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Figure 1: EEG/MEG-based zero-shot brain decoding and reconstruction. Left: Overview of three
visual decoding tasks using EEG/MEG data under natural image stimulus. Right: Our reconstruction
examples.

Abstract

How to decode human vision through neural signals has attracted a long-standing
interest in neuroscience and machine learning. Modern contrastive learning and
generative models improved the performance of visual decoding and reconstruction
based on functional Magnetic Resonance Imaging (fMRI). However, the high cost
and low temporal resolution of fMRI limit their applications in brain-computer
interfaces (BCIs), prompting a high need for visual decoding based on electroen-
cephalography (EEG). In this study, we present an end-to-end EEG-based visual
reconstruction zero-shot framework, consisting of a tailored brain encoder, called
the Adaptive Thinking Mapper (ATM), which projects neural signals from different
sources into the shared subspace as the clip embedding, and a two-stage multi-pipe
EEG-to-image generation strategy. In stage one, EEG is embedded to align the high-
level clip embedding, and then the prior diffusion model refines EEG embedding
into image priors. A blurry image also decoded from EEG for maintaining the low-
level feature. In stage two, we input both the high-level clip embedding, the blurry
image and caption from EEG latent to a pre-trained diffusion model. Furthermore,
we analyzed the impacts of different time windows and brain regions on decoding
and reconstruction. The versatility of our framework is demonstrated in the magne-
toencephalogram (MEG) data modality. The experimental results indicate that our
EEG-based visual zero-shot framework achieves SOTA performance in classifica-
tion, retrieval and reconstruction, highlighting the portability, low cost, and high
temporal resolution of EEG, enabling a wide range of BCI applications. Our code
is available at https://github.com/ncclab-sustech/EEG_Image_decode.
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1 Introduction

A key technical challenge in BCIs is to decode/reconstruct the visual world seen by humans through
non-invasive brain recordings, such as fMRI, MEG or EEG. These highly dynamic brain activities
reflect human perception of the visual world, which is influenced by properties of the external visual
stimulus, our internal states, emotions and even personal experiences. Thus, visual decoding and
reconstruction based on neural signals can uncover how the human brain processes and interprets
natural visual stimulus, as well as promote non-invasive BCI applications.

Contrastive learning and generative models have greatly advanced fMRI-based visual decoding
in both decoding tasks (e.g., image classification and retrieval) and generative tasks (e.g., image
reconstruction). By combining pre-trained visual models, existing fMRI decoding models can learn
highly-refined feature embeddings in limited data [1, 2]. Using these embedded fMRI features,
generative models such as diffusion models can reconstruct the image one is seeing [2, 3]. However,
despite many advances in fMRI-based visual decoding, fMRI equipment is unportable, expensive,
and difficult to operate, largely limiting its application in BCIs. Alternatively, EEG is portable, cheap,
and universal, facilitating a wide range of BCI applications. EEG has higher temporal resolution and
can effectively capture rapid changes in brain activity when processing complex, dynamic visual
stimulus.

EEG has long been considered incomparable to fMRI in natural image decoding/reconstruction tasks,
as EEG suffers from low signal-to-noise ratio, low spatial resolution, and large inter-subject variability.
Recent advances in multimodal alignment have made MEG/EEG visual decoding possible, although
the performance is still inferior to fMRI [4, 5, 6]. Yohann Benchetrit et al. used the CLIP model to
extract the latent representation of the image and trained the MEG encoder to align it with the image
representation extracted by CLIP. It achieved excellent retrieval and reconstruction performance on
MEG and fMRI datasets, demonstrating the potential for real-time visual decoding and reconstruction
using EEG/MEG signals. Recently, Song et al. [5] used an EEG encoder based on ShallowNet [7]
and performed representation alignment through contrastive learning, achieving excellent decoding
performance on the THING-EEG dataset [8]. These two studies provide preliminary evidence of
the potential of EEG/MEG-based visual decoding. However, there is a significant gap in their
performance compared to the fMRI-level performance. This gap is largely caused by the fact that the
framework of EEG visual decoding and reconstruction have not yet been thoroughly explored.

To fill this gap, we have developed a visual decoding framework based on EEG/MEG, including a
novel EEG encoder and a two-stage image generation strategy. Our work has three main contributions:

1. We present brain decoding framework, which is the first work allows zero-shot image
classification, retrieval, and reconstruction via EEG data. Experimental results demonstrate
that our framework is applicable to various common EEG encoder architectures.

2. By extensively studying the existing EEG encoder modules, we construct a tailored EEG
encoder ATM, which achieves state-of-the-art performance in three downstream visual
decoding tasks.

3. We report a two-stage EEG-to-image generation strategy, which separately extracts high-
level and low-level visual features from EEG and refining these features with an additional
lightweight prior diffusion model, enabling reliable reconstruction of images using less than
500ms EEG.

2 Method

To learn high-quality latent representations of EEG data, it is crucial to consider the spatial position
of EEG channels and the Temporal-Spatial properties of EEG signals. Let T represent the length of
the time window of the data, C the number of EEG channels, and N the total number of data samples.
Our objective is to derive EEG embeddings ZE = f(E) ∈ RN×F from the brain activity data
E ∈ RN×C×T , where f is the EEG encoder and F is the projection dimension of the embeddings.
Concurrently, we use the CLIP model to extract image embeddings ZI ∈ RN×F from images I . Our
goal is to effectively align the EEG representation with the image representation, as illustrated in
Fig. 2. In the training phase, the EEG encoder is trained with EEG and image pairs using a contrastive
learning framework. In the inference phase, the EEG embeddings from the trained EEG projector
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Figure 2: EEG/MEG-based visual decoding and generation framework. The EEG encoder is
designed as a flexible replacement component. After aligning with image features, the EEG features
are used for zero-shot retrieval and classification tasks, and the reconstructed images are obtained
through a two-stage generator.

can be used for a variety of zero-shot tasks, including EEG-based image classification, retrieval, and
image reconstruction.

2.1 ATM for EEG Embedding

Inspired by advanced time series models [9, 10], we develop an EEG encoder called ATM, for aligning
the original EEG signals to its feature representation space (Fig. 3). ATM is based on the channel-wise
Transformer encoder, Temporal-Spatial convolution and multilayer perceptron (MLP) architecture.
In contrast to other conventional practices, the original EEG does not need to be segmented, and
each sequence acts as a patch. After sinusoidal position embedding, these patches are processed
through a channel-attention module to integrate the information of different series. Subsequently,
through the Temporal-Spatial aggregation, we project the output with a MLP to get rational shape
representations. The Temporal-Spatial convolution module is an effective way to represent EEG
data with a small number of parameters [5], prevent overfitting in training. The difference is our
components is plug-and-play and can be flexibly replaced with different types of Temporal-Spatial
convolution components as needed to adapt to various EEG/MEG datasets. Finally, MLP projectior
consists of M simple residual components and fully connected layers, with LayerNorm applied in
the output to ensure the stability of training. In addition to entering the original series, we provide an
identification input for a known subject and can specifically use this token for downstream tasks. For
unknown subjects, we use shared tokens or average all tokens equally directly into the MLP projector.

2.2 Image Embedding

Many previous studies have explored various training strategies to train deep neural networks for
image embedding, such as VGG-19 and ResNet trained with supervised learning, CLIP, DINO trained
with contrastive learning, and VAEs with self-supervised learning [11, 12, 5, 6]. They have reported
that DINO and CLIP models pre-trained using the Vision Transformer (ViT) architecture perform
better in a range of downstream tasks, including image decoding and reconstruction, compared to
models trained using supervised learning methods (such as VGG, ResNet) and self-supervised VAE
frameworks. Thus, in this study, we use CLIP for image embedding, denoted as ZI ∈ RN×1024,
instead of ZI ∈ RN×257×768, with the EEG embeddings. Before formal training, all images undergo
the standard preprocessing procedure [13].
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Figure 3: The structure of ATM. The original EEG sequences of different variates are independently
embedded into tokens. Channel-wise attention is applied to embedded variate tokens with enhanced
interpretability revealing electrode correlations. And representations of each token are extracted by
the shared feedforward network (FFN). Then Temporal-Spatial convolution can prevent overfitting
and enhance the ability of Temporal-Spatial modeling.

2.3 EEG Guidance Image Generation

In this study, we present a two-stage pipeline for generating images that serve as visual stimulus for
EEG recordings, as shown in the bottom right of Fig. 2. In the left of Fig. 3 we have obtained the
EEG embeddings zE for each image by the EEG encoder ATM. Now our goal is to use these EEG
embeddings to generate the corresponding images. The joint distribution of images, EEG embeddings,
and image embeddings can be expressed as p(I, zE , zI) = p(zI |zE)p(I|zI), corresponding to the
prior diffusion and CLIP-guided generation, respectively. In Stage I, we first focus on the prior
diffusion stage. Inspired by DALL-E 2 [14] and Mind’s Eyes [2], we train a diffusion model
conditioned on the EEG embeddings ẐE to learn the distribution of CLIP embeddings p(zI |zE).
In this stage, we construct a lightweight U-Net: ϵprior(z

t
I , t, zE), where ztI represents the noisy

CLIP embedding at diffusion time step t. We train the prior diffusion model using EEG and CLIP
embeddings. Through this diffusion model, we can generate corresponding CLIP embeddings zI
from EEG embeddings as a prior for stage II. In Stage II, we employ the pre-trained SDXL [15] and
IP-Adapter [16] models to model the generator p(I|zI), thereby sampling image I according to zI .
In addition, we introduce the low-level features here using img2img[17]. Further details are provided
in Appendix C.

2.4 Loss Function

Following the methodology outlined by Benchetrit et al. [12], we adopt a dual approach to loss
functions, serving distinct objectives. For the classification and retrieval tasks, we only utilize the
CLIP loss, which is inspired by the contrastive learning approach described in Radford et al. [13]. This
loss function aids in aligning the EEG data E with corresponding image data I , thereby facilitating
the identification of EEG-image pairs and maximizing the boundaries of EEG representations. For
the generation tasks, besides the CLIP loss, we add a Mean Squared Error (MSE) loss to facilitate
consistency learning in regression. Thus the overall loss function for our model is a combination of
these two distinct loss types, expressed as:

Loss = λ · LCLIP + (1− λ) · LMSE

Here, λ is a hyperparameter that balances the contribution of each loss type.

4



Classification
(In Subject top-5)

Classification
(In Subject top-1)

Generation
(top-5)

Generation
(top-1)

Retrieval
(Across Subject top-5)

Retrieval
(Across Subject 

top-1)

Retrieval
(In Subject top-1)

Retrieval
(In Subject top-5)

Classification
(Across Subject top-5)

Classification
(Across Subject top-1)

ATM-S (Ours)
Conformer
EEGNetV4

B.D.
NICE

MLP
ShallowFBCPNetATCNet

ATM-S (Ours)

Conformer

EEGITNet
EEGNetV4

B.D.
NICE

MLP ShallowFBCPNet

Classification
(In Subject top-5)

Classification
(In Subject top-1)

Generation
(top-5)

Generation
(top-1)

Retrieval
(Across Subject top-5)

Retrieval
(Across Subject 

top-1)

Retrieval
(In Subject top-1)

Retrieval
(In Subject top-5)

Classification
(Across Subject top-5)

Classification
(Across Subject top-1)

Figure 4: EEG/MEG-based decoding and reconstruction performance. Left: Comparisons of
nine encoders on the THINGS-EEG dataset, including within-subject and cross-subject performance.
Right: Comparisons on the THINGS-MEG dataset, similar to left. Our method achieves the highest
performance compared to other competing encoders in EEG/MEG-based visual decoding tasks.

3 Experiments

3.1 Training and Computational Considerations

We conducted our experiments on the THINGS-EEG dataset’s training set [8, 6]. To verify the
versatility of ATM for embedding electrophysiological data, we tested it on MEG data modality
using the THINGS-MEG dataset [18]. All experiments can be completed in a single NVIDIA
RTX 4090 GPU. We used the Adam optimizer [19] to train the across-subject model on a set of
approximately 496,200 samples, and the within-subject model on a set of about 66,160 samples,
with an initial learning rate of 3 × 10−4 and batch sizes of 16 and 1024. Our initial temperature
parameter was set to 0.07. We splited the last batch of the original training set as the validation set
and selected the best model based on the minimum validation loss over 40 epochs. For fairness,
all models’ hyperparameters were kept consistent. In our study, we compared the performance of
different encoders on the within-subject test set and cross-subject (leave-one-subject-out) test set (see
Appendix H).

3.2 EEG Decoding Performance

Our method obtains the EEG embedding for the classification task. We output the category of EEG
with the highest cosine similarity with text embeddings(Fig. 5a). Fig. 5c presents the average accuracy
across different methods in the subjects, and shows that our method outperforms others. More details
of the EEG-based image classification are in Appendix B.

In Fig. 5, we test the effectiveness of EEG embeddings in the image retrieval task. We calculate the
cosine similarity between the EEG embeddings and the CLIP embeddings instead of text embeddings
in the image dataset (with 200 images). Fig. 5d shows the average results for all subjects. We take
the highest test accuracy in the evaluation process as the statistical result. Fig. 5b shows the Top-5
retrieved images corresponding to the real visual stimulus seen by subjects. Compared with the
previous models, the Top-1 accuracy of our model is significantly improved, and the Top-5 images all
maintain a high degree of similarity with the original images. See the Tab. 8 in Appendix for more
detailed averages of test accuracy in subjects.

Ablation Study on ATM We systematically deconstructed and analyzed each layer of our EEG
projector. We conducted an ablation study for each component in ATM (i.e., the MLP projector,
the Temporal-Spatial convolution module and the channel-wise attention block). We specified
two different convolution architectures, ShallowNet (ATM-S) and EEGNetV4 (ATM-E), as our
convolution backbone. Appendix B.3 showed the results obtained under different experimental
configurations.
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Figure 5: EEG-based image retrieval and classification. (a) The paradigm of EEG-based image
retrieval and classification. (b) Samples of the top-5 accuracy in EEG-image retrieval tasks. See
Appendix G for additional images results. (c) Average in-subject classification accuracy across
different methods. (d) Average in-subject retrieval accuracy across different methods.

3.3 Image Generation Performance

Fig. 6a shows the process of generating images under the guidance of EEG embedding and evaluating
the quality of the generated images. To evaluate the generation performance, we conducted an image
retrieval task. Specifically, we extract the CLIP embedding of the generated images and compare the
similarity between the CLIP embeddings of all images to retrieve the generated image.

Fig. 6b shows the similarity of distribution. Fig. 6c shows the generated samples. The generated
images have high semantic similarity with the seen images and have good diversity in low-level visual
features, which can be manipulated by the guidance scale hyperparameter (Fig. 6d). We also report
the decoding and reconstruction performance for EEG, MEG, and fMRI across various metrics from
different datasets in the Tab. 1.

Table 1: Quantitative assessments of the reconstruction quality for EEG, MEG, and fMRI in Subject
8. For detailed explanations of the metrics.

Low-level High-level

Dataset ↑ PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓
NSD-fMRI [12] 0.305 0.366 0.962 0.977 0.910 0.917 0.410
NSD-fMRI [20] 0.254 0.356 0.942 0.962 0.872 0.915 0.423
NSD-fMRI [21] 0.130 0.308 0.917 0.974 0.936 0.942 0.369

THINGS-MEG [12] 0.058 0.327 0.695 0.753 0.593 0.700 0.630
THINGS-MEG (averaged) [12] 0.076 0.336 0.736 0.826 0.671 0.767 0.584
THINGS-MEG (Ours) 0.104 0.340 0.613 0.672 0.619 0.603 0.651
THINGS-EEG (Ours) 0.160 0.345 0.776 0.866 0.734 0.786 0.582

3.4 Temporal Analysis

To investigate the effects of different EEG time window on visual decoding, we calculated the average
top-1 classification accuracy for sliding and growing time windows: [0, t], including the entire period
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Figure 6: EEG guidance image generation. (a) The paradigm of image generation. (b) The
similarity between random visual objects and the EEG embeddings, and the similarity between
generated visual objects and the target EEG embeddings. (c) Comparison between the original image
and the image generated using the corresponding EEG data. (see Appendix C for details). (d) The
similarity between visual objects and target EEG embeddings as the guidance scale changes, and the
diversity of visual objects as the guidance scale changes. See Appendix G for additional results.

from the onset of visual stimulus to time point t, and [t-100, t], only including the data 100ms before
time point t. We compared the accuracy with a randomly selected baseline (0.5% chance level)
to test predictive performance (Fig. 7). Our results show that within 500ms after visual stimulus,
the accuracy reaches an upper limit of about 30%, after which the accuracy no longer improves
(Fig. 7a). The MEG decoding shows a similar profile as the time window expands (Fig. 7b). We
exhibit the generated images under different EEG time windows, [0, t] in Fig. 7c. The similarity
is low when the time window is less than 150ms, and this similarity gradually increase as the time
window expands. After 500 milliseconds, EEG-guided image generation can reliably reveal the
semantics of the images seen. Interestingly, we find differences in the optimal reconstruction time
windows for different categories of images, for example, jelly beans (200ms) are faster than aircraft
carrier (500ms), implying that the human brain may process different visual objects at different
speeds. This finding highlights the advantage of EEG’s high temporal resolution in studying fast
visual processing compared with the lower temporal resolution of fMRI.

3.5 Spatial Analysis

To investigate the contribution of different brain regions to visual decoding, we divided the EEG
electrodes from the THING-EEG data into five distinct brain regions (i.e., Frontal, Temporal, Center,
Parietal, Occipital regions in Fig. 8a), and then conducted ablation experiments on retrieval task
(Fig. 8b) and the reconstruction task (Fig. 8c). The results showed that using information from all
brain regions is optimal, for both retrieval and generation tasks. The occipital had the highest retrieval
accuracy and reconstruction performance compared to other regions. Parietal and temporal regions
contain some semantic information, whereas frontal and central regions contribute the least useful
information to the visual decoding.

4 Related Works

Visual decoding using neural signals: Decoding visual information from our brain has been a
long-standing pursuit in neuroscience and computer science [22, 23]. Some progress has been
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Figure 8: EEG-guided retrieval and reconstruction using EEG from different brain regions. (a)
The EEG electrodes assigned to five brain regions. (b) Top-1 and top-5 retrieval accuracy, using only
the EEG channels in each leaved region and all channels. (c) Reconstructed images obtained using
only the electrode channels in each individual region and all channels.

made in decoding steady-state visual stimulus. However, accurately and rapidly decoding semantic
information in natural images remains a challenge [24]. fMRI has been widely used to estimate
semantic and shape information in visual processing within the brain [25, 26]. However, the demand
for high-speed and practical applications in brain-computer interfaces calls for alternative approaches.
EEG, due to its high temporal resolution and portability, emerges as a promising option [27]. Yet,
the overall performance across different subjects and biological plausibility remains unresolved [28].
Furthermore, previous approaches often relied on supervised learning methods with limited image
categories, overlooking the intrinsic relationship between image stimulus and brain responses [1, 29,
30].

Neural decoding using EEG/MEG data: Previous studies have shown the efficacy of Temporal-
Spatial modules in representing neural data [7, 31]. For example, lightweight convolutional neural
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networks such as EEGNet and ShallowNet [7] have achieved considerable performance in small EEG
and MEG datasets. Using contrastive learning, it has been shown that merely using convolutional
neural networks and projection layers can yield satisfactory results on neural datasets [32]. More
recently, Benchetrit et al proposed a method towards real-time MEG-based reconstruction of visual
perception [12]. Song et al. presented an EEG encoder using ShallowNet Temporal-Spatial convolu-
tion module with a large convolution kernel with a few parameters for EEG embedding, resulting in
favorable performance on EEG-based visual decoding [5].

Limitations of previous studies: Previous EEG studies are primarily oriented toward understanding
visual perception in the human brain rather than maximizing EEG decoding performance. Thus the
visual decoding performance is far from optimal. Specifically, previous studies have trained linear
models to (1) classify a small set of images from brain activity [33, 34], (2) to predict brain activity
from the latent representations of images [4], or (3) to quantify the similarity analysis between these
two patterns with representational similarity [4, 33, 8, 35]. While these studies also utilize image
embeddings, their linear decoders are limited to classifying a small group of object categories or
distinguishing image pairs. Moreover, several deep neural networks have been applied to maximize
classification of speech [36], cognitive load [37], and images [38, 39, 40] in EEG recordings. [38]
proposed a deep convolutional neural network for classifying natural images using EEG signals.
Unfortunately, the experiment presented all images of the same category in a single block, probably
misleading the decoder to rely on autocorrelated noise rather than the hidden informative patterns
of brain activity [30]. Also, these EEG studies only classify a relatively small number of image
categories.

5 Discussion and Conclusion

In this study, we proposed a novel and feasible EEG-based zero-shot image reconstruction framework.
Although it utilizes existing machine learning techniques , we demonstrate for the first time that
EEG-based zero-shot visual decoding and reconstruction can be competitive with MEG and fMRI.

Technical Impact: Our technical contributions are mainly on the EEG encoder and the two-stage
zero-shot visual reconstruction framework (Fig. 2). First, we developed the ATM, an EEG encoder
which can efficiently represent EEG/MEG features for three tasks. Our comprehensive experiments
of the EEG encoder (Fig. 3), compared to various architectures and training methods, achieves
SOTA performance across various metrics and tasks (Figs. 4b, 5). Second, our two-stage EEG
guidance image reconstruction framework achieves performance close to fMRI using only EEG data
(Figs. 6, 14, Tab. 1, 6), and this method is compatible with MEG data (Figs. 4c, 7b).

Neuroscience Insights: Our results offer insights into the relationship between brain activity and
visual perception. We analyzed EEG-based visual decoding within different time windows to examine
when visual information is perceived in the brain (Fig. 7). Our results revealed that visual information
in EEG data is predominantly contained within the 200-400ms range (Fig. 7a), consistent with
previous EEG studies [11, 6, 5]. Interestingly, the visual information in MEG data last up to 800ms,
much longer than EEG (Fig. 7b), in line with the results reported by a previous MEG study [12, 5].
We also found that EEG performs better than MEG in visual tasks (See Appendix D for Tab. 6), which
is different from other fields, such as speech decoding [36]. In addition, through ablation experiments
of spatial information, we found that visual information is mainly encoded in the occipital and parietal
areas (Fig. 8).

Interesting Phenomena and Future Directions: First, there are non-negligible performance dif-
ferences between cross-subject and within-subject settings. This performance gap arises from
inter-subject differences in EEG signals [41, 42], likely attribute to heterogeneity in individual brain,
differences in visual perception between individuals, and even shifts in noise distribution during
EEG recording. So it calls for more efforts on EEG encoder, such as more flexible neural network
architectures or better weight initialization of pre-trained models [43, 44]. Transfer learning and
meta-learning are also future directions worth exploring [45, 46, 47]. Moreover, how to unify various
electrode montages of different EEG datasets when pre-training large EEG models is a challenge.
EEG source localization, which converts senor-level EEG signals into the standard brain source
space [48, 49], might be a potential solution.
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Supplementary Material:
Visual Decoding and Reconstruction via EEG Embeddings with

Guided Diffusion

A Datasets for experiments

A.1 EEG dataset

We conducted our experiments on the THINGS-EEG dataset’s training set [8, 6]. This dataset includes
a large EEG corpus from 10 human subjects during the visual task. The experiment employed the
Rapid Serial Visual Presentation (RSVP) paradigm for orthogonal target detection tasks to ensure that
participants attended to the visual stimulus. All 10 participants completed 4 equivalent experiments,
resulting in 10 datasets with 16,540 training image conditions repeated 4 times, and 200 testing
image conditions repeated 80 times, totaling (16,540 training image conditions × 4 repetitions) +
(200 testing image conditions × 80 repetitions) = 82,160 image trials. Original data were collected
using a 64-channel system at a sampling rate of 1000 Hz. After signal denoising, epoch data were
downsampled to 100 Hz, selecting 17 channels covering the occipital and parietal cortex. Instead of
using the raw dataset, we chose to filter it to [0.1, 100] Hz, retaining 63 channels of the original EEG
data at a sampling rate of 1000 Hz. For preprocessing, we segmented the EEG data from 0 to 1000
ms after the stimulus onset into trials. Baseline correction was performed using the mean of the 200
ms pre-stimulus data. All electrodes were retained and downsampled to 250 Hz for analysis, and
multivariate noise normalization was applied to the training data [50]. To improve signal-to-noise
ratio, we averaged across the 80 EEG trials from the same image in the test set, while keeping each
EEG trial in the training setting. We compared the effects of averaging across EEG trials and found it
indeed improved the performance.

A.2 MEG dataset

To verify the versatility of ATM for embedding electrophysiological data, we tested it on MEG data
modality using the THINGS-MEG dataset [18]. It includes 271-channel MEG data from 4 subjects
with 12 MEG sessions. The training dataset has 1854 Concepts × 12 images × 1 repetition, and the
test dataset has concepts × 1 image × 12 repetitions for 200 times. Here, we discarded 200 testing
concepts from the training set to construct the same zero-shot task as with the THINGS-EEG. Each
image in the THINGS-MEG was displayed for 500 ms. There was a fixed time for each image of
1000 ± 200 ms. Continuous MEG data from -100 ms to 1300 ms was segmented into trials after
the stimulus onset from 0 to 1000 ms. Preprocessing was performed using a bandpass filter of [0.1,
40] Hz and baseline correction after downsampling to 200 Hz. Note that due to the small number of
participants, no statistical analysis was performed on the MEG dataset. We compared our approach
with advanced methods i.e. NICE [5] and B.D. [12] for classification and retrieval tasks on the
MEG dataset. We directly used the stimulus images to match the template, rather than other images
belonging to the concept.

B More Implementation Details

B.1 Evaluation metric implementation

Classification accuracy As CLIP has been designed to align text and image modalities, we also
leverage its text encoder for EEG classification using the text embeddings of categories. This approach
utilizes CLIP’s text encoding capabilities to facilitate EEG classification. We conducted zero-shot
classification tests on the THINGS-EEG dataset. We employed Top-K accuracy as a metric for
performance evaluation. Specifically, we assessed performance based on the Top-k (where k=1, 5)
predictions. We conducted tests for both within-subject and leave-one-subject-out classification
accuracy, enabling a comprehensive evaluation of the model’s performance across different scenarios.
Additionally, for each test instance, we extracted embeddings of N-1 unrelated samples from the test
set as inputs. This means, apart from the entire test set, the model evaluated by N-Way accuracy
(where N=2, 4, 10 in our experiments) on the test set. We report these results in Appendix H.
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Retrieval accuracy Similar to the classification task, in the retrieval task, the objective is to retrieve
the Top-K images most related to a given stimulus image via its corresponding EEG signal. This
implies that by changing the text embeddings of image labels to image embeddings, we can transition
the task from classification to image retrieval. Given that contrastive learning is known to be sensitive
to batch size, we also compared the performance improvement of different methods under varying
batch sizes (batch size=16, 1024) (Appendix H).

Generation accuracy The generation task presents more challenges than the other tasks. For
each image condition in the test set, we generate 10 different images from 10 subjects based on
the corresponding EEG. Subsequently, image retrieval is performed for each generated image. The
Top-1 and Top-5 accuracies are calculated. It helps in evaluating the semantic alignment between the
generated images and their original counterparts.

B.2 Computing methods implementation

In the upstream EEG encoder part, we compared various methods. For the B.D. method [12], we
replicated the network structure as described in the original work, with the difference being in the
shape of the input data due to the original study’s focus on MEG. It is worth mentioning that we used
the leave one for subject method in the testing process so we modify its subject-wise layer as an linear
layer for modeling the time dimension. To ensure fairness, we did not use the same hyperparameters
as in the original paper. Instead, we chose settings yielded excellent results upon reproduction. Across
all methods, we used identical hyperparameters, apart from the network structures. These included
batch size, optimizer, initial learning rate, and temperature parameters.

B.3 Architecture details

Table 2: Brain module configuration
Layer Input shape Output shape # parameters
Channel-wise attention layer (N, C, T) (N, C, D) 553,078
Temporal-Spatial Conv module (N, C, D) (N, H1, H2) 103,680
Temporal-Spatial aggregation (N, H1, H2) (N, H1*H2) 0
MLP projector (N, H1*H2) (N, 1024) 2,527,232

Total 3,183,990

Table 3: Ablation study on the ATM model’s different components for THINGS-EEG retrieval.
Module MLP TSConv CAL TOP-1 TOP-5

✓ ✗ ✗ 8.11±1.74 26.83±4.78
✓ ✓ ✗ 21.65±6.22 51.34±9.83

ATM-S ✓ ✗ ✓ 23.73±7.62 52.71 ±9.71
✓ ✓ ✓ 28.64±6.39 58.47±8.97
✓ ✗ ✗ 8.11±1.74 26.83±4.78
✓ ✓ ✗ 17.95±5.95 43.10±8.63

ATM-E ✓ ✗ ✓ 23.73±7.62 52.71 ±9.71
✓ ✓ ✓ 24.92±6.00 54.78±8.49

B.4 Model configuration

To validate the efficacy of our EEG encoder, we experimented with a variety of empirical setups
aimed at optimizing the model’s efficiency. we leverage joint subject training to adapt to new subjects.
Once a model is trained, it can be used for both reasoning about known subjects (subject-specific
tokens) and reasoning about unknown subjects (shared tokens). In the context of channel-wise
attention layer, we explored four distinct approaches for enhancing downstream retrieval capabilities:
leveraging subject-specific tokens for retrieval, averaging all tokens for a more generalized retrieval,
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flattening the entire token set for direct retrieval, and preserving token dimensions to feed into the
Temporal-Spatial convolution module for feature integration. Notably, the strategy of preserving
dimensions and using the Temporal-Spatial convolution module emerged as the most effective.

In our quest to optimize token embeddings, we experimented with a variety of approaches, including
using 1× 1 convolution and linear layers. Under our framework, using linear layers performs better
than convolutions. Moving beyond, we delved into the efficacy of diverse Feed Forward Networks
(FFNs) within the Transformer encoder layer. Our findings indicated that an FFN tailored to the
temporal dimension emerged as the superior option. We also conducted a comparative analysis of
various positional encoding techniques. Interestingly, for Temporal-Spatial convolution utilized in
retrieval tasks, the significance of positional encoding diminished.

In a further exploration, we examined the impact of deploying convolutions at various stages and
even contemplated the complete removal of the convolution module. It was discovered that situating
convolutions post the Transformer encoder layer yielded the most favorable outcomes. Conversely, a
shift to a MLP or the removal of the convolution module led to a notable degradation in performance.
Our assumption is though the convolution’s inherent translational invariance is compromised when
the context of the time dimension is disrupted, the efficiency of parameters it possesses may confer a
resistance to overfitting, thereby maintaining its effectiveness.

Table 4: Impact of each module on the result in different configurations. The reported results represent
the mean performance metrics of the ATM-S, calculated over the final 10 training epochs across all
10 subjects.

Module Config Top-1 (std) Top-5 (std)

Channel-wise attention layer

w/ mean token 7.29 (3.01) 23.11 (6.62)
w/ flatten token 14.85 (5.46) 37.56 (8.92)

w/ keep dim 28.64 (6.39) 58.47 (8.97)

Token embedding w/ conv1d 24.81 (7.29) 55.68 (9.08)
w/ linear 28.64 (6.39) 58.47 (8.97)

Feed Forward Network
w/ temporal dim 28.64 (6.39) 58.47 (8.97)
w/ spatial dim 19.92 (7.74) 47.59 (11.5)

w/o 26.45 (7.73) 57.00 (9.95)

Position encoding
w/ sinusoidal 27.96 (6.54) 58.16 (8.44)

w/ learnable absolute 26.66 (6.56) 56.95 (7.95)
w/o 28.64 (6.39) 58.47 (8.97)

Temporal spatial convolution

w/ pre 14.23 (4.20) 37.44 (6.06)
w/ post 28.64 (6.39) 58.47 (8.97)
w/ both 25.37 (5.16) 57.07 (6.13)

w/o 23.73 (7.62) 52.71 (9.71)

B.5 Training details

In our EEG projector module, we integrated two distinct strategies for steering model predictions:
text embedding and image embedding. Given the variance in feature granularity, we observed
that alignments that prioritize image embedding excel in tasks of image retrieval and classification.
Throughout the training phase, our experiments revealed that a batch size of 16 is a judicious selection
for all models. Conversely, a batch size of 1024, which implies a substantial number of samples
are processed in each training iteration, necessitates the model to exhibit a heightened capacity for
noise resistance. In order to enhance the signal-to-noise ratio within EEG data, we implemented
an averaging technique on 80 repeated instances within the test set. This approach mirrors the
methodology employed in identifying Event-Related Potentials (ERP). To maximize the utilization of
the available training data, we refrained from averaging the 4 repetitions in the training set. Instead,
we opted to input the complete set of EEG data into the model, thereby facilitating comprehensive
learning.
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Figure 9: Test accuracy during each training epoch. (a) Training of different within-subject models.
(b) Training of different across-subject models. We compared 7 different EEG encoding models,
including EEGconformer, MLP, EEGNetv4, B.D., NICE, ATM-S (Ours) and ATM-E (Ours).

C Details of EEG guidance image generation

Here, we provide a concise overview of the conditional diffusion model framework used in EEG-
guided image generation, following the presentation of continuous-time diffusion models in [51, 52].

Diffusion models Diffusion Models (DMs) engage in a generative process by transforming high-
variance Gaussian noise into structured data representations. This transformation is achieved by
gradually reducing noise levels across a sequence of steps. Specifically, we begin with a high-variance
Gaussian noise xM ∼ N (0, σ2

max) and systematically denoise it through a series of steps to obtain
xt ∼ p(xt; t), where σt < σt+1 and σM = σmax. For a well-calibrated DM, and with σ0 = 0, the
final x0 aligns with the original data distribution.

Sampling process The sampling in DMs is implemented by numerically simulating a Probability
Flow ordinary differential equation (ODE) or a stochastic differential equation (SDE). The ODE is
represented as:

dx = −σ̇(t)σ(t)∇x log p(x; t)dt, (1)
where ∇x log p(x; t) is the score function, and σ(t) is a pre-defined schedule with its time derivative
σ̇(t). The SDE variant includes a Langevin diffusion component and is expressed as:

dx =− σ̇(t)σ(t)∇x log p(x; t)dt

− β(t)σ2(t)∇x log p(x; t)dt

+
√
2β(t)σ(t)dωt,

(2)

where dωt is the standard Wiener process.

Training of DMs The core of DM training is to learn a model for the score function. This is
typically achieved through denoising score matching (DSM), where ϵθ is a learnable denoiser. The
training process can be formulated as:

E(x0,c)∼pdata(x0,c),(nt,t)∼p(nt,t)

[
∥ϵθ(x0 + σtϵ; t, c)− ϵ∥22

]
, (3)

where ϵ is Gaussian noise with variance σ2
t , and c represents a condition.

C.1 Stage I - EEG-Conditioned Diffusion

The initiation of the EEG-conditioned diffusion phase is paramount in our EEG-based image gen-
eration framework, leveraging the classifier-free guidance strategy alongside data pairs of CLIP
embeddings and EEG embeddings (zI , zE). Adapting from state-of-the-art generative techniques,
our diffusion process is specifically conditioned on the EEG embedding zE to adeptly capture the
distribution of CLIP embeddings p(zI |zE). The CLIP embedding zI , procured during this phase,
establishes the groundwork for the ensuing image generation stage. Our architecture incorporates a
streamlined U-Net, labeled as ϵprior(z

t
I , t, zE), where ztI signifies the perturbed CLIP embedding at a
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given diffusion timestep t. The training utilizes pairs from the ImageNet database, consisting of over
a million images, to fine-tune the EEG-Conditioned Diffusion model. This model is meticulously
trained using the classifier-free guidance approach, effectively balancing the conditioning signal’s
fidelity with the generative output’s diversity.

Classifier-free guidance method The Classifier-Free Guidance technique is crucial in guiding
the iterative refinement of a Diffusion Model (DM) under a specific EEG condition zE . It achieves
this by synchronizing the outputs of both a conditional and an unconditional model. The model’s
formulation, ϵwprior(z

t
I ; t, zE), is as follows:

ϵwprior(z
t
I ; t, zE) = (1 + w)ϵprior(z

t
I ; t, zE)− wϵprior(z

t
I ; t), (4)

where w ≥ 0 represents the guidance scale. This mechanism facilitates concurrent training of the
conditional and unconditional models within a singular network framework, periodically substituting
the EEG embedding zE with a null vector to promote training variability, i.e. 10% of the time.
The primary objective of this method is to enhance the sample quality produced by DMs while
maintaining output diversity.

C.2 Stage II - CLIP-Embedded Image Synthesis

In Fig. 10, we compare the effects of one-stage and two-stage EEG-guided image generation. We
show images generated using EEG embeddings directly (One-stage) and images generated using
image embeddings obtained via prior diffusion (Two-stage). It can be seen that the two-stage EEG-
guided image generation can more accurately reconstruct the semantic and low-level visual features
of the original image, and the style is more realistic.

Seen

Stage I

Stage 2

a b

Figure 10: Comparison between one-stage and two-stage EEG guidance image reconstruction.
(a) We present the images that subjects seen (Seen), our reconstructed images directly using EEG em-
beddings (One-stage), and the reconstructed images from low level and high level image embeddings
obtained by the prior diffusion (Two-stage). These results indicate that the strategy of our two-stage
generation can better reconstruct the seen visual stimulus. (b) We employed ATM-S to compare the
generated images with the original images in a retrieval task. Our result indicates that the images
generated in two stages significantly enhance the performance of the original model on the retrieval
task.

In the second stage of our EEG-based image generation approach, the CLIP embedding zI derived
from the EEG-conditioned diffusion acts as the precursor for synthesizing visual objects I based on
zI . This is achieved by harnessing the synergies of advanced pre-trained models, namely SDXL and
IP-Adapter [15, 16], facilitating the creation of high-caliber images.

The cornerstone of our synthesis process is the SDXL framework, acclaimed for its proficiency in text-
to-image conversion. The integration of the IP-Adapter introduces dual cross-attention mechanisms,
allowing the CLIP embedding zI to serve as a directive input and guide the denoising trajectory
within the U-Net structure. The synthesis model is denoted as ϵSD(zt, t, zI), where zt denotes the
SDXL Variational Autoencoder’s (VAE) disturbed latents.

SDXL-turbo for accelerated processing To augment the efficiency of our framework, we addition-
ally explore the SDXL-Turbo [53], a refined iteration of SDXL optimized for swift image synthesis.
This variant proves especially beneficial in scenarios demanding quick generation of high-fidelity
visuals.
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IP-Adapter’s efficacy The IP-Adapter, with its compact design, has proven to be effective in
enhancing image prompt adaptability within pre-trained text-to-image models. Its compatibility
with text prompts for multimodal image generation extends the versatility of our EEG-based image
synthesis approach.

C.3 Low-level pipeline

Compared with pure vision pre-training models such as (ViT, ResNet, DINO, etc.), the CLIP model
lacks low-level visual features. Therefore, in order to make up for this shortcoming, our framework
introduces a low-level visual reconstruction pipeline. We hope to restore basic such as contour,
posture, orientation and other pixel-level information from EEG by aligning with the latent of VAE.

Past work [25] has found that in the denoising stage of the early diffusion model, z signals (corre-
sponding to the VAE latent in our framework) dominated prediction of fMRI signals. And during the
middle step of the denoising process, zc predicted activity within higher visual cortex much better
than z. However, note that this is only an analysis based on decoding accuracy. These analyses do not
have a strong neuroscience causal relationship. We still cannot conclude that the low-level features of
neural data are modeled by VAE.

Table 5: Latent VAE retrieval performance
Condition Top-1 (%) Top-5 (%)

ideal chance 0.5 2.5
ATM-S (Ours) 10.14 29.55

We trained the low-level pipe for 200 epochs, trying a latent mean squared error (MSE) loss, along
with a contrastive learning loss, and a variational autoencoder (VAE) image reconstruction loss to
align the 4× 64× 64 EEG latents obtained from a projection layer and an upsampled CNN with the
VAE latents. Nevertheless, reconstruction loss or contrastive learning loss performs worse than only
applying the loss in latent space and also requires significantly more GPU memory. In addition, we
found that using a low-level visual model for distillation learning in the low-level pipeline is not only
unhelpful for VAE latent training, but also leads to overfitting. Similar conclusions were reached in
MindEye[2]. Our results suggested that the low-level zeroshot reconstruction in EEG is not stable
enough and may mislead the model results. When using the low level pipeline, we usually set the
inference steps of SDXL to 10 (or SDXL-turbo to 4) and the image-to-image denoising strength to
0.5. We give several reconstruction examples in Fig. 11 to compare the impact before and after using
low level pipeline. Moreover, low level alignment was validated through retrieval performance tests,
as depicted in Tab. 5. Our findings indicate that retrieval using EEG latents can also achieve excellent
performance. This further substantiates the feasibility of aligning the low-level consistency through
VAE latents.

C.4 Semantic-level pipeline

In addition to using EEG latent and low-level pipelines during reconstruction, we also add a cor-
responding semantic level pipeline guided by text captions during the image reconstruction. We
input the 1× 1024 EEG features output by prior Diffusion into the trained image projector to obtain
256× 1024 image features. Using the GIT model[54], we can directly generate a caption from the
latent features of the image. IP-Adapter accepts such a caption as a text prompt to guide the semantic
level reconstruction of the image. It should be noted that due to the difficulty of the zeroshot task
itself and the low dimensionality of the EEG features, the caption generated from the latent may be
unstable, thereby interfering with the original correct EEG semantics. Considering that the image
features extracted by the CLIP model itself are already high-level visual features and do not require
the introduction of more semantic information, this framework retains the entry of the text prompt,
and the reconstructed image presented does not force the use of the semantic level pipeline.
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Figure 11: Example of our reconstructions for Subject 8 output from different pipelines. From
left to right: reconstruction using only CLIP (i.e., Only CLIP), using only CLIP and the semantic
pipeline (i.e., CLIP + Semantic), using only the low level pipeline (i.e., Only low level), using only
CLIP and the low level pipeline (i.e., CLIP + low level), using joint CLIP, low level, and semantic
pipelines.

D Performance comparison

Comparison metrics Our study uses various metrics to evaluate how well we can recreate visual
stimulus from brain data (EEG, MEG, fMRI) (Tab. 1 and Tab. 7). These metrics include PixCorr
(pixelwise correlation, between ground truth and reconstructions), SSIM (structural similarity in-
dex metric)[55], SwAV (SwAV-ResNet50, refer to average correlation distance)[56], and two-way
identification using neural networks (AlexNet(2/5), Inception, CLIP. Here AlexNet(2/5) the 2nd
and 5th feature layers of AlexNet) for both low-level and high-level image features. Here two-way
identification can be seem as a two-way retrieval task described in [20]. In Tab. 1, our results showed
that on the THINGS dataset, we could achieve performance over MEG on EEG reconstruction using
ATM. Tab. 6 shows the decoding performance of different data sets (fMRI, MEG, EEG) on visual
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stimulus tasks, and we even achieved the same or better performance than fMRI and MEG. Our
results suggest that a suitable neural representation plays a decisive role in the downstream task.

Table 6: The classification performance of various methods are discussed. Due to differences in
datasets and data modalities, we have specified unified metrics to objectively assess the performance
of each method.

50-way 100-way 200-way

Dataset Model top-1 top-5 top-1 top-5 top-1 top-5

GOD-Wiki (fMRI)

CADA-VAE (V&T)[57] 10.02 40.37 - - - -
MVAE (V&T) [58] 10.04 39.60 - - - -
MMVAE (V&T) [59] 11.68 43.29 - - - -
MoPoE-VAE (V&T) [60] 12.90 51.78 - - - -
BraVL (V&T) [61] 13.99 53.13 - - - -

THINGS (MEG) ATM (Ours) 15.63 41.38 11.75 29.25 5.88 19.25

THINGS (EEG) BraVL [61] 14.33 40.28 - - 5.82 17.45
ATM (Ours) 17.40 39.40 11.50 28.50 7.40 20.60

Table 7: Quantitative comparison results of image reconstruction in Subject 8 via our framework
using different encoders.

Low-level High-level

Dataset ↑ PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ SwAV ↓
NSD-fMRI [12] 0.305 0.366 0.962 0.977 0.910 0.917 0.410
THINGS-MEG [12] 0.058 0.327 0.695 0.753 0.593 0.700 0.630
THINGS-MEG (averaged) [12] 0.090 0.336 0.736 0.826 0.671 0.767 0.584
THINGS-MEG (Ours) 0.104 0.340 0.613 0.672 0.619 0.603 0.651

THINGS-EEG (NICE) [5] 0.142 0.276 0.739 0.832 0.659 0.722 0.612
THINGS-EEG (EEGNetV4)[31] 0.140 0.302 0.767 0.840 0.713 0.773 0.581
THINGS-EEG (Ours) 0.160 0.345 0.776 0.866 0.734 0.786 0.582

E Representational analysis

As depicted in Fig. 12, we showcase the representational similarity matrix and visualization in the
latent space. To investigate the relationship between the representations obtained from EEG and
those of images, we conducted a representational similarity matrix. We focused on Subject 8, who
exhibited the highest retrieval accuracy. By applying a clustering algorithm to the image embeddings
corresponding to 200 images in the test set, we observed distinct within-category clustering. We
generated similarity matrices based on both image and text embeddings, which were then compared
with EEG representations. As shown in Fig. 12, clear within-category clustering is observable in
the representational similarity matrix with image, whereas this phenomenon is not present in the
representational similarity matrix with text.

F Concept analysis

We have adopted the concept embedding encoder proposed by Wei et al. [62], which encodes the clip
embedding of the original image into a 42-dimensional vector, with each dimension representing a
distinct concept. Utilizing the ATM for direct projection on the EEG data of 200 categories from
the test set, we obtained EEG embeddings that were then fed into the concept encoder with frozen
weights, yielding 200 concept embeddings, as depicted in Fig. 13. An analysis of representational
similarity at the concept level indicates that the EEG embeddings derived from our EEG projector
effectively align with the conceptual space. This ensures semantic consistency at a high level of
alignment, providing compelling evidence for the reconstruction of images from EEG data.
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a b

Figure 12: Visualization of the representation of EEG, image and text modality. (a) Representa-
tional similarity matrix between EEG features and image/text features. (b) Visualization in the latent
space of EEG/image/text by t-SNE.
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Figure 13: Visualization of the conceptual representation analysis. (a) Conceptual representations
were obtained from eeg embeddings using concept encoder. (b) The similar matrix between EEG
embeddings and real concept embeddings. (c) Concept embedding similarity matrix after cluster
rearrangement (k=5).
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G Additional images results

We visualize the best, medium and worst generated images in Fig. 14. We randomly selected the EEG
data of a subject viewing 100 images, and extracted EEG embeddings to guide image generation. By
calculating the cosine similarity of the CLIP embedding between the generated image and the original
image, we found 12 images each with the best, medium and worst generation effects. It can be seen
that in the best group, the generated image is not only highly consistent with the semantics of the
original image, but also well retains the low-level visual features. in the medium group, the generated
image maintains the semantic features of the original image, and the low-level visual features are
well preserved. Visual features were altered. in the worst group, both semantic features and low-level
visual features were altered.
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Figure 14: Examples of EEG-guided visual reconstruction. From top to bottom, we exhibit the
best, median, and worst 12 generated images, respectively. We show the images subjects seen and the
generated images by our two-stage image generator.

G.1 Additional retrieval results
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Figure 15: Additional retrieval results

25



G.2 Additional generated images
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Figure 16: Additional generated results with the best alignment to original images
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Figure 17: Additional generated results with the median alignment to original images
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Figure 18: Additional generated results with the worst alignment to original images
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G.3 Additional generated images for each subject
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Figure 19: Part of subject 1 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.
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Figure 20: Part of subject 2 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.

H Additional evaluation results
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Figure 21: Part of subject 3 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.
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Figure 22: Part of subject 4 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.
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Figure 23: Part of subject 5 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.
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Figure 24: Part of subject 6 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.
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Figure 25: Part of subject 7 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.
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Figure 26: Part of Subject 8 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.
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Figure 27: Part of subject 9 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.
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Figure 28: Part of subject 10 generates images. We do a batch generation of the subjects and then
calculate the best, medium, and worst performers compared to the original stimulus pictures.
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H.1 Accuracy for time windows

According to our results in 30 for time windows, which shows that for all embeddings, a clear peak
can be observed for windows ending around 200-250 ms after image onset. Comparing 29 and 30,
we can see that, unlike [12], our time window results on THINGS-EEG dataset do not have a second
peak, which may be mainly affected by the experimental paradigm. In 7, we can see that in the
first 50ms-200ms, the image reconstructed at 50 ms is completely messy and has no semantics; the
semantics of the reconstructed image after 250 ms is basically correct and gradually stabilizes, and
after 500ms, due to the lack of additional visual response, the content of the image reconstruction is
more stable. Similar results are also shown in Figure 4 A of [12]: their method can also reconstruct
high-quality images at 100ms. This just shows that our reconstruction results are in line with the
neuroscience prior. However, this does not mean that the EEG data after the absence of visual
response (200ms) loses its contribution to decoding, because the processing of high-level visual
features (corresponding to the visual features of CLIP) may be involved over time.

Figure 29: Accuracy for growing windows. We use an EEG time window of 100ms, sliding 100ms
each time. (a) Top-1 accuracy. (b) Top-5 accuracy.
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Figure 30: Accuracy for sliding windows. We use an EEG time window of 100ms, sliding 100ms
each time. (a) Top-1 accuracy. (b) Top-5 accuracy.

Figure 31: Accuracy for growing windows. The MEG time window grows from 50ms to 1000ms.
(a) Top-1 accuracy. (b) Top-5 accuracy.
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Figure 32: Accuracy for sliding windows. We use an MEG time window of 100ms, sliding 100ms
each time. (a) Top-1 accuracy. (b) Top-5 accuracy.

Table 8: Overall performance of zero-shot Retrieval on THINGS-EEG dataset. We divided the last
batch from the original training set as the validation set, selected the best model according to the
minimum validation loss in 40 epochs, and finally evaluated the performance on the test set. We
showed in-subject and cross-subject retrieval task performance (Ave ± Std.%) under the condition of
batch size=1024. We compared the 2-way, 4-way, 10-way, the Top-1 and Top-5 accuracy of 200-way
from different EEG embedding methods.

Subject dependent - train and test on one subject (batch size=1024)

Methods 2-Way 4-Way 10-Way Top-1 Top-5

EEGITNet 76.69 ± 12.97 56.98 ± 16.31 36.35 ± 15.11 5.75 ± 3.62 18.14 ± 9.40
EEGConformer 76.17 ± 13.13 56.29 ± 16.70 34.72 ± 14.79 3.98 ± 2.80 17.10 ± 9.21
ShallowFBCSPNet 74.32 ± 12.14 53.97 ± 15.81 33.48 ± 14.35 6.10 ± 4.61 16.53 ± 9.94
EEGNetV4 92.81 ± 2.22 83.15 ± 4.20 67.81 ± 6.11 19.51 ± 5.19 48.99 ± 6.75
B.D. 78.42 ± 8.81 58.24 ± 12.13 37.97 ± 11.38 5.88 ± 3.49 18.61 ± 7.81
NICE 93.69 ± 2.15 84.27 ± 5.27 69.91 ± 8.21 21.52 ± 5.90 51.57 ± 10.97
MLP 84.08 ± 3.42 67.39 ± 5.71 46.29 ± 6.23 7.34 ± 2.14 24.39 ± 5.18
ATM-S (Ours) 94.92 ± 1.45 87.91 ± 3.14 75.37 ± 5.77 26.13 ± 8.15 55.32 ± 10.57
ATM-E (Ours) 92.99 ± 2.20 83.81 ± 4.46 68.87 ± 7.27 22.40 ± 6.62 50.59 ± 9.59

Subject independent - leave one subject for test (batch size=1024)

Methods 2-Way 4-Way 10-Way Top-1 Top-5

EEGNetV4 82.85 ± 3.62 64.65 ± 6.29 42.35 ± 7.10 6.25 ± 2.56 20.95 ± 5.73
EEGConformer 56.54 ± 4.00 31.80 ± 3.20 13.89 ± 2.01 0.87 ± 0.33 4.42 ± 1.20
ShallowFBCSPNet 75.76 ± 2.49 53.63 ± 3.58 31.43 ± 4.30 2.51 ± 1.31 12.03 ± 2.78
EEGNetV4 82.60 ± 3.17 64.28 ± 5.44 42.24 ± 6.10 6.13 ± 2.40 21.23 ± 5.19
B.D. 72.84 ± 12.41 51.41 ± 15.10 31.67 ± 12.96 4.10 ± 2.72 14.46 ± 7.97
NICE 83.88 ± 2.57 66.14 ± 5.30 45.13 ± 5.85 8.24 ± 3.01 23.76 ± 5.09
MLP 75.80 ± 2.45 55.08 ± 3.07 34.05 ± 2.83 4.46 ± 0.81 15.26 ± 2.34
ATM-S (Ours) 83.72 ± 3.01 66.91 ± 5.41 46.53 ± 6.24 8.24 ± 2.73 25.36 ± 6.24
ATM-E (Ours) 80.65 ± 3.11 61.65 ± 5.31 39.66 ± 6.44 7.00 ± 2.20 21.12 ± 5.25
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we accurately explain the drawbacks of current
use of fMRI for image reconstruction and some past EEG decoding methods in the field
of brain-computer interfaces. We propose a new EEG encoder and image reconstruction
framework, and achieve impressive performance on zero-shot decoding and reconstruction
tasks. Our work provides valuable guidance toward practicality in EEG decoding and image
reconstructing.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We dedicate a paragraph in Section 5 to explain the shortcomings of the current
work and future improvement directions in more detail.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our theory mainly involves the theory related to the diffusion model, and we
have relatively fully proofed it in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We not only describe the experimental settings in detail in the experimental
part of the main paper, but also provide comprehensive supplementary instructions in the
Appendix B of supplementary materials. Of course we also provide code for reviewers to
review.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide an anonymous code repository link at the end of the abstract to
facilitate review by reviewers. We have detailed how to reproduce our experimental results
step by step in the readme document of the code repository. We guarantee that all our results
are reproducible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the configuration during preprocessing, training, and testing of
our data in detail in the experimental section of the paper. Full details are provided with the
anonymous code repository, with detailed supplementary instructions in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: In the box plots and line charts in this article, we provide accurate error bars to
describe the performance differences between different settings and different subjects.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the Section 3.1 of this article, we dedicate a section to describe in detail the
environment configuration for running our experiments. We ensure that important results
can be reproduced intact.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully adhere to the NeurIPS Code of Ethics throughout the entire process.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: As a work on decoding and reconstructing brain activity from neural data, our
method uses authorized and publicly available EEG and MEG datasets. All our experiments
produced no other negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not crawl the dataset online.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the datasets we used and the methods used to evaluate performance.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We open up the code and model weights of our method for reproducible results.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We used publicly available datasets containing EEG and MEG from human
subjects studies. We strictly adhere to the relevant requirements of neuroscience ethics.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Our work does not involve crowdsourcing or human subjects research. We are
using publicly available datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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