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Abstract

Generating long-term trajectories of dissipative
chaotic systems autoregressively is a highly chal-
lenging task. The inherent positive Lyapunov
exponents amplify prediction errors over time.
Many chaotic systems possess a crucial property
— ergodicity on their attractors, which makes
long-term prediction possible. State-of-the-art
methods address ergodicity by preserving sta-
tistical properties using optimal transport tech-
niques. However, these methods face scalabil-
ity challenges due to the curse of dimensionality
when matching distributions. To overcome this
bottleneck, we propose a scalable transformer-
based framework capable of stably generating
long-term high-dimensional and high-resolution
chaotic dynamics while preserving ergodicity.
Our method is grounded in a physical perspec-
tive, revisiting the Von Neumann mean ergodic
theorem to ensure the preservation of long-term
statistics in the £2 space. We introduce novel
modifications to the attention mechanism, mak-
ing the transformer architecture well-suited for
learning large-scale chaotic systems. Compared
to operator-based and transformer-based methods,
our model achieves better performances across
five metrics, from short-term prediction accuracy
to long-term statistics. In addition to our method-
ological contributions, we introduce new chaotic
system benchmarks: a machine learning dataset
of 140k snapshots of turbulent channel flow and
a processed high-dimensional Kolmogorov Flow
dataset, along with various evaluation metrics for
both short- and long-term performances. Both
are well-suited for machine learning research on
chaotic systems.
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1. Introduction

Predicting and modeling the behavior of chaotic systems is
crucial for various applications, including weather forecast-
ing (Lorenz & Haman, 1996), climate modeling (Trevisan
& Palatella, 2011), and understanding turbulent flows (Ot-
tino et al., 1990). In recent years, the use of autoregressive
models to predict the long-term behavior of chaotic systems
has presented a significant challenge to the ML/DL commu-
nity (Gilpin, 2021; Mikhaeil et al., 2022). This challenge
stems from the presence of positive Lyapunov exponents,
a hallmark of chaotic systems. These exponents amplify
small perturbations in the initial state, leading to exponential
accumulation of errors over time (Holden, 2014). Conse-
quently, accurately predicting the long-term behavior of
chaotic systems remains a formidable task. To address these
challenges, two primary methods and one emerging trend
have been reviewed for learning chaotic systems: a) se-
quence models that excel in learning temporal patterns; b)
operator-based models, which learn operators in function
spaces without knowing the prior differential equations; and
¢) the transformer-based models, with recent advancements
in synthesizing sequence and operator-based methods.

Sequence models. Sequence models have shown notable
success in short-term predictions by minimizing temporal
mean squared errors (MSEs). Prominent methods include
recurrent neural networks (RNNs) (Madondo & Gibbons,
2018; Dudukcu et al., 2023), long short-term memory net-
works (LSTMs) (Sangiorgio & Dercole, 2020; Langeroudi
et al., 2022), and reservoir computing methods (Pathak et al.,
2018; Yan et al., 2024). These approaches have been applied
to classic 1-D examples, such as the Lorenz 63, Lorenz 96,
and Kuramoto-Sivashinsky equations. However, due to the
inherent instability of chaotic systems, these methods often
experience exponential error accumulation over time.

To address this issue, recent advances leverage ergodicity, a
key property of many chaotic systems on strange attractors
(Eckmann & Ruelle, 1985; Young, 2002), to stabilize the
method performance in long-term predictions by aligning
predicted distributions with ground-truth distributions. Two
notable approaches utilize optimal transport theory (Jiang
et al., 2024; Schiff et al., 2024) to improve long-term pre-
diction accuracy, i.e. incorporating a regularized transport
term to penalize discrepancies between the predicted and
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true distributions. However, matching distributions often
encounters the curse of dimensionality (Kloeckner, 2020;
Zhang et al., 2023; Vogler, 2023), particularly when chaotic
systems are high-dimensional and characterized by mul-
timodal probability distributions (Sengupta, 2003; Zelik,
2022). High-dimensional chaotic systems, such as turbulent
flows, typically manifest in phase spaces with dimensions
exceeding O(10°) and exhibit non-Gaussian statistical prop-
erties (Biferale et al., 2006). The limitation of distribution-
matching methods lies in their computational intractability
for such high-dimensional spaces, compounded by the dif-
ficulty of accurately capturing the intricate statistical struc-
tures of non-Gaussian distributions (Korotin et al., 2021).

Operator-based models. Rooted in operator theory,
operator-based approaches offer a promising alternative
for modeling dynamic systems (Marchenko, 2012). Un-
like sequence models, these methods do not require prior
knowledge of the underlying systems. Instead, they lever-
age function approximation theory to identify an operator
that captures the system’s evolution within a predefined
function space (Smale & Zhou, 2007). Two representative
methods are transfer operator (Jgrgensen, 2001) and Koop-
man operator (adjoint form of transfer operator) (Brunton
et al., 2017; Cheng et al., 2023; Brunton et al., 2021; Mezic,
2021; Cheng et al., 2025). The transfer operator models
the evolution of probability density functions, while the
Koopman operator focuses on the evolution of observable
functions. Classical transfer and Koopman operators lever-
age kernel methods within the framework of reproducing
kernel Hilbert space or Banach space (Klus et al., 2020;
Ikeda et al., 2022; Hou et al., 2023; Yang et al., 2025).
These approaches face computational bottlenecks due to
the prohibitive cost of matrix inversion (Bousquet & Her-
rmann, 2002) for high-dimensional chaotic systems. Conse-
quently, applying kernel-based techniques to such systems
remains a significant challenge. In recent years, deep learn-
ing techniques have been integrated with operator theory
and have yielded significant advancements in solving par-
tial differential equations (PDEs). Methods such as Deep
Operator Network (DeepONet) (Lu et al., 2021) and Fourier
Neural Operator (FNO) (Li et al., 2020) have shown their
effectiveness as approximators for initial value problems
in PDEs. Many variants of these two methods have been
developed to solve large-scaled PDEs, such as U-shaped
FNO (Rahman et al., 2022), multiwavelet-based operator
(Gupta et al., 2021). However, chaotic systems are highly
sensitive to initial values (Kolesov & Rozov, 2009), purely
predicting the long-term behavior based on learned opera-
tors cannot guarantee long-term stability. Hence, a more
problem-specific framework is necessary to model chaotic
systems. Markov Neural Operator (MNO) (Li et al., 2022a)
as a closely related framework, introduced hard constraints
upon the architecture of FNO to enhance long-term pre-

dictions for dissipative chaotic systems by enforcing the
forward invariance via the constraint. Yet no loss function
in MNO theoretically guarantees the ergodicity for a long-
term prediction, leaving potential discrepancies in statistical
properties unresolved.

Transformer-based models. Leveraging the flexibility
and universality of transformers, researchers started to in-
tegrate sequence models and operator theory with trans-
former architectures to model complex dynamical systems
(Li et al., 2022b; Guibas et al., 2021; Hao et al., 2023;
Kissas et al., 2022; Zhang & Gilpin, 2024). For example,
the Fourier Transformer has been proposed as an extension
of the Fourier Neural Operator to solve a variety of PDEs
(Li et al., 2022b; Guibas et al., 2021; Hao et al., 2023; Chen
et al., 2024). To reduce the computational cost of standard
scaled-dot product attention, several pioneering works have
eliminated the Softmax operation and utilized matrix asso-
ciativity to achieve linear complexity attention, which has
shown promise for large-scale PDE modeling (Cao, 2021;
Li et al., 2024). Despite the significant advancements in
transformer-based methods for dynamical systems, most
efforts have primarily concentrated on general PDEs. This
leaves a notable research gap: the lack of a well-designed
transformer architecture tailored specifically for large-scale
chaotic systems.

To address this gap, we first propose a tailored transformer-
based model for predicting chaotic systems. Our key contri-
butions can be summarized as follows:

* Designed for modeling chaotic systems and aligned
with their intrinsic properties, we introduce A3M mod-
ifications into factorized attention (Figure 1(b)) to re-
design the scaled-dot product attention, and enhance it
with random Fourier positional encoding for improved
representation of complex chaos patterns.

* Building on the Koopman-Neumann ergodic theorem
(Neumann, 1932; Mezi¢, 2021), we propose a novel
loss function with a unitary constraint on the forward
operator (Figure 1(c)), which is scalable to capture
long-term statistics of large-scale chaotic systems and
ensure stability without directly matching probability
distributions.

* We introduce datasets of two high-dimensional chaotic
systems: 1) turbulent channel flow with 140k snap-
shots in the 3D simulation; 2) the Kolmogorov Flow
simulation of 185k 2D vorticity states. Both datasets
with details in Appendix D and G have been carefully
processed to ensure consistency and usability, mak-
ing them well-suited for early-stage machine learning
research on ergodic chaotic systems.
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We benchmark our algorithm with the state-of-the-art
operator-based and transformer-based methods on two chal-
lenging chaotic systems. The results consistently demon-
strate superior short-term prediction accuracy and long-term
statistical consistency in high resolution. Our core frame-
work is illustrated in Figure 1.

2. Preliminary

Notation. (X, B, ;1) denotes the measure space, with set
X, Borel o-algebra 5 and measure p. The forward map on
the state space is denoted as T'. The Lebesgue space with
the p-norm is denoted as £P (X, i), abbreviated as £? in
this paper. In particular, the Lebesgue space £? is equipped
with an inner product structure as (-, -). Feature functions
#, 1) belong to the £ space. (17 denotes the transpose of a
real operator, and [J* denotes the conjugate transpose of a
complex operator. The symbol z]’ indicates the i-th indexed
state at the j-th time step, and ¢; represents the coordinate
of the ¢-th index.

Problem formulation. The objective is to forecast the
behavior of ergodic chaotic systems, described as

Zk+1 = T(Zk)7 Zk S M7 (1)

where T': M — M is a nonlinear forward map on a com-
pact set M C R xS2xXSm  The state z;, represents
physical quantities defined on a uniform grid with dimen-
sions Sp, 55, ..., S, with the total number of grid points
N = 51 x .55 x--+xSy. Each component of zj, is bounded
and represents a physical quantity at the kth grid point.

Definition 2.1 (Measure-Preserving Transformation and
Ergodic (Cornfeld et al., 2012)). Let (X, B, u,T) define a
measure-preserving transformation (MPT), where for every
E € B, the measure satisfies (T~ 'E) = u(E). An MPT
is called ergodic if, for any invariant set E, either u(F) =0
or u(X \ E) = 0. In this case,  is referred to as an ergodic
measure.

Intuitively, ergodicity ensures spatial statistics are compati-
ble with temporal statistics. This implies that the distribution
of system trajectories follows an invariant measure that re-
mains consistent over time. Many chaotic systems exhibit
this property on their attractors, such as Lorenz systems
(Shi et al., 2020), Kuramoto-Sivashinsky equation (Yang,
2006) and turbulent fluids (Galanti & Tsinober, 2004; Hairer
& Mattingly, 2006). By preserving ergodicity, the learned
model can capture the invariant statistical behaviors of the
attractors.

Learning the forward map 7" of chaotic systems while pre-
serving ergodicity is challenging. To address this, our model
adopts an operator to forward in feature space:

H(zk+1) = (Go) (21), )

where ¢ is the feature map as ¢ : M — R, with ¢ € F C
£? and function space F on M. The operator G describes
the evolution of learnable features. The time evolution of
these features can be obtained by iteratively applying G in
L? space. By applying a decoding function ¢, the state
241 can be reconstructed. The choice of £? space is moti-
vated by the well-developed theory of ergodicity, stemming
from the contributions of Von Neumann (Neumann, 1932).

Theorem 2.2 (Von Neumann Ergodic Theorem (Neumann,
1932)). Let (X,B,u,T) be an MPT. If ¢ € L2 then
limy o0 % Zg;ol Gk = ¢ where ¢ is invariant. If T
is ergodic, then ¢ = [ ¢dj.

This theorem demonstrates that for an ergodic measure-
preserving transformation (MPT) T, the associated operator
G is unitary and preserves the norms in the £2 space. This
implies that the time averages of the £2 functions converge
to their space averages, ensuring the long-term predictability
of chaotic systems. By combining with Equation 2, the
operator G preserves the ergodic property during long-term
predictions. Our objectives are twofold: (1) to achieve
accurate short-term predictions and (2) to capture statistical
properties by preserving ergodicity in the £2 space.

3. Method

In this section, we present our customized transformer ar-
chitecture designed for modeling ergodic chaotic systems.
This method is structured into three key components: 1)
introducing an attention mechanism to identify spatial cor-
relations based on random Fourier features, which naturally
align with chaotic system properties as discussed in section
3.1, 2) efficient processing of multi-dimensional tensors
with capturing extreme values by factorizing attention and
the proposed A3M block, detailed in section 3.2), and 3)
an efficient constraint for learning the unitary operator in
the high-dimensional feature space to preserve ergodicity
using Hutchinson’s stochastic trace estimation with details
in section 3.3).

3.1. Attention Mechanism with Random Fourier

Give three sets of feature functions (or vectors), namely
the queries {¢‘}Y ,, keys {k'}Y¥,, and values {v'},,
the self-attention mechanism (Vaswani, 2017; Han et al.,
2022) calculates a weighted average of values ¢(z%) =
Z;\f:l h(q', k")v?, where ¢',k%,v" € R The attention
weights h(-,-) are defined as the scaled-dot product with
a Softmax function in the original transformer (Vaswani,
. i iy exp((d k) /Vd)
2017) h(q 7kJ) - Zi\lzl Cxp(<qi,ks>/\/a)
to interpret the weighted average ¢(z%) € £2 as a learnable
feature of state 2’ as shown in Equation (2).

. It is interesting

The queries/keys/values are typically obtained through learn-
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Figure 1. The framework of ChaosMeetsAttention. Figure 1(a) presents the main structure of our transformer, highlighting the modified
positional encoding, attention mechanism, and unitary operator. Figure 1(b) illustrates the efficient Axial Mean-Max-Min (A3M) attention,
designed to capture both statistical moments and extreme values in the physical field. Finally, Figure 1(c) aligns with the Von Neumann
mean ergodic theorem described in 2.2, demonstrating how the unitary operator preserves statistical properties.

able linear projections:

¢ =2Wy, kK =2Wi  v=2W, Q)
where 2’ € R%n represent the i-th input physical quantity
with dimensions d,, in the domain M, and {W,, Wj,, W, }
are learnable projection matrices. Standard self-attention
mechanisms do not explicitly encode spatial correlations.
They compute similarity in the learned feature space and
apply probability-weighted averaging via the Softmax op-
eration. This formulation lacks an explicit spatial distance
representation. To overcome this limitation, we introduce
a distance-based Gaussian kernel to capture spatial corre-
lations based on relative distances. This kernel function
decays smoothly with increasing distance, aligning with the
spatial mixing behaviors observed in chaotic systems.

To efficiently compute this kernel, we employ random
Fourier features (Rahimi & Recht, 2007; Tancik et al., 2020)
for the approximation of a Gaussian kernel using randomly
sampled Fourier basis functions. This distance-based formu-
lation shares an interesting connection with the topological
mixing property of chaotic systems (Xiong & Yang, 1991).
In chaotic systems, topological mixing describes how any
localized region of the state space eventually spreads and
overlaps with other regions, allowing local perturbations
to propagate throughout the space. Similarly, the Gaussian
kernel-based attention mechanism enables each point to in-
teract with its surroundings with a strength that smoothly
decays with distance, providing a natural way to model
how information or influence propagates through space in
physical fields. The kernel’s bandwidth controls the charac-
teristic length scale of these spatial interactions, analogous

to how mixing rates in physical systems determine the scale
of spatial correlations.

RFF Positional Encoding. Based on Bochner’s theorem
(Bochner et al., 1959), random Fourier features (RFFs)
can be used to approximate a stationary kernel. For sim-
plicity, we demonstrate the applications of RFFs in a 1-
dimensional grid domain, which can be easily extended to
higher-dimensional grid domains. We use a random Fourier
map 6 to featurize input grids, which project input coordi-
nate index ¢ to the surface of a sphere with a set of sinusoids:
0(i) = [fcos(Qwal) —=sin(27B&;)], where &; is the
coordinate of i-th index, B € R™ with B; ~ N(0,0?)
for ¢+ = 1,...,m. From trigonometric identities, the inner
product of 6(¢) and 0(j) is formulated as:

0(i)"0(j) =6(i — j)

= lim
m—oo 1M

Z cos(2mb; (& — &) (4)

%XP(—M g = &13)-

The last line of Equation (4) is from the characteristic func-
tion of Gaussian distribution (Shiryaev, 2016) with details in
Appendix B. By constructing the attention mechanism with
RFF, the corresponding queries and keys become g(q°) =
q'0(i) and g(k7) = K/0(j). Let Q = [g(q"), -~ 9(a™)],
K =[g(k'),--- ,g(k™)] and V = [v},--- v"]. The fea-
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Here, ¢(2") represents a quadrature of the integral kernel,
capturing the weighted average of values. The spatial cor-
relation between the ¢-th index and other indices s decays
according to the Gaussian kernel, leading to stronger in-
fluence from nearby points, aligning with the topological
mixing property (see section 3.1). The parameter o in Equa-
tion (5) controls the decay rate of these spatial correlations:
a smaller o leads to slower decay and potential underfitting,
while larger o causes rapid decay, increasing the risk of
overfitting. An ablation study in section 4.3 examines the
impact of different o values on model performance.

3.2. Factorizing as Multi-Dimensional Tensor

The computation complexity of the attention mechanism
increases quadratically with the total domain grid points N.
Unlike natural language processing (NLP) sequences, the
domain M has a uniform grid structure as S; X Sy X -+ X
S Directly applying attention as in Equation (5) requires
S1 X S X -+ x Sy times matrix multiplications, which
becomes prohibitively expensive as the grid resolution in-
creases. To address this, we leverage a tensor factorization
approach from (Li et al., 2024), which reduces the num-
ber of matrix multiplications from S7 X Sy X - -+ X Sy to
514852+ -+ Sy The basic idea is to factorize the atten-
tion operation along each axis of the grid domain, resulting
in a linear increase in computational complexity with grid
resolution rather than a quadratic or cubic increase.

Multi-dimensional tensor product. The data in the grid
domain can be represented as a tensor A € R1X 52X XSm
The product with a matrix W € R7*m on the m-th mode
in a tensor of shape S; X Sy X - -+ X J X S}y, is defined as:

(A Xm W 2122'“]'“ ZAHZQ-“]'“ZMW]Zm (6)

im

According to the principles of multi-dimensional tensor, the
attention mechanism with positional encoding along each
axis can be expressed as:

- /EM ---/Elsi}gl(qz) g'(k

S)>vsd§(1) oo deM,
(N

where = denotes the i-th coordinate axis of grids. Here,
¢’(¢%) and ¢/ (k%) for j = 1,..,M and i = 1,..,5;
are pooling from multi-dimensional tensors Q, K €
RS xS2xxSm xd a]ong all dimensions except the j-th di-

mension, e.g.,
T\
g (q") = § Qirin,..ving i
’21, HiM

T £
with mean aggregation. Different from (Li et al., 2024), we
propose separate attention heads in the transformer block
to apply axial attention with mean, max, and min poolings,
collectively named the A3M Attention blocks (as shown in
Figure 1(b)). This design captures both statistical moments
and extreme values in the field (Yeung et al., 2015; Faraz-
mand & Sapsis, 2017; Sapsis, 2021), which are critical for
chaotic systems like turbulent flows, where both statistical
properties and local extremas significantly influence dynam-
ics. By recursively calculating the quadrature of the integral
kernel along each axis from 1 to M, the number of required
matrix multiplications is reduced to S7 + Sy + - - - + Shy,
achieving a considerable improvement in computational
efficiency. Figure 1(b) illustrates the proposed attention
mechanism.

H"#J

3.3. Embedding Ergodicity on Transformer

By connecting chaos to operator theory and Von Neu-
mann’s statement in Theorem 2.2, it provides a framework
for preserving the statistical behavior of chaotic systems
through the operator G. Specifically, the eigenvalue (or
spectrum) of the operator G,, lies on the complex unit circle
Eigen(G) C {r € C| |r| = 1} (Avigad, 2009).

To identify the unitary operator in the ergodic state, we
leverage the intrinsic property that G and its conjugate trans-
pose G* satisfy G*G = I;. This property confirms that G
is unitary, preserving both norms and inner products, and
establishes a well-defined backward dynamic. Specifically,
the backward operator G~ is equivalent to G*. The conju-
gate transpose relationship G*G = GG* = I, ensures that G
is invertible, with its inversion fully consistent with unitarity,
as shown in Figure 1(c).

To incorporate the theorem in practice, we introduce a regu-
larized term to penalize it, and the loss function is expressed
as:

¢(Zk+1) ||2 + Aﬁunitary (gA)} )
(3)

arg mgjn E.wpu U|Q¢(zk) -

where the first term represents the forward loss, and
,cmm,ay(gA) is the unitary regularization with coefficient
A € (0, 1]. To enhance the scalability of the framework, we
propose a novel approach by incorporating Hutchinson’s
stochastic trace estimator.
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To express the unitary operator on the torus, as dis-
cussed in (Das, 2023), it can be represented as the form
U(1)xU(1) x---xU(1), where U(1) = {exp(if) |
/2
0 € [0,2x]} is the circle group. It is well-known that
SO(2) is isomorphic to U(1). Since the parametriza-
tion of neural networks is typically in the real space in-
stead of complex space, the real representation of prod-
uct circle group U(1) x U(1) x --- x U(1) corresponding
to SO(2) x SO(2) x --- x SO(2) can be embedded into

/2
SO(d), where the parametrized dimension d is an even
number. Here, SO(d) = {A € R¥*? | AAT = ATA =
I4,det(A) = 1} denotes the d-dimensional special orthog-

onal group. In such a situation, Lynitery(G) can be defined
as:

Eunitary(g) = vaUnif(Sdfl) |:

vIGTGo — 1” 9)

Here, v is a random unit vector sampled uniformly from
the unit (d — 1)-sphere S9! C R4, i.e., ||v]|2 = 1. The
regularized term ﬁunitaTy(Q) constrains G within S 0O(d).
The sample number of the unit random vector is k, and the
upper error bound of the stochastic trace estimator is scaling
as (’)(ﬁ) (Meyer et al., 2021). The number of sample k is

proportional to bgi#, where € measures the upper error
bound with at least 1 — & probability. We impose a soft
constraint on our loss function, making our learned physics
align with Von Neumann’s mean ergodic theorem in 2.2.

Compared to the penalization in (Cheng et al., 2025), our
proposed loss function demonstrates higher efficiency when
applied to large-scale chaotic systems than using Frobenius-
norm regularized term (Golub & Van Loan, 2013). The
computational complexity of the Frobenius-norm regular-
ized term is O(d® + 2d?), whereas the complexity of the
stochastic trace estimator is O(kd?). Given that d is typ-
ically large for approximating evolution in £? space, our
method provides a more computationally efficient approach.

Algorithm 1 £.,,;;4r, With Hutchinson’s Stochastic Trace
Estimator

Require: Operator G € R?*?, batch size B
1: Initialize Loynitary = 0
2: forb =1to B do
3:  Sample v(® ~ Unif(S41)
4 g® = O GT Gy
5 »cunitary — »Cunitary + |q(b) - 1‘/3
6: end for
7: return Lypitary

4. Numerical Experiments

In this section, we comprehensively evaluate the perfor-
mance of our model on two high-resolution chaotic sys-
tems. Kolmogorov flow has external periodic forcing and
structured large-scale dynamics, while turbulent channel
flow involves flow-driven turbulence with more complex,
anisotropic behavior. The experiments are repeated with
three random seeds, and the mean value is reported in the
results tables and figures in section 4.1, 4.2 and Appendix
F. We also include details of computational cost to demon-
strate fair comparison with baselines and the efficiency our
methods on increasing state resolutions in Table 7 and 8.

Baselines. We compare our transformer with four com-
petitive baselines covering different learning mechanisms
in dynamical systems, including: (a) Markov neural oper-
ator (MNO) (Li et al., 2022a), an FNO-based model de-
signed to capture long-term dissipative chaotic behavior in
sequential data by incorporating a tailored constraint; (b)
UNO (Rahman et al., 2022), a U-shaped FNO architecture
that incorporates skip connections; (c) Multiwavelet-based
Operator (MWT) (Gupta et al., 2021) a neural operator
using wavelet transformations to effectively model dynam-
ical behaviors; and (d) Factformer (Li et al., 2024), an
attention-based model for learning PDEs, designed to fac-
torize attention computations along different spatial axes to
achieve scalability. With the specialized design, MNO has
demonstrated state-of-the-art performance in capturing the
long-term statistics of chaotic systems.

Benchmarks. We choose two turbulent fluid dynamics as
popular benchmarks for learning states from chaotic sys-
tems: Kolmogorov Flow (KF256): a 2D shear flow char-
acterized by sinusoidal velocity fields in one direction and
external forcing in the perpendicular direction. In our ex-
periments, we utilize a 256x256 resolution vorticity field to
study the short- and long-term performance (He, 2025). Tur-
bulent Channel Flow (TCF): a 3D canonical wall-bounded
flow where turbulence develops between two parallel planes
due to a pressure gradient, characterized by turbulent veloc-
ity fields, enhanced mixing, and distinct near-wall and core
regions. We extract the 3-channel 2D velocity field from the
3D simulation and evaluate our approach with baselines on
the resolution 192 x 192 over all channels (He et al., 2025).
We generated and prepared these datasets with details in
Appendix D and G.

Evaluations. We evaluate the models in terms of short-
and long-term performances. For short-term performance,
we use the relative norm L2, following (Li et al., 2022a).
Due to the high dimensionality of our experiments, achiev-
ing robust estimations of long-term statistics is challenging.
To ensure a valid comparison, we assess long-term perfor-
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Figure 2. Time correlation of our long-term predictions of TCF and the baselines.
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Figure 3. TKE error of long-term predictions of TCF. The left-most snapshot indicates the TKE of ground truth trajectories; and the rest
snapshots present the absolute percentage error of TKE in 1000-step rollout predictions from baselines and our approach.

mance using three distinct metrics: (1) the mean energy ab-
solute percentage error (ME-APE), which quantifies the ab-
solute deviation of predicted energy in each frequency mode
from the ground truth; (2) a weighted variant (ME-LRw),
which assigns higher weights to modes with greater energy,
emphasizing low-frequency components following (Schiff
et al., 2024); and (3) the absolute difference in estimated
mixing rates (A)\) between true and generated trajectories,
a key indicator of chaotic systems that reflects how quickly
the system loses memory of initial conditions. The mixing
rate is estimated from time correlation function, which we
also compare in the KF256 and TCF to analyze the detailed
temporal decay. Meanwhile, we also compare the abso-
lute difference of the estimated Turbulent Kinetic Energy
(TKE), which describes the turbulent energy distribution of
the underlying dynamical system; and Kullback—Leibler di-
vergence (KLD) on principle components, which measures
the statistical distance between the estimated distributions
from the generated data and the true data. More details on
the evaluation metrics are provided in Appendix C and E.

4.1. Kolmogorov Flow

Table 1 demonstrates the better performance of our trans-
former model across both short- and long-term metrics
tasks on the KF256 dataset. In the short-term evaluation,
our model achieves the lowest relative L? error, with a
6.52% and 1.55% improvement over the best baseline for
T € {5,25} steps rollout. For long-term statistics, our
approach consistently outperforms existing methods in all
metrics, achieving notable improvements of 23.1%, 21.0%,

and 20.0% in matching the energy spectrum according to
ME-APE, ME-LRw, and the mixing rate A\, respectively.
These results highlight the effectiveness of our method on
both short- and long-forecasting horizons.

Table 1. Short-term and long-term performance of baselines and
our transformer prediction on KF256.

Short-term (Rel-L?) Long-term
Modules T=5 T=25 ME-APE ME-LRw A)X KLD
MNO 1.02 1.29 0.42 0.70 040 042
UNO 0.92 1.32 0.22 0.36 0.11 0.38
MWT 0.95 1.32 0.26 0.39 0.17 040
FactFormer 0.97 1.35 0.13 0.19 0.10 0.37
Ours 0.86 1.27 0.10 0.15 0.08 0.29
Advantage (%)  6.52 1.55 23.1 21.0 20.0 21.6

Detailed results of time correlation to derive the mixing rate
and the TKE absolute errors are provided in Appendix F.1,
where Figure 5 demonstrates our model captures the corre-
lation decay of the underlying system, and Figure 6 further
validates the advantage of applying A3M in capturing ex-
treme values and the unitary operator to maintain invariant
statistics.

4.2. Turbulent Channel Flow

From the results in Table 2, our method achieves consis-
tently better performance for both short- and long-term pre-
dictions. For short-term metrics, we achieve the lowest
relative L2 -errors, with a 25.0% and 7.14% improvement
over baselines at autoregressive forward steps 7 = 5 and
T = 25, respectively, demonstrating improved accuracy in
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short-term dynamics. For metrics evaluating energy spec-
trum accuracy (ME-APE, ME-LRw) and the mixing rate
error ( AX ), our model outperforms all baselines by 30.8%,
25.0%, and 27.3%, respectively. These gains highlight our
model’s ability to maintain precise statistical and physical
consistency over long extended horizons.

Table 2. Short-term and long-term prediction performance of base-
lines and our transformer predictions for TCF.

Short-term (Rel-L?) Long-term
Modules T=5 T=25 ME-APE ME-LRw A)X KLD
MNO 0.08 0.24 0.84 1.95 0.11 3.73
UNO 0.07 0.19 0.86 2.07 0.12  4.89
MWT 0.04 0.14 0.21 0.19 0.11 2.70
FactFormer 0.09 0.17 0.13 0.12 0.23  3.34
Ours 0.03 0.13 0.09 0.09 0.08 197
Advantage (%) 25.0 7.14 30.8 25.0 273 27.0

Moreover, Figure 2 demonstrates a more consistent mixing
rate with the ground truth, characterized by a monotonic
decrease in correlation. In contrast, models such as MNO
and UNO, which are based on the integer Fourier spectrum,
exhibit a more periodic correlation pattern. This may con-
tract with the mixing property of chaotic systems. We also
compare the accuracy of TKE in Figure 3. The top and
bottom boundaries of all other models exhibit significant
errors, whereas our model demonstrates more stable per-
formance across the entire domain, which is attributed to
the unitary-constrained operator, preserving the invariant
statistics.

4.3. Ablation Study

We revisit the Kolmogorov Flow system in a lower resolu-
tion of 128 x 128 as KF128, setting training and evaluation
random seed as 0, to conduct extensive ablation studies to
validate the design of our approach efficiently.

Firstly, we evaluate the effectiveness of the unitary opera-
tor and the three-channel pooling method as key modules
of our transformer. We compare three model versions as
follows: (1) the basic version, which is composed of one
Mean-pooling dimension reduction module, four factorized
attention blocks, and one forward operator learned by a
simple neural network; (2) an introduction of a Min- and
a Max-pooling module to the basic version; (3) a further
unitary-constrained version introduced with Lty On the
operator. Table 3 includes the metrics evaluated for each
configuration, providing insight into how these modules
affect short- and long-term performance.

The introduction of a unitary-constrained operator and the
Min- and Max-pooling module consistently enhances the
modeling performance of ergodic chaotic systems across
both short- and long-term metrics. According to the Von
Neumann mean ergodic theorem, the unitary operator en-

Table 3. Short-term and long-term evaluation on KF128 of key
modules in our transformer.

Short-term (Rel-L?) Long-term
Modules T=5 T=25 ME-APE ME-LRw A\
Base 1.02 1.43 0.17 0.23 0.11
+ A3M Att. 0.98 1.38 0.15 0.21 0.10
+ Unitary Op. 0.92 1.30 0.14 0.19 0.08
Advantage (%)  6.12 5.80 6.67 9.52 20.0

sures the preservation of long-term statistics in the £? space.
This property is reflected in the improved long-term met-
rics presented in Table 3. Additionally, the A3M pooling
effectively captures local extreme values, contributing to
improvements in both short- and long-term performance.

Secondly, we investigate the effect of RFF positional encod-
ing on our transformer model by examining the influence
of the hyperparameter o, as described in (Tancik et al.,
2020). Specifically, we explore values of ¢ in the range
[1,4,8,16,32]. The kernel bandwidth o determines the
characteristic length scale of spatial interactions, akin to
how mixing rates in physical systems influence the scale
of spatial correlations. When the bandwidth is large, spa-
tial interactions are highly localized, making each point
nearly self-determined and ignoring spatial correlation from
other positions. Conversely, a small bandwidth results in
almost uniform interactions, representing a state of maximal
mixing. From the evaluation results shown in Table 4, we
observed that for 0 > 8, the model more effectively cap-
tured high-frequency spectrums, counting on more localized
interactions. In contrast, for o € {1, 4}, the model exhibited
better performance in capturing low-frequency spectrums.
This phenomenon aligns with theoretical insights discussed
in (Tancik et al., 2020). From the attention maps in Figure
8, the results also indicate that a small o produces overly
smoothed attention that leads to underfitting; while large
values of 0 = 32 produce noisy attention and excessively
large o may lead to overfitting.

Table 4. Short-term and long-term evaluation on KF128 of Kernel
Bandwidth in positional encoding.

Short-term (Rel-L?) Long-term
Bandwidth 7=75 T=25 ME-APE ME-LRw A\
o=1 0.98 1.33 0.22 0.27 0.17
o=4 0.94 1.33 0.19 0.21 0.08
oc=28 0.92 1.30 0.14 0.19 0.08
o=16 0.92 1.30 0.15 0.19 0.07
o=32 0.93 1.30 0.14 0.20 0.11

5. Conclusion

The autoregressive generation of long-term trajectories for
large-scale chaotic systems remains a significant challenge
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in machine learning. We propose a novel transformer-based
framework specifically designed for large-scale ergodic
chaotic systems. Our approach enhances the transformer
architecture by redesigning the attention blocks with A3M
pooling in factorized attention to learn the topology mix-
ing property and capture the extreme behavior, leading to
improved long-term trajectory generation. Moreover, we
introduce a novel loss function inspired by the classical
von Neumann ergodic theorem, ensuring the preservation
of long-term statistical properties in chaotic systems. Exper-
imental results show that the proposed model achieves supe-
rior performance over both operator-based and transformer-
based methods and excels in both short-term accuracy and
the preservation of long-term statistical properties, achiev-
ing relative 23.1% gain among short- and long-term metrics
on the high-resolution KF256 dataset and 30.8% on the
challenging 3-channel high-resolution TCF dataset.

Limitations and future work. Our approach currently
focuses on ergodic chaotic systems and does not generalise
well to non-ergodic system, where long-term statistical prop-
erties are not well-defined. Future research could explore
and extend the framework to accommodate such cases. Ad-
ditionally, our method relies on uniform grid structures,
which may limit its applicability to more complex chaotic
systems. Future work could explore mesh-free techniques,
such as graph-based transformers, to model chaotic physical
fields without relying on grid-based data structures.
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A. Table of Notations
Notations Meaning
LP(X, p) function spaces defined using a natural generalization of the p-norm
(X, B, u) measure space

Lebesgue measure
nonlinear forward map
parameters of neural networks
feature functions in £2 space
Number of grid points in i-th coordinate
Total Number of grid points
Number of physical quantities
feature dimensions in £2 space
Number of samples from d—dimensional unit sphere
Number of RFF samples
Random unit vector sampled from d—dimensional unit sphere
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B. Convergence of Random Fourier Features

Let X ~ N(u,o?) be a Gaussian random variable. The characteristic function is defined as:

px(t) = E[fe"*]

-7 / ere (12;%)2 dz. (10)
210 J-x
Complete the square in the exponent:
_ )2 2_9 2
itx ( ) —itx—x P
202 202
1
= —2—2(9:2 — 2ux + p* — 2ito*x)
1 (11
= *ﬁ(xz = 2p +ito®)x + pi?)
1 . )
= 5o = (et ite®)? = (u+ito?)? + %)
Substituting back:
1 ; t252 > (z—(ptito?))?
t) = ———e'th 2 / e 2% drx
ex(®) \V2wo o

1242 1 X (e (utite®)?
=l . / e 202 dx

210 J -

integral of Gaussian density

The integral equals v/ 27 since it’s the integral of a Gaussian density (after appropriate substitution).

Therefore:

252

ox(t) ="

This completes the proof of the characteristic function for a Gaussian distribution with parameters . and 2. In our case, ¢
is replaced by the relative Euclidean norm in the grid domain M and p is zero in random Fourier sampling. Thus, when
samples m is sufficiently large, #(i — j) in Equation (4) converges to

0(i — j) = Ble*™(E )] = et I6 61, (12)
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C. Ergodicity and Mixing

Mixing and ergodicity are correlated concepts in the mathematical analysis of dynamical systems (Cornfeld et al., 2012),
particularly within the framework of measure theory. Consider a measure-preserving dynamical system (X, B, u, T'), where
T : X — X is a transformation that preserves the measure . Ergodicity is defined by the property that for any measurable
set A € B,if T7!(A) = A then u(A) is either 0 or 1. This implies that time averages equal space averages for integrable
functions, formally expressed as

Mixing is a stronger condition where, for any two measurable sets A, B € B, the measure of their intersection under iteration
satisfies

w(T~"(A)NB) = p(A)u(B) asn — oo.

This signifies that the system asymptotically “forgets” its initial state, leading to statistical independence of A and B over
time. The mixing rate quantifies the speed at which this convergence occurs, often characterized by the decay of temporal
correlations. Mathematically, if there exists a function ¢(n) such that

lu(T7"(A) N B) — p(A)u(B)| < ¢(n), (13)

and ¢(n) decays to zero at a certain rate (e.g., exponentially ¢(n) o exp(—An)), this rate ¢(n) is referred to as the mixing
rate. A faster mixing rate implies a more rapid approach to equilibrium, which is crucial for applications ranging from
statistical mechanics to the analysis of randomized algorithms. Together, ergodicity ensures the thorough exploration of
the state space, while mixing and its associated rate provide a quantitative measure of how efficiently the system achieves
statistical uniformity.
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D. Experiment settings.

In this section, we provide the details of numerical experiments and baseline implementations on the high-resolution
Kolmogorov flow and turbulent channel flow.

D.1. Kolmogorov flow

Governing Equations The Kolmogorov flow system is a classic model for studying fluid instabilities and turbulence
in two-dimensional incompressible flows (Temam, 2012). It is described by a nonlinear, incompressible Navier-Stokes
equation driven by a sinusoidal forcing term.

ou 1
f+(u~V)u+Vp—E

5 Au+f  indomain [0,27]? x (0,77,
V-u=0 indomain [0,27]* x [0, 7],

(14)

where u(z, y, t) is the velocity field, p is the pressure, and f = (sin?ky)) represents the external forcing in the y-direction.

Re is the Reynolds number calculated by Re = uL /v, where v is the kinematic viscosity, L is the characteristic length and

u is the speed (Sommerfield, 1908). The equivalent vorticity formulation for w := a;g; v 4 8;;' is
O +u-V Lo + f  in domain [0,27]* x (0,7 (15)
— 4+ u-Vw=—Vw i ™ .
ot Re ’ ’

We use the spectral method to generate vorticity states with the pseudo-spectral solver in the jax-cfd toolbox (Dresdner
et al., 2022). The initial conditions follow those initializing methods in (Alieva et al., 2021). We set the maximum speed as

Umaz = 9.9 (U, u,y = 7 for each direction), v = le — 3, and k = 4 on the 256 x 256 grid with a temporal resolution of
1.7e — 3.

Datasets The datasets of vorticity states of the Kolmogorov flow system consist of 150 training trajectories, 40 validation
trajectories, and 30 testing trajectories in total. Each trajectory contains 500 frames for 10 seconds with a unique initial
state. KF256 dataset uses the full resolution (256 x 256) of the generated states, and KF128 dataset downsamples the state
resolution by half (128 x 128). Both the ablation studies and the baseline models were trained and evaluated on all of the
corresponding sets.

D.2. Turbulent channel flow

This simulation employs the 3DQ19 lattice model for the lattice Boltzmann method (LBM) (Succi, 2001), which features 3
dimensional and 19 discretized velocity directions. Via Chapman—Enskog analysis, LBM can recover the Navier-Stokes
equations and beyond (Succi, 2001). The lattice cell is specified by its position x at time ¢, and is characterized by a
discretized set of speeds c¢; where i € {0,1,...,Q — 1} with @ = 19. The evolution equation for the distribution functions
can be written as:

f(x+ c;At, t + At) = f(x,t) — Q[f(x,t) — £9(x,1)], (16)

where (2 denotes the Bhatnagar-Gross-Krook (BGK) collision kernel (Succi, 2001). The collision kernel relaxes the
distribution function towards the local Maxwellian distribution function f;%:

.. X .. X 2 X . X
) = wip ) |14 e [ GOl mbenbed]) a7

where w; denotes the direction based weights (w; = 1/3 for i=0, 1/18 for the six nearest neighbours and 1/36 for the
remaining directions), p (X, t) is the cell macroscopic density, u (x, ) is the cell macroscopic velocity. In Equation (16), At
symbolizes the lattice Boltzmann time step, which is set to unity. The LBM kinematic viscosity v is defined as

1
v=_c? (7—2) At, (18)

with ¢, representing the speed of sound, and ¢? equating to 1/3 in Lattice Boltzmann Units (LBU). Now, we apply the
Smagorinsky subgrid-scale turbulent model within the LBM framework, the effective viscosity veg (Smagorinsky, 1963;
Hou et al., 1995) is modeled as the sum of the molecular viscosity, 1, and the turbulent viscosity, v;:
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Veff = Vo + Vg, vy = CvsmagA2 ‘S ’ (19)

where ]g‘ is the filtered strain rate tensor, Cspag is the Smagorinsky constant, A represents the filter size. We apply the
total viscosity v; into Equation (18) to add the turbulent viscosity. Eventually, macro-scale quantities such as density and
momentum are derived from the moments of the distribution function f;(x,t), the discrete velocities c;:

Q-1
p<xa t) = Z fi(xa t)7 (20)
i=0
1«
u(x,t) = D) ; fi(x,t)c;, (21

Dataset Contribution The datasets are derived from the macroscopic velocity field computed using a lattice Boltzmann
numerical solver. A 2D plane (192 x 192) was extracted at the mid-cross-section of the flow direction in a 3D turbulent
channel flow. Each pixel in the plane contains velocity vector field information u, including v, u,, and u,. The datasets
comprise 240 training trajectories, 24 validation trajectories, and 24 test trajectories, with each trajectory containing
595 frames. The simulations were executed on 4,096 CPUs over 144 hours, resulting in a total computational cost of
approximately 300,000 CPU hours. More details of the dataset are available in Appendix G

D.3. Baseline implementations

In this subsection, we present the details of the baseline implementations. For all the baselines, the same experimental
settings and model configurations are used for both the KF256 and TCF experiments.

¢ For the U-shaped Fourier Neural Operator (UNO) (Rahman et al., 2022), we adopt the original model configuration
described in Rahman et al. (2022) for the Kolmogorov flow with a resolution of 256 x 256. The UNO architecture
consists of four Fourier blocks, each with 24 frequencies per channel, a width of 64, and a hidden dimension of 96. It
includes skip connections and is connected via a channel-wise MLP at the end of each block. The official implementation
is utilized from https://github.com/neuraloperator/neuraloperator/tree/main.

* For Markov Neural operator (MNO) (Li et al., 2022a), we used the official implementation from https://github.
com/neuraloperator/markov_neural_operator/tree/main. For the important choice of dissipativity
hyperparameters in MNO, we follow their settings in their numerical experiments on Kolmogorov flow with dissipativity
regularization coefficient « = 0.01, scaling down factor A = 0.5, and attractor radius as 156.25 x .S where S is the
square root of total number of grid points N. The MNO model consists of four 2d Fourier layers with 20 frequencies
per channel and width = 64.

e Apart from Fourier transform-based baselines, the Multiwavelet-based Operator (MWT) (Gupta et al., 2021) uses
wavelet transformations to capture localized, multi-scale dynamics effectively. The MWT model is composed of four
2D multiwavelet blocks, each utilizing 32 Legendre-based wavelets. The network features a hidden dimension of 128,
applies ReLU activations between the multiwavelet blocks, and generates outputs through a channel-wise MLP. The
official implementation can be found from https://github.com/gaurav71531/mwt-operator

e For Factformer (Li et al., 2024), we use the official implementation provided at https://github.com/
BaratilLab/FactFormer/tree/main. Factformer adopts a scalable architecture combining self-attention
mechanisms with low-rank approximations to reduce computational complexities. The factformer consists of four
factorized attention blocks. Each attention block has 16! heads with dimension 64. The hidden dimension is set to
256 with a two-layered channel-wise MLP as the forward block. To align with other methods, we set the temporal
dimension as 1 and follow the auto-regression paradigm for training and evaluation as described in (Li et al., 2024).

All models are optimized using the Adam optimizer with the L2 norm between predictions and ground truth, except for
MNO. For MNO, the loss function consists of two terms: (1) the first-order Sobolev norm between predictions and ground

'We increased the number of heads from 8 to 16 to accommodate the higher resolution and align with our implementations.

17


https://github.com/neuraloperator/neuraloperator/tree/main
https://github.com/neuraloperator/markov_neural_operator/tree/main
https://github.com/neuraloperator/markov_neural_operator/tree/main
https://github.com/gaurav71531/mwt-operator
https://github.com/BaratiLab/FactFormer/tree/main
https://github.com/BaratiLab/FactFormer/tree/main

Chaos Meets Attention: Transformers for Large-Scale Dynamical Prediction

truth, and (2) a dissipative loss term (refer to (Li et al., 2022a) for details). The learning rate (LR) and scheduler are kept
the same as specified in their original implementations. All models are trained for 50 epochs using their default batch size
settings.

D.4. Our transformer implementation details

For the benchmarks, the major hyperparameter configurations of our transformers are listed in Table 5.

Table 5. Major hyperparameter configurations of our transformers.

Hyperparameters  Kolmogorov Flow Turbulent
(KF128) (KF256) Channel Flow
Number of blocks 4 4 4
Attention heads 8 16 16
Kernel bandwidth 8 8 8
Latent dimension 256 256 256
Input function 2D Conv 2D Conv 2D Conv
Output function MLP MLP MLP

The Latent dimension determines the number of channels in the latent state representation. The Number of blocks specifies
the factorized attention blocks incorporated into the encoder of our transformer, influencing its ability to process input data.
The Attention heads defines the number of heads used in the multi-head attention mechanism, enabling the model to capture
diverse patterns effectively. The kernel bandwidth, represented by the sigma parameter of the Gaussian distribution, governs
the sampling of the random Fourier spectrum to approximate the kernel. Finally, the operator dimension specifies the latent
dimensionality of the bidirectional unitary operator. We use Adam as the optimizer to train the models. The learning rate
initiates from le — 4 and decays by half for every 10 of 50 epochs, following the scales and settings of related chaos works
(Li et al., 2022a; 2024). At the end of our model, we employ a three-layer CNN residual block with circular padding to
enforce periodic boundary conditions and project back to physical variables. The choice of latent dimension and attention
heads follows the setting of the corresponding lowest relative error in the ablation study of (Li et al., 2024).

D.5. Computational resources for machine learning experiments

Experiments on KF256 and TCF were submitted as resource-restricted jobs to a shared compute cluster. Ablation studies on
KF128 were conducted within a group workstation. Computational resources for these machine learning studies used in
each chaos system experiment are listed in Table 6.

Table 6. Computational resources by experiment.

Experiment Hardware

KF128 2 GeForce RTX4090 GPUs, 24 GB
KF256 1 A100 GPU, 40GB
TCF 1 A100 GPU, 40GB
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E. Evaluation Criteria

In this section, we include further details about the criteria used in Section 4.

E.1. Short-term accuracy evaluation

Relative L2 norm. The stepwise accuracy of the model’s predictions for physical states, such as velocity and vorticity,
can be evaluated using the relative norm L2, as described in (Li et al., 2022a; 2024). The relative error is defined as

. RN A
Relative L°-error(k) = i ; W, (22)

where ii and zi are the prediction and ground-truth states at time step k of jth test trajectory.

E.2. Long-term statistics evaluation

Matching energy spectrum Evaluation of the matching of the energy spectrum is important to quantitatively assess the
model performance (Wan et al., 2023). The energy spectrum is calculated as

E(k)= Y la®[*= > u(z;,)exp(—j2rk - z;;/L) (23)
|k|=k k|=k | 4.

where F(k) represents the energy spectrum at wavenumber k, and 4 (k) denotes the Fourier transform of the velocity field.
Mean energy absolute percentage error (ME-APE)

Ny, pred true
1 ErY |
ME-APE = — “k___k | %100 24
A kZ:l B | (24)

where E,‘;red and E}"° represent the predicted and true energy values, respectively. We evaluate this metric to uniformly
evaluate the relative energy spectrum absolute error.

Mean energy log ratio (ME-LR)

ME-LR = " wy , (25)
K

IOg <Epfed(k) )
Eie (k)
where wy denotes the weight assigned to each wavenumber. This metric measures the logarithmic error between the

predicted and true energy values. We further define wy, = % to capture high energy modes as ME-LRw.
K Lorue

Turbulent Kinetic Energy. We evaluated the turbulent kinetic energy (TKE) of long-term rollout predictions of baselines
and our approach. The TKE represents the mean kinetic energy per unit mass associated with turbulent velocity fluctuations,
which quantifies the intensity of the turbulence and the energy distribution across scales. It is defined as:

TKE =

Ul

d

z :—/2
Uy

i=1

where @2 = 1. [(u/*(t) — 4;)? and d represent the spatial domain dimensionality. The TKE derived from vorticity field
can be approximated from (CieSlak et al., 2019). To evaluate the models, we compute the grid-wise absolute difference
between the ground truth TKE and the estimated TKE from the long rollouts of learned models as:

Errorr i g = ||TKE™® — TKEP™!||.
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Kullback-Leibler Divergence. We evaluate the statistical distance between the predicted and ground truth distributions
of the state field using the Kullback—Leibler (KL) divergence. The KL divergence quantifies the information loss when the
predicted distribution () is used to approximate the true distribution P. It is defined as:

KL(P | Q) = Eplog  § )1

where we estimate P and () via gaussian_kde of principal components in samples of the ground truth and predicted
fields, respectively. In our setup, the principal components and samples are drawn over the full spatial grid and temporal
range of the rollout. A lower KL divergence indicates better agreement in the distributional shape and concentration of
vorticity statistics.

Mixing rate. The mixing rate of a chaotic system quantifies how quickly its state variables lose the memory of initial
conditions and become statistically independent. It measures the decay of correlations and the rate at which distributions
approach equilibrium. For a system with state z, the autocorrelation function is given as

C(t) = E[T'(2)2] — E[T"(=)|E[4

The system is said to mix at an exponential rate if C'(#) oc e~** where ) is the mixing rate (see more explanation in Equation
(13) at Appendix C). Empirically, we estimated the autocorrelation function up to time-lag K from N true and generated
system trajectories such as

T— t

X N T-K-— L NoT
C(t) = NT-K -1 Z Z NETEEIR whereézﬁzz,z;, (26)

z:l k=0 i=1 t=0

where 2! is the tth snapshot in ith (true/generated) trajectory. To estimate the mixing rate, we use nonlinear least squares
optimization? to fit the normalized autocorrelation function C'(¢) = C/(¢)/C(0) to an exponential decay model of the form

At where \ is the fitting parameter. It minimizes the sum of squared errors between the empirical and model values over
time lags. This approach allows for a robust estimation of the mixing rate. Finally, we make the absolute difference between
the estimated values from ground truth and generated rollouts to form a metric.

’In practice, we use the curve_fit function from the SciPy library (Virtanen et al., 2020), which provides efficient estimation of the
parameters by minimizing the residual sum of squares.
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F. Experimental results visualization

In this section, we include more visualized experimental results supplementary to the section 4.

F.1. Kolmogorov flow
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Figure 4. Absolute error of short-term KF256 predictions of baselines and ours.
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Figure 5. Time correlation of our long-term predictions of KF256 and the baselines.
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Figure 6. TKE error of long-term predictions of KF256. The left-most snapshot indicates the TKE of ground truth trajectories; and the
rest snapshots present the absolute percentage error of TKE in 1000-step rollout predictions from baselines and our approach.

F.2. Turbulent channel flow

For this 3D dataset, the visualization includes short-term prediction states and long-term statistics of the 2D cross-section
states in the forward direction.
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Figure 7. Absolute error of short-term TCF predictions of baselines and ours.
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F.3. Further details on ablation study

In this section, various attention maps of the ablation study section 4.3 on the kernel bandwidth of RFF positional encoding
are included in Figure 8.
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Figure 8. Impact of applying random Fourier positional encoding on the attention maps with respect to the kernel bandwidth o €
{1,4,8,16,32}. From the attention maps of the first and the last block of our implementation, we observed that a small o € {1,4}
produced overly smoothed attention maps, while the large value o = 32 produced noisy attention maps.
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F.4. Computational costs

Table 7. Computational costs of our method on scaling grid resolution. We report the model performance of computational runtime,
memory usage and floating-point operations per second (FLOPs) per forward pass, across a range of grid resolutions and demonstrated
significant time and memory efficiency on increasing resolutions consistently. The results are gathered on the KF datasets given model
configurations in Table 5 on a A100 GPU listed in 6 with 7, 325, 665 parameters.

Grid Resolution Runtime Memory Usage FLOPs per Forward Pass
32x32 24 ms 174 MB 2.5GB
64x64 27 ms 537MB 10.5GB
128x128 42 ms 1986 MB 50.2GB
256 %256 58 ms 7684 MB 268 GB

Table 8. Computational costs of baselines and ours on TCF predictions. We report the model performance of computational runtime,
memory usage and floating-point operations per second (FLOPs) per forward pass. The results are gathered given model configurations
in Table 5 on a A100 GPU listed in 6. Attention mechanism is overall computational heavy than neural operator methods, but tensor
factorization and axial attention make the computation tractable for large scale chaos states.

Models Parameter Count Runtime Memory Usage FLOPs per Forward Pass
MNO 6,467,425 31 ms 377 MB 3.45GB
UNO 17,438,305 12 ms 769 MB 6.88 GB
MWT 5,089,153 50 ms 313 MB 9.52GB
FactFormer 6,083,009 53 ms 6889 MB 239GB
Ours 7,325,665 58 ms 7684 MB 268 GB
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G. Turbulent channel flow as a benchmark for AI4Science

We employ turbulent channel flow as a benchmark to assess the generality of our approach for turbulent flows. Unlike
isotropic turbulence, turbulent channel flow is bounded by two parallel planes with no-slip boundary conditions. The Lattice
Boltzmann Method (LBM), an alternative to directly solving the Navier-Stokes equations, is inherently parallelization-
friendly, making it particularly advantageous for high-performance computing applications. In recent decades, LBM has
proven its versatility, enabling applications that range from micro-nano fluidics to macroscopic turbulent flows (Succi, 2001).

In this study, the computational domain for the turbulent channel flow simulation is defined with dimensions L, x Ly X L, =
1024 x 192 x 192, where z, y, and z denote the streamwise, vertical, and spanwise directions, respectively. The friction
Reynolds number is set to Re, = 180 which is equivalent to Re = 3250. Periodic boundary conditions are applied in the
streamwise and spanwise directions, while the vertical direction is governed by no-slip boundary conditions (Latt et al.,
2008). This configuration distinguishes our dataset from existing studies that primarily rely on 2D turbulent cases, as our
dataset is based on fully three-dimensional simulations.

A key motivation for utilizing 3D simulations, even when analyzing 2D cross-sectional results, lies in their ability to
capture realistic flow phenomena that are inherently three-dimensional. These include features such as secondary flows,
coherent vortical structures, and fully developed turbulence. Such complexities are absent in 2D turbulent channel flow
datasets (NVIDIA, 2023), which neglect variations along the third dimension. As a result, 2D datasets fail to adequately
represent the intricacies of real-world turbulent flows, limiting their utility in validating models or exploring phenomena
where three-dimensional effects are critical. Furthermore, existing high-resolution 3D turbulent channel flow datasets are
often derived from direct numerical simulations (DNS), which, while highly accurate, come with significant drawbacks.
These datasets can require up to 100 terabytes of storage (JHTDB, 2023), resulting in an unnecessarily high memory cost
that makes them impractical for early-stage machine learning research. In comparison, our datasets are designed to be three
orders of magnitude smaller, approximately 100 GB, striking a balance between resolution and efficiency. This makes them
see for machine-learning-specific tasks, enabling broader accessibility and usability for researchers.

The fully developed 3D turbulent channel flow simulation follows the configuration outlined in reference (Xue et al.,
2022). The simulation begins from an initial zero-velocity field, with a square block of size 20 x 20 x 100 grid points
positioned at x = 192. A volumetric force is applied uniformly across the domain to drive the flow. The simulation is run
for 50 domain-through times to establish initial flow characteristics. After this initial phase, the block is removed, and the
simulation is continued for an additional 50 domain-through times, allowing the flow to fully develop into a turbulent state.
Data sampling begins after this stage, focusing on the 2D cross-section at x = 512. Data is collected over a further 100
turnover times, ensuring that the samples represent fully developed turbulence. The simulation timestep is set to At = 0.02s,
and it operates in dimensionless units (800 timesteps), as is typical for LBM simulations. The detailed transformation from
dimensionless units to physical units can be found in reference (Xue et al., 2024). To ensure robustness and generality, we
conducted three independent 3D turbulent channel flow simulations under these conditions, generating a comprehensive
dataset for analysis.

(a) 3D-Turbulent Channel Flow for illustration (b) The cross section in x direction

Figure 9. Turbulent Channel Flow dataset for illustration
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