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Abstract
Community detection has long been designed to find communities with different 
structures in various networks. It is now widely believed that these communities 
often overlap with each other. However, due to the complexity and diversity of the 
network, it is often difficult to accurately identify the overlapping community struc-
ture in many real networks. Considering the above problem, we introduce a dual 
graph neural network for overlapping community detection (DGOCD) under the 
framework of the extended Bernoulli–Poisson. First, we build two graphs to model 
information of different orders between nodes, respectively, and use a set of GCNs 
as a backbone to learn semantic representations of the above graphs in parallel. Then 
we introduce the concept of topological potential matrix to aggregate the embedding 
representations of the two channel graphs. Moreover, for learning the affiliations 
between nodes and communities, we carry out network reconstruction based on the 
former information. Finally, the reconstructed network is sent into the GCN to get 
the final community division. Experimental results on real network datasets demon-
strate that the proposed DGOCD consistently outperforms existing methods.
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1  Introduction

Community detection, as a classic graph partitioning problem, reveals the features 
and connections between different community members. A community is intuitively 
viewed as a group of nodes with more connections among its members than between 
its members and the remainder of the network [20, 29]. In networks with different func-
tions such as social networks [3, 37] and biological networks [26], these groups of 
nodes (i.e., communities) are often interpreted as different meanings. Through commu-
nity detection, we can analyze the importance, relevance and evolution of communities 
in detail and identify its research trends. It is now widely accepted that these communi-
ties often overlap with each other [41]. As we all know, graphs are powerful structures 
for modeling specific kinds of data because of their ability to combine object-level 
information with the underlying inter-object relationships [29]. With the remarkable 
development of graph deep learning techniques in recent years, graph neural network 
(GNNs) architectures have been widely used in community detection tasks by virtue of 
their advantages in processing high-dimensional network data [38].

In recent years, community detection work based on GNNs has been mainly car-
ried out from two perspectives. One class of methods focuses on learning the vector 
representation of nodes in the graph and then uses traditional clustering algorithms, 
such as K-means, to achieve the final community detection. The downside of this 
class of methods is that they rely on a multi-step optimization procedure that does 
not allow the optimization of the objective via gradient descent end-to-end [23]. It 
cannot directly address node partitioning or the estimation of clusters within com-
putational graphs; it is only suitable for detecting non-overlapping communities and 
has poor scalability. Another class of methods tries to build an end-to-end commu-
nity detection model [19, 27, 30, 31], which requires only minimal hyperparameter 
tuning to achieve community segmentation with low complexity. Recently, some 
GNN methods that explicitly optimize community detection have attracted our inter-
est. Among all the varieties of GNNs, graph convolutional neural networks (GCN) 
[36] are a simple but representative and salient one, which introduces the concept 
of convolution to GNNs that means to share weights for nodes within a layer. An 
easy and intuitive way to understand GCNs is to think of them as a message passing 
mechanism [10] where each node accepts information from its neighboring nodes 
to update its representation. This message-passing mechanism is highly effective 
in many scenarios. However, compared with traditional methods, such GCN-based 
community detection methods not only lead to an annoying over-smoothing prob-
lem, but also fail to clearly distinguish the differences between these observed edges 
and those not observed [6]. This further blocks us from mining fine-grained infor-
mation in the graph.

Duan et  al. [6] also describe the defects in the GCN-based approach, which 
argues that representations with the observed edges between nodes should be posi-
tively correlated. Yet, beyond these observed edges, there is a dark world that could 
provide diverse and useful information to the representation updates and help to 
overcome the over-smoothing problem at the same time. Many previous studies [19, 
27, 31] have shown GCN methods that explicitly optimize community detection 
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work best with two or three layer stacks. This is exactly in line with the three-degree 
influence principle proposed by Fowler et al. [7]. They believe that a node can not 
only influence its neighbors (one degree), but also that this influence can be passed 
on again. As long as they are within three degree of strong connections, there is the 
possibility of triggering behavior. If it exceeds more than three degree, the mutual 
influence between nodes will disappear. Of course, there is plenty of evidence of 
this. Topological potential [9] is a branch of traditional community detection meth-
ods, and the impact factor � often controls the field range of nodes within two to 
three hops. As a classic model, topological potential can not only refine the attrac-
tiveness between each node pair, but also determine the community affiliations of 
nodes according to their positions in the inherent peak-valley structure of the topo-
logical potential field [43]. The concept obviously piqued our interest. Based on the 
above problems and observations, to dig out more useful information from the dark 
world, we try to integrate the topological potential with GCN to realize overlap-
ping community detection. According to the experimental observation, whether it is 
a central node, an overlapping node or a fringe node, information can be transmitted 
in the relevant community under the principle of three-degree influence. Figure 1 
shows the information transmission within two hops of different types of nodes.

Unlike many existing approaches, they update the representation of each node by 
treating adjacent nodes as positive samples and non-adjacent nodes as negative sam-
ples. In this paper, we propose DGOCD. By simulating the way of communication 
between entities in the real world (i.e., directly, without a third party), it uses a set of 

(a) Central Node (b) Overlapping Node (c) Fringe Node

Fig. 1   Information transmission within two hops of different types of nodes
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GCNs to independently mine the interaction information between node and its first-
order neighbors and second-order neighbors and dynamically adjusts the proportion 
of each part of information in the node embedding by topological potential matrix. 
The whole model is based on the extended Bernoulli–Poisson model (EBP), which 
implements the final overlapping community division through an end-to-end form. 
We show that DGOCD not only restores community affiliations more accurately, 
but also reconstructs the overlapping scale of the original communities as closely as 
possible. Specifically, we contribute:

•	 We introduce a new dual graph neural network model DGOCD, for overlapping 
community detection on graphs. The model inherits the core idea of the EBP 
model, breaks the limitation of the relationship between nodes and community 
members, and greatly improves the application range of this generative model.

•	 We separate the first-order information and second-order information in the 
graph and independently send them to a set of GCNs to learn the pairwise rela-
tionship between nodes and their first-order neighbors and second-order neigh-
bors. Finally, the topological potential matrix is introduced to realize the fusion 
of multi-order information. This helps to promote more precise community seg-
mentation.

•	 We evaluate our model on various real datasets and demonstrate that DGOCD 
outperforms state-of-the-art methods. Furthermore, the introduction of finer-
grained information enables our model to find more accurate overlapping com-
munities.

2 � Related work

As the main method to understand the relationship between structure and inherent 
high-order information in the graph, community detection is of great significance 
in graph analysis and data mining. Community structure is an important area of 
research. It has received quite a bit of attention from the scientific community. Khan 
and Niazi [12] reviewed the evolution and latest progress of community detection in 
the field of traditional methods. At present, community detection is mainly divided 
into two categories: non-overlapping community detection, also called partitioning, 
whose purpose is to seek to assign each node to exactly one community. Overlap-
ping community detection seeks a soft assignment of nodes into potentially multi-
ple communities. Among them, the Girvan-Newman [21, 22] algorithm is a classic 
split-based community detection technique that separates communities from each 
other by removing intercluster edges in a network based on low similarity. Louvain 
[2] acts as a heuristic greedy algorithm that iteratively merges nodes based on the 
gain of modularity until the modularity no longer increases. The label propagation 
algorithm (LPA) [25] is known for its ability to find the community structure in the 
network within the linear complexity, but running LPA multiple times is likely to 
obtain different community structures, and the stability is worrying. MWLP [15] 
uses representative motifs to characterize the high-order features of the network on 
the basis of LPA. By integrating high-order and low-order structure information and 
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designing a new weighted network, a new voting strategy NaS is proposed to reduce 
the randomness in the label propagation process to obtain a more stable community 
structure. This further demonstrates the importance of higher-order information [13, 
14]. Different from the previous methods, the NLA algorithm attempts to change 
the granularity of graph information integrated into the model [8, 24, 43], which 
uses the PageRank algorithm to evaluate the node quality and determine the com-
munity belonging of the node based on its position in the inherent peak-valley struc-
ture of the topological potential field. This is an interesting method of overlapping 
community detection. Similarly, AGM [39] and BIGCLAM [40] describe commu-
nity detection as a variant of non-negative matrix factorization (NMF) to maximize 
the likelihood of the model. Almost all overlapping community detection methods 
before BIGCLAM make a hidden assumption that the density of connections in the 
overlapping part of the community is lower than that in the non-overlapping part of 
the community. This unnatural modeling assumption runs counter to the real world. 
EPM [44] and SNetOC [30] are based on the Bernoulli–Poisson model, and SNMF 
[33] uses non-negative matrix factorization.

Compared with the classic traditional methods, in recent years, a large number of 
community work have made breakthroughs under the rapid development of graph 
deep learning technology. Su et al. [29], Wu et al. [38], Liu et al. [16] summarize 
the community detection findings under the latest deep learning models. For exam-
ple, some approaches attempted to focus on graph representation. In order to gen-
erate smooth features, AGE [5] introduces a Laplacian smoothing filter, adaptively 
selects positive and negative samples according to the similarity of node pairs and 
uses the final node representation for simple community division. CommDGI [42] 
applies k-means to node clustering to achieve joint optimization of the linear combi-
nation of DGI objectives, mutual information and modularity. DNE-SBP [28] uses 
semi-supervised stacked autoencoder (SAE) to learn a low-dimensional nonlinear 
graph representation and obtains the network embedding by reconstructing the adja-
cency matrix. SDNE [32] preserves the global and local structure of the network 
by introducing the concepts of first-order proximity and second-order proximity. 
All of the above methods are applied to non-overlapping communities, which aim 
to assign each node to a community. Although graph deep learning has achieved 
great success in non-overlapping community detection, applying it directly to over-
lapping communities does not achieve great results. Compared to non-overlapping 
community detection, overlapping community detection seeks to soft-assign nodes 
to potentially multiple communities. NOCD [27] inherits the community concept 
of BIGCLAM and is a rare GNN that explicitly optimizes overlapping community 
detection. It achieves effective community division by maximizing the possibility of 
Bernoulli–Poisson model. While the communities discovered by NOCD are able to 
recover the graph structure to the greatest extent, this approach limits the overlap-
ping of community structures. DMoN [30], as an advanced non-overlapping com-
munity detection model, has also tried to apply it to overlapping communities due to 
its nature of maximizing modularity. At the time of writing, UCoDe [31] proposes 
a state-of-the-art method that can both detect overlapping and non-overlapping 
communities and can compete with NOCD, especially in overlapping community 
detection.
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3 � Preliminary

In this section, we briefly introduce the basic concepts of topological potential and 
Bernoulli–Poisson model. Table 1 summarizes the key mathematical symbols and 
descriptions used in this paper.

3.1 � Topological potential

Field theory, as a classical mathematical model for describing the non-contact inter-
actions between objects, can be used to describe the interaction and the association 
among network nodes. Each node is regarded as a field source, and these nodes 
interact with each other, forming a field called a topological potential field [35, 
43]. Topological potential was first introduced and applied in the field of commu-
nity detection by Li Deyi et al. [9]. They believe that the interaction between nodes 
has local characteristics, and the influence of each node will decay rapidly with the 
increase of network distance.

Given a graph G = (V ,E) , where V = {v1, v2,⋯ , vN} represent its node set and 
E = {(vi, vj), vi, vj ∈ V} represent its edge set, the topological potential of node vi 
can be defined as follows:

where vl indicates the node within the influence scope of node vi , s represents the 
total number of nodes within the influence scope, 1 ≤ s ≤ n − 1 , 1 ≤ l ≤ s , m(vl) 

(1)�(vi) =

s∑

l=1

[
m(vl) × exp

(
−

(
dil

�

)2
)]

Table 1   The key mathematical 
notations and descriptions

Symbol Description

G = (V ,E) An undirected simple graph
G1st First-order graph

G2nd Second-order graph
X Attribute matrix

Ẽ = {E1st,E2nd} Multi-order edge set

Ã = {A1st ,A2nd} Multi-order adjacency matrix set

Z̃ = {Z1st,Z2nd} Multi-order node relationship matrix set

Z
(1) Node embedding representation matrix 

under the first set of GCNs

Z
(2) Node embedding representation matrix 

under the second set of GCNs
F Community affiliation matrix
T Topological potential matrix
C Penalty term
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refers to the mass of node vl , dil denotes the hops between nodes vi and vl , and impact 
factor � used to control the influence scope of nodes where the maximum scope is 
[3�

�√
2] hops.

3.2 � Bernoulli–Poisson model

Bernoulli–Poisson (BP) model [27, 30, 40, 44] is a graph generative model that 
allows overlapping communities. It inherits the notion of overlapping commu-
nities from Yang and Leskovec [40]. The model shows that the reason for the 
emergence of the community is from the close affiliation between the nodes. 
The higher the weight of a node’s affiliation to the community, the more likely 
the node is to connect with other members of the community. The flexibility of 
the affiliation network allows us to model a wide range of network community 
structures.

For a graph G = (V ,E) , given a bipartite community affiliation B(V, C, M), we 
need to specify the process that generates the edges E of G. In that, V, C represent 
the node set and the community set, respectively; (i, c) ∈ M denotes that node i 
belongs to community c. In addition, the graph assigns a non-negative weight Fic 
to each affiliated edge between node i ∈ V  and community c ∈ C . ( Fic = 0 means 
no affiliation). Given the affiliation matrix F ∈ ℝ

N×C
≥0

 , we assume that each com-
munity c connects its member nodes depending on the value of F . In particular, 
each community c connects its member nodes i, j independently with probability 
pc(i, j)

where |c| denotes the number of common communities of a pair of nodes. As you 
can see, the more communities a pair of nodes has in common, the higher the prob-
ability of an edge. Further, according to the BP model, the graph is generated as fol-
lows. Given affiliations F , adjacency matrix entries Aij are sampled i.i.d as

where Fi is the i’s row of the matrix F and represents a weight vector of node i. Now 
that, the negative log-likelihood of the BP model is

Obviously, in this way, we actually model the level of participation of each node in a 
particular community.

(2)pc(i, j) = 1 − exp

(
−

|c|∑

c=1

Fic ⋅ Fjc

)

(3)Aij ∼ Bernoulli
(
1 − exp

(
−
(
Fi ⋅ F

T
j

))

(4)

L(F) = − logP(A|F)

= −
∑

(i,j)∈E
log

(
1 − exp

(
−FiF

T
j

))

+
∑

(i,j)∉E
FiF

T
j
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4 � Model description

In the following section, we present the proposed model for overlapping community 
detection in detail, starting with the graph neural network module. Then we describe 
the construction of dual graph neural network in detail. Finally, we introduce the 
generation of overlapping community affiliations. The entire overlapping commu-
nity detection model is shown in Fig. 2.

4.1 � Graph neural network module

The traditional BP model links the generation of edges with the affiliation matrix F . 
The probability of node connection is proportional to the strength of shared mem-
bers (the number of public communities of two nodes). In order to support a poten-
tially infinite number of communities and more accurately mine the hidden connec-
tions in the original graph [44], we propose an extended Bernoulli–Poisson model 
(EBP). Based on the BP generative model, it further generalizes the probability den-
sity in the model, as shown in follows

In particular, Z ∈ ℝ
N×∙ . Different from formula (3), we replace the community affili-

ation matrix F with the node relationship matrix Z , which further generalizes the 
concept of affiliations and makes the generation of edges is no longer limited to the 
binary association between nodes and communities. In summary, the main idea of 
BP model is that if two nodes belong to more public communities (that is, the more 
similar the two nodes are), the greater the probability of generating edge between 
the two nodes. Similarly, the EBP model also inherits the idea, and its core goal is 
to seek more public dimensions instead of more public communities between node 

(5)Aij ∼ Bernoulli(1 − exp(−(Zi ⋅ Z
T
j
))

Fig. 2   Overlapping community detection model
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pairs. The difference between Z and F can be briefly summarized as the change in 
the vertical dimension of the matrix. Frankly speaking, the core idea of BP model 
is to aggregate neighbor information to obtain the affiliations F between nodes and 
communities, where the vertical dimension of F is artificially set as the number of 
communities C. When C loses its realistic meaning, it only represents the dimension 
of a matrix. To this end, we can fully view the BP model as a way to obtain the node 
representation, which can be used to aggregate different types of neighbor informa-
tion, respectively, in the subsequent work.

Existing works propose to perform inference in the BP model using maximum 
likelihood estimation with coordinate ascent [40] or Markov chain Monte Carlo [44]. 
[27] replaced the free variable model with a neural network model (GNN, MLP) 
for the first time and confirmed that the graph-based neural network architecture is 
indeed beneficial to the community detection task. With the advantage of graph con-
volutional neural network (GCN), we construct a graph neural network module. It 
can dynamically adjust the input of the whole module to obtain more accurate node 
relationship embeddings. The process of generating Z with GCN is as follows

A ReLU nonlinearity is applied element-wise to the output layer to ensure non-nega-
tivity of Z . As confirmed in [27], compared with the free variable model, the graph-
based neural network structure can not only better retain the community structure, 
but also facilitate the generation of overlapping modules. This is extremely benefi-
cial for overlapping community detection tasks. Unlike the traditional approaches 
of directly optimizing the node membership matrix Z , we search for neural network 
parameters � that minimize the negative log-likelihood

4.2 � Overlapping community detection framework

To obtain a more accurate community division, we try to solve this problem from 
two different perspectives. On the one hand, as shown in the empirical observations, 
the proportion of first-order information in the graph is less. Therefore, we intro-
duce a dual graph neural network, which enriches the original graph by introduc-
ing second-order information, and construct a topological potential matrix to realize 
the fusion and distinction of multi-type edge information. On the other hand, the 
extreme imbalance between edge information and non-edge information in the graph 

(6)Z ∶= GCN�(A,X)

(7)

L(Z) = − logP(A|Z)

= −
∑

(i,j)∈E
log

(
1 − exp

(
−ZiZ

T
j

))

+
∑

(i,j)∉E
ZiZ

T
j

(8)� = argmin
�

L(GCN�(A,X)
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will lead to large-scale bias in the contribution to the loss function. We solve this 
problem by introducing the standard technology in unbalanced classification.

4.2.1 � Construction of dual graph neural network

Dual graph convolutional neural network (DGCN) was first proposed in (Zhuang 
and Ma [45]). Two convolutional neural networks are devised to embed the local-
consistency-based and global-consistency-based knowledge, respectively. DGCN 
uses two simple feedforward networks in parallel, which differ only in the input 
graph structure information. Since then, a lot of work has gone into building differ-
ent types of dual-graph frameworks to accommodate a wide variety of downstream 
tasks. For example, the framework proposed in (Alchihabi and Guo [1]) contains 
two GNN-based node prediction modules. The primary module uses the input graph 
structure to induce regular node embeddings and predictions with a regular GNN 
baseline, while the auxiliary module constructs a new graph structure through fine-
grained spectral clusterings and learns new node embeddings and predictions. And 
our work also builds on this dual-graph framework.

As we have observed, in the topological potential, the range of influence con-
trolled by � is always kept at about two hops [9, 35]. Coincidentally, many GNN-
based community detection methods [27, 31] also keep their optimal stacking layers 
around two layers. This further illustrates the importance of higher-order informa-
tion, especially second-order information. Therefore, we construct a dual graph 
neural network module and design two convolutional neural networks to embed 
knowledge based on first-order neighbor information and second-order neighbor 
information, respectively. The introduction of topological potential matrix can better 
integrate and distinguish these two parts of knowledge.

Here are some definitions and an example. By extracting information from the 
original graph, we use first-order graph and second-order graph, respectively, to rep-
resent different types of relations between nodes. Usually, the first-order neighbor 
information of each node is stored in the adjacency matrix A(A = A

1st) . If there is a 
direct connection between nodes i and j, then A1st

ij
= 1 ; otherwise, A1st

ij
= 0 (the self-

edge is not considered). Likewise, we introduce the concept of second-order adja-
cency matrix A2nd to store the indirect connection between nodes; if there is a sec-
ond-order shortest path between nodes i and j, then A2nd

ij
= 1 ; otherwise, A2nd

ij
= 0 

(the round-trip path is not considered). By feeding the first-order graph G1st and the 
second-order graph G2nd into the dual graph neural network module, we could obtain 
the node relationship matrices Z1st and Z2nd corresponding to the first-order con-
nected edges and the second-order connected edges. It contributes the model to 
learn information about different types of edges independently. According to the 
module, the two graphs are generated as follows in Fig. 3.

In the case of an undirected graph with six nodes, the first-order neighbors of 
node 2 include nodes 1,4 and 5, and the second-order neighbors of node 2 include 
only node 3. We connect node 2 with its first-order and second-order neighbors with 
green and orange edges, respectively. Traversing all nodes, first-order graph and 
second-order graph are generated. Going back to our model, given the multi-order 
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node relationship matrix set Z̃ = {Z1st,Z2nd} , each matrix entity in the multi-order 
adjacency matrix set Ã = {A1st,A2nd} is sampled i.i.d as

where A1st
ij

 represents an element in the first-order adjacency matrix A1st ; Z1st
i

 is the 
row vector of relationship of node i (the i’ row of the first-order node relationship 
matrix Z1st

i
).

Intuitively, the more similar the nodes i and j are in the same dimension (i.e., the 
higher the dot product (Z1st

i
⋅ (Z1st

j
)T ) is), the more likely they are to be connected by 

an first-order edge. The second-order case is the same as above. Therefore, the node 
relationship matrices Z1st and Z2nd can be generated with the graph neural network 
module in Sect. 4.1, which are expressed as

where �̃ = {�1, �2} . For better integrate Z1stand Z2nd , we first need to distinguish the 
proportion of first-order information and second-order information in the whole net-
work. Topological potential seems to help us. In the concept of topological poten-
tial, since �(vi) denotes the sum of the potential of nodes within the influence scope 
of node vi , we try to take it apart to get

(9)A1st
ij

∼ Bernoulli
(
1 − exp

(
−
(
Z
1st
i

⋅ (Z1st
j
)T
))

(10)A2nd
ij

∼ Bernoulli
(
1 − exp

(
−
(
Z
2nd
i

⋅ (Z2nd
j

)T
))

(11)Z̃ ∶= GCN�̃(Ã,X)

Fig. 3   The generation of first-order graph and second-order graph
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In formula (12), if node vj ∈ vl , it means nodes vj within the influence scope of node 
vi , where 𝜑(e⃗ij) denotes the topological potential component of node vi acting on 
node vj . At this point, vi represents the seed node. Otherwise, it means nodes vj with-
out the influence scope of node vi , where 𝜑(e⃗ij) = 0 . When the seed node is con-
verted to vj , 𝜑(e⃗ji) denotes the topological potential component of node vj acting on 
node vi in formula (13). Thus, we propose a new concept of the topological potential 
matrix T ∈ ℝ

N×N , which consists of topological potential components. Obviously, 
when we ignore the node mass, T is a symmetric matrix. Otherwise, T is an asym-
metric matrix 𝜑(e⃗ij) ≠ 𝜑(e⃗ji) . Obviously, the topological potential value of a node 
is calculated without considering its mass. When the mass difference between two 
nodes is too large, the topological potential component centered on each node can-
not express the relationship well. To better express this relationship between node vi 
and node vj , we average the two symmetric elements to form a new symmetric topo-
logical potential matrix, as shown in formula (14)

where Tij = �(eij) . In Fig. 4, we describe the generation process of the topological 
potential matrix without the node mass. The red dots describe the importance of 
first-order relationships (green edges), and the pink dots describe the importance of 
second-order relationships (orange edges). Finer grained information is fused on the 
basis of this when node mass is considered.

Then, Z1st and Z2nd are connected by the topological potential matrix T

(12)𝜑(e⃗ij) =

[
m(vj) × exp

(
−

(
dij

𝜎

)2
)]

(13)𝜑(e⃗ji) =

[
m(vi) × exp

(
−(

dji

𝜎
)2
)]

(14)�(eij) =

[
m(vi) + m(vj)

2
× exp

(
−

(
dij

�

)2
)]

(15)Z
(1) = T × (Z1st + Z

2nd)

Fig. 4   The generation process of the T without the node mass
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Among them, Z(1) represents the node embedding representation matrix incorporat-
ing multi-order edge information, which can more comprehensively and truly reflect 
the features in the original graph. Next, we feed the obtained node embedding repre-
sentation matrix Z(1) into a novel graph neural network module to get the final com-
munity affiliation F

4.2.2 � Generation of overlapping community affiliations

After fully integrating multi-order information, we realize the final overlapping 
community division under the framework of the dual graph neural network. The 
final negative log-likelihood function is as follows

where Ẽ = {E1st,E2nd} represents a multi-order edge set corresponding to the first-
order graph G1st and the second-order graph G2nd , respectively. Real-world network 
is usually sparse, which means non-edge parts contribute more to the loss of the 
whole model. As shown in Shchur and Günnemann [27], we try to counteract this by 
using standard techniques in imbalanced classification [11].

As demonstrated in the model, P
Ẽ
 and PN denote uniform distributions over edges 

and non-edges, respectively. This overlapping community detection framework con-
sists of two sets of GCNs. In the first set, we independently sample edges in first-
order and second-order graphs in an attempt to learn unique features for different 
types of edges. Then, we use the topological potential matrix to fuse multi-order 
node relationships and obtain the final community affiliation matrix F through the 
second set of GCNs. In order to alleviate the shock caused by high-order informa-
tion, we add a penalty term C(C = exp(−Tij)) to the original loss function, to enable 
more accurate community detection. We search for neural network parameters � by 
minimize the negative log-likelihood function.

(16)F = Z
(2) ∶= GCN�(Ã,Z

(1))

(17)

L(Z(d)) = − logP
(
A|Z(d)

)

= −
∑

(i,j)∈Ẽ
log

(
1 − exp

(
−Z

(d)

i
(Z

(d)

j
)
T
))

+
∑

(i,j)∉Ẽ
Z
(d)

i
(Z

(d)

j
)T

(18)
L(Z(d)) = − E(i,j)∼P

Ẽ

[
log

((
1 − exp

(
−Z

(d)

i
(Z

(d)

j
)T
)))]

+ E(i,j)∼PN

[
Z
(d)

i

(
Z
(d)

j

)T
]

(19)
L(Z(d)) = − E(i,j)∼P

Ẽ

[
log

(
C

(
1 − exp

(
−Z

(d)

i
(Z

(d)

j
)T
)))]

+ E(i,j)∼PN

[
Z
(d)

i
(Z

(d)

j
)T
]
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5 � Experiments

In this section, we detail the experimental setup and corresponding results. To illus-
trate the effectiveness of our proposed model, we compare it with some strong base-
lines for community detection tasks. We start with four research questions (RQ) to 
lead the experiments and the following discussions.

•	 (RQ1) Compared with the baseline models, does DGOCD achieve state-of-the-
art performance on overlapping community detection tasks?

•	 (RQ2) Especially for the task of community detection, what are the advantages 
of dual graph neural network in our work compared to traditional graph convolu-
tion?

•	 (RQ3) Can the introduction of topological potential matrix well distinguish the 
importance of first-order information and second-order information? How do we 
balance the model complexity and efficiency?

•	 (RQ4) As an overlapping community detection method, can DGOCD accurately 
recover the overlapping scale and structure of the community?

5.1 � Experimental setup

5.1.1 � Dataset description

For a more comprehensive comparison, we select two widely used datasets. The 
detailed statistics of all datasets are summarized in Table 2.

•	 (Facebook) [17] is a collection of small (50–800 nodes) self-networks in the 
Facebook graph, and it is also a large graph dataset with reliable ground truth 
overlapping community information and node attributes (10K+ nodes). We 
selected six networks commonly used in Facebook to evaluate the community 
detection performance of the proposed model.

•	 (Chemistry, Computer Science, Medicine, Engineering) [34] are co-authorship 
networks, constructed from the Microsoft Academic Graph. Communities cor-
respond to research areas in respective fields, and node attributes are based on 
keywords of the papers by each author.

5.1.2 � Compared methods

We use six baseline methods, including BP-based and NMF-based models such as 
BigCLAM, SNetOC and SNMF, as well as GNN-based end-to-end models such as 

(20)� = argmin
�
L(GCN�(Ã,X)
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NOCD, DMoN and UCoDe. It is worth noting that NOCD, DMoN and UCoDe are 
the state-of-the-art models proposed recently.

•	 (BigCLAM) [40] as a classic model is based on the BP model and uses coordi-
nate ascent to learn F.

•	 (SNetOC) [30] is also an overlapping community detection method based on the 
BP model. It uses Markov chains (MCMC) for inference to learn F.

•	 (SNMF) [33] is an efficient method for finding overlapping communities based 
on non-negative matrix factorization (NMF).

•	 (NOCD) [27] combines a BP probabilistic model and a two-layer GCN to obtain 
the final community structure by minimizing the negative log-likelihood of BP 
and then setting a threshold to continuously identify and remove weak affilia-
tions.

•	 (DMoN) [19] is originally proposed for non-overlapping communities, but it can 
be used for overlapping community detection, because its essence is to maximize 
modularity through GCN, and it is not associated with disjoint clusters, which 
can generate soft cluster assignments.

•	 (UCoDe) [31] is a GNN for community detection with a single contrastive loss 
by maximize modularity while explicitly allowing overlaps among communities. 
The model specifically designed for overlapping and non-overlapping commu-
nity detection with an end-to-end model that requires minimal hyperparameter 
tuning.

5.1.3 � Evaluation protocol

As mentioned in Shchur and Günnemann [27], commonly used metrics to quan-
tify the agreement between true and detected communities, such as Jaccard and F1 
scores, can give arbitrarily high scores for community assignments that are com-
pletely uninformative. As an alternative, we report overlapping normalized informa-
tion (NMI). On the basis of retaining NMI, in order to be able to better verify the 
recovery of most models in the overlapping part of the community, we introduce the 
community overlap rate (COR) to evaluate the ability of the model to identify the 
correct cluster members from multiple perspectives.

•	 (Overlapping NMI) as defined in (McDaid et al. [18]), can correctly handle the 
degenerate case, as shown in formula (21) 

 where X and Y refer to the class labels and predicted cluster indexes, respec-
tively. Since the approximation is biased, we choose the average mutual informa-
tion I(X  : Y). H(⋅) indicates the information entropy corresponding to the class 
labels. Eventually we will use the corresponding normalized mutual information 
to measure the accuracy of the experiment.

(21)NMI =
I(X ∶ Y)

max(H(X),H(Y))
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•	 (COR) mainly proposes that a large number of evaluation indicators for meas-
uring overlapping communities focus on the accuracy of detection prediction 
values, but neglect to consider the recovery of “overlapping regions.” It inherits 
ideas from (Chen et al. [4]), as shown in formula (22) 

 where |Cp

k
| and |Cgt

k
| represent the number of nodes in the predicted community 

and the ground-truth community in the graph, respectively. Subscript k repre-
sents the number of the community.

5.1.4 � Implementation

The proposed model contains two sets of GCNs. The first set of GCNs is responsi-
ble for extracting and fusing multi-order information, and only one layer of graph 
convolution structure is set. We fix the size of the first layer to be 128 dimensions. 
The second set of GCNs is responsible for detecting community structure, and we 
keep the size of its output layer as the number of communities k. We independently 
sample and process the first-order and second-order graphs in the first set of GCNs. 
Instead of using all entries of Ã when computing the loss (Formula 18), we refer to 
the experiment in (Shchur and Günnemann [27]) and sample a mini-batch of edges 
and non-edges at each training epoch. The learning rate is set to 10−3 , and the thresh-
old is kept at 0.5.

In the experiments in this paper, considering the high complexity of topological 
potential calculation, we temporarily choose to ignore the node mass difference in 
topological potential in large datasets and only discuss the influence of first-order 
and second-order information. One advantage of the BP model is that it allows to 
efficiently evaluate the loss and its gradients. By using a caching trick [40], the com-
putational complexity of these operations can be reduced from O(N2) to O(N +M) . 
Shchur and Günnemann [27] did not use all entries of A in calculating losses, but 
sample a mini-batch of S edges and non-edges at each training epoch. Thus, approxi-
mately computing ∇L in O(S). On this basis, we introduce the topological potential 
matrix without the node mass, and its calculation is independent of the number of 
nodes N. Therefore, the time complexity of the entire model is approximately O(S). 
In conclusion, under the same time complexity, our model has better performance 
than NOCD. Clearly our model can achieve decent success in this case. We repeat 
each experiment 50 times, train the model for 500 epochs and report the average 
results for each run. For other methods, we experiment with the best settings in the 
original paper.

(22)COR =

∑C

k=1
�Cp

k
�

∑C

k=1
�Cgt

k
�
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5.2 � Result analysis

5.2.1 � Experimental results and analysis

RQ1 The comparison results of our proposed model and baselines on two types of 
datasets are reported in Tables 3 and 4. Among them we provide results in two forms 
for each algorithm in NOCD, DMoN, UCoDe and DGOCD. The input to GCN in 
Model-X is node attributes; the input to Model-G is the concatenation of adjacency 
attributes and node attributes. The major findings from experimental results are 
summarized as follows:

•	 In the social network, we select six small and medium datasets to verify the 
effect of the model. As shown in Table 3, our model DGOCD achieves excel-
lent performance in five out of six datasets, and the remaining one also per-
forms well. We find that DGOCD-G performs a little better in most datasets, 
followed by NOCD-G. Overall, our method generally outperforms the second-
best method by one to three percentage points in overlapping NMI values, 
and the performance on the Fb-1684 dataset is even more ferocious. But there 
are exceptions, in the Fb-348 dataset, NOCD-G performs the best, followed 
by our method. In the Fb-686 dataset, the performance of UCoDe-X can be 
described as a sudden rise, and the performance of Model-X is generally bet-
ter than that of Model-G (which is contrary to the performance on most data-
sets).

•	 In the co-authorship network, we choose four large datasets to verify the effect of 
the model. As shown in Table 4, our model DGOCD is consistently better than 
all baselines. We find that DGOCD performs better and more stable on large 
datasets than the small one. This further demonstrates the effectiveness of our 
method for overlapping community discovery tasks under large sparse networks.

•	 Among these two types of baseline tasks, some traditional methods (BigCLAM, 
SNetOC, SNMF) are limited by the scale of the datasets. With the sharp increase 
in the number of nodes and edges in the network, the amount of computation 
and data has become a problem that we cannot ignore. For contrast, some GNN-
based methods (NOCD, DMoN, UCoDe, DGOCD) are more suitable for large-
scale sparse networks and are more adaptable to real-world situations. So far, our 
approach seems to have found a balance between time complexity and large-scale 
data and has achieved good results.

5.2.2 � Advantages of dual graph neural network

RQ2 Traditional graph convolutional network (GCN) acts as the first-order local 
approximation of spectral graph convolution. Each convolutional layer only pro-
cesses its first-order neighborhood and then stacks several convolutional layers 
to pass multi-order information. Based on the sparsity of the real-world network, 
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the advantage of GCN is that it can naturally integrate the attribute information 
in the graph for learning, but multiple stacking will make the result of GCN over-
smooth and unable to distinguish different types of edges. In view of the observa-
tion that GCN models usually perform best when stacking two to three layers in 
community detection tasks, we no longer try to deepen the model, but indepen-
dently learn representations of information of different orders through a shallow 
graph neural network module. Corresponding to our empirical observation, we 
feed the first-order graph and the second-order graph to dual graph neural net-
work, respectively, and then use the topological potential matrix to realize the 
fusion of multi-order information. In contrast, this dual graph neural network can 
quickly and efficiently obtain a rough representation of each node, which is fused 
by a topological potential matrix. In particular, the interaction between a node 
and its second-order neighbors is direct without third-party intervention. This is 
more in line with the laws of information exchange and transmission in the real 
world. Furthermore, the introduction of topological potential matrix allows us 
to manually adjust the fusion granularity of graph information according to the 
actual situation, which is what traditional graph convolution cannot bring us. As 
shown in Table 5 and Fig.  5, we introduce NOCD to achieve stronger contrast, 
which can be viewed as a GNN-based model. Obviously, the model based on dual 
graph neural network can achieve better results than the GNN-based model.

5.2.3 � The balance of complexity and efficiency

RQ3 As shown in Tables 3 and 4, the performance capability of our method confirms 
that the introduction of the topological potential matrix is a correct choice. How-
ever, this is inseparable from the balance between penalty terms and information 
of different granularities. The introduction of fine-grained information can indeed 
define the tightness between node pairs more accurately, but it will also increase 

Table 4   NMI (in % ) for overlapping community detection results on co-authorship networks. Results for 
DGOCD are averaged over 50 initializations. Best performer in bold; second best underlined. DNF did 
not finish in 12 h or ran out of memory

Chemistry Computer science Medicine Engineering

BigCLAM 0 0 0 6.8
SNetOC DNF DNF DNF DNF
SNMF 1.8 8.6 4.1 9.6
NOCD-X 20.6 39.2 24.0 16.5
NOCD-G 44.3 48.7 36.4 37.2
DMoN-X 8.6 21.5 12.6 8.1
DMoN-G 29.3 30.4 19.2 21.6
UCoDe-X 13.2 23.7 16.4 10.5
UCoDe-G 29.8 32.9 20.6 21.8
DGOCD-Xbest 41.1 42.7 34.0 33.8
DGOCD-Gbest 48.5 52.9 42.3 43.2
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the time complexity of the entire model. According to experimental observations, 
the refined information is not suitable for all datasets and sometimes brings nega-
tive effects to the community detection task. To strike a balance between complexity 

Table 5   Ablation study of penalty term and different granularity information on social networks, meas-
ured by NMI (in % ). Best performer in bold; second best underlined. We introduce NOCD to achieve 
stronger contrast. Subscript p means with a penalty term. Subscript mp indicates that the node mass is 
considered in the penalty term

Fb-348 Fb-414 Fb-686 Fb-698 Fb-1684 Fb-1912

NOCD-X 31.6 50.3 19.5 33.7 29.0 37.6
NOCD-G 33.8 54.5 16.1 43.4 34.2 39.2
DGOCD-X 23.0 35.4 12.6 29.5 26.0 27.9
DGOCD-G 23.5 46.2 10.4 38.7 34.0 34.6
DGOCD-Xp 29.3 47.2 18.1 40.1 33.2 36.5
DGOCD-Gp 31.2 54.3 17.2 43.6 41.0 39.8
DGOCD-Xmp 30.2 51.9 19.3 42.8 34.7 37.9
DGOCD-Gmp 32.9 56.0 18.6 45.5 42.3 41.0
DGOCD-Xbest 30.2 51.9 19.3 42.8 34.7 37.9
DGOCD-Gbest 32.9 56.0 18.6 45.5 42.3 41.0

Fig. 5   Visualization of ablation study from different perspectives
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and efficiency, we take different measures for different scale datasets. Our model 
can achieve refinement of graph information granularity in two places, both by add-
ing node mass. The first is in the topological potential matrix, and the second is in 
the penalty term. In the co-authorship network datasets, limited by its scale, we do 
not consider the addition of node mass in the above two places to pursue efficiency. 
However, in the social network datasets, we choose to include node mass in the pen-
alty term to achieve better results. As we expected, as shown in Table 5, the addition 
of node mass in the penalty term takes the model to the next level.

In order to more intuitively understand the role of penalty terms and different 
granularity information in the model, we discuss the importance of each item from 
different perspectives, as shown in Fig. 5. Figure 5 is a visualization of the data in 
Table 5. Figure 5a shows the NMI of the four methods under Model-X. Figure 5b 
shows the NMI of the four methods under Model-G. These two sub-graphs fully 
reflect the impact of the penalty term and node mass on the model. The addition 
of the penalty term has greatly improved the accuracy of the entire model, and the 
integration of node mass has improved the model effect by another level. Obviously, 
our method is always better than NOCD in most cases. Figure 5c and d shows the 
necessity of penalty term and node mass under Model-X and Model-G, respec-
tively. These two sub-graphs once again confirm the efficiency of Model-G to a 
certain extent. Of course, this is highly consistent with our previous experimental 
conclusions.

5.2.4 � Recovery of overlapping community scale

RQ4 As we mentioned earlier, a good overlapping community detection algorithm 
must be able to restore the original graph structure to the greatest extent possible, 
whether it is the affiliation of the community or the scale of the overlap. In the 
experimental test, how to measure a good community affiliation often corresponds 
to a higher overlapping NMI value, and a good overlap scale needs to be able to 
truly show the gap between the predicted and the ground truth scale. This is why we 
introduce COR as an evaluation indicator.

As shown in Fig. 6, we plot the COR surface plot of the best models (DGOCD 
and NOCD) based on the conclusions in Tables 3 and 4. We find that sparse infor-
mation leads to gaps in recovery performance for overlapping regions when real-
world networks are small (especially for the two datasets Fb-348 and Fb-686). When 
the network scale gradually expands, various models based on graph neural network 
can achieve better results. However, regardless of the datasets size, our method is 
closer to the ground truth, which further confirms the effectiveness of our model. 
To get a clearer picture of why our model has poor COR on these specific datasets, 
we visualize the adjacency matrix sorted by the predicted communities, as shown in 
Fig. 7. As a small and medium datasets, the information that these six Facebook net-
works can provide is very limited. In particular, the community affiliation matrix in 
the ground truth itself has not many nodes divided into each community, and some 
communities only have a few nodes. This leads to the fact that in the final prediction 
process of the model, there will inevitably be an empty community (that is, there is 
a community but no node). For the premise of a fixed number of communities, this 
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obviously does not make sense. Of course, this is also a problem we want to focus 
on and solve in the future.

Figure 8 shows the community detection results of our model on the Fb-414 net-
work. As a comparison, the left side of the figure shows the result of the community 
detection in the ground truth, and the right side shows the result of the community 
detection predicted by the DGOCD model. In Fig.  8a, the number of community 
nodes represented by green and purple both accounts for a quarter of the total. Cor-
respondingly, in Fig. 8b, the number of nodes in the community represented by blue 
accounts for 31% of the total, which is the highest among all communities. The num-
ber of community nodes represented by orange accounts for 22% of the total. Of 
course, there are many structural features such as non-overlapping, nesting and over-
lapping. From the overall visual point of view, it is not difficult to find that the final 
community detection of the DGOCD model works well.

6 � Conclusion

In this paper, we propose DGOCD, a dual graph neural network for overlapping com-
munity detection. The model learns different content through two sets of shallow graph 
neural network modules. We always believe that a good overlapping community detec-
tion method can not only accurately recover the real-world affiliation, but also recon-
struct the overlapping scale of the original community as much as possible. Experi-
mental results show that our method not only achieves better community detection, but 
also dynamically adjusts the information granularity on graphs of different datasets to 
achieve a balance between complexity and efficiency. In the future, we hope to further 
improve the whole model, remove the limitation on the number of communities and 
adapt to more real-world networks.

Fig. 6   COR index of NOCD and DGOCD on datasets
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(a) Fb-348 (b) Fb-414

(c) Fb-686 (d) Fb-698

(e) Fb-1684 (f) Fb-1912

Fig. 7   Visualize the adjacency matrix sorted by the predicted communities
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