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A Structural Transformer with Relative Positions in Trees
for Code-to-Sequence Tasks

Abstract
We suggest two approaches to incorporate
syntactic information into transformer mod-
els encoding trees (e.g. abstract syntax trees)
and generating sequences. First, we use
self-attention with relative position represen-
tations to consider structural relationships be-
tween nodes using a representation that en-
codes movements between any pair of nodes
in the tree, and demonstrate how those move-
ments can be computed efficiently on the fly.
Second, we suggest an auxiliary loss enforc-
ing the network to predict the lowest common
ancestor of node pairs. We apply both meth-
ods to source code summarization tasks, where
we outperform the state-of-the-art by up to
6% F1. On natural language machine transla-
tion, our models yield competitive results. We
also consistently outperform sequence-based
transformers, and demonstrate that our method
yields representations that are more closely
aligned with the AST structure.

1 Introduction

Modeling the semantics of source code has recently
emerged as a research topic, with applications in
duplicate detection (Baxter et al., 1998), automatic
summarization (Alon et al., 2018a), natural lan-
guage database querying (Xu et al., 2017), bug
triage (Mani et al., 2019) and semantic code re-
trieval (Gu et al., 2018). We focus on source-code
related sequence generation tasks such as code sum-
marization. Here, the most successful models learn
embeddings of code elements and put a strong fo-
cus on code structure, usually exploiting the ab-
stract syntax tree (AST) (Baxter et al., 1998; Alon
et al., 2019, 2018a). In contrast, transformer net-
works like BERT (Devlin et al., 2018) – which
are currently considered state-of-the-art in model-
ing natural language – are weak at exploiting such
structure: Their key component, self-attention, is
based on a pairwise comparison of all tokens in the

input sequence, whereas “structure” is only repre-
sented by adding absolute positional embeddings
to the input.

To overcome these limitations, several ap-
proaches have been suggested recently. These lin-
earize the input tree using a pre-order traversal and
apply a modified “tree” transformer, either using
absolute positional embeddings that encode struc-
ture (Shiv and Quirk, 2019), aggregation (Nguyen
et al., 2020), or a boosting of attention weights with
relative node positions (Kim et al., 2020). We con-
tinue this line of research by three contributions1:

1. We extend relative positional embeddings
(Shaw et al., 2018) to encode structural rela-
tionships between nodes in trees. To do so, we
demonstrate how relative positions for trees
can be computed efficiently and densely dur-
ing training using simple matrix operations.

2. While auxiliary losses – such as next sentence
prediction (Devlin et al., 2018) or sentence
reordering (Sun et al., 2019) – have already
been shown to improve accuracy on sequence
tasks, we suggest a structural loss for trees by
predicting lowest common ancestors.

3. We explore the two above strategies in quanti-
tative experiments on source code understand-
ing and machine translation. Combining our
two approaches outperforms the state-of-the-
art by up to 6% and offers significant improve-
ments over sequential transformer baselines.
Compared to other recent work on tree trans-
formers, our approach either performs bet-
ter (Shiv and Quirk, 2019) or performs com-
parable while offering a much more scalable
training (Nguyen et al., 2020). Finally, our
approach requires only moderate adaptations
to the conventional transformer architecture

1Our code and a demo are available under: hidden.

hidden
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(namely, relative positional embeddings), and
can be applied orthogonally to other tree ex-
tensions.

2 Related Work

Abstractive summarization condenses a source se-
quence into a short descriptive target sequence,
while maintaining its meaning (Fan et al., 2017),
and has been approached with encoder-decoder
architectures ranging from recurrent neural net-
works (optionally with attention) (Bahdanau et al.,
2014) over convolutional networks (Gehring et al.,
2017) to the attention-based transformer (Vaswani
et al., 2017) architectures. Many summarization
approaches use pointer networks (Vinyals et al.,
2015) to mitigate the out-of-vocabulary problem
by copying words from the input sequence (See
et al., 2017), but recently attention has shifted to
Byte-Pair Encoding (BPE) (Sennrich et al., 2015),
which we utilize in this work.

Modeling the semantics of source code by pre-
dicting precise summaries or missing identifiers has
been extensively studied in the recent years (Al-
lamanis et al., 2017). Allamanis et al. (2016)
use a convolutional attention network over the to-
kens in a method to predict sub-tokens in method
names. Recently, masked language model-based
approaches (Devlin et al., 2018) been applied as
well, for which Feng et al. (2020) train CodeBERT
on pairs of natural language and methods. However,
most models treat source-code as a token sequence
and do not exploit additional structural information
provided by existing syntax parsers.

There have been various approaches to utilize
structural information: Tai et al. (2015) propose the
TreeLSTM network, which recursively encodes a
tree by computing a node’s representation based
on its children with an LSTM. The inverse prob-
lem of generating code from descriptions in natu-
ral language has been addressed by Yin and Neu-
big (2017) following a rule-based approach over
ASTs. Similar to our work (Hu et al., 2018) lin-
earize an AST and use a longer structure-based
traversal (SBT) as input for a regular sequence-to-
sequence model to predict comments. LeClair et al.
(2019) summarize source-code by using two en-
coder networks, one that encodes the SBT of the
AST and another the textual information in the se-
quence. For the same purpose Alon et al. (2018a)’s
code2seq model encodes paths between terminal to-
kens in an AST using a dedicated encoder-decoder

architecture with attention. In contrast code2seq,
our model encodes the full AST with all relative
positions at once and additionally and implicitly
models the path between any two nodes. LeClair
et al. (2020) and Fernandes et al. (2018) propose
a structured summarization approach for code and
natural language by adding a graph neural network
on top of a sequence-to-sequence encoder. The
above approaches utilize neither transformer net-
works, nor structural losses or relative position rep-
resentations.

While only few of the above methods employ
transformer encoders, our work is closest to re-
cent approaches enabling transformers to utilize
syntax trees. Shiv and Quirk (2019) define abso-
lute positional embeddings for regular trees and
show that these can be used to leverage syntactic
information (by converting the tree into a binary
tree). Our model processes non-regular trees with-
out modification, and orthogonally shows that rela-
tive positional representations are also appropriate
to represent trees in transformers. Kim et al. (2020)
utilize pre-computed relative node positions similar
to ours, but only apply them for a scalar boosting
of attention weights during self-attention. The hi-
erarchical transformer (Nguyen et al., 2020) uses
aggregation, masking and hierarchical embeddings
during self-attention to incorporate structure into
transformers. In contrast to this, our approaches
pose rather mild modifications (structural embed-
dings) or no modification at all (structural loss) to
the standard transformer architecture, resulting in
tolerable performance drops.

3 Approach

As illustrated in Figure 1, our approach extends
transformer models (Vaswani et al., 2017) to in-
corporate structural information from trees. For
source code, those trees are abstract syntax trees
(ASTs), for natural language we use constituency
parse trees. Specifically, we present two ap-
proaches: First, we extend relative position rep-
resentations (Shaw et al., 2018) to encode the pair-
wise relations between nodes as movements (Sec-
tion 3.1). Second, we introduce a structural loss
enforcing the model to predict the lowest common
ancestor of two nodes (Section 3.2) based on the
encoder output.

We feed a tree into the transformer by replacing
the conventional sequence of tokens with a pre-
order sequence of nodes x = (x1, x2, x3, . . . , xn)
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Figure 1: Our approach feeds a pre-order traversed tree (left) into a transformer encoder (middle). We use self-
attention with relative position representations and encode relationships between all nodes by up- and down move-
ments (gray dashed arrows). For example, the relation between x6 (yellow) and xn (blue) is +2↑1↓ (2 steps up,
then right (+), then 1 step down). Our structural loss is based on predicting the lowest common ancestor (green)
between randomly sampled node pairs (yellow and blue). The decoder operates on absolute positional embeddings.

including both terminals and non-terminals. Every
node i is reached via a unique path from the root
(1 =) i1, i2, . . . , iu (= i), where il−1 is the parent
of il and u (or depth(i)) denotes the depth of node
i. Based on this path, we define the ancestors and
descendants of Node i:

anc(i) := {i1, . . . , iu}
desc(i) := {j 6= i | i ∈ anc(j)}.

Note that while the ancestors include i, the descen-
dants do not. Finally, we define the lowest common
ancestor (LCA) of nodes number i and j as

lca(i, j) = arg max
a ∈ anc(i)∩anc(j)

depth(a)

The node sequence x is first transformed into a
sequence of real-valued input embeddings xi ∈ Rd,
which are processed by a regular transformer en-
coder (Vaswani et al., 2017) (for brevity we omit
details here), resulting in a sequence of continuous
representations z(x), or shorter z = (z1, . . . , zn).
From this, a standard auto-regressive transformer
decoder generates an output token sequence y =
(y1, . . . , ym), e.g. a summary of the input program
x. When generating token yi+1, the decoder at-
tends to the whole encoded sequence z as well as
all previously generated symbols y1, . . . , yi.

3.1 Relative Position Representations in
Trees

Our model builts on relative position representa-
tions (RPR) (Shaw et al., 2018), which influence
the attention between two tokens based on their
pairwise relative position. A relative self-attention

head in an transformer layer operates on an input
sequence of embeddings xL = (xL1 , . . . , xLn) with
xLi ∈Rd and outputs a new sequence xL+1 with
xL+1
i ∈Rdh . The pairwise relationship between in-

put elements xLi and xLj is represented by learned
embeddings aij ∈ Rdh that are shared between at-
tention heads, but not between layers. The output
of self-attention with RPR is computed by

xL+1
i =

n∑
j=1

αij(xLj WV ) (1)

whereas the weight coefficient αij is computed by
a softmax over compatibility scores eij :

eij =
xLi WQ(xLj WK + aij)>√

d
(2)

where d×dh matrices WQ,WK ,WV map the in-
puts to a head-specific embedding space2. Note
that Equation (2) is the original self-attention
from Vaswani et al. (2017) if one omits aij .

While Shaw et al. (2018) define the relative posi-
tional embeddings aij based on the linear distance
between sequential input tokens, we extend aij to
take the input tree structure into account. We en-
code the path between nodes i and j in a matrix
M∈Nn×n: From i, we first take Mij steps upward
to lca(i, j) and then Mji steps downward to j. We
investigate two options for representing this path:

2Note that Shaw et al. (2018) originally defined relative po-
sition representations aK

ij , aV
ij for keys and values, but showed

in experiments that key embeddings seem to suffice. Corre-
spondingly, we only use key embeddings.
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• the path length (clamped to a maximum)
l(i, j) = Mij+Mji ∈ {0, ..., C}. Then, aij
is derived from an embedding table E:

aij := E1i<j ,l(i,j) (3)

1i<j indicates if Node i is left of Node j.

• Movement pattern: We distinguish between
steps up (Mij) and down (Mji). Consider Fig-
ure 1, where we take 2 steps up and 1 step
down from node x6 to x4 (−2↑1↓). Both val-
ues are used as indices to the embedding table:

aij := E1i<j ,Mij ,Mji (4)

We clamp both Mij and Mji to a maximum
of C steps, such that the embedding table has
2×(C + 1)×(C + 1) entries.

Computing relative node positions efficiently
The basis for relative position representations is
the matrix M. We show that M – and with it aij –
can be derived efficiently with matrix operations:
We first represent the tree using a binary node inci-
dence matrix N ∈ {0, 1}n×n (see Appendix A for
an illustration) which encodes each node’s path to
the root by

Nij =

{
1 if j ∈ anc(i)
0 otherwise.

(5)

Note that we defined i ∈ anc(i), and thus Nii=1.
Based on N, we compute

• the depth of each node i by row-wise summa-
tion: depth(i) =

∑
j Nij .

• a (symmetric) ancestral matrix A ∈ Nn×n

(Andriantiana et al., 2018) whose entries Aij

contain the level of lca(i, j) (or in other words
the length of the common prefix) of two nodes
i and j by

A = NN> (6)

• the matrix M ∈ Nn×n by

Mij = depth(i)−Aij (7)

Note that – since in a pre-order traversal each
node’s descendants directly follow the node – we
can easily derive N from the size of each node’s
sub-tree, by filling |desc(j)|+1 rows in column
j with ones, starting at the diagonal (Ni,j=1 for

i = j, j+1, ..., j+|desc(j)|). The number of de-
scendants per node can be pre-computed in O(n)
time and space, and the above operations can be ef-
ficiently conducted on a batch of trees on a GPU us-
ing parallel matrix multiplications in O(n3), which
we found feasible for input lengths commonly used
in NLP (e.g., 1024 – see Figure 4 in the Appendix).

3.2 Structural Loss

The goal of our structural loss is to enforce the en-
coded representations z to adopt a notion of struc-
tural similarity from the AST. Thereby, we con-
sider two nodes as “similar” if they are part of the
same low-level syntactic unit (e.g., an if-statement),
while nodes representing different passages in a
text/program are considered dissimilar. We enforce
this notion of similarity by training our model to
predict nodes’ LCAs. To do so, we concatenate
the encoded representations zi, zj of two nodes to
predict their lowest common ancestor a:

vij = RELU([zi; zj ] ·W + b)

plca(a|i, j) = softmax(vij · Z)a

where W ∈ R2d×d and b ∈ Rd are learned, and
Z ∈ Rd×n contains the stacked encoded repre-
sentations. For each position a, the resulting soft-
max vector contains the probability plca(a|i, j) that
node a is node i and j’s lowest common ancestor.
We then use a log-likelihood loss over node pairs
(i, j):

Llca(Θ)=−
n∑

i=1

n∑
j=1

log plca(lca(i, j)|i, j, z) (8)

where Θ denotes the collection of model parame-
ters and z is the encoder output. We complement
this loss with a conventional cross entropy transla-
tion loss (Vaswani et al., 2017)

Ltrans(Θ) = −
n∑

i=1

log p(yi|y≤i−1,x) (9)

More specifically, we use the label-smoothed ver-
sion of Equation (9) (Szegedy et al., 2015). (x,y)
denote training pairs consisting of pre-ordered in-
put trees x and corresponding output sequences
y. Overall, we train the model by minimizing
both losses simultaneously, i.e. our loss function is
L(Θ) = Ltrans(Θ) + γlca·Llca(Θ).
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Sampling for Ancestor Prediction Instead of a
dense loss computation (Equation (8)), we imple-
ment an efficient random sampling of M node
pairs (i, j) with their lowest common ancestor
a = lca(i, j). Instead of sampling i and j and
computing the corresponding a, we sample a and
then draw random descendants (i, j) of a such that
a = lca(i, j). This can be done in O(1) per sam-
ple: We first draw the LCA a, whereas the proba-
bility of drawing Node a is chosen proportionally
to the number of its descendants. This gives more
weight to nodes at the top of the tree (which are
more likely to occur as LCAs). Given ancestor
a, we sample two nodes i, j from a’s descendants.
Since the sequence is a pre-order traversal of the
tree, a’s descendants can be found at positions
a+1,. . . ,a+|desc(a)|. We distinguish two cases:
(1) If a has at least two children, we draw samples
i, j from two different children (or their descen-
dants). (2) If a has only a single child, we choose
i=a and j as a random descendant of a (if i and j
were both descendants of a, their LCA would not
be a but a’s child or one of its descendants).

4 Experimental Setup

Most code-to-sequence models are evaluated on
method naming and code captioning (or code-to-
documentation) tasks (Alon et al., 2018a). Method
naming aims to predict the usually short name of a
method given its signature and body. Our second
task – code captioning – aims at generating a longer
natural language description of a given function,
whereas the first line of a documentation is used
as ground truth. On all code related tasks we use
ASTs as input. Additionally, we show that our
model is also applicable to natural language where
we translate using constituency parse trees as input.

4.1 Preprocessing Source Code

When parsing code to ASTs3, the set of termi-
nal nodes becomes large. To overcome this prob-
lem, we follow common NLP practice (Babii
et al., 2019) and tokenize the identifiers asso-
ciated with terminal nodes into fine-grain to-
kens: (1) Inspired by Alon et al. (2018a), we
split all identifiers on camel case or underscores,
i.e. “getNumber Hex16” will become “get
Number Hex 16”. (2) Next, we apply Byte
Pair Encoding (BPE) on the above tokens (Sen-
nrich et al., 2015), obtaining “get Num@@ ber

3We use the tree-sitter library for parsing code into ASTs.

Hex 16”. (3) To reduce the vocabulary further,
we modify the BPE algorithm so that when a to-
ken is a number, it is split into single digits, simi-
lar to character-level language modeling (Al-Rfou
et al., 2019). This allows us to represent all pos-
sible numbers with only 20 tokens in our vocabu-
lary. The example becomes “get Num@@ ber
Hex 1@@ 6”. (4) Additionally we replace all
string and character literals in the source code
with an identifier (e.g. <STRING>). Note that
this tokenization yields multiple tokens for each
terminal node/identifier, which alters the tree struc-
ture. When splitting a terminal node xi into tokens
(t1, . . . , tm), we replace xi with these tokens. Each
token becomes a new node, the first token t1 with
xi’s parent as parent and each other token with
its predecessor as parent. In the example, we ob-
tain get←Num@@←ber←Hex←1@@←6. Note
that the BPE encoding is removed when computing
evaluation measures such as BLEU.

4.2 Tasks

Task 1: Method Naming We evaluate the
method naming task on three different datasets in-
troduced by Alon et al. (2018a): java-small,
java-med, and java-large. All three
datasets consist of java files from selected open-
source projects, splitted into training, validation
and test sets on project-level.

The java-small dataset consists of java files
from 11 different projects, from which 9 are used
for training, 1 is used for validation and 1 for test-
ing. It contains around 700k samples/methods.
The java-med dataset consists of 800 projects
for training, 100 for validation and 100 for test-
ing, containing about 4M samples. The largest
dataset java-large contains 9, 000 projects for
training, 250 for validation and 300 for testing, con-
taining 16M samples. Method names in all three
datasets have 3.1 BPE tokens on average.

Following the work of Allamanis et al. (2016)
and Alon et al. (2018a), we predict the method
name as a sequence of sub-tokens splitted on camel
case and underscores (compare Section 4.1). Note
that the BPE encoding applied in preprocessing
is removed before evaluating the model’s perfor-
mance. Like Alon et al. (2018a), we report case-
insensitive micro precision, recall and F-measure
over the target sequence.

Task 2: Code Captioning We evaluate the code
captioning task on the FunCom dataset intro-

https://github.com/tree-sitter/tree-sitter/tree/ec870e9e66c34354133ad865dd12fbaceb021083
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Model java-small java-med java-large

P R F1 P R F1 P R F1

Paths+CRFs (Alon et al., 2018b)† 8.4 5.6 6.7 32.6 20.4 25.1 32.6 20.4 25.1
code2vec (Alon et al., 2019)† 18.5 18.7 18.6 38.1 28.3 32.5 48.2 38.4 42.7
TreeLSTM (Tai et al., 2015)† 40.0 31.8 35.5 53.1 41.7 46.7 60.3 48.3 53.6
2-layer BiLSTM† 42.6 30.0 35.2 55.2 41.8 47.5 63.5 48.8 55.2
ConvAttention (Allamanis et al., 2016)† 50.3 24.6 33.1 60.8 26.8 37.2 60.7 27.6 38.0
Transformer (no tree) (Alon et al., 2018a)† 38.1 26.7 31.4 50.1 35.0 41.2 59.1 40.6 48.1
code2seq (Alon et al., 2018a)† 50.6 37.4 43.0 61.2 47.1 53.2 64.0 55.0 59.2

Transformer (no tree) (Vaswani et al., 2017) 48.5 45.9 45.9 57.5 57.1 56.2 66.2 63.8 63.9
Absolute Tree Transformer (k = 64) (Shiv and Quirk, 2019) 47.2 45.6 45.0 59.3 57.9 57.3 66.6 64.2 64.3
Relative Structural Transformer 52.7 47.6 48.6 61.3 60.0 59.4 66.6 64.6 64.5

Table 1: Micro F1 for Method naming. Results marked with † are taken from Alon et al. (2018a).

Model B1 B2 B3 B4 BLEU-4

attendgru (LeClair and McMillan, 2019)† - - - - 17.4
ast-attendgru (LeClair et al., 2019)‡ 37.1 21.1 14.27 10.9 18.7
graph2seq (Xu et al., 2018)‡ 37.6 21.3 14.1 10.6 18.6
code2seq (Alon et al., 2018a)‡ 37.5 21.4 14.4 11.0 18.8
BiLSTM+GNN-LSTM (Fernandes et al., 2018)‡ 37.7 21.5 14.6 11.1 19.1
code+gnn+BiLSTM-2hops (LeClair et al., 2020)‡ 39.1 22.5 15.3 11.7 19.9

Transformer (no tree) (Vaswani et al., 2017) 40.3 23.6 16.4 12.6 21.1
Relative Structural Transformer 42.3 24.4 16.8 12.9 21.7

Table 2: Code captioning on the FunCom dataset (java). We report cumulative BLEU-4 score, together with single
n-gram scores up to 4 n-grams (B1, . . . , B4), evaluated with the script released along with the dataset. Results
marked with † have been reported by LeClair and McMillan (2019), results marked with ‡ by LeClair et al. (2020).

duced by LeClair and McMillan (2019) and on the
CodeSearchNet dataset (Husain et al., 2019).

The FunCom dataset consists of 2.1M java func-
tion/description pairs, with descriptions parsed
from the first sentence of a Javadoc comment. This
dataset has been constructed from a much larger
dataset of 51M java methods (Lopes et al., 2010)
by filtering for English comments, removing pairs
with less than three and more than 13 tokens in
the description, or more than 100 tokens in the
method. A target description contains 7.6 tokens
on average. We reuse the provided training, val-
idation and test split, which has been created by
splitting per project. We report case-insensitive
corpus-level BLEU scores (Papineni et al., 2002)
and use the evaluation scripts released by LeClair
and McMillan (2019) along with the dataset.

The CodeSearchNet dataset consists of func-
tion/documentation pairs in 6 different program-
ming languages (Go, Java, JavaScript, PHP, Python,
Ruby). The main task for this dataset is code
search (i.e. given a documentation find the correct

function), but it also has been applied to code-to-
documentation generation by Feng et al. (2020)
(CodeBERT). After pre-training CodeBERT on the
full dataset, the authors filtered the dataset to re-
move samples with poor quality and subsequently
fine-tune and evaluate the CodeBERT model for
code-to-documentation generation on the filtered
subset. To be comparable to CodeBERT we re-use
only the filtered subset for training and evaluation
of our model and use the same evaluation script4

that computes smoothed BLEU-4 score as Feng
et al. (2020). Furthermore we omit splitting on
camel-case for this dataset, as this would yield a
different tokenization that would influence the re-
sulting BLUE score. We train a joint encoder on
all languages, to leverage knowledge transfer to the
less frequent languages.

Task 3: Neural Machine Translation To test
our model on a non-code task, we evaluate it on
machine translation on the IWSLT’14 English-

4Feng et al. (2020) use the same evaluation script for com-
puting BLEU scores as Iyer et al. (2016).
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Model Ruby Javascript Go Python Java Php Overall

Seq2Seq (Feng et al., 2020)† 9.64 10.21 13.98 15.93 15.09 21.08 14.32
Transformer (Feng et al., 2020)† 11.18 11.59 16.38 15.81 16.26 22.12 15.56
Roberta (Feng et al., 2020)† 11.17 11.90 17.72 18.14 16.47 24.02 16.57
CodeBERT (RTD+MLM) (Feng et al., 2020)† 12.16 14.90 18.07 19.06 17.65 25.16 17.83

Transformer (no tree) (Vaswani et al., 2017) 13.90 14.61 18.08 18.19 18.20 23.12 17.68
Relative Structural Transformer 14.81 14.96 18.62 17.93 18.63 23.77 18.12

Table 3: Code captioning on the CodeSearchNet dataset. As Feng et al. (2020) we report smoothed cumulative
BLEU-4 scores. Results marked with † have been reported by Feng et al. (2020).

German (En-De and De-En) dataset. We replicate
the training settings from Nguyen et al. (2020),
thereby also using the same preprocessing script
to create parse trees with the Stanford CoreNLP
parser (Manning et al., 2014) and also report to-
kenized BLEU-4. We use the same form of BPE
on terminal nodes as on the code-related tasks, but
omit splitting on camel-case (10k subwords).

4.3 Hyperparameters and Setup

We implemented our model in PyTorch with the
fairseq toolkit (Ott et al., 2019), on top of an exist-
ing transformer implementation. As our focus is
on studying syntax-specific extensions, we refrain
to a standard transformer architecture and optimize
only hyperparameters relevant to our extensions:
We replicate the same transformer architecture and
most hyperparameters that have been used in the ex-
periments of Nguyen et al. (2020), consisting of 6
transformer layers in the encoder and decoder, with
4 attention heads, 1024-dimensional feed-forward
layers, d = 512 dimensional token embeddings
and the sharing of the input and output embedding
matrices in the transformer decoder. Like Nguyen
et al. (2020), we train our model using the Adam
optimizer and an inverse square root learning rate
scheduler with a linear warm-up for 4, 000 updates
up to a peak learning rate of 5e−4 and a dropout
rate of 0.3. For our final evaluations, we generate
sequences with beam search using a beam width
of 5 and additionally prohibit repeating n-grams of
length 2.

We learn a Byte-Pair-Encoding of 16k sub-words
on the training data for all code-related tasks. For
the lowest common ancestor loss (Section 3.2) we
sample M=min(n, 50) node pairs per method. We
also optimize the following parameters manually
on the validation set: the batch size, γlca, whether
path-length or movements are used for relative posi-
tion representations, the clamping value C (Section

3.1), and whether the model is trained with a joint
vocabulary for encoder and decoder, in which case
we share the encoder’s token embedding matrix
with the decoder. We conduct three runs with the
best hyperparameter setting and report results for
the model with the highest BLEU/F1 on the val-
idation data. The full set of hyperparameters is
provided in Appendix A.1.

For the transformer baseline we tokenize the
source code in the same way as for ASTs (Section
4.1) and train a regular transformer model on the
resulting token sequence (Vaswani et al., 2017)
with the same set of hyperparameters.

5 Experimental Results

Tables 1 – 3 cover the three code-related tasks, com-
paring our approach with the state-of-the-art meth-
ods and a regular sequential transformer baseline.
In Table 1 we additionally conduct experiments
with a transformer that uses absolute tree positional
embeddings (Shiv and Quirk, 2019). We investi-
gate the use of our approach on natural language
machine translation in Table 4. Finally, we also
study the effect of our structural loss function and
relative position representations in ablation studies.

Task 1: MethodNaming On the method nam-
ing task our model outperforms the state-of-
the-art code2seq model (Alon et al., 2018a) on
java-small, java-med and java-large
datasets by more than 6.2%. We continuously out-
perform the absolute tree transformer (Shiv and
Quirk, 2019), which is – on java-small – out-
performed by a token-level transformer. On all
three datasets our token-level transformer baseline
outperforms the current SoTA (which does not use
BPE), by up to 4.7%. This demonstrates the effec-
tiveness of our preprocessing pipeline, particularly
the use of BPE for source code. Our tree extensions
improve performance further, especially on small
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Model IWSLT’14

En-De De-En

Tree2Seq (Shi et al., 2018)† 24.01 29.95
Conv-Seq2Seq (Gehring et al., 2017)† 24.76 30.32
Transformer (Vaswani et al., 2017)† 28.35 34.42
Dynamic Conv (Wu et al., 2019)† 28.43 34.72
Hierarchical Transformer (Nguyen et al., 2020)† 29.47 35.96

Transformer (no tree) (Vaswani et al., 2017) 28.30 34.62
Relative Structural Transformer 29.40 35.32

Table 4: Machine translation on the IWSLT’14
dataset. We report the tokenized cumulative BLEU-
4 score. Results marked with † have been reported
by Nguyen et al. (2020).

Relationship Type C γlca P R F1

- - - 56.2 56.2 55.1
- - 0.3 60.8 59.3 58.7
Movements 2 - 60.5 58.8 58.4
Movements 2 0.05 61.1 59.2 58.9
Movements 2 0.3 61.3 60.0 59.4
Path-Length 8 0.3 60.6 59.4 58.8

Table 5: Ablation study on java-med. All models
are trained on linearized ASTs. Adding a structural
loss or relative positions improves performance.
Adding both gives best results.

datasets. We conclude that our approach success-
fully adds a structural prior. A t-SNE visualization
in Figure 5 confirms that our extensions yield em-
beddings that are more closely aligned with the
AST structure.

Task 2: CodeCaptioning On the code-to-
documentation task on the FunCom dataset our
model outperforms the state-of-the-art by 1.8%.
Including structural information shows to be bene-
ficial, as we outperform a token-level transformer
baseline by 0.6%. On the CodeSearchNet
dataset our approach – which is trained end-to-end –
outperforms the language model based CodeBERT
on most languages, with an overall improvement
of 0.3%. Our baseline outperforms reported trans-
formers by 2.1%, that have been using a non code-
specific BPE5 and no literal replacements.

Task 3: Machine Translation Our model is able
to utilize the structural prior and improves over a
token-level transformer baseline by up to 1.1%. It
thereby outperforms various other recent models,
and yields competitive results compared to the hi-
erarchical transformer (Nguyen et al., 2020). Also,
we found our approach to be much more scalable
with respect to input sequence length (Figure 4
in the Appendix), both in terms of speed (left)
and memory (right)6. Since sequence lengths and
datasets in code-related tasks are longer than in
machine translation, memory limitations prevent
us from training the hierarchical transformer with
adequate batch sizes. Figure 4 also shows that our
approach’s performance is comparable to that of a
sequential transformer with only negligible speed
and memory losses. Overall, this indicates that

5CodeBERT re-uses the BPE of RoBERTa.
6We used the reference implementation of the hierarchical

transformer (https://github.com/nxphi47/tree_
transformer) with the same hyperparameters as ours.

our method is also applicable to natural language
in general and may be even used for longer docu-
ments.

Ablation Studies We investigate the impact of
our two extensions on the java-med dataset. Ta-
ble 5 shows that simply linearizing the AST without
any structural information results in a performance
drop of 4.3% compared to the best model. Using
the structural loss or relative positions indepen-
dently improves performance. Even though LCAs
for ancestor prediction can be inferred from the
relative positions, the system benefits from an ad-
ditional implicit modeling as an auxiliary loss. We
hypothesize that the two approaches complement
each other, as LCA prediction enforces the model
to represent relative position in the encodings z.

6 Conclusion

We propose two extensions to transformer models
with relative position representations to incorpo-
rate structural information from trees: (1) relative
position representations that encode the position of
nodes explicitly using a representation that encodes
movements between any pair of nodes in the tree,
and (2) a new structural loss based on lowest com-
mon ancestor (LCA) prediction. In a broader sense,
our model offers a simple yet effective way to in-
corporate syntactic information into transformer
models. This may be interesting for modeling long-
term dependencies in NLP tasks such as relation
extraction or co-reference resolution. Another in-
teresting direction for future research would be to
incorporate our structural extensions not only into
supervised training, but also into language models,
e.g. for an unsupervised learning of source code
semantics.

https://github.com/nxphi47/tree_transformer
https://github.com/nxphi47/tree_transformer
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A Appendices

A.1 Datasets and Hyperparameters
Relevant statistics about the datasets used are pro-
vided in Table 6 and additional hyperparameters for
the experiments are listed in Table 7. Additionally,
we provide code, data and configs for our experi-
ments at https://removed-for-blind-review.
net. We ran a hyperparameter sweep over
the clamping distance and explored the values
C = {2, 3, 8, 16} for movements and C =
{4, 6, 8, 16, 32} for path-length. For γlca we in-
vestigated {0.05, 0.3, 0.6, 1}. We report the best
performing hyperparameters in Table 7. For the
absolute tree transformer (Shiv and Quirk, 2019)
we ran a hyperparameter sweep over the maximum
tree depth k = {32, 64, 256}.

For the machine translation experiments on
the IWSLT’14 dataset we follow the approach
of Nguyen et al. (2020) and use 5% of ≈160k
sentence pairs for validation, thereby com-
bine (IWSLT14.TED.dev2010, dev2012, tst2010-
tst2012) for testing and also use Stanfords
CoreNLP (v3.9.2) to parse trees. We average the 5
checkpoints with the best validation BLEU.

A.2 Infrastructure Details
We vary the amount of GPUs (all Nvidia GeForce
GTX1080TI) by the amount of training data. We
train models on java-med, java-large and
code captioning datasets on 3 GPUs, but for
java-small and the machine translation experi-
ments in Table 4 we use a single GPU.

A.3 Sample Visualizations
To illustrate the effect of our structural loss on
the transformer, Figure 5 visualizes the (t-SNE-
transformed) representations z produced by the
encoder. Edges in the visualization correspond to
edges in the AST. When using only relative posi-
tion representations, but no structural loss (right),
AST nodes are scattered over the embedding space,
where mostly the representations of identical input
tokens form clusters (lower right). In contrast, our
relative structural transformer using LCA-loss (left)
produces clusters that strongly align with subtrees:
Obviously, the representation of a code component
(such as a for-loop) is similar to its subcomponents
(such as the statements within the loop), an indica-
tor that attention is aligned with the tree structure
and focuses stronger on close components in the
tree.

n0

n1 n3

n2 n4 n5

n6

n7

(a) Tree

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 1 1 0
1 0 0 1 0 0 0 1


(b) Node incidence matrix N (Equation (5))

1 1 1 1 1 1 1 1
1 2 2 1 1 1 1 1
1 2 3 1 1 1 1 1
1 1 1 2 2 2 2 2
1 1 1 2 3 2 2 2
1 1 1 2 2 3 3 2
1 1 1 2 2 3 4 2
1 1 1 2 2 2 2 3


(c) Ancestral matrix A (Equation (6))

0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1
2 1 0 2 2 2 2 2
1 1 1 0 0 0 0 0
2 2 2 1 0 1 1 1
2 2 2 1 1 0 0 1
3 3 3 2 2 1 0 2
2 2 2 1 1 1 1 0


(d) Movements matrix M (Equation (7))

Figure 2: Visualization of the matrices used for com-
puting relative position representations for trees.

https://removed-for-blind-review.net
https://removed-for-blind-review.net
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java-small java-med java-large CodeSearchNet FunCom IWSLT’14

Samples Train 665,115 3,004,536 15,344,512 908,224 1,937,136 160,239
Samples Valid 23,505 410,699 320,866 44,689 106,153 7,283
Samples Test 56,165 411,751 417,003 52,561 52,561 6,750

Table 6: Statistic about the datasets used.

java-small java-med java-large CodeSearchNet FunCom IWSLT’14

Baseline RST Baseline RST Baseline RST Baseline RST Baseline RST Baseline RST

Warmup Updates 4000 4000 4000 4000 10000 10000 4000 4000 4000 4000 4000 4000
Max Epoch 30 30 60 60 60 60 60 60 60 60 70 70
Validation Metric F1 F1 F1 F1 F1 F1 BLEU BLEU BLEU BLEU BLEU BLEU
Validation Performance 44.84 46.19 56.05 58.61 63.31 63.66 8.32* 8.92* 23.42 23.91 29.69 30.07
Max Source Positions 512 512 512 512 512 512 1024 1024 512 512 1024 1024
Max Target Positions 80 80 80 80 80 80 1024 1024 30 30 1024 1024
Batch Size
(in tokens/batch/gpu)

8192 8192 8192 8192 8192 8192 6146 6146 6146 6146 4096 10240

Accumulate Gradients
(in batches)

8 8 8 8 8 8 6 6 6 6 - -

Share Embeddings
(between Encoder/Decoder)

Yes Yes Yes Yes No No Yes Yes No No No No

Relationship Type - Movements - Movements - Path-Length - Movements - Movements - Path-Length
C - 2 - 2 - 8 - 2 - 2 - 8
γlca - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3
Parameters (Million) 38.76 38.79 39.3 39.9 47.5 47.6 39.8 40.4 47.5 48.3 39.5 40
Average Runtime (hours) 10 12 22 25 66 71 20 23 16 19 7 9

Table 7: Additional hyperparameters for the experiments in Table 1 – 4. (*) denotes that we used a different BLEU
implementation during validation than for testing. For all experiments we set Label Smoothing=0.1, Learning
Rate=5e-4, Optimizer: Adam, Adam-Betas=0.9, 0.98 and Weight Decay=0.0001

boolean isPrime(int x) {
double mRoot = Math.sqrt(x);
for(int i=2; i <= mRoot; ++i)
{

if(x % i == 0){
return false;

}
}
return true;

}

MethodDeclaration

BasicType FormalParameter body

boolean BasicType x

int

LocalVariableDeclaration ForStatement ReturnStatement

BasicType VariableDeclarator

double m MethodInvocation

Ro@@

ot

Math MemberReference sqrt

x

... Literal

true

Figure 3: A java method that computes whether a number is a prime, together with its preprocessed abstract syntax
tree.
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Figure 4: Memory usage (GiB) and speed comparison (seconds per iteration) with respect to sequence length
using a fixed batch-size (bzs – in samples per batch). We compare a regular transformer – whose results are also
applicable to the absolute tree transformer (Shiv and Quirk, 2019), as absolute positional representations can be
pre-computed, the hierarchical transformer (Nguyen et al., 2020) using the released reference implementation and
our relative structural transformer utilizing all proposed extensions. All benchmarks are done with the same model
architecture (in terms of layers, dimensions and vocabulary), the same datasets – containing only samples of a
specific length – on a single Quadro RTX 8000 (48GiB).

Figure 5: t-SNE visualization of the encoded node representations of a model trained with (left) and without (right)
a structural loss on java-med. The root node is marked dark red, artificial/abstract tokens – that don’t appear in
source code – are red and nodes that appear in source code green. Nodes are connected by lines, as in the original
AST.
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public Throwable blockingGetError() {
if (getCount() != 0) {

try {
BlockingHelper.verifyNonBlocking();
await();

} catch(InterruptedException ex) {
dispose();
return ex;

}
}
return error;

}

Target: ”Block until the latch is counted down and return the error received or null if no error happened .”
Transformer (no tree): ”Returns an error if there is one . Otherwise returns nil .”
Relative Structural Transformer: ”This method blocks until there is an error or the end of the queue is
reached .”

public static ScheduledExecutorService create(ThreadFactory factory) {
final ScheduledExecutorService exec = Executors.newScheduledThreadPool(1, factory);
tryPutIntoPool(PURGE_ENABLED, exec);
return exec;

}

Target: ”Creates a ScheduledExecutorService with the given factory .”
Transformer (no tree): ”Create a new ScheduledExecutorService .”
Relative Structural Transformer: ”Creates a ScheduledExecutorService with the given ThreadFactory
.”

Figure 6: Sample predictions on CodeSearchNet.


