centralized Training and Decentralized Execution (CTDE), algorithms like VDN [13]] learn a
centralized joint action-value function Q¢ through a linear combination of local per-agent value
functions. This is further extended to monotonic representations in QMIX [14]], nearly decentralized
representations in NDQ [[15]], and counterfactual predictions in PAC [16]. Policy-based factorizations
have also been considered in DOP [17] and FOP [18]]. To mitigate potential representation limitation,
QTRAN [25] has considered adding state-value correction terms, while Weighted QMIX [[14]
introduces importance weights on dominant state-actions. The idea of enforcing these representational
structures has been instrumental in developing decentralized, scalable MARL algorithms. However,
these factorized representations in MARL do not apply to multi-agent MCTS, which requires the use
of concentration inequalities to bound the return distributions given observed samples, in order to
balance exploration and exploitation.

MCTS-based planning. MCTS is widely applied to solve planning problems through sequential
decision-making [26]. Efficient search for optimal actions in a large decision space has been one of
the central problems in MCTS [27, 10l l4]. Existing works have leveraged Boltzmann policies [[11]
and state-conditioned action abstractions [9]]. The problem becomes more pronounced in multi-agent
MCTS, as the joint action space increases exponentially as the number of agents grows [28| 29} 30],
leading to significantly increased complexity in tree expansion and search. Recent approaches like
MAZero [10]] have considered multi-agent MCTS, but only considered distributed representation
of state transitions and reward prediction, without addressing the combinatorial action space in
multi-agent planning.

MCTS typically involves four stages, i.e., Selection to choose actions using UCB-like strategies [31],
Expansion to add new child nodes, Simulation to sample payoffs, and Back-Propagation to propagate
payoffs and update node returns. Model-based MCTS algorithms like MuZero [4]] learn a dynamic
model to replace Simulation, thus improving the planning efficiency. MuZero involves three key
learnable models: a representation model hg to map the real environment into a latent space, a
dynamics model gy that computes the next state and the reward of this transition, and a prediction
model fj for value and policy approximation. Given the observation history o< at time step ¢, the
model maps the observation into a latent space as s; o = hg(0<;), then unrolls K steps and predicts
the corresponding s, i, 7.5 = go(S¢,k—1) and vy g, Pek = fo(se,x) for each hypothetical step k& with
k=0,1,..., K. During Selection, MuZero traverses from the root node and applies the probabilistic
Upper Confidence Tree (pUCT) rule to select actions for node transitions until reaching the leaf node
of the current tree: S NG

p IV (s,

a = arg max D(s,a) + c(s)P(s,a) Ns.a) 11 (1
where s, a and A are abbreviations for s; _1, a; ;, and action set respectively. ®(s, a) is the estimation
for the real value of nodes, N (s,a) denotes the visiting count, P(s,a) is the prior probability of
selecting a in s, and c¢(s) is the coefficient balance exploitation and exploration. When the leaf
node is reached, new nodes will be expanded to the tree, then ®(s, a) and N (s, a) of nodes in the
search path will be updated. Specifically, ®(s,a) is updated based on a cumulative discounted
reward G j, = Zlil*k YV rps14r + R0 for k = 0,1,...,1 where [ is the search depth and thus

=0
N(s,a)-®(s,a)+Gy K

calculated as ®(s,a) = N(s,a)+1

Sampled MuZero [32] extends MuZero into a sampling-based framework to tackle larger action
spaces for which MuZero can not construct all possible states as nodes. In Expansion, only a subset
T'(s) of the complete action space will be considered by Sampled MuZero according to the sampling
policy /3 and prior policy 7. Then the sampled action will be selected by a = arg max,c 4 ®(s,a) +

c(s)gP(s, a) %, where 3 is the empirical action distribution.

3 MALinZero for Multi-Agent MCTS

MALinZero leverages low-dimensional representations of the joint-action returns and solves the
resulting contextual linear bandit problem to enable efficient LinUCT-based MCTS in complex multi-
agent planning. LinUCT is applied in Selection described in Section [2]to choose the optimal action
during MCTS. MALinZero consists of four main modules: the representation model for obtaining



the latent per-agent action rewards as an unknown parameter vector 6 from observed samples, the
dynamics model for predicting the next latent state and reward, the prediction model for estimating
the search policy and action-values, and the communication model for describing the coordination
among multi—agents{ﬂ Notably, the proposed LinUCT-based search and dynamic node generation in
MALinZero would not incur any extra neural networks compared with MAZero, since they depend
only on the inner process of each rollout. We analyze the regret of MALinZero for low-dimensional
rewards. For action selections, we will show that the problem is a maximization of a sub-modular
objective, solvable by an (1 — é)-approximation algorithm. All proofs are collected in the Appendix.

3.1 Leveraging Low-Dimensional Representations

MALinZero models the joint-action returns through a low-dimensional linear combination of the
latent per-agent action rewards. More precisely, we consider a contextual linear bandit problem [20]
with a finite joint-action set A C R™?, where we assume that each agent has d = |.4;| actions without
loss of generality. Thus, each joint action a € A is represented by an n-hot vector selecting one
local action for each agent. It is easy to see that the Euclidean norm of any action is bounded by
lallz2 < L = v/n, Va € A. At each round ¢, we chooses an action A; € A, and the environment
reveals a reward X; = R(s¢, A).

In this work, we leverage a low-dimensional representation of the reward, i.e., X; = (0%, A;) + .
Here ¢; is conditionally l—subgaussia observation noise, and #* € R"? is an unknown parameter
vector representing the (latent) per-agent action return values. Thus, for each n-hot vector action
A: € A, we model the low-dimensional reward X; as a linear sum of n corresponding per-agent
action rewards. Our model can be viewed as projecting the reward R(s;, A;) into the low-dimensional
space representable using X; = (0*, A;) + ;. It reduces the MCTS from considering d" joint reward
values in each state s; to learning an unknown parameter vector of size nd only, thus allowing quick
estimate of the global reward structure from limited samples and significantly speed-up the tree search
in multi-agent MCTS. Applying the regularized least-squares estimator, we can get the empirical

estimation of 6* from observed samples X7, ..., X; as
: A
0, = in (), s.t. Fi(0) = X, — (0, A)) + =Z]0))? 2
= arg i, F(0), 5. Fi(0) = 301X = 0.4 + 510 @

where f is some distance measure, [|6]|? a regularization term ensuring the uniqueness of the solution,
A an appropriate constant for the regularization term.

Classic LinUCB for Euclidean distance f. When f is the Euclidean distance measure, the solution
to the estimation problem in (2)) can be obtained by differentiation, i.e., ; = Vt_1 22:1 As X, where

V; are nd x nd matrices given by Vo = Al and V; = Vy+ Z’;Zl A4A]. We can then apply the Upper
Confidence Bound (UCB) algorithm [31] to seek the optimal action of stochastic linear bandits, which
implements the “optimism in the face of uncertainty" principle. Let UCB;(a) = maxgec, (6, a) be
an upper bound on the mean payoff (§*, a) for action a € R™? where C; C R" is the confidence set
based on the action-reward history that contains the unknown 6* with high probability. At each time
t, LinUCB [20] selects A; = argmax,c 4 UCB;(a). The cumulative regret after T" steps is bounded
by Rr = 31—, ((A*,6%) — (A;,0%)) < Cnd/Tlog(T+/n) where A* = arg max,e 4(a, 6*), and
C > 01is a constant.

Mitigating representational limitations with more general f. While classic bandit algorithms like
UCBI and LinUCB [20] solve the contextual linear bandit problem with Euclidean distance f, it does
not necessarily yield the best model in terms of exploring the optimal actions in MCTS. Intuitively,
the use of low-dimensional representation of the reward may introduce potential representational
limitations, as previously observed in MARL algorithms like Weighted QMIX [21]]. To explore the
optimal actions in MCTS, it is important not to underestimate the better joint actions, while not to

'Due to space limitation, the specific model architecture can be found in Appendix B.
2
2A random variable X is 1-subgaussian if it satisfies the moment generating function bound E[e*¥] < e* /2

for all A € R. This implies rapid tail decay P(| X | > ¢) < 2112, analogous to a Gaussian with unit variance.
The property is central to deriving sharp concentration bounds in statistical learning theory.



overestimate the less attractive ones — which otherwise may lead to substantial errors in recovering
the correct maximal actions.

To this end, we consider a general family of strongly-convex, p-smooth distance measure f in the
contextual linear bandit problem in (2). For higher observed rewards X; that are likely optimal, the
distance measure f will have a larger acceleration (i.e., second order derivative if differentiable)
for underestimating (X — (6, As)) > 0, while having a smaller acceleration for overestimating
(Xs — (0, As)) < 0. On the other hand, for higher observed rewards X; that are unlikely to be
chosen, it is important not to overestimate by having a larger acceleration for (X — (6, A5)) < 0.
An example of such f is to consider: f(X, — (0, A,)) = wy - (X5 — (0, As))? if X, > (0, A),
and f(Xs — (0, Ay)) = w_ - (X5 — (0, A,))? otherwise. We can choose w4 > w_ for better X to
prevent underestimation and wy < w_ for undesirable X. This ensures that our low-dimensional
representation in MALinZero can best support the exploration of the optimal actions in MCTS.
We will drive a novel LinUCT with respect to such f and leverage it to balance exploration and
exploitation in MCTS.

3.2 Deriving LinUCT and Analyzing Regret

We derive action selection using LinUCT in MALinZero and provide a cumulative regret bound
for the resulting contextual linear bandit problem, depending on the properties of strongly-convex,

p-smooth f. We prove that LinUCT can achieve an regret of Ry = O(nd - /uT - In(T)) after T
steps, ensuring the exploration efficiency using LinUCT. Our analysis builds upon [33]] and extends it
to general convex loss f.

Let {A;}T_; C R be a sequence of action vectors with || A;||2 < /7, and suppose the observed
reward at time ¢ is X; = (0*, A;) + n; where 0* € R"? satisfies ||0*||2 < S for some bound S, and

each 7, is conditionally 1-subgaussian. Since f : R — R is strongly-convex and p-smooth, we have
e < f"(z) < p,Vz € R for some positive . The solution to (2) is obtained by differentiation and
yields 0, = v, ! 22:1 ws As X s where we use wy = f”(&;) with & € (0, Xy — (6;—1, A¢)) and thus
have ¢ < w; < p for any ¢ and &;. Here X is the immediate reward at step ¢. Further, V; are nd x nd
matrices given by initial Vi = A\I for some constant A > 0 and V; = Vjy + Zizl weAs X,

Next, we consider an ellipsoid confidence set centered around the optimal estimator 6,1, ie.,
C = {0 cR™: ||6 - étleVt_l} < B, for an increasing sequence of 3; with 51 > 1 [33]]. Note

that as ¢ grows, this ellipse C; is shrinking as V; has increasing eigenvalues and if 3; does not grow too
fast. We show that the problem of selecting optimal action A; € A by solving maxa,e 4 0ec, (¢, )
in this contextual linear bandit problem is equivalent to:

A = arg max <ét_1, a> + B ||a\|‘,t111,

which is referred to as our LinUCT rule for action selection. We consider the realized regret defined

by Ry = Zle(Xj - X;) = Zle((e*,Aﬁ — (0%, Ay)) + Zle(ng — ;). The next theorem
gives the regret bound of LinUCT, with corresponding proofs in Appendix A.

Theorem 1. [Regret Bound of LinUCT] With probability 1 — 6, the regret of LinUCT satisfies

- det(V;) nd\ + punt
R; < \/8ut6t In (det()J)) < \/S/mdtﬁt In <md)\> 3)

Proof sketch Let S; = >.'_ wsAgm, and V; = M + 3! w,A,A]. (i) A standard
self-normalized concentration (mixture supermartingale) gives, for all ¢ < T with probability
>1-0,

- et(V)'/? 7 *
STV 'S < 2um(S0) = 10— 67w < B @
(i1) By optimism of LinUCT and the confidence event,
Ty = X;k — Xt S ﬂt_lnAtHVt—_ll + At, At = ”f];k — Mt- (5)

Since 7, n; are 1-sub-Gaussian, ZZ;I Ay <2/TIn(1/6) wp. > 1-34.



(iii) Summing and applying Cauchy—Schwarz plus the (weighted) elliptical potential lemma,

T
ZﬁtqHAt”v;ll < VT Bry 2110(%)7 (6)
t=1

which, together with (ii) and the definition of S, yields

Ry < \/&LT@T In( 25072). (M

(iv) Using wy < pand ||A¢l2 < /n, Vr <X X+ punT I, hence

1I1< de;(n‘gT) ) < nd hl( nd);l-l(;/;nT) ’ 8)

giving the displayed bound in the theorem.

Choosing f3; = \/ 20 1n<%%) + V/AS, we show that the regret has the following order:

Corollary 2 (The Order of Regret Bound for LinUCT). Under the above conditions, the cumulative
regret bound of LinUCT with 6 = 1/T satisfies

Rr=0 (nd- VT - 1n(T)> . )

The regret bound of LinUCT in Theorem|[I| only depends on nd rather than the exponential size of
the joint action space. The general convex loss f incurs an extra multiplicative factor ,/z compared
with the standard results of contextual bandit [33]].

3.3 Dynamic Node Generation

MALinZero allows modeling the joint action space using low-dimensional representation, thus
significantly speeding up exploration and exploitation in multi-agent MCTS. Specifically, when the
leaf node Y in the search path is visited for the first time, x = (x nodes will be sampled as child
nodes where ( is the dynamic generation ratio and x is the maximum number of child nodes. In the
subsequent Selection stage, node Y will utilize the cumulative § and V' (We omit the subscript ¢ in
this section for abbreviated notations) to search for the potential optimal action from the entire joint
action space and add it as the new child node. If there is no node with a higher value, Selection will
sample and compare the existing ones. The detailed process can be found in Algorithm|[I]

For a root or leaf node Y, k = (x nodes are sampled for initialization similar to MAZero. The next
time Y is visited, MALinZero selects optimal action using LinUCT with search policy P(s,a):

a = argmax,c 4 ¥(a) = argmax,c 4 a' 0+ c(s)P(s,a)trace(V)VaTV-la (10)

where c(s) is a constant, ¥(a) is the objective function for action selection, and P(s, a) is the search
policy used as a prior information in LinUCT similar to MuZero [4]. If the selected action for which
the corresponding node does not exist, this node is added after Selection. Once a node has x child
nodes, it only selects next action a from current children. After a root-to-leaf search path is completed,
0 and V' are updated through the search path from the leaf node as procedure Back-Propagation in
Algorithm 1]

Remark. MuZero [4] selects nodes/actions in MCTS via (1) where the term /), N (s, b) represents
the total sampling time. In MALinZero, we utilize trace(V') to achieve the same effect. We use

trace(V) rather than its square root due to the existence of vVa'V ~1a in LinUCT. It ensures that the
scale of exploration term can keep stable with the increasing times of selection. Using the definition
of V and the fact that actions A are n-hot vectors, it is easy to show that trace(V') increases linearly
with N and sampling time. For a single-agent problem, indeed reduces to (T)), recovering existing
result as a special single-agent case.

With Dynamic Node Generation (DNG), we can sample and add new child nodes according to LinUCT.
In other words, the x sampled child nodes are used to bootstrap a low-dimensional representation
of the joint reward over the entire joint action space, thus enabling fast exploration and exploitation



in MALinZero. Let ground set A be the set of all n-hot vectors in R"? where each vector a € A
satisfies: in each of the n disjoint k-dimensional blocks, exactly one entry is 1 with others are 0. Let
S be the set of selected actions and rewrite V(S) = A + Y g aa’ using S. We show that the
objective function W(a) for action selection is sub-modular.

Theorem 3. [Submodularity of V] VU is a non-negative monotonic submodular function over the
ground set A.

Hence, to solve the optimization for action selection in (I0), we have to maximize a submodular
function, which is shown to be N P-hard [34} 135] by reduction from the classical Max-Coverage
problem. Fortunately, there exists an (1 — %)-approximation algorithm [36] to solve this optimization.

Let ¥ : 24 — R>( be a monotone submodular function. Fix a budget 7 € Nand let A = | |I", B;
be partitioned into n blocks (so that any feasible set contains at most one element from each B;; i.e.
an n-hot constraint).

Theorem 4. [(1 — é)-Approximation under Cardinality and n-Hot Constraints] There exists an
[(1— %)-approximation algorithm for the optimization of action selection.

(a) Uniform-matroid (cardinality) case |S| < T. The standard greedy algorithm

A = arg aEIjl\{ig'( [‘I’(St,1 @] {a}) - \I/(S,¢,,1)]7 Sy =5_1U {At},

fort=1,...,T, returns St satisfying ¥(St) > (1 — 1) W(S*), where S* is an optimal subset of
size at most T [36]].

(b) n-Hot (partition-matroid) case. One may apply the continuous-greedy algorithm to the mul-
tilinear relaxation maxyec p(am), 172<7 E[Y(R(2))], where P(M) is the matroid polytope of the

partition matroid and R(x) denotes the standard randomised rounding. It produces a feasible set S
with O(S) > (1— 1) w(S*) [37].

Thus, under the stronger n-hot (partition-matroid) constraint, there exists an efficient algorithm to
compute action selection in MALinZero with (1 — 1)-approximation.

Algorithm 1 MALinZero

—

procedure BACK-PROPAGATION
: procedure DYNAMIC NODE GENERATION

Ik T 2: for (s,a) € path do
2z e A argmaxeesa §  + 3. Let k, I be the depth of the current node
c(s)P(s,a)trace(V)va'V=la s and the leaf node.
3:  return(s,a) > The weighting could be replaced with
4: end procedure strongly-convex p-smooth function for better
1: procedure EXPANSION performance.
2: > M’ is the number of nodes generated by 4: if Observed reward X < Q(s,a)
sampling. then
3: fori=1,...,M do 5: w 4wy
4: a; < sample with 5 and P as Sampled 6: else
MuZero[32]] 7: W 4— Wo
5: T(s) « T(s)U(s,a;) 8: end if
6: end for 9: Calculate the cumulative discounted
7: end procedure reward G(s) « Zi;lo_k V" Xpy140+7 R0
1: procedure SELECTION 10: Q(s,a) < W
2: if number of child nodes < M then 1 N(s,a) < N(s a)’—&— 1
3: (s,a) - DYNAMIC NODE GENERATION Vv ( ’ T
: )+ V(s)+wa a
4: T(s) < T(s)U(s,a) 13 0(s) — V(s)~ Xpa
>: else T 14: end for
6: @ < argmaXeer(s) @ 0 45 eng procedure
c(s)P(s,a)trace(V)VaTV-1a
7: end if
8: return Index of (s, a)
9: end procedure




Efficient Back-Propagation The update of § and V' involves large matrix manipulation, of which
the time complexity is O(n2d?) and the space complexity is O(n?d?). To mitigate the computation
complexity, we design an efficient back-propagation (as shown in Algorithm|[I)) to reduce both time
and space complexity to O(nd) based on the Sherman-Morrison formula [38]. We consider the

update of A76, and \/ ATV,7* A in LinUCT. Using the definition of V; and 0y, it is easy to show that

these can be obtained by storing and recursively updating 6, and vV, LA

V, PAATVT A,
1+ ATVIA

VP AATV M,
1+ ATV RA

where A; is the action corresponding to the i-th child node, A is the action of nodes in the back-

propagation path, and where M; = Zi:l wsAg X is an auxiliary variable.

VA=V A~ and 0,41 =V, 1M, —

Theorem 5 (Complexity of the Back-Propagation to update 0, and Vt_lA). The proposed method
computes the same LinUCT, but reduces the computation complexity from O(n?d?) to O(nd).

4 Experiments

We evaluate MALinZero on three reinforcement learning benchmarks: MatGame, StarCraft Multi-
Agent Challenge (SMAC)[22] and SMACV2 [23]]. MatGam is a stateless-matrix game that generalizes
the classic normal-form setting to n agents. At every step, all agents select an action from the same
discrete set; the environment then looks up the joint action in a predefined payoff (with or without
noise) tensor and returns the corresponding shared reward, which is used to evaluate algorithms’
performance. MALinZero is compared with both model-based and model-free baseline models
on these environments. The model-based algorithms are MAZero [[10], MAZero without prior
information (MAZero-NP) and MuZero implemented for multi-agent tasks (MA-AlphaZero). We
also choose two mainstream model-free MARL algorithms: MAPPO [39]] and QMIX [14].

Model architecture MALinZero consists of 6 neural networks to be learned during the training
and the parameter 6 is to be estimated from initialization for a single MCTS process. Specifically,
with network parameter ¢, there are 6 key functions: the representation function 530 = hg(o’,) that
maps the current individual observation history into the latent space, the communication function
6%71@» NS %(5%,/@7 RN A at{k, ... ,aﬁk) that generates cooperative information for each
agent via the attention mechanism, the dynamic function si’ kel = g(z,(sf;’ s @4 e ei’ ;) that plays the

43 : : _ 1 n 1 n
role of transition function, the reward function r; j, = T¢(st’ feo oo Stoges Qg for - - A ) and the value

function vy, = v¢(s; k»-- -+ Stx) that predicts the reward and value respectively, and the policy
function pi’ B = p¢(s§’ .) that predicts the policy distribution for the given state. The subscript k
denotes the index of unrolling steps within one simulation from the root node in MCTS. The update of
estimated 6 takes place in the Back-propagation stage and the detailed process is analyzed above. For
all these modules except for the communication function eg4, the neural networks are implemented by
Multi-Layer Perception (MLP) networks and a Rectified Linear Unit (ReLU) activation and Layer
Normalization (LN) follows each linear layer in MLP networks. Agents process local dynamics and
make predictions with the encoded information.

Experiment setting All experiments are conducted using NVIDIA RTX A6000 GPUs and NVIDIA
A100 GPUs. For MatGame environments, the number of sampled actions for each node in MCTS is
3 and the number of MCTS simulations is 50. For both SMAC and SMACv2 benchmarks, we set
them as 7 and 100, respectively. We build our training pipeline similar to EfficientZero [40] which
synchronizes parallel stages of data collection, reanalysis, and training.

Performance Evaluation MALinZero outperforms all baselines in 8 MatGame environments.
As shown in Table [T} the performance improvements are achieved in even simple MatGames (a
few percent for 2 agents with 3 actions each, thus a space of only 9 joint actions) and increases
for more complex MatGames (such as up to 11% for 8 agents each with 10 actions, thus a space
of 810 joint actions). This makes sense since the benefit of MALinZero comes from representing
high-dimensional joint action space into lower-dimensional ones. Interestingly, the improvements are
higher in MatGames with non-linear reward structures. This is because MALinZero is able to model



Agent Action  Type  Steps| MAZero |MAZero-NP|MA-AlphaZero| MAPPO QMIX MALinZero(Ours)
3 Linear 500 | 51.9£2.3 | 49.7+£3.9 50.8 £ 3.2 50.2+29 | 50.4£35 53.1+09
Linear 1000| 57.8 £2.4 | 53.1+3.3 55.2+£2.7 56.4+3.1 | 54.3+3.17 59.9+0.2
Non-Linear 500 | 49.1 £15.3 [48.9+17.2| 49.0+16.4 |49.1+19.1| 48.7£18.6 49.2 £ 8.6
Non-Linear 1000 | 47.6 +14.7 | 49.3 £14.3| 49.2+129 |49.5+18.1| 49.1 £17.7 49.6 £15.5
Linear 1000 175.24+4.4|171.7+5.6 | 172.7+4.1 [173.1£54| 171.8+4.9 184.3+3.2
Linear 2000|191.7+2.3|190.1+1.2| 1904+1.9 |189.8+21| 190.2+1.8 1974+ 2.1
Non-Linear 1000 (179.4 £ 11.7(173.2 £10.0| 174.5+9.3 |173.1+8.0| 174.7£94 | 1824+11.7
Non-Linear 2000 |195.4 +20.0{192.4 +12.8| 192.7+11.4 |191.9+12.5| 190.3£10.7| 197.8+21.1
Linear 1000|393.7+9.9 |387.2+10.1| 389.3+84 [390.6+9.2|386.1+£10.4| 396.6+8.4
Linear 2000|434.2+7.2 |427.3+9.3| 432.6+9.5 |431.8+84| 430.1+9.5 439.8 £6.8
Non-Linear 1000 [399.8 +13.7(391.3 £ 10.3| 393.1 £12.1 |388.8 £13.1| 390.5 + 12.2 410.6 £ 8.9
Non-Linear 2000 |443.9 +12.1|429.1 £9.3 | 427.1+8.6 |430.1+85| 431.7+£76 | 451.1+128
10 Linear 1000(618.8 £16.9/608.8 £17.6] 613.1 £13.1 [617.1+11.1| 612.7+154| 637.1+£15.8
10 Linear 2000 (692.7 £ 14.5|671.5 £13.9| 654.3+£14.5 |681.8+12.5| 679.4£12.7| 705.2+15.7
10 Non-Linear 1000 {615.2 + 18.7{536.6 +=24.1| 573.2 +22.7 [561.4 +20.9| 558.7£19.1 | 630.1 £16.3
10  Non-Linear 2000 (672.3 & 16.1|587.2 + 18.4| 633.2 4+ 15.6 |657.1 +17.3|648.2 £ 18.75| 693.4+15.6

00 00| 00 00| L | hh hh| L) W W

00 0000 OOl AN QNN O\ A B[ B BN

Table 1: Evaluation in MatGame with different numbers of agents and actions. We consider both
linear and non-linear reward structures. MALinZero is shown to outperform both MCTS and MARL
baselines, especially in more complex MatGames with larger action spaces and with less numbers
of steps. Interestingly, the improvement is higher for non-linear reward structures (up to %11), as
baselines may stuck in local optima. Detailed MatGame settings can be found in Appendix D.

the entire joint action space — despite in a lower dimensional space, while baselines may get stuck in
local optima. MALinZero is also able to achieve the rewards much faster than baselines. Running the
LinUCB algorithm will incur minor additional cost. However, the computation leverages a linear
structure with sampling O(dn) actions rather than the standard O(d™). Our evaluation shows that the
computational cost is comparable to that of the MAZero [10] method.
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Figure 1: Evaluations on 3 SMAC tasks/maps. Y-axis denotes the win rate and X-axis denotes
training steps. Each algorithm is executed with 3 random seeds. MALinZero achieves over 95%
winning rate on all 3 maps, outperforming all baselines and also gets high winning rate much faster.

Figure[I] shows performance measured by win rate on three different SMAC maps. MALinZero beats
all five MCTS and MARL baselines, in both higher winning rate (over 95% across all maps) and faster
convergence speed. Comparing with the closest baseline MAZero, our MALinZero reaches the same
winning rate with 50% to 70% less steps/samples, implying 2-3 x speedup. The results demonstrate
LinUCT’s ability to represent complex multi-agent decision-making problems in low-dimensional
latent space. This efficient representation supports fast MCTS by exploring and exploiting the global
reward structure of the joint action space (in an approximated low-dimensional fashion), rather than
getting trapped in local optima as in the baselines. This is validated by comparison with MCTS
baselines with pUCT applied to MAZero, MAZero-NP, and MA-AlphaZero.

protoss 5 vs 5 terran 5 vs 5 26195 vs 5

'3 0 A |
O W AN ‘“‘v\w*’«"\/ﬂ\

'
o a4
NPy

AW TS N AR g ,,.. o

70 02 o ] To 00 02 3 08 To ) 02 3 ) To

0a o 04
Training Steps 1e6 raining Steps 1e6 Traning Steps 1e6

Figure 2: Comparisons on 3 SMACv2 tasks/maps.Y-axis denotes the win rate and X-axis denotes the
training steps. MALinZero nearly doubles the winning rate on these challenging maps in SMACv2
and consistently outperforms all baselines. Each algorithm is executed with 3 random seeds.
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Different from SMAC, SMACv?2 significantly increases difficulty by adding larger heterogeneous
unit teams, more varied map layouts, and stochastic enemy formations, which all demand advanced
coordination and generalization by the learning algorithms. Figure [2] shows the training curves of our
proposed MALinZero and baseline algorithms on SMACV2, including 3 widely-used maps. Compared
with all baselines, MALinZero doubles the winning rate on protoss_5_vs_5 and zerg_5_vs_5, and
nearly doubles it on terran_5_vs_5. Our MALinZero shows very robust performance across different
scenarios, which comes from the parameterization of LinUCT, allowing MALinZero to conduct more
adaptive and efficient modeling of heterogeneous unit teams.

Ablation Study We intend to validate the necessity and effectiveness of DNG and the general
function f applied in LinUCT. To accomplish this, we compare the proposed MALinZero under two
MatGame environments: (1) Medium difficulty scenario containing 4 agents and each with 5 actions;
(2) Hard difficulty scenario containing 8 agents and each with 10 actions.

MatGame: 6 Agents, 8 Actions, Linear MatGame: 8 Agents, 10 Actions, Non-Linear

300 600 900 1200 1500 1800 300 600 900 1200 1500 1800
Training Steps Training Steps

Figure 3: Ablation study of MALinZero by removing various design components, such as DNG and
the introduction of general convex loss f in the contextual bandit problem.

In Figure |3} we evaluate the impact of removing the DNG component, the use of the general convex
loss f (to place more importance on better actions), and both simultaneously. It is shown that these
components are critical for the superior performance of MALinZero. In particular, without DNG, it
is hard for MALinZero to model and explore the joint action space, thus the performance becomes
limited. The observed performance degradation when using a Euclidean distance rather than general
convex loss f validates our design principle that by placing more importance on the better actions
can boost maximal action selection in this low-dimension representation.

5 Conclusions

We propose MALinZero, which leverages low-dimensional representational structures to enable
efficient MCTS in complex multi-agent planning. MALinZero can be viewed as projecting the joint-
action returns into the low-dimensional space representable using a contextual linear bandit problem
formulation, with a convex and p-smooth loss to place more importance on better actions. We employ
an (1 — %)-approximation algorithm for the joint action selection by maximizing a submodular
objective. MALinZero demonstrates state-of-the-art performance on multi-agent benchmarks such as
MatGame, SMAC, and SMACV2, outperforming MARL and MCTS baselines.

Limitations: MALinZero leverages a contextual linear bandit formulation in the low-dimensional
space. The use of non-linear formulations that may also allow efficient MCTS could further improve
the performance. Developing fully decomposable representations also remains an open problem.
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A Proof of Theorems

A.1 Proof of Theorem|T]

We will show the proof for the regret bound of our proposed LinUCT.

Setup. Let 6* € R™, ||0*|l2 < S. Ateach round ¢ we observe A; € R™, || A;]l2 < /n = L,
and receive X; = (0*, A;) + n;, where 7, is conditionally 1-sub-Gaussian. Suppose f : R — R is
strongly-convex and u-smooth, we have f”(z) € [e, u], Vz € R for some positive . The solution to

is obtained by differentiation and yields 0, = Vt_1 ZZ=1 wsAs X where we use wy = (&)
with & € (0, Xy — (0:—1, At)) and thus have ¢ < w; < p for any ¢ and &.

We consider an ellipsoid confidence set centered around the optimal estimator ét,l, ie., C; =
{0 cR™ ;|6 — 0,1 H‘/t—l} < (B, for any increasing sequence of 3; with 3; > 1. Note that as ¢

grows, this ellipse C; is shrinking as V; has increasing eigenvalues and if 5; does not grow too fast.
We show that the problem of selecting optimal action A, € A by solving maxa,e . 0ec, (0, a) in

this contextual linear bandit problem is equivalent to A; = arg max, <ét_1, a> + Be—1llally -1,
t—1
which is referred to as our LinUCT rule for action selection. We consider the realized regret defined

D T * T * * * T *
by Ry = Zt:l(Xt - Xt) = Zt:1(<9 aAt> - <(9 7At>) + Et:1(77t - 77t>'
Lemma 1 (Confidence Ellipsoid). With probability at least 1 — 6, forallt < T,

16 = 6" [lv, < Bs- (11)

Proof. Observe

0~ 0" = V! (th wAX, Vi) = V! (th wyAg, = A7), (12)
s=1

s=1

SetY; = 22:1 wgAgns and b = A@*. Then we have
10: = 0*[I5, = (0 =Y) TV, (0= Y)) =Y, VY = 2TV + 0TV (13)
Since V; = A, V! < +1 and ||6*]| < S, we can get

2
bV = 2207 TV et < XZ% =AS2. (14)

According to Cauchy—Schwarz inequality and V;_l = %I ,

BTV < bl Vi Yl < ASY/ 1Y TV = VS YTV (15)
—2bT V7Y, < 2VASY YTV LY, (16)

To bound YtT V;_lY}, note Y; = ZZ=1 wsAgns is a martingale sum. According to Lemma the
self-normalized tail bound yields

Hence

det(V;)1/?

Y, VY, < 2uln —S
e TS AR e )26

a7

Combining these three yields

16: — 6%y, < \/Y,TV,7Y; + VAS < i, (18)

and a union bound over t = 1, ..., n gives the result. O
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Lemma 2 (Self-Normalized Martingale Tail). Let {n;}/_, be a sequence of conditionally
1-sub-Gaussian noises, and let A; € R™d and w; € [e, ] be Fy_1-measurable. Define

t t
Ve = Y weAons, Vi = Y wi AA] + AL (19)
s=1

s=1

Then for any ¢ € (0,1), with probability at least 1 — § simultaneously for all t < T,

_ det(V;)1/2
Ti,—1
< _ ).
Ye Vi < 2 ln(det()\l)l/2 5) 20
Proof. First, we define
My(z) = exp(xTYt — %xTVtx> 21

for each fixed x € R™d. Since 7; is conditionally 1-sub-Gaussian and w; < u, we have for any
Fi_1-measurable u

E[eum “thl] < exp(%u2) — ]E[ewt AILE”h |ft71] (22)
< exp(3wi(4Af2)’) < exp(ha’ (wAiA]) ).
Therefore

LT :
E[M;(z) | Fi1] = My—1(x) E[e’”T(wat"‘) - gl (wdA)a

Fia| € Mia(@). @3

Hence each M, (x) is a nonnegative supermartingale with M (z) = 1.

Then we lift the pointwise supermartingale bound to a uniform one by integrating M, (x) against the
Gaussian prior over x. Let h be the density of A'(0, \™11). Define the mixture

M, = M, (z) h(z) dx. (24)
R"d
By Fubini and the supermartingale property,
E[Mt | ./_‘.tfl] = /E[Mt(l') | ftfl] h([L’) d$ é /Mt,l(x) h(iﬂ) d(E = Mt,h (25)

so M, is also a nonnegative supermartingale with A/, = 1. A Gaussian integral gives

M, = 1 T 1,.T
M= Gyl et (1117 /eXp<x Yo—gw (M +“V’f)x) de 06)
. 1/2 B
= (det(%/\tI(—)i\-i)Vt)) eXp(%YtT(/\I‘*‘MVt) 1Yt>-
Since V; = AL, one checks (Al + puV;) ™" = LV, and det(A + pV;) < p™? det(V;). Thus
_ 1/2
—n det(AI -
My = p= 2 (5500) el V) )
By Ville’s maximal inequality for nonnegative supermartingales,
Pr<3th:Mtz§) < 6 My = 6. (28)
On the complementary event, for all t < T,
— _ det(V;) 1
1 1y Ty —1 d 1 t
Me<s = gV VYo < il 4 gy + Ing 9
Absorbing the constant %d In 1 into In(1/4) yields
_ det(V; 1/2
Y;'I'V—t 1Y't < 2# 111(%), (30)
as claimed. O
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Lemma 3 (Elliptical Potential). Let Vy = Al and fort =1,2,...,T define
Vi = Vier + wi AA] 31)

where A; € R satisfies ||As|l2 < v/n = L and wy € [e, p] with e > 0. Then

a det(Vr)
. 2 . < T < uT )
;:1 Inln{l7 wy ||AtHVt_1} < 2In det(Vy) = 2nd ln(l + fd)\) (32)

Proof. First, for any z > 0 we have 2 A 1 < 21n(1 + 2). Hence

T T
: 2 < 2
me{1,wt|\At||Vt__ll} < 2) In(l+w, 1415, )- (33)

t=1 t=1

Next, by the matrix determinant lemma,
det(V;) = det(Vy—1) det(I + wy Vt:11/2AtAtTVt:11/2) = det(Vi—1) (1 + w; HAt”%/t:ll) (34)

Telescoping the product fort = 1,...,T gives

T
det(VT)
Lt we || A} 1) = , (35)
g( ) = ey
and taking logarithms,
T
det(VT)
2 —
§ In(1 + wy \\Atllvtill) =In det(Vh)” (36)

t=1

Combining with the earlier bound yields the first inequality. Finally, since w; < p and || A;|| < L,
we have

T
Ve =AM +> we AL X N[+ pL?T1, (37)
t=1
o) )
det(Vr) ndA+u LT T
< — " )= [N
mng < 1n( — ) nd 1n(1+ dA), (38)
giving the second inequality. O

Here we reclaim Theorem 1]
Theorem. (I|/Regret Bound of LinUCT] With probability 1 — 6, the regret of LinUCT satisfies

R < \/ 8utf; In (::Egg) < \/ 8undt B In (W). (39)
Proof. Let
Sy = Zt: wsAsns,  Vi= M+ zt: wsAsA] (40)
and define - -
Be=\/2p hl% + VA6 l2. (41)

By Lemma[2] with probability at least 1 — ¢ simultaneously for all ¢,

1/2
det(V;
H&M4<¢mm}éﬁszﬁr¢Amu )
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On this event, Lemmal[T] shows
16: = 6"llviry < ISelviny-1 + VALl < B
Next let A; = 7 — n;. Since each 7,0} is 1-sub-Gaussian and independent, we can get
E[e)‘At | }'t,l] = E[e)‘”t*] E[e”‘"t] < exp<)‘2—2) exp(%) = exp()\2>.
Thus A; is conditionally \/2-sub-Gaussian:
E[e)‘At |}}_1] < exp(w).

2

By Hoeffding’s inequality,

Pr(i Ay > u) < exp(—%).

s=1

Choose u = 24/T In %. Then
t

Pi(Y A > 2Tl }) < exp~12500) = 5
s=1

(43)

(44)

(45)

(46)

47

Because A, is chosen by A; = argmax, (6;_1,a) + ﬂt_1|\a||V:11, while A} = arg max, (6%, a),

we first compare the optimistic upper—confidence values:

(Or—1, Ay) + BrallAdlly -y = (Or—1, A7) + Bl Aflly-1
Whenever the confidence event (@3] holds for any a,

(0" = 1), @)l < 1107 = Orallvic, Nlally— < Biallallys,

Applying this with a = A} and then with a = A, gives

(07, 47) < (01, AD) + BealAfly s (07, A0) = (Bemrs Ad) = Bemall Adlly 2 -

Subtracting the second inequality from the first and using the choice of Ay,

(07, A7) = (07, Ar) < B [|Adlly -1

Then we can get

X=X, = [(09,47) — (0, A)] + Ay < B Adlly-1 + A

The single-step regret is

T 1= X;k — Xt = <0*’A:> — <9*,At> —+ At S ﬂt—lnAtHVf:ll + At.

Sum the single-step regret from¢ = 1to 7"

T T
Rr:=3 r <Y Bl + 2¢/Thj.
t=1 t=1

Inequality (33) is the starting point for the final bounding of the main term
T
Y Bl Ay
t=1
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(48)

(49)

(50)

(D

(52)

(53)

(54)

(55)



via Cauchy—Schwarz together with the weighted elliptical potential lemma.

By Cauchy—Schwarz and Lemma3]

det (VT) .

T T T
D Bealdllyoy € |08\ Iy < VT8 2m=E
t=1 t=1 t=1

Combined with (54)),

. det(V;
Ry < V2T By \/In A(ndT) + 2y/Thn L.

According to the definition of S, we have

det(Vr) . lndet( T) 6T

< \/2ul .
5T — o n )\nd )\nd — 2,u

Therefore the first term in (57) satisfies

VT w22V o agpy 5T~ [T g
A” 2p Iz
. 2 fer T .,
2¢/TInt < 2 TE = 75T < EﬂT'

e = 2fF ot = 2 F( e V),

With w; < prand || 4|2 < \/n = L, according to Lemma [3| we have

Moreover,

Hence

T
Vi = M+ w,A,Al = nd\ + pL’T1,
s=1
and
nd\ + pL2T\ ™ det(Vir) nd\ + pL2T\ "™
< _— <
det(Vr) < ( nd ) ’ And nd\

Thus, with probability at least 1 — &,

R dX\ + pL2t\ ™ dX t
R, < 8ut By naA + pL7t — 8undt B In naA + pmt )
nd\ nd\

A.2 Proof of Theorem[3

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

Theorem. [5|/Submodularity of V] V is a non-negative monotonic submodular function over the

ground set A.

Proof. Throughout, x|/ := V& Mz for M > 0.

(i) Non-negativity. Both summands in ¥(S) are non-negative, hence ¥(S) > 0 for all S C A.
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(ii) Monotonicity. Fix S C Aanda ¢ S. Write

Ala|S) = U(SU{a}) —¥(S) = a0+ ||ally(sufap) —Z:(HUHV(sr1 - HUHV(SU{a})*l)
——_— ———

) vES
new radius

(65)
Apply Lemma[d] with V := V/(S) and u := a:

Z(||UHV(S)—1 —HUHV(Su{a})—l) < llallvis)= < llallvisugay - (66)
veS

Substituting inequality in gives A(a | S) > a' 6 > 0; therefore ¥ is monotone.

(iii) Submodularity (diminishing returns). LetS CT C Aandleta ¢ T. SetU := T\ S. For
any finite R C A define

L(R) = > (Iellvim = Iellvirogy-)- (67)

vER
With this notation
Ala|S)=a" 0+ llallvsugay+ — L(S),  Ala|T)=a"0+|lally(rogap -+ — L(T). (68)
Step 1 — Compare the new-radius terms. Because V(S U {a}) = V(T U {a}), we have
lallvsuap— = llallvruay-- (69)

Step 2 — Compare the loss sums. For every v € S Lemma 5 applied with z := v, u :=a, A :=
V(T), B :=V(S) yields

[vllvis)= = lvllvisuap— < Ivllviry—= = vllvrugay) - (70)
Summing over all v € S gives
18) < 3 (lllviry+ = lollviroa ) G
veS

Adding the non-negative terms ||v||v (7)1 — [|v]lv(ru{a})— for v € U to both sides of (71)) we obtain
L(S) < L(T). (72)

Step 3 — Combine. Subtracting (72)) from (69) and using representation (68) yields
Afa|8) = Aa|T) = [llallvsuay -+ = llallvogay -] = [L(S) = L(T)] = 0, (73)

that is, A(a | S) > A(a | T'). Hence U satisfies the diminishing-returns property and is submodular.
O

Lemma 4 (Aggregate—loss bound). Let V € R"*"? pe positive definite, let u € R™, and let
S C R pe a finite set. Then

S (ol = ol pury=) < iy (74)

veS

Proof. Write A, := ||v|[y= — [|v]|(v1yyr)-1. Using Woodbury’s identity (V +uu' )™ =V~ —
V3iew'v?

Tra vVl compute

(v V)2
1+u"V-1ly’
For any a > 3 > 0 one has v/a — va — 8 < 8/(2v/a — B) < 8/v2«. Applying the Triangle and
Cauchy—Schwarz Inequalities, we have:

[oT V|

V1+u'V-iy

o'V =" (V +uu’) o = (75)

A, < < lollv— flully-- (76)
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Summing over v € S and applying Cauchy—Schwarz,

YA < lulv D Il VST < Hlullv,

veES vES

since ||v||y— < ﬁ, completing the proof. O

Lemma 5 (Monotone-gap lemma). Fix x,u € R"? and define, for every positive definite matrix A,

de(A) = VaT A e — /a7 (A +uu") 2. (77)

IfA > B> 0thend,;(A) > d,(B).

Proof. Let H := A — B > 0 and define A; := B + tH fort € [0,1]. Set g(¢) := d(A;). Using
LA = A7 HA and L (A +uu’) ™ = —(Ay +uu' ) T H (A + uul) 7, we compute

eTATTHA ¢ . o (A +uu” ) TTH (A +uu”)

20/xT A 2\/aT (A +uu’) e

Because A; + uu' = Ay, we have (A; +uu' )™ < A L Consequently each numerator in 1| is
bounded by the same non-negative quantity and each denominator satisfies \/ T (A +uu') Ttz <

g'(t) = (78)

\/xT A7 . Hence ¢/ (t) > 0 for all ¢t € [0, 1]. Integrating ¢/(¢) from 0 to 1 gives g(1) — g(0) > 0,
ie. d,(A) > d.(B). O

A.3 Proof of Theorem [

Here we reclaim Theorem [4}

Theorem. | /(1 — %)—Approximation under Cardinality and n-Hot Constraints] There exists an
[(1— %)-approximation algorithm for the optimization of action selection.

(a) Uniform-matroid (cardinality) case |S| < T. The standard greedy algorithm

A = arg aeg\l\as}*(, [U(S;—1 U{a}) = W(Si—1)],  Se=Si—1 U{A}, (79)

fort=1,...,T, returns St satisfying ¥(St) > (1 — %) U(S*), where S* is an optimal subset of
size at most T [36]].

(b) n-Hot (partition-matroid) case. One may apply the continuous-greedy algorithm to the mul-
tilinear relaxation max,c p(a), 17 o<1 E[V(R(2))], where P(M) is the matroid polytope of the

partition matroid and R(x) denotes the standard randomised rounding. It produces a feasible set S

with ¥(S) > (1—1)w(S*) [37.

Proof. We recall that ¥ is a nonnegative, monotone, submodular set function on the ground set A.
The classic results of [36] and [37] then yield the claimed (1 — é)-approximation guarantees under
the two matroid constraints.

(a) Uniform-matroid (cardinality) constraint |S| < 7.
Let So = 0,andfort =1,...,T let

At = arg aerﬁl\agi [\I/(St_l U {CL}) — \I’(St_l)], St = St—l @] {At} (80)

By monotonicity and submodularity one shows inductively (cf. [36]) that

w(s) = (1-(1-4)")w(s*) forallt, 81)
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where S* is any optimal solution with |S*| < T In particular at t = T,

w(sr) = (1= (1= #)7)w(s) = (1-1)wu(s). (82)

(b) Partition-matroid (‘‘n-hot”’) constraint.

Let M be the partition matroid on .4 that enforces the n-hot constraint (i.e. each block can contribute
at most one element), together with the additional global cardinality bound 1" 2 < T'. Consider the
multilinear extension

F(z) = Ep~s[¥(R)], (83)
where R C A includes each element a independently with probability x,. The continuous-greedy
algorithm (running for time 7") constructs a fractional solution 2* € P(M) N {z : 1Tz = T}
satisfying

Fat) 2 (1=3) o mox,  F(o) 2 (1-3)¥(s"), (84)

where S™* is the optimal integral solution (cf. [37])). Finally, pipage (or swap) rounding converts x*
into a random integral set S € M of size at most T without decreasing the expectation:

E[U(S)] = F(z*) > (1-1)w(s"). (85)

By Markov’s inequality there exists a deterministic S with ¥($) > (1 — 1) ¥(S5*), completing the
proof.

O

B Implementation Details

B.1 Model Structure

Our proposed MALinZero consists of 6 neural network modules, including the representation function
h, communication function e, dynamic function g, reward function r, value function v and policy
function p. For each agent i, let s;} .. be the latent state, a; Tk be the action, eff’ ;. be the cooperative fea-
ture and p; « be the policy prediction where k denotes the k-th rollout and ¢ denotes the ¢-th real-world
interaction step. Set r; 1, vy 1, as the predicted reward and value under the corresponding global hidden
state. Specifically, the representation function S?O = h(o,) maps the current individual observation
history o%, into the latent space, which enables the model could conduct planning without knowing

the real-world rule. The communication function {e;k}i;l _____ n=e ({e;k}izl ,,,,, s {aiﬂ-k}i:l,m,n)

generates additional cooperative information for each agent in the multi-agent system via the attention
mechanism, with the individual states and actions of agents as the input and the cooperative features
as the output. The dynamic function s ; ; = g(sfE ko Otk €1, &) plays the role of obtaining state

transition prediction. The reward function r , = ({ei wtirt,ns {ah g }Zln) and value function

Vi =V ({ei’ k}i;17,__,7l> predicts the reward and value for the global state-action tuple and global

state, respectively. The policy distribution of each agent will be the output of the policy function
pi’k = p(si ) with the input of the current individual state. For the general strongly-convex and
p-smooth function f, we set f”/ (X, — (0, As)) = 0.75if X, — (0, As) < Oand f"(X,— (0, As)) =1
if X — (6, As) > 0.

For all these modules except the communication function e, the neural networks are implemented by
Multi-Layer Perception (MLP) networks, and a Rectified Linear Unit (ReL.U) activation and Layer
Normalization (LN) follows each linear layer in MLP networks. The input observations of all three
mentioned benchmarks in the experiment section are 1-dimensional vectors with a hidden state size of
128. For the representation network £, the last four local observations are treated as the input for each
agent to deal with partial observability. And before representation, an LN is applied to normalize the
observation features. The dynamic function applies a residual connection between the next hidden
state and the current one to tackle the problem that gradients tend to zero in the continuous unrolling
of the model. Additionally, we use the categorical representation in MuZero and make the use of an
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invertible transform f(x) = sign(z)v/1 + x — 1 4 0.001 * = to scale targets for value and reward
prediction.

Specifically, the number of hidden layers for all MLP modules is set as follows:

* [128,128] for Representation function h.
* [128,128] for Dynamic function g.

* [32] for Reward function r, Value function v and Policy function p.

B.2 Training Details

We build our training pipeline similar to EfficientZero [40] which synchronizes parallel stages of
data collection, reanalysis, and training. In programming, we assign different workers to deal with
these tasks in the complete training pipeline. Additionally, we choose the same advantage score
computation and loss function as MAZero [10]]. All experiments are conducted using NVIDIA RTX
A6000 GPUs or NVIDIA A100 GPUs.

For MatGame environments, we select the number of MCTS sampled actions as 3 and the number of
MCTS simulations as 50. For both SMAC and SMACv2 benchmarks, we set it as 7 and the number
of MCTS simulations as 100. We list other important hyper-parameters in Table 2]

Hyper-Parameter Value
Optimizer Adam
Learning rate 10~
RMSprop epsilon 107°
Weight decay 0
Max gradient norm 5
Evaluation episodes 32
Target network updating interval 200
Unroll steps 5
TD steps 5
Min replay size for sampling 300
Number of stacked observation 4
Discount factor 0.99
Minibatch size 256
Priority exponent 0.6
Priority correction 04 —1
Dynamic generation ratio 0.6
A for initialization 10~4
Quantile in MCTS value estimation 0.75

Decay lambda in MCTS value estimation 0.8
Exponential factor in Weighted-Advatage 3

Table 2: Hyper-parameters for MALinZero in MatGame, SMAC and SMACv2 environments

C Details of Baseline Algorithms

MAZero [[10] and MAZero-NP are implemented based on the code: https://github.com/
liugh16/MAZero with hyper-parameters in Table |3} MAZero-NP refers to MAZero without the
prior information in the UCT bound while keeping other implementations the same. For MatGame
environments, we select the number of MCTS sampled actions as 3 and the number of MCTS
simulations as 50. For both SMAC and SMACv2 benchmarks, we set it as 7 and the number of
MCTS simulations as 100. Hyper-parameters of MAZero and MAZero-NP is set as Table 3]

MA-AlphaZero is implemented on the codebase of MAZero but replaces the UCT score with that
of AlphaZero [6]. That is, MA-AlphaZero use the Q-value instead of the advantage score in UCT.
The AlphaZero code can be found in https://github. com/suragnair/alpha-zero-general.
Since the implementation is based on MAZero model structure, we use the same hyper-parameters in
Table 3

QMIX [14] is implemented based on the code: https://github.com/oxwhirl/pymarl with
hyper-parameters in Table 4]
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Hyper-Parameter Value

Optimizer Adam
Learning rate 1074
RMSprop epsilon 107°
Weight decay 0
Max gradient norm 5
Evaluation episodes 32
Target network updating interval 200
Unroll steps 5
TD steps 5
Min replay size for sampling 300
Number of stacked observation 4
Discount factor 0.99
Minibatch size 256
Priority exponent 0.6
Priority correction 04—1

Quantile in MCTS value estimation 0.75
Decay lambda in MCTS value estimation 0.8
Exponential factor in Weighted-Advatage 3

Table 3: Hyper-parameters for MAZero, MAZero-NP and MA-AlphaZero in MatGame, SMAC and
SMACV2 environments

Hyper-Parameter Value
Optimizer RMSProp
Learning rate for actors 5 x 10~*
Learning rate for critics 5 x 10~*

Initial € 1.0
Final € 0.05
Batch size 32
Buffer size 5000
Discount factor 0.99
Exploration noise 0.1

Table 4: Hyper-parameters for QMIX in MatGame, SMAC and SMACv2 environments

MAPPO [39] is implemented based on the code: https://github.com/marlbenchmark/
on-policy. The specific hyper-parameters can be found in Table [5

Hyper-Parameter Value
Optimizer Adam
RMSprop epsilon 107°
Learning rate 5x 1074
Recurrent data chunk length 10
Gradient clipping 10
GAE parameter 0.95
Discount factor 0.99
Value loss huber loss, with delta 10
Batch size buffer length x number of agents

Table 5: Hyper-parameters for MAPPO in MatGame, SMAC and SMACv2 environments

D Settings of Benchmarks

MatGame We test our proposed MALinZero and other baseline algorithms on MatGame with two
different modes: (1) Linear mode, where the joint reward is the sum of agents’ indexes in the system;
(2) Non-linear mode, where a noise is added to the joint reward in the corresponding linear mode.
For each joint reward, the noise is the sum of a Gaussian term u ~ A(0,22) and a uniform term
v~ U(-3,3).

SMAC The implementation and settings of SMAC environments are based on https://github,
com/oxwhirl/smac, We chose three different maps containing a small, medium, and large number
of agents, respectively. Experiments on each map is conducted under 3 different random seeds for the
reproducibility of results.
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SMACv2 The implementation and settings of SMACv2 environments are based on https://
github.com/oxwhirl/smacv2. For each SMACv2 map in the experiment part, we randomize
heterogeneous unit types and start positions for each games even in the same map to make the
environment more challenging. Additionally, the unit sight and attack ranges are changed from
SMAC to increase the diversity of agents.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the claims made, including the contributions
made in the paper and important assumptions and limitations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a limitation section discussing the limitations of this work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the full assumptions and proof of all theoretical contributions
either in the main paper or in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the results presented in
this paper together with the source code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the results presented in
this paper together with the source code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification:We explained all the details on training settings in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We include the error bars in the experiment results section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We explained all the details on training settings in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the potential positive societal impacts and negative societal
impacts of the work performed at the end of the paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We believe this paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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