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ABSTRACT

Deployed machine learning systems can be improved using methods detecting
out-of-distribution (OOD) inputs. Existing research mainly focuses on one type of
distribution shift: detecting samples from novel classes, absent from the training
set. However, real-world systems encounter a broad variety of anomalous inputs,
and the OOD literature neglects this diversity. This work categorizes five distinct
types of distribution shifts and critically evaluates the performance of recent OOD
detection methods on each of them. We publicly release our benchmark under
the name BROAD (Benchmarking Resilience Over Anomaly Diversity). We find
that while these methods excel in detecting novel classes, their performances are
inconsistent across other types of distribution shifts. In other words, they can
only reliably detect unexpected inputs that they have been specifically designed to
expect. As a first step toward broad OOD detection, we learn a Gaussian mixture
generative model for existing detection scores, enabling an ensemble detection
approach that is more consistent and comprehensive for broad OOD detection, with
improved performances over existing methods. Our code to download BROAD
and reproduce our experiments will be released upon publication.

1 INTRODUCTION

A significant challenge in deploying modern machine learning systems in real-world scenarios is
effectively handling out-of-distribution (OOD) inputs. Models are typically trained in closed-world
settings with consistent data distributions, but they inevitably encounter unexpected samples when
deployed in real-world environments. This can both degrade user experience and potentially result in
severe consequences in safety-critical applications (Kitt et al., 2010; Schlegl et al., 2017).

There are two primary approaches to enhancing the reliability of deployed systems: OOD robustness,
which aims to improve model accuracy on shifted data distributions (Dodge & Karam, 2017; Geirhos
et al., 2020), and OOD detection (Yang et al., 2021; Cui & Wang, 2022), which seeks to identify
potentially problematic inputs and enable appropriate actions (e.g., requesting human intervention).

Robustness, often considered preferable since the system can operate with minimal disruption, has
been investigated for various types of distribution shifts (Recht et al., 2019; Hendrycks & Dietterich,
2019; Hendrycks et al., 2020). However, attaining robustness can be challenging: it may be easier to
raise a warning flag than to provide a “correct” answer. OOD detection research has primarily focused
on distribution shifts where a novel class is observed. Such works involves different terminologies
motivated by subtle variations: open set recognition (OSR), anomaly detection, novelty detection,
and outlier detection (see Yang et al. (2021) for a comprehensive analysis of their differences).

Beyond novel classes, researchers investigated the detection of adversarial attacks (Abusnaina
et al., 2021; Hu et al., 2019) and artificially generated images (Hulzebosch et al., 2020; Liu et al.,
2020b; 2022), although these these distribution shifts are rarely designated as “OOD”. Few works
simultaneously detect novel labels and adversarial attacks (Lee et al., 2018a; Guille-Escuret et al.,
2022), and the broad detection of diverse types of distribution shifts remains largely unaddressed.

In real-world scenario, any type of distribution shift is susceptible to affect performances and safety.
Benchmarks focusing on a specific type of distribution shift are susceptible to yield detection models
that are overspecialized and perform unreliably on out-of-distribution distribution shifts: ways to “be
OOD” that are themselves OOD.
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Figure 1: An overview of BROAD: illustrating the benchmarks employed for each distribution shift
category, with ImageNet-1K serving as the in-distribution reference.

Figure 2: Figure illustrating the score distributions
of MSP, ViM, and MDS across varying datasets.
While all three methods can discriminate between
ImageNet and iNaturalist, their effectiveness fluc-
tuates across other types of distribution shifts.

These concerns are confirmed in Figure 2,
which displays the distributions of maximum
softmax (MSP) (Hendrycks & Gimpel, 2016),
ViM (Wang et al., 2022), and MDS (Lee et al.,
2018b) scores on several shifted distributions
relative to clean data (ImageNet-1k). Although
all scores effectively distinguish samples from
iNaturalist (Huang & Li, 2021; Van Horn et al.,
2017), a common benchmark for detecting novel
classes, their performance on other types of dis-
tribution shifts is inconsistent.

Furthermore, OOD detection methods often re-
quire tuning or even training on OOD sam-
ples (Liang et al., 2017b; Lee et al., 2018b;
Liang et al., 2017a), exacerbating the problem.
Recent research has attempted the more chal-
lenging task of performing detection without
presuming access to such samples (Macêdo &
Ludermir, 2021; Guille-Escuret et al., 2022;
Wang et al., 2022). Nevertheless, they may still
be inherently specialized towards specific dis-
tribution shifts. For example, CSI (Tack et al.,
2020) amplifies the detection score by the norm
of the representations. While this improves per-
formance on samples with novel classes (due to
generally lower norm representations), it may
conversely impair performance in detecting, for
instance, adversarial attacks, which may exhibit
abnormally high representation norms.

The scarcity of diversity in OOD detection evaluations in previous studies may be attributed to the
perceived preference for OOD robustness when OOD samples share classes with the training set.
Nevertheless, this preference may not always be well-founded. Firstly, previous works have indicated
a potential trade-off between in-distribution accuracy and OOD robustness (Tsipras et al., 2019;
Zhang et al., 2019), although a consensus remains elusive (Yang et al., 2020). On the other hand, many
OOD detection systems serve as post-processors that do not impact in-distribution performances.
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Additionally, there are practical scenarios where the detection of OOD inputs proves valuable,
regardless of robustness. For instance, given the increasing prevalence of generative models (Ramesh
et al., 2022; Nichol et al., 2022; Rombach et al., 2022), deployed systems may need to differentiate
synthetic images from authentic ones, independent of performance (Liu et al., 2022; Korshunov &
Marcel, 2018). Lastly, other types of shifts exist where labels belong to the training set, but correct
classification is undefined, rendering robustness unattainable (see section 2.5).

Our work focuses on broad OOD detection, which we define as the simultaneous detection of OOD
samples from diverse types of distribution shifts. Our primary contributions include:

• Benchmarking Resilience Over Anomaly Diversity (BROAD), an extensive OOD detection
benchmark (relative to ImageNet) comprising twelve datasets from five types of distribution
shifts: novel classes, adversarial perturbations, synthetic images, corruptions, and multi-class
inputs. We also introduce CoComageNet, a subset of COCO (Lin et al., 2014)1.

• A comprehensive benchmarking of recent OOD detection methods on BROAD, along with
an analysis of their respective performance.

• The development and evaluation of a generative ensemble method based on a Gaussian mix-
ture of existing detection statistics to achieve broad detection against all types of distribution
shifts, resulting in significant gains over existing methods in broad OOD detection.

Section 2 introduces BROAD while Section 3 introduces studied methods as well as our generative
ensemble method based on Gaussian mixtures. In Section 4, we evaluates different methods against
each distribution shift. Section 5 provides a synopsis of related work, and we conclude in Section 6.

2 DISTRIBUTION SHIFT TYPES IN BROAD

In this study, we employ ImageNet-1K (Deng et al., 2009) as our in-distribution. While previous
detection studies have frequently used CIFAR (Krizhevsky, 2009), SVHN (Netzer et al., 2011), and
LSUN (Yu et al., 2015) as detection benchmarks, recent work has highlighted the limitations of these
benchmarks, citing their simplicity, and has called for the exploration of detection in larger-scale
settings (Hendrycks et al., 2019). Consequently, ImageNet has emerged as the most popular choice
for in-distribution.

Our benchmark, BROAD, encompasses five distinct types of distribution shifts, each represented by
one to four corresponding datasets, as summarized in Figure 1.

2.1 NOVEL CLASSES

The introduction of novel classes represents the most prevalent type of distribution shift in the study
of OOD detection. In this scenario, the test distribution contains samples from classes not present in
the training set, rendering accurate prediction unfeasible.

For this particular setting, we employ three widely used benchmarks: iNaturalist (Huang & Li, 2021;
Van Horn et al., 2017), ImageNet-O (Hendrycks et al., 2021), and OpenImage-O (Wang et al., 2022;
Krasin et al., 2016).

2.2 ADVERSARIAL PERTURBATIONS

Adversarial perturbations are examined using two well-established attack methods: Projected Gra-
dient Descent (PGD)(Madry et al., 2017) and AutoAttack(Croce & Hein, 2020). Each attack is
generated with an L∞ norm perturbation budget constrained to ϵ = 0.05, with PGD employing
40 steps. In its default configuration, AutoAttack constitutes four independently computed threat
models for each image; from these, we selected the one resulting in the highest confidence misclas-
sification. A summary of the models’ predictive performance when subjected to each adversarial
scheme can be found in Table 1. The relative detection difficulty of white-box versus black-box
attacks remains an open question. Although white-box attacks are anticipated to introduce more
pronounced perturbations to the model’s feature space, black-box attacks might push the features

1The code and datasets are publicly available.
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further away from the in-distribution samples. To elucidate this distinction and provide a more
comprehensive understanding of detection performance, we generate two sets of attacks using both
PGD and AutoAttack: one targeting a ResNet50 (He et al., 2015) and the other a Vision Transformer
(ViT) (Dosovitskiy et al., 2020). Evaluation is performed on both models, thereby ensuring the
inclusion of two black-box and two white-box variants for each attack.

Table 1: Prediction accuracy of the two evaluated
models across the range of perturbation settings
examined in our study.

Model Clean Acc. White-box Black-box
PGD AA PGD AA

RN50 74.2% 39.3% 28.2% 68.0% 43.3%
ViT 85.3% 0.4% 50.8% 77.1% 65.8%

Common practice in the field focuses on the
detection of successful attacks. However, identi-
fying failed attempts could be advantageous for
security reasons. To cater to this possibility, we
appraise detection methods in two distinct sce-
narios: the standard Distribution Shift Detection
(DSD), which aims to identify any adversarial
perturbation irrespective of model predictions,
and Error Detection (ED), which differentiates
solely between successfully perturbed samples
(those initially correctly predicted by the model but subsequently misclassified following adversarial
perturbation) and their corresponding original images.

2.3 SYNTHETIC IMAGES

This category of distribution shift encompasses images generated by computer algorithms. Given the
rapid development of generative models, we anticipate a growing prevalence of such samples. To
emulate this shift, we curated two datasets: one derived from a conditional BigGAN model (Brock
et al., 2019), and another inspired by stable diffusion techniques (Rombach et al., 2022).

In the case of BigGAN, we employed publicly available models2 trained on ImageNet-1k and
generated 25 images for each class. For our stable diffusion dataset, we utilized open-source text-
conditional image generative models3. To generate images reminiscent of the ImageNet dataset, each
ImageNet class was queried using the following template: This procedure was repeated 25 times for

High quality image of a {class_name}.

each class within the ImageNet-1k label set. Given that a single ImageNet class may have multiple
descriptive identifiers, we selected one at random each time.

2.4 CORRUPTIONS

The term corruptions refers to images that have undergone a range of perceptual perturbations. To sim-
ulate this type of distribution shift, we employ four distinct corruptions from ImageNet-C (Hendrycks
& Dietterich, 2019): defocus blur, Gaussian noise, snow, and brightness. All corruptions were
implemented at the maximum intensity (5 out of 5) to simulate challenging scenarios where OOD
robustness is difficult, thus highlighting the importance of effective detection. Analogous to the
approach taken with adversarial perturbations, we implement two distinct evaluation scenarios: Distri-
bution Shift Detection (DSD), aiming to identify corrupted images irrespective of model predictions,
and Error Detection (ED), discriminating between incorrectly classified OOD samples and correctly
classified in-distribution samples, thus focusing solely on errors introduced by the distribution shift.

2.5 MULTIPLE LABELS

In this study, we propose CoComageNet, a new benchmark for a type of distribution shift that, to the
best of our knowledge, has not been previously investigated within the context of Out-of-Distribution
(OOD) detection. We specifically focus on multiple labels samples, which consist of at least two
distinct classes from the training set occupying a substantial portion of the image.

Consider a classifier trained to differentiate dogs from cats; the label of an image featuring a dog
next to a cat is ambiguous, and classifying it as either dog or cat is erroneous. In safety-critical

2https://github.com/lukemelas/pytorch-pretrained-gans
3https://huggingface.co/stabilityai/stable-diffusion-2
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Table 2: Distribution shift detection AUC for Visual Transformer and ResNet-50 across different
types of distribution shifts.

Novel classes Adv. Attacks Synthetic Corruptions Multi-labels Average
ViT RN50 ViT RN50 ViT RN50 ViT RN50 ViT RN50 ViT RN50

CADET min 20.91 66.79 67.12 62.4 59.82 55.65 79.67 87.15 54.24 56.88 56.35 65.77
ODIN 91.73 73.58 52.29 54.44 62.74 61.49 79.68 88.52 70.75 64.46 71.44 68.5
MAX LOGITS 95.25 73.67 59.73 59.62 66.08 57.65 83.60 90.87 71.63 62.79 75.26 68.92
LOGITS NORM 51.93 52.62 37.39 51.82 38.25 59.47 39.99 82.81 36.32 48.05 40.78 58.95
MSP 90.56 67.25 58.45 61.17 64.78 55.59 78.62 86.71 71.93 67.52 72.87 67.65
MDSf 53.35 63.52 67.73 55.04 54.92 56.18 31.47 76.52 63.43 36.81 54.18 57.61
MDSl 97.38 72.32 74.75 68.91 68.98 55.41 83.29 75.24 63.41 38.92 77.56 62.16
MDSall 89.17 72.66 85.64 71.49 72.45 60.89 95.55 89.42 26.06 30.01 73.77 64.89
REACT 95.47 79.70 60.71 61.46 66.03 54.24 83.67 89.82 71.79 63.91 75.53 69.83
GRADNORM 90.85 75.53 65.17 56.52 72.19 65.57 85.00 89.39 69.59 54.45 76.56 68.29
EBO 95.52 73.8 59.72 59.59 65.91 57.72 83.83 91.14 71.27 61.55 75.25 68.76
Dα 91.27 67.95 58.62 61.44 64.95 55.65 81.57 87.43 72.49 67.15 73.78 67.92
DICE 55.7 74.45 78.29 58.76 77.84 59.43 86.67 91.38 61.23 59.97 71.95 68.8
VIM 95.76 81.55 56.85 62.91 61.01 53.26 79.79 87.00 68.45 49.01 72.37 66.75
ENS-V (ours) 94.97 79.42 82.67 74.85 78.45 60.55 92.76 91.08 73.27 53.78 84.42 71.93
ENS-R (ours) 95.00 80.42 80.79 75.21 76.56 62.38 92.17 90.56 74.79 60.79 83.86 73.87
ENS-F (ours) 95.08 79.16 79.05 69.32 75.02 59.89 91.57 91.59 72.55 61.41 82.65 72.27

applications, this issue could result in unpredictable outcomes and requires precautionary measures,
such as human intervention. For example, a system tasked with identifying dangerous objects could
misclassify an image featuring both a knife and a hat as safe by identifying the image as a hat.

The CoComageNet benchmark is constructed as a subset of the CoCo dataset (Lin et al., 2014),
specifically, the 2017 training images. We identify 17 CoCo classes that have equivalent counterparts
in ImageNet (please refer to appendix A for a comprehensive list of the selected CoCo classes and
their ImageNet equivalents). We then filter the CoCo images to include only those containing at least
two different classes among the selected 17. We calculate the total area occupied by each selected
class and order the filtered images based on the portion of the image occupied by the second-largest
class. The top 2000 images based on this metric constitute CoComageNet. By design, each image in
CoComageNet contains at least two distinct ImageNet classes occupying substantial areas.

Although CoComageNet was developed to study the detection of multiple label images, it also
exhibits other less easily characterized shifts, such as differences in the properties of ImageNet and
CoCo images, and the fact that CoComageNet comprises only 17 of the 1000 ImageNet classes. To
isolate the effect of multiple labels, we also construct CoComageNet-mono, a similar subset of CoCo
that contains only one of the selected ImageNet classes (see appendix A for details).

As shown in appendix A, detection performances for all baselines on CoComageNet-mono are near
random, demonstrating that detection of CoComageNet is primarily driven by the presence of multiple
labels. Finally, to reduce the impact of considering only a subset of ImageNet classes, we evaluate
detection methods using in-distribution ImageNet samples from the selected classes only.

3 DETECTION METHODS

In this study, our focus is predominantly on methods that do not require training or fine-tuning using
OOD samples. This consideration closely aligns with real-world applications where OOD samples
are typically not known a priori. Additionally, the practice of fine-tuning or training on specific types
of distribution shifts heightens the risk of overfitting them.

Evaluated Methods: We assess a the broad OOD detection capabilities of a variety of methods
including REACT (Sun et al., 2021), VIM (Wang et al., 2022), GRADNORM (Huang et al., 2021),
EBO (Liu et al., 2020a), DICE (Sun & Li, 2021), DOCTOR (Granese et al., 2021), CADET (Guille-
Escuret et al., 2022), ODIN (Liang et al., 2017b), and Mahalanobis Distance (MDS) (Lee et al.,
2018b). Furthermore, we explore three statistics widely applied in post-hoc OOD detection: maximum
softmax probabilities (MSP), maximum of logits, and logit norm.

In the case of CADET, we solely utilize the intra-similarity score min with five transformations to
minimize computational demands. For DOCTOR, we employ Dα in the Totally Black Box (TBB)
setting, disregarding Dβ as it is functionally equivalent to MSP in the TBB setting when rescaling
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Figure 3: Covariance matrices of detection scores in-distribution for ViT (left) and ResNet-50 (right).

the detection threshold is accounted for (resulting in identical AUC scores). ODIN typically depends
on the fine-tuning of the perturbation budget ϵ and temperature T on OOD samples. To bypass this
requirement, we use default values of ϵ = 0.0014 and T = 1000. These default parameters, having
been tuned on a variety of datasets and models, have demonstrated robust generalization capabilities.
Nevertheless, it should be noted that the choice of these values, despite being considered reasonable,
does represent a caveat, as they were initially determined by tuning OOD detection of novel classes.

In its standard form, the Mahalanobis detection method computes the layer-wise Mahalanobis
distance, followed by training a logistic regressor on OOD samples to facilitate detection based on a
weighted average of these distances. To eliminate the need for training on OOD samples, we consider
three statistics derived from Mahalanobis distances: the Mahalanobis distance on the output of the
first layer block (MDSf), the Mahalanobis distance on the output of the last layer (MDSl), and the
Mahalanobis distance on the output of all layers averaged with equal weights (MDSall). For the
Vision Transformer (ViT), we focus on MDS on the class token, disregarding patch tokens.

Generative Modeling for Detection: Consider X as a data distribution with a support set denoted as
X , and let h : X → Rd be a map that extracts features from a predetermined neural network. The
function h(x) can be defined arbitrarily; for instance, it could be the logits that the network computes
on a transformation of a sample x, or the concatenation of outputs from different layers, among other
possibilities. However, generative modeling in the input space (i.e., when h is the identity function)
is generally infeasible due to the exceedingly high dimensionality and intricate structure of the data.

A generative model of h is tasked with learning the distribution px∼X (h(x)), using a training set
(xi)i≤N that comprises independently sampled instances from X . Given a test sample y, although it
is intractable to directly infer px∼X (y = x), it is feasible to compute px∼X (h(y) = h(x)), which
can then be directly utilized as a detection score.

A significant number of detection methods devise heuristic scores on h with the aim of maximizing
detection performances on specific benchmarks, while often arbitrarily discarding information that
could potentially be beneficial for other distribution shifts. In contrast, generative models learn an
estimator of the likelihood of h(x) without discarding any information. Their detection performances
are only constrained by the information extracted by h and, naturally, their proficiency in learning
its distribution. This inherent characteristic makes generative models particularly suitable for broad
Out-of-Distribution (OOD) detection. By learning the comprehensive distribution of h, these models
negate the bias associated with engineering detection scores against specific distribution shifts.

Gaussian Mixtures Ensembling: Gaussian Mixture Models (GMMs) are a versatile tool for learning
a distribution of the form x ∼

∑n
i πiN (µi,Σi), where n is the number of components, π, µ and Σ

are the parameters of the GMM and are learned with the Expectation-Maximization (EM) algorithm.

GMM-based generative modeling of neural network behaviors to facilitate detection has been previ-
ously reported (Cao et al., 2020). Methods that are based on the Mahalanobis distance bear similarity
to this approach insofar as the layer-wise Mahalanobis score can be interpreted as the likelihood of
the layer output for class-dependent Gaussian distributions, which are learned from the training set.
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Table 3: Error detection AUC for Visual Transformer and ResNet-50.

In-distribution Adv. Attacks Corruptions Average
ViT RN50 ViT RN50 ViT RN50 ViT RN50

CADET min 54.63 56.50 70.02 67.85 81.55 90.11 68.73 71.49
ODIN 75.02 75.79 56.98 62.96 90.83 95.02 74.28 77.92
MAX LOGIT 80.64 77.55 67.67 68.37 95.55 96.84 81.29 80.92
LOGIT NORM 36.83 50.11 34.05 55.94 33.65 84.37 34.84 63.47
MSP 89.16 86.31 70.29 74.04 95.75 95.93 85.07 85.43
MDSf 48.23 51.25 68.18 56.66 30.70 76.47 49.04 61.46
MDSl 74.92 55.53 82.98 72.39 96.39 75.85 84.76 67.92
MDSall 54.93 54.69 89.44 74.65 99.1 89.90 81.16 73.08
REACT 77.18 73.28 68.00 69.32 94.81 95.01 80.00 79.20
GRADNORM 68.01 58.07 70.92 62.49 94.00 92.73 77.64 71.10
EBO 78.35 76.02 66.63 67.63 95.01 96.61 80.00 80.09
Dα 89.00 86.50 70.37 73.97 95.96 96.26 85.11 85.58
DICE 56.91 70.00 80.6 65.71 89.13 95.53 75.55 77.08
VIM 75.72 73.74 63.37 69.83 91.64 93.03 76.91 78.87
ENS-V (ours) 82.61 72.81 89.52 80.47 98.27 94.73 90.13 82.67
ENS-R (ours) 83.69 77.24 88.17 83.79 97.84 95.92 89.90 85.65
ENS-F (ours) 85.84 79.20 88.72 82.60 98.41 96.49 90.99 86.10

Despite these advantages, such methods encounter the formidable challenge of learning generative
models of the network’s high dimensional representation space, a task made more difficult due to
the curse of dimensionality. In response to this challenge, we propose the learning of a Gaussian
mixture of the scores computed by existing OOD detection methods. While this approach still
relies on heuristic scores, it presents an ensemble method that is able to amalgamate their respective
information, while maintaining the dimension of its underlying variables at a significantly low level.
As a result, it achieves a favorable tradeoff between the generative modeling of high dimensional
feature spaces and the heuristic construction of one-dimensional detection scores.

In addition to integrating their detection capabilities, this approach is adept at identifying atypical
realizations of the underlying scores, even in situations where the marginal likelihood of each score
is high, but their joint likelihood is low.

To make our method as general as possible, we do not assume access to OOD samples to select
which scores to use as variables of our GMM. We present in Figure 3 the covariance matrices of
the different scores on a held-out validation set of ImageNet. To minimize redundancy, we avoid
picking multiple scores that are highly correlated on clean validation data. To decide between highly
correlated scores, we opt for the ones with highest in-distribution error detection performance (see first
two columns of Table 3). Moreover, we discard logit norm and MDSf due to their near-random error
detection performance in-distribution. Given that score correlation varies between ViTs and ResNets,
as evidenced in Figure 3, we derive two distinct sets of scores. We also propose a computationally
efficient alternative based on methods with minimal overhead costs:

Ensemble-ViT (Ens-V) = {GRADNORM, ODIN, MDSall, MDSl, CADET, DICE, MSP, MAX
LOGITS},

Ensemble-ResNet (Ens-R) = {GRADNORM, ODIN, MDSall, MDSl, CADET, REACT, VIM, Dα},

Ensemble-Fast (Ens-F) = {MSP, MAX LOGITS, MDSall, MDSl, EBO}.

We train the GMM on the correctly-classified samples of a held-out validation set of 45,000 samples.
This is essential as misclassified samples may produce atypical values of the underlying scores
despite being in-distribution, which is demonstrated by the high in-distribution error detection AUC
of selected scores. Finally, we train the GMM for a number of components n ∈ {1, 2, 5, 10, 20} and
select n = 10 which maximizes the in-distribution error detection performances (see appendix C).

4 EVALUATION

We assess performance using the widely accepted area under the curve (AUC) metric for two distinct
pretrained models: ResNet-50 (RN50) and Vision Transformer (ViT). All evaluations are conducted
on a single A100 GPU, with the inference time normalized by the cost of a forward pass (cf. App. B).
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Our empirical results in the Distribution Shift Detection (DSD) setting, which aims to detect any
OOD sample, are presented in Table 2. Results for the error detection setting, where the objective
is to detect misclassified OOD samples against correctly classified in-distribution samples, are
exhibited in Table 3. The results for each distribution shift type are averaged over the corresponding
benchmark. Detailed performances and model accuracy for each dataset are offered in Appendix D
(where applicable). In the error detection setting, we conduct evaluations against adversarial attacks,
corruptions, and in-distribution. The latter pertains to predicting classification errors on authentic
ImageNet inputs. Please note that error detection is inapplicable to novel classes and multi-labels
where correct classifications are undefined, and we do not consider error detection on synthetic
images as it lacks clear motivation.

Existing methods: A striking observation is the inconsistency of recent detection methods in the
broad OOD setting. Methods that excel on adversarial attacks tend to underperform on multi-
label detection, and vice versa. Each of the baselines exhibits subpar performance on at least one
distribution shift, and almost all of them are Pareto-optimal. This underscores the necessity for
broader OOD detection evaluations to inform the design of future methods.

We observe that while detection performances are generally superior when utilizing a ViT backbone,
a finding consistent with previous studies (Wang et al., 2022), the difference is method-dependent.
For instance, MDSl ranks as the best baseline on ViT (when averaged over distribution shift types),
but it is the third-worst with a ResNet-50.

We further observe that many methods significantly outperform a random choice in the detection of
synthetic images, regardless of the generation methods used (see Appendix D). This suggests that
despite recent advancements in generative models, the task remains feasible.

Interestingly, the performance of various methods relative to others is remarkably consistent between
the DSD and error detection settings, applicable to both adversarial attacks and corruptions. This
consistency implies a strong correlation between efficiently detecting OOD samples and detecting
errors induced by distribution shifts, suggesting that there may not be a need to compromise one
objective for the other.

Ensemble: Our ensemble method surpasses all baselines when averaged over distribution shift
types, evident in both the DSD and error detection settings, and consistent across both ViT and
ResNet-50 backbones. With the exception of error detection with ResNet-50, where Doctor-alpha
yields comparable results, our ensemble method consistently demonstrates significant improvements
over the best-performing baselines. Specifically, in the DSD setting, ENS-V and ENS-R secure
improvements of 6.86% and 4.04% for ViT and ResNet-50, respectively.

While the ensemble detection rarely surpasses the best baselines for a specific distribution shift type,
it delivers more consistent performances across types, which accounts for its superior averaged AUC.
This finding endorses the viability of our approach for broad OOD detection.

Despite the notable computational overhead for ENS-V and ENS-R (up to 13.92× the cost of a
forward pass for ENS-V with ResNet-50, as detailed in Appendix B), the inference of ENS-F atop a
forward pass only adds a modest 19% to 25% overhead, thus striking a reasonable balance between
cost and performance.

Interestingly, ENS-F trails only slightly in terms of performance in the DSD setting. In the error
detection setting, ENS-F unexpectedly delivers the best results for both ViT and ResNet.

5 RELATED WORK

In this work, we study the detection of out-of-distribution (OOD) samples with a broad definition
of OOD, encompassing various types of distribution shifts. Our work intersects with the literature
in OOD detection, adversarial detection, and synthetic image detection. We also provide a brief
overview of uncertainty quantification methods that can be leveraged to detect errors induced by
distribution shifts.

Label-based OOD detection has been extensively studied in recent years under different set-
tings: anomaly detection (Bulusu et al., 2020; Pang et al., 2021; Ruff et al., 2021), novelty detec-
tion (Miljković, 2010; Pimentel et al., 2014), open set recognition (Mahdavi & Carvalho, 2021;
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Geng et al., 2021; Boult et al., 2019), and outlier detection (Wang et al., 2019a; Hodge & Austin,
2004; Aggarwal & Yu, 2001). Most existing methods can be categorized as either density-based (Li
et al., 2021; Jiang et al., 2022), reconstruction-based (Denouden et al., 2018; Yang et al., 2022),
classification-based (Wang et al., 2021; Vyas et al., 2018) or distance-based (Zaeemzadeh et al.,
2021; Techapanurak et al., 2020). Methods can further be divided based on whether they require
pre-processing of the input, specific training schemes, external data or can be used a post-processors
on any trained model. See Yang et al. (2021) for a complete survey.

Adversarial detection is the task of detecting adversarially perturbed inputs. Most existing methods
require access to adversarial samples (Abusnaina et al., 2021; Zuo & Zeng, 2021; Lust & Condurache,
2020; Monteiro et al., 2019; Ma et al., 2018; Akhtar et al., 2018; Metzen et al., 2017), with some
exceptions (Hu et al., 2019; Bhagoji et al., 2017; Guille-Escuret et al., 2022). Since adversarial
training does not transfer well across attacks (Ibrahim et al., 2022), adversarial detection methods
that assume access to adversarial samples are also unlikely to generalize well. Unfortunately, Carlini
& Wagner (2017) have shown that recent detection methods can be defeated by adapting the attack’s
loss function. Thus, attacks targeted against the detector typically remain undetected. However,
adversarial attacks transfer remarkably well across models (Chaubey et al., 2020; Goodfellow et al.,
2015), which makes deployed systems vulnerable even when the attacker does not have access to the
underlying model. Detectors thus make systems more robust by requiring targeted attack designs.

Synthetic image detection is the detection of images that have been artificially generated. Following
the rapid increase in generative models’ performances and popularity (Ramesh et al., 2022; Nichol
et al., 2022; Rombach et al., 2022), many works have addressed the task of discriminating synthetic
images from genuine ones (Liu et al., 2022). They are generally divided between image artifact
detection (Liu et al., 2022; Dang* et al., 2020; Zhao et al., 2021) and data-drive approaches (Wang
et al., 2019b). Since generative models aim at learning the genuine distribution, their shortcomings
only permit detection. As generative models improve, synthetic images may become indistinguishable
from genuine ones.

Uncertainty quantification (UQ) for deep learning aims to improve the estimation of neural network
confidences. Neural networks tend to be overconfident even on samples far from the training
distribution (Nguyen et al., 2015). By better estimating the confidence in the network’s predictions,
uncertainty quantification can help detect errors induced by distribution shifts. See Abdar et al.
(2021); Kabir et al. (2018); Ning & You (2019) for overviews of UQ in deep learning.

Detection of multiple types of distribution shifts has been addressed by relatively few prior works.
The closest work in the literature is probably Guille-Escuret et al. (2022) and Lee et al. (2018b)
which aims at simultaneously detecting novel classes and adversarial samples. In comparison, this
work evaluates detection methods on five different types of distribution shifts. To the best of our
knowledge, it is the first time that such broad OOD detection is studied in the literature.

6 CONCLUSION

We have evaluated recent OOD detection methods on BROAD, a diversified benchmark spanning
5 different distribution shift types, and found their performances unreliable. Due to the literature
focusing on specific distribution shifts, existing methods often fail to detect samples of certain
out-of-distribution shifts.

To design systems capable of detecting a broad range of unexpected inputs, we have proposed
an ensemble method based on Gaussian mixtures to combine the respective strengths of existing
detection scores, and found it to obtain significant gains compared to previous works, even when
limiting overhead computations to 25%.

We encourage future work to consider more varied types of OOD samples for their detection
evaluations, so that future methods will not see their success limited to unexpected inputs that are
expected.
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A COCOMAGENET

Table 4: CoCo and ImageNet classes used for CoComageNet and CoComageNet-mono.

CoCo ImageNet
ID Name ID Name
24 Zebra n02391049 Zebra
27 Backpack n02769748 Backpack, back pack, knapsack, packsack, rucksack, haversack
28 Umbrella n04507155 Umbrella
35 Skis n04228054 Ski
38 Kite n01608432 Kite
47 Cup n07930864 Cup
52 Banana n07753592 Banana
55 Orange n07747607 Orange
56 Broccoli n07714990 Broccoli
59 Pizza n07873807 Pizza, pizza pie
73 Laptop n03642806 Laptop, laptop computer
74 Mouse n03793489 Mouse, computer mouse
75 Remote n04074963 Remote control, remote
78 Microwave n03761084 Microwave, microwave oven
80 Toaster n04442312 Toaster
82 Refrigerator n04070727 Refrigerator, icebox
86 Vase n04522168 Vase

Table 5: Detection AUC of ResNet-50 and ViT for
different detection scores against CoComageNet and
CoComageNet-mono

CoComageNet CoComageNet-mono
ViT RN-50 ViT RN-50

CADet min 54.24 56.88 52.24 50.8
ODIN 70.75 64.46 55.27 53.72
Max logits 71.63 62.79 56.15 53.32
Logit norm 36.32 48.05 51.03 55.26
MSP 71.93 67.52 53.16 53.32
MDSf 63.43 36.81 61.38 48.45
MDSl 63.41 38.92 58.32 50.97
MDSall 26.06 30.01 46.66 47.06
ReAct 71.79 63.91 57.81 58.73
GradNorm 69.59 54.45 56.34 53.43
EBO 71.27 61.55 56.65 53.31
Dα 72.49 67.15 53.41 53.08
Dice 61.23 59.97 57.35 53.00
ViM 68.45 49.01 57.06 54.54
Ens-V (us) 73.22 61.29 59.21 59.06
Ens-R (us) 74.79 61.01 60.29 56.75
Ens-F (us) 72.65 61.42 58.92 58.34

We here provide additional information re-
lated to the CoComageNet and CoComageNet-
mono datasets, together referred to as CoCo-
mageNet.

Table 4 lists the classes used for CoCo-
mageNet with their corresponding IDs and
names for both CoCo and ImageNet. These
classes were automatically selected by finding
matches between CoCo names and ImageNet
IDs understood as WordNet synsets (Fell-
baum, 1998). Only exact matches were con-
sidered; hyponyms and hypernyms were ex-
cluded. While one could argue for more
classes to be added to this list, we believe
that those present on this list are “safe”.

CoComageNet, introduced in section 2.5,
aims to induce a distribution shift due to the
presence of multiple classes. However, it is
also affected by the distributional variations
between ImageNet and CoCo, such as differ-
ent angles, distances, brightness, etc.

To alleviate this issue, we introduce the sis-
ter dataset CoComageNet-mono by selecting
2000 different images from the same CoCo
2017 training dataset. Disregarding any “Per-
son” CoCo label, we only keep the images
whose labels belong to a single CoCo class, and only if that class is one of the 17 listed in table 4. For
example, the photograph of a person holding several bananas satisfies these conditions (disregarding
the person, the labels are all in the same “banana” class) while one with a cat next to a banana
does not (even though “cat” is not listed in table 4, it is a CoCo class). For classes with less than
157 images left, we add all these images to CoComageNet-mono. For the other classes, we sort
the images of each class according to the proportion of the image taken by that class, and add to
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Table 6: Normalized inference time.

ViT RN-50
Forward 1.00 1.00
Cadet min 5.04 5.15
Odin 3.22 2.94
max logit 1.01 1.00
logit norm 1.01 1.00
MSP 1.01 1.00
MDSf 1.23 1.17
MDSl 1.23 1.17
MDSall 1.23 1.17
ReAct 1.11 1.06
GradNorm 2.28 3.86
EBO 1.01 1.03
Dα 1.01 1.06
Dice 1.03 1.09
ViM 3.64 2.03
Ens-V (us) 11.53 13.92
Ens-R (us) 10.25 10.92
Ens-F (us) 1.25 1.19

CoComageNet-mono the top 157 by that metric (top 158 for the two most populated classes), for a
total of 2000 images.

Table 5 shows the detection performances of all baselines and our method against CoComageNet
and CoComageNet-mono. Detection performances on CoComageNet-mono are generally close to
50% (corresponding to random guess) which shows that the distribution shift between ImageNet and
CoCo has limited influence on the detection scores of our baselines. In comparison, detection scores
are generally significantly further from 50% on CoComageNet, showing it is indeed the presence of
multiple classes that drives detection in the case of CoComageNet.

B COMPUTATION TIME

Table 6 presents the computation time of each method, normalized by the cost of a forward pass.
Note that when normal inference is needed to compute the score, its computation time is included in
the inference time. Therefore, running Ens-S on top of classification only has an additional overhead
of 25% for ViT and 19% for ResNet.

C NUMBER OF COMPONENTS

We present in Table 7 and Table 8 the in-distribution error detection AUCs that were used to pick the
number of components n of the Gaussian mixture. We observe that the number of components has
a low impact on performances, and that in-distribution error detection AUC has a clear correlation
with broad OOD detection performances, making it an adequate metric to determine the number of
components.

Table 7: In-distribution error detection AUC and OOD detection AUC averaged over distribution
shift types, for a ResNet-50 using Ensemble-ResNet and using n Gaussian components.

n In-dist error detection Avg OOD detection
1 74.99 71.85
2 76.02 73.08
5 77.13 73.51
10 77.24 73.46
20 75.16 71.44
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Table 8: In-distribution error detection AUC and OOD detection AUC averaged over distribution
shift types, for a ViT using Ensemble-ViT and using n Gaussian components.

n In-dist error detection Avg OOD detection
1 82.41 82.91
2 82.34 83.20
5 82.59 83.61
10 82.61 83.66
20 82.19 81.80

D COMPLETE RESULTS

In this section, we provide in Table 9 to Table 15 the detection AUC of all methods against each
dataset separately, both in the DSD and the error detection setting.

Table 9: AUC for OOD detection in DSD setting for ResNet on novel classes datasets.

iNat OI-O INet-O
CADet min 88.08 74.41 37.88
ODIN 91.19 88.26 41.28
Max logits 91.17 89.14 40.69
Logits norm 55.98 66.19 35.68
MSP 88.34 84.85 28.55
MDSf 63.14 61.70 65.71
MDSl 63.18 69.32 84.45
MDSall 61.42 72.81 83.74
ReAct 96.39 90.33 52.37
GradNorm 93.90 84.79 47.9
EBO 90.63 89.03 41.75
Dα 89.43 85.84 28.57
Dice 92.50 88.25 42.61
ViM 88.15 88.05 68.45
Ens-V (us) 85.50 81.96 70.81
Ens-R (us) 89.40 86.11 65.74
Ens-F (us) 88.06 86.64 62.79

Table 10: AUC for OOD detection in DSD setting for ResNet on synthetic datasets.

Biggan diffusion
Accuracy % 88.61 47.38
CADet min 63.18 48.12
ODIN 44.46 78.51
Max logits 42.14 73.15
Logits norm 59.73 59.21
MSP 41.37 69.81
MDSf 38.25 74.11
MDSl 38.95 71.86
MDSall 40.65 81.12
ReAct 34.83 73.64
GradNorm 75.65 55.49
EBO 42.35 73.08
Dα 41.11 70.18
Dice 51.23 67.63
ViM 32.46 74.06
Ens-V (us) 46.19 74.91
Ens-R (us) 47.73 77.02
Ens-F (us) 41.75 78.03
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Table 11: AUC for OOD detection in DSD setting for ResNet on corruptions datasets.

defocus blur Gaussian noise snow brightness
Accuracy % 15.04 5.68 15.58 55.64
CADet min 96.17 95.24 86.47 70.70
ODIN 97.17 99.01 89.22 68.66
Max logits 96.54 97.65 93.76 75.53
Logits norm 87.48 90.37 86.04 67.36
MSP 94.05 94.88 87.57 70.32
MDSf 46.35 98.34 88.67 72.70
MDSl 68.85 96.44 78.72 56.96
MDSall 92.87 99.52 91.28 73.99
ReAct 94.88 97.01 94.09 73.31
GradNorm 98.02 96.97 90.06 72.51
EBO 96.62 97.86 94.29 75.78
Dα 94.66 95.66 88.61 70.80
Dice 97.81 98.08 93.47 76.16
ViM 83.9 97.11 94.19 72.80
Ens-V (us) 97.39 99.68 94.62 72.64
Ens-R (us) 97.04 99.57 93.58 72.04
Ens-F (us) 98.13 99.41 94.96 73.84

Table 12: AUC for OOD detection in DSD setting for ResNet on adversarial attacks dataset. PGD
ResNet denotes PGD computed against ResNet (hence white box), and PGD ViT against a separate
ViT model (hence black box).

PGD ResNet AA ResNet PGD ViT AA ViT
Accuracy % 2.2 25.8 68.12 43.2
CADet min 45.37 71.11 64.86 68.25
ODIN 12.91 79.70 54.98 70.18
Max logits 18.54 84.50 59.42 76.01
Logits norm 13.47 70.21 58.31 65.30
MSP 30.82 82.23 58.02 73.59
MDSf 71.17 55.59 44.73 48.67
MDSl 88.19 74.36 46.81 66.26
MDSall 86.00 81.05 46.83 72.07
ReAct 33.02 82.62 55.62 74.56
GradNorm 15.62 77.67 63.52 69.25
EBO 18.52 84.46 59.42 75.97
Dα 30.62 82.90 58.13 74.11
Dice 16.55 82.78 61.34 74.35
vim 39.40 82.85 54.30 75.10
Ens-V (us) 91.56 81.12 54.91 71.81
Ens-R (us) 89.19 82.88 55.28 73.48
Ens-F (us) 66.86 83.38 54.13 72.89
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Table 13: AUC in error detection setting for ResNet.

In-Dist Adv. Attacks Corruptions
PGD RN AA RN PGD ViT AA ViT blur noise snow bright.

CADet min 56.50 46.09 79.56 68.22 77.52 97.3 96.16 89.08 77.91
ODIN 75.79 15.23 90.02 60.53 86.05 99.05 99.68 94.42 86.91
Max logits 77.55 21.99 94.58 65.26 91.63 98.9 99.10 97.66 91.68
Logits norm 50.11 13.94 76.73 59.98 73.11 88.88 90.96 87.52 70.13
MSP 86.31 38.06 94.06 71.87 92.16 98.34 97.97 94.65 92.76
MDSf 51.25 71.44 54.82 45.66 54.72 46.12 98.44 88.89 72.44
MDSl 55.53 88.45 80.97 46.25 73.87 68.74 96.35 79.15 59.14
MDSall 54.69 85.67 85.00 47.96 79.96 93.14 99.54 91.67 75.23
ReAct 73.28 37.80 92.24 58.27 88.95 97.25 98.28 97.05 87.46
GradNorm 58.07 16.41 86.52 67.03 79.99 98.85 97.84 93.01 81.21
EBO 76.02 21.82 94.12 63.70 90.86 98.76 99.08 97.68 90.93
Dα 86.20 37.90 94.42 71.05 92.52 98.56 98.3 95.16 93.00
Dice 70.00 19.15 91.50 65.13 87.05 98.94 98.84 96.19 88.13
ViM 73.74 43.99 92.62 54.47 88.23 89.90 98.52 97.13 86.58
Ens-V(us) 72.81 80.72 86.67 72.03 82.44 98.40 99.80 96.59 84.12
Ens-R (us) 77.24 78.62 90.66 78.41 87.48 99.26 99.68 97.20 87.52
Ens-F (us) 79.20 73.25 90.45 79.09 87.61 99.28 99.73 97.68 89.26

Table 14: AUC for OOD detection in DSD setting for ViT.

iNat OI-O INet-O PGD-R AA-R PGD-V AA-V Biggan diff blur noise snow bright
Acc % - - - 77.00 65.22 0.46 50.66 86.28 55.77 42.09 42.85 56.82 76.12
CADet 8.30 24.83 29.61 63.06 77.29 60.64 67.48 68.72 50.92 98.12 72.45 78.37 69.72
ODIN 97.05 93.85 84.28 57.76 72.44 11.92 67.02 49.19 76.28 87.23 93.96 76.72 60.81
Max logits 98.65 97.06 90.04 63.68 76.44 24.82 73.96 54.87 77.28 94.24 90.97 83.20 66.00
logits norm 50.84 51.70 53.24 41.58 39.26 31.18 37.52 42.61 33.89 41.62 41.91 35.54 40.89
MSP 96.39 92.99 82.31 61.61 71.99 26.64 73.57 54.81 74.74 88.83 85.71 77.11 62.82
MDSf 66.73 53.68 39.63 68.59 77.31 68.76 56.24 49.04 60.79 40.95 62.54 07.00 15.39
MDSl 99.63 98.22 94.28 68.59 76.34 78.54 75.54 53.61 84.35 82.32 97.22 85.07 68.56
MDSall 90.37 89.88 87.25 80.06 91.74 78.49 92.26 54.09 90.81 99.74 99.99 96.14 86.31
ReAct 98.67 97.12 90.62 64.09 75.22 29.99 73.52 54.95 77.10 93.62 90.95 83.23 66.87
GradNorm 97.35 94.53 80.68 67.47 84.36 35.00 73.83 73.79 70.59 99.00 88.32 83.17 69.50
EBO 98.69 97.26 90.61 63.68 76.5 25.20 73.48 54.8 77.02 94.54 91.20 83.48 66.11
Dα 97.03 93.76 83.02 61.74 72.30 26.67 73.77 54.81 75.08 89.41 96.29 77.58 62.99
Dice 51.43 63.67 51.99 83.91 89.67 62.91 76.68 86.29 69.39 96.56 80.85 87.12 82.13
ViM 98.88 97.07 91.33 61.36 69.30 26.72 70.00 46.87 75.15 82.01 91.90 81.50 63.75
Ens-V(us) 99.00 96.28 89.64 75.48 92.23 73.67 89.28 71.27 85.62 99.89 99.99 92.11 79.06
Ens-R (us) 98.90 96.59 89.50 71.47 90.74 72.37 88.58 68.38 84.74 99.86 99.99 91.40 77.41
Ens-F (us) 98.42 96.55 90.27 73.46 90.33 64.72 87.70 64.37 85.66 99.33 99.97 90.87 76.11
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Table 15: AUC in error detection setting for ViT.

In-Dist Adv. Attacks Corruptions
PGD-R AA-R PGD-V AA-V blur noise snow brightness

CADet min 49.73 63.59 83.42 60.59 72.46 98.75 75.98 80.88 70.60
ODIN 75.02 60.76 85.12 13.26 68.76 95.20 98.41 89.54 80.18
Max logits 80.64 71.08 91.30 27.84 80.47 99.03 98.07 95.95 89.13
Logits norm 36.83 41.91 34.12 29.06 31.12 39.59 38.48 27.87 28.65
MSP 89.16 77.15 92.01 30.80 81.19 98.29 97.28 95.46 91.95
MDSf 48.23 67.86 81.36 68.65 54.84 40.29 61.60 06.84 14.08
MDSl 74.92 75.46 88.62 82.28 85.57 91.23 99.45 95.25 99.64
MDSall 54.93 83.08 95.24 81.01 98.42 99.80 99.99 96.92 99.68
ReAct 77.18 69.62 89.09 33.15 80.12 98.56 97.56 95.26 87.87
GradNorm 68.01 72.49 93.74 37.21 80.24 99.79 96.48 94.31 85.42
EBO 78.35 68.77 90.13 28.07 79.54 98.90 97.82 95.48 87.82
Dα 89.00 76.97 92.31 30.82 81.37 98.49 97.54 95.74 92.05
Dice 50.09 85.18 93.85 63.02 80.35 97.61 85.60 89.82 83.47
ViM 75.72 65.66 82.18 29.50 76.14 90.59 97.81 93.58 84.59
Ens-V(us) 82.61 92.73 96.22 74.58 94.54 99.99 100.00 98.64 94.46
Ens-R (us) 83.69 90.15 95.39 73.09 94.06 99.99 100.00 98.15 93.23
Ens-F (us) 85.84 93.42 96.54 70.43 94.47 99.97 100.00 98.78 94.88
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