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ABSTRACT

Classical deep neural networks are limited in their ability to learn from emerging
streams of training data. When trained sequentially on new or evolving tasks, their
performance degrades sharply, making them inappropriate in real-world use cases.
Existing methods tackle it by either storing old data samples or only updating a
parameter set of deep neural networks, which, however, demands a large memory
budget or spoils the flexibility of models to learn the incremented task distribution.
In this paper, we shed light on an on-call transfer set to provide past experiences
whenever a new task arises in the data stream. In particular, we propose a Cost-
Free Incremental Learning (CF-IL) not only to replay past experiences the model
has learned but also to perform this in a cost free manner. Towards this end,
we introduced a memory recovery paradigm in which we query the network to
synthesize past exemplars whenever a new task emerges. Thus, our method needs
no extra memory for data buffering or network growing, besides calls the proposed
memory recovery paradigm to provide past exemplars, named a transfer set in
order to mitigate catastrophically forgetting the former tasks in the Incremental
Learning (IL) setup. Moreover, in contrast with recently proposed methods, the
suggested paradigm does not desire a parallel architecture since it only relies on
the learner network. Compared to the state-of-the-art data techniques without
buffering past data samples, CF-IL demonstrates significantly better performance
on the well-known datasets whether a task oracle is available in test time (Task-IL)
or not (Class-IL)1.

1 INTRODUCTION

Conventional Deep Neural Networks (DNNs) are typically trained in an offline batch setting where
all data are available at once. However, in real-world settings, models may incrementally encounter
new classes when trained online. In such scenarios, deep learning models suffer from catastrophic
forgetting McCloskey & Cohen (1989), meaning they forget the previously obtained knowledge
when adapting to the new information from the incoming observations. This is mainly because,
models overwrite the decisive parameters for earlier tasks while learning the new one.

Incremental Learning (IL) methods aim at training a single DNN from an unlimited stream of data,
mitigating catastrophic forgetting conditioned on the limited computational overhead and memory
budget. In the IL literature, the typical setting is a model to learn many tasks sequentially where
each task contains one or more disjoint classification problems. The majority of the existing works
assume that task identities are provided at the test time so that one can select the relevant part of the
network for each example. This setup has been named task-IL, where a more general circumstance
is that task labels are available only during training, has been named class-IL.

Recently, various approaches have been put forward to solve catastrophic forgetting. Some works
investigate on parameter isolation approaches using either expanding network architecture (Aljundi
et al., 2017; Xu & Zhu, 2018; Yoon et al., 2017; Rosenfeld & Tsotsos, 2018) or considering a
fixed-sized set of model parameters (Masse et al., 2018), pruning (Mallya & Lazebnik, 2018) to

1The code is available at https://github.com/MozhganPourKeshavarz/Cost-Free-Incremental-Learning
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learn a new task. Thus, they are only applicable to the task incremental scenario. Besides, several
studies suggest a regularization term added to the loss function (Kirkpatrick et al., 2017; Aljundi
et al., 2018; Zenke et al., 2017; Nguyen et al., 2017) to preserve the knowledge of previous classes
without a need for knowing the task label during inference. Despite the increasing number of these
methodologies, they can not reach a reasonable performance. Another followed terminology is
experience replay-based methods which store actual data samples from the past (Buzzega et al.,
2020; Riemer et al., 2018; Chaudhry et al., 2018) to alleviate catastrophic forgetting problem, where
more of the recent state-of-the-art (SOTA) works fall into this category. Despite the success of
this approach, they suffer from a main limitation that is the fixed memory budget when increasing
the number of classes, leading to severe performance degradation. To overcome this constraint,
several works propose to generate past data samples (Zhai et al., 2019), as pseudo-data examples,
conditioned on the model underlying distribution. Although their method are considered a data-free
approach by discarding the need of storing real data, they achieve better performance than previous
data-free works. However, one main drawback that these approaches encounter is a need for a high-
capacity auxiliary network to generate data which increase the complexity of the system in terms of
training-difficulty and computation overhead.

In this paper, we propose a novel Cost-Free Incremental Learning (CF-IL) paradigm, which allows
the model to remember previous knowledge by itself, thereby eliminating the need for external
memory. Also, in the proposed method, there is no need for a parallel network to generate past
exemplars. Besides, we ask the learner network to remember what it has learned before learning
new classes. Inspired by (Fredrikson et al., 2015; He et al., 2019; Nayak et al., 2019), we propose
a solution to reply the previous experiences by recovering the learner network memory. The main
idea is having only the learned network to not only remember what it has learned but also stay
learned while encountering newly received knowledge, much like how humans continually learn
and remember them by themselves with no external help. The most likely method to learn in this
way is the regularization-based method. However, they still could not compromise between human-
like learning and performance. Besides, our method can achieve a better result by a significant
margin with no additional cost.

In summary, the main contributions of this paper are: (1)To the best of our knowledge, we introduce,
for the first time, the idea of CF-IL to make experience replay without a need to a parallel auxiliary
network, or any other additional requirement, (2)Since we only rely on the learner network, there
is no need for buffering past data samples, extracted prior knowledge, and a parallel high-capacity
network, resulting in significantly reduced computational cost and memory footprint, and (3)Our
method compromises between decreasing memory budget and maintaining performance comparing
to the current SOTA task on both class and task incremental learning methods.

2 RELATED WORK

Several studies have been carried out to tackle catastrophic forgetting which falls into four categories
as follows.

Model Growing: This approach is the first investigations into incremental learning in which a new
set of network parameters is dedicated for each task in a dynamic architecture networks (Aljundi
et al., 2017; Xu & Zhu, 2018; Yoon et al., 2017; Rosenfeld & Tsotsos, 2018). Therefore, they
require the task label to be known at test time to trigger the correct state of the network, which can
not be employed in the class-IL setting where task labels are not provided. Moreover, maintaining
class incremental performance can be met at the cost of limited scalability.

Memory Replay: These methods allow access to a fixed memory buffer to hold actual samples
(Rebuffi et al., 2017; Isele & Cosgun, 2018; Chaudhry et al., 2019; Rolnick et al., 2018). When
learning new tasks, samples from the former tasks are either reused as model inputs for rehearsal or
to constrain optimization (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018) of the recent task loss
to prevent preceding task interference. Although this approach is pioneering, its main limitation is a
fixed budget, which caused the bias problem (Hou et al., 2019; Wu et al., 2019) by the imbalanced
number of old and new class training samples (Belouadah & Popescu, 2019). In the meantime,
some works explore a pseudo-memory replay (Robins, 1995; Atkinson et al.) approach in which a
generative model is adopted to synthesize past samples when facing a new task resulting increasing
training complexity.
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Figure 1: Overview of the proposed approach. When a new incremented task data I emerge, the
memory recovery paradigmR(L) is called to generate transfer set S, including synthesized images
for the classes that the learner network L has learned before. In the proposed recovery engine,
we first generate preliminary model outputs {V} for each learned class and then form a refined set
{V}∗ by applying a constraint F({V}, γ) using a dynamic recommender vector γ to adjust due to
underlying distribution. Then, a random noise input is initialized to be optimized conditioned on
the refined output {V}∗. This procedure is performed for each learned class several times to form
the transfer set S. Finally, the learner network is retrained on the combined dataset D, including
the transfer set S and new incremented task data I using a two-part cost function composing a
classification (CE) and knowledge distillation (KD) terms, respectively.

Regularization-based: These works penalize the model for updating important parameters for ear-
lier tasks by adding a regularization term to the loss function. The importance score of each parame-
ter can be estimated through the Fisher Information Matrix (Kirkpatrick et al., 2017), gradient extent
(Aljundi et al., 2018), and uncertainty estimation using Bayesian Neural Network (Nguyen et al.,
2017). Although the vast amount of works falls into this family, soft penalties might not be sufficient
to restrict the optimization process to stay in the feasible region of previous tasks, particularly with
long sequences (Farquhar & Gal, 2018), resulting in increased forgetting of earlier tasks.

Parameter Isolation: These methods rely on estimating binary masks that allocate a fixed number
of parameters for each task where the network architecture remains static. Such masks can be
estimated either by random assignment (Masse et al., 2018), pruning (Mallya & Lazebnik, 2018), or
gradient descent (Mallya et al., 2018; Serra et al., 2018). However, this family is limited to the task
incremental setting and better agreed for learning a long sequence of tasks when model capacity is
not a concern, and optimal performance is the priority.

3 PROBLEM SETTING

Without loss of generality, a classical IL scenario can be assumed as a set T = {T1, . . . , TN} of N
different tasks. Each task Ti takes the form of a classification problem, Ti = {xj , yj}i×lj=1 , where
yj ∈ {1, . . . , l}. When a new task arrives we ask the network to learn to classify the new images,
being simultaneously able to solve the former tasks. Our method only relies on a single DNN
network, named the learner networkL, in all steps with no external memory and no parallel network.
We formalize the setting conditioned on the absence of a task oracle at test time as follows: Task-
IL and Class-IL. In the Task-IL setting, the learner network L is composed of a feature extractor
followed by a multiple heads where each head is composed of a linear classifier with a softmax
activation which computes task-specific classification probabilities. On the contrary, in the Class-IL
setting, the learner network has a single head while is shared over all the tasks that make the Class-IL
more challenging. In this paper, we consider both settings and report the results regarding them.

4 PROPOSED METHOD

Availability of the actual data samples can enable solving for straightforward retraining, thus learn-
ing incrementally can overcome catastrophic forgetting problem. However, preserving earlier data
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is not straightforward in real-world scenarios due to computational overhead and privacy concerns.
In this paper, the main idea is to recall (instead of preserving) past exemplars, known as network
experiences, without using either a parallel network or memory buffer. To this end, we propose CF-
IL in which, whenever a new task arises, we trigger a memory recovery paradigm R(L) to obtain a
transfer set S of past experiences as surrogates for the earlier tasks observations. Then, we form a
combined training dataset D from the recovered transfer set S and the current incremented class(es)
I data. Thus, the learner network L, which is supposed to learn the task sequences T incrementally,
is retrained on D in each time step. In the suggested Memory Recovery Paradigm (MRP), we first
model the learner network output L regarding the case when a real sample from the past is fed to
the model. These outputs are provided by generating initial output vectors {V} and refining them
by applying the F(V, γ) constraint, as a supervision, to perform adjustment due to underlying dis-
tribution obtained from a dynamic recommender γ, resulting in reaching {V}∗. Fig. 1 shows a clear
overview of the proposed method. In the rest of this section, we first describe the proposed CF-IL
and then outline the suggested MRP in detail.

4.1 COST-FREE INCREMENTAL LEARNING

In this work, the cost-free incremental learning term expresses that there is no need for a memory
buffer to learn incrementally, while the DNN model complexity is fixed. Besides, we synthesize a
transfer set S as past experiences of the network in a cost-free manner. To put this idea into practice,
we run the following steps, which are listed in Alg. 1. Whenever CF-IL receives a new incremented
task data I = {(xi, yi) , 1 ≤ i ≤ L, yi ∈ [1, . . . , l]}, where L is the total number of samples of l
classes belonging to the new incremented task T t, it initiates the memory recovery procedureR(L)
(Alg. 2) to create the transfer set S = {(x̂j , ŷj) , 1 ≤ j ≤ K, ŷj ∈ [1, . . . , k]}, where K is the total
number of synthesized samples of k classes that have been learned by the learner network L. Next,
the samples from the transfer set S is fed to the learner network, and the resulting network’s logits
O = [o1(x), . . . , oK(x)] for all samples are stored. Then, we form a combined dataset D per each
task Ti, i ∈ [1, . . . , N ] in the task sequence T . Finally, the learner network L parameters are updated
to minimize a cost function such a way that each data sample from the new incremented class I will
be classified correctly, as classification loss, and for the samples in S, current network’s logits will
be reproduced as close as those have been stored in the previous step, as knowledge distillation loss
by KD term.

We employ the softmax cross entropy as the classification loss, which is computed using Equ. 1:

`CE(L(x; θL), y) = −
∑

(x,y)∈I

l∑
i=1

δy=i log [pi(x)] (1)

where δy=i is the indicator function and pi(x) is the output probability (i.e, softmax of logits) of the
ith class in l new incremented class(es).

For the distillation purpose, we adopt knowledge distillation from network output (logits), known
as dark knowledge Hinton et al. (2015); Wang & Yoon (2020); Buzzega et al. (2020), and our
objective is to minimize the Euclidean distance between the stored logits in the transfer set O =

[o1(x), . . . , oK(x)] and those generated by the learner network Ô = [ô1(x), . . . , ôK(x)] as follows:

`KD(L(x; θL),O) =
∑

(x,y)∈S

k∑
j=1

∥∥oj(x)− ôj(x)
∥∥2
2

(2)

Having a look at both cost functions, we define the total loss function by a linear combination as
below:

`Total = `CE + λ`KD (3)
where λ is predefined parameter to control the degree of distillation.

4.2 MEMORY RECOVERY PARADIGM

The proposed MRP is devised to synthesize the previously learned experiences (knowledge) by L.
In particular, we synthesis past samples in a way that the learner network strongly believes them to
be actual samples that belong to categories in the underlying data distribution. Therefore, they are
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Figure 2: Visualization of the sampled recovered data from the learner network using the proposed
memory recovery paradigm, while training on CIFAR10 dataset.

the network acquaintance that might not be natural-looking data. It is worth noting that we only use
the learned parameters of the learner model L since they can be interpreted as the memory of the
model in which the essence of training has been saved and encoded.

In the suggested paradigm, we first model the network output space using a two-stepped approach
and then generate synthesized samples by back-propagating the modeled output through the net-
work, where each is described in the rest. The whole procedure is shown in Alg. 2.

Modeling the Network Output Space In the first phase, we model the output space of the learner
network. Suppose yi,j ∼ L(x, θL)(Ti,Cj) is the actual model output when jth class of ith task
observation was fed to the network. To reproduce such output in the absence of actual previous one,
(V∗)i,j ∼ yi,j , we consider a two-stepped approach as is explained bellow.

In (Nayak et al., 2019), it is investigated that sampling the output vector from a Dirichlet distri-
bution in which ingredients are in the range [0, 1] and whose sum is one is a straightforward way
for modelling the output space of the learner network. Despite interesting results, this method lacks
preserving extra class similarity, hence generating outlier vectors that do not follow the networks
underlying distribution. Thus, false memory happens when we query the memory for a specific
target. In this case, the result of memory recovery is a mixture of some targets that do not really
exist in the past experience, resulting in confusing the learner in the retraining phase. In our novel
memory recovery process, we make supervision as the second step, to detect such outliers to boost
the retrieved memory in terms of generating a single-target-based transfer set. To do this, we make
supervision by applying a constraint on the generated vector F(V, γ), in which an arbitrary gen-
erated vector from the previous step V is a good candidate only if it has a distance lower than a
predefined threshold η to a dynamic recommender γ. This recommendation vector supposed to be
declared at a low-cost and represent the class similarity as well. Considering these concerns, we im-
ply a dynamic confusion matrix CM that is constructed incrementally when training each task. An
arbitrary confusion matrix is a table that is typically used to describe the performance of a classifi-
cation model. Intuitively, when a model wrongly classifies some samples to class c, it means class c
is highly correlated with the target class. On the other side, when a model always correctly classifies
class c from the target class, it means class c is highly distinguishable from the target class. This
is the exact expected result from a DNN model output. Mathematically, we check if the generated
vector Vi for arbitrary class i, has a distance smaller than a predefined threshold η to the ith row of
the constructed dynamic confusion matrix CM i, so as to obtain the checked output vector V∗i.
Back propagate Through the Network In the second phase, conditioned on the network’s gener-
ated outputs {V∗}, we synthesize a transfer set S . For an arbitrary generated vector V∗, we start with
a random noisy image x sampled from a uniform distribution in the range [0, 1] and update it till the
cross-entropy (CE) loss between the generated model output V∗ and the model output predicted by
the learner network L (x, θT , τ) is minimized.

x̄ = argmin `CE (L (x, θL, τ) ,y) (4)

where τ is the temperature value used in the softmax layer (Hinton et al., 2015) for the distillation
purpose. This procedure is renewed for each of the k classes has been learned K/k times, where K
is the whole number of samples to be formed the transfer set S.

The proposed paradigm is a remedy for memory bottlenecks so that the model alone can alleviate
catastrophic forgetting, resulting in remarkable performance among the data-free works on both
task-IL and class-IL, as will be seen in the next section.
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Algorithm 1: Cost-Free Incremental Learning
Input : Task sequence set T , Transfer set size

K, Learner model parameters θL
Require: Confusion Matrix CM from L,

Incremented class(es) I
// memory recovery paradigm
S ← R(θL,K,CM)
L : number of samples in I
// store network outputs and Ground

Truth for S with pre-update
parameters

for (x, y) in S do
O ← L(x; θL)

// form combined training set

D ←
⋃i=L

i=1 {(xi, yi,−) : xi ∈ It} ∪⋃j=K
j=1 {(xj , yj ,Oj) : xj ∈ St}

// define a two-parted loss
function

`Total =
Σ

(x,y,O)∈D
[ΣN

i=1`CE(L(xi; θL), yi)] +

λ[ΣK
j=1`KD(L(xj ; θL),Oj)]

// optimize the network for the
total loss

for (x, y) in range(K + L) do
sample a batch b1 form D, where
(x, y,O) ∈ S

sample a batch b2 form D, where (x, y) ∈ I
update θL by taking a SGD step on b1 + b2

loss `Total(θL)

Algorithm 2: Mem. Recovery Paradigm
Input : Learner model parameters θL,

Transfer set size K, Confusion
Matrix CM

Output : Transfer set S
Require: Dirichlet distribution

parameters α, β, Thresh. η,
Temperature for distillation τ

k : number of classes from L
p : K/k // Number of samples
per class
S ← {}
Constraint F(X , γ)← (‖X − γ‖22 < η)
for i = 1 : k do

γ ← CM i

for j = 1 : p do
do

Sample Vi
j ←

Dir
(
d, β ×αi

)
V∗ij ← Vi

j

while Constraint F(Vi
j , γ)

passed
Initialize xij to random noise
x̄ij ← optimize xij with

`CE

(
V∗ij ,L

(
xij , θL, τ

))
S ← S ∪ x̄ij

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate our method on two commonly-used datasets for incremental image classification tasks:
CIFAR-10 (Krizhevsky et al., 2009) and Tiny-ImageNet (Le & Yang, 2015). To form incremented
tasks, we randomly choose 2, 20 classes for each task resulting in a sequence of 5, 20 sequential
tasks for CIFAR-10 and Tiny-ImageNet, respectively, which is a typical configuration in literature.
Following iCaRL (Rebuffi et al., 2017), a ResNet18 (He et al., 2016) is used in the learner network
without pre-training. To perform a fair comparison with other IL methods, we train the networks
using the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.1 with other param-
eters set to their default values. We consider the number of epochs per task concerning the dataset
complexity; thus, we set it to 50 for Sequential CIFAR-10 and 100 for Sequential Tiny-ImageNet,
respectively. In the training phase, we select a batch of data from the incremented task and a mini-
batch of data from the transfer set S, where depending on the hardware restriction, we set both to
32. We show all the classes in the same fixed order across different runs, and results are averaged
across ten runs, each involving a different initialization. For visual simplicity, we only report mean
values. Following the convention of the ML community, hyperparams are selected by performing a
grid-search on a validation set, obtained by sampling 10% of the training set. In the MRP, we con-
sider the temperature value τ to 20 for the distillation purpose. In the Dirichlet distribution, we set β
in [1, 0.1] for each dataset, where half the transfer set S is synthesized by 1 and the rest with 0.1 as
in (Nayak et al., 2019). The η value in the constraint step is empirically valued at 0.7. To optimize
the random noisy image, we employ the Adam optimizer with a learning rate of 0.01, while the
maximum number of iterations is set to 1500. For all experiments, we consider the average accuracy
across tasks as the evaluation criteria.
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Figure 3: Experimental results on CIFAR-10 dataset. (a) classification accuracy curves for CF-IL
with various transfer set size. Performance comparison of the CF-IL with various hyperparameters
λ (c) and η (d).

[0.015, 0.011, 0.018, 0.007, 0.017, 0.825, 0.012, 0.012, 0.068, 0.009] [0.029, 0.405, 0.010, 0.008, 0.012, 0.468, 0.019, 0.016, 0.018, 0.010]

Figure 4: Visualization of happened False Memory when retrieving data from the memory recovery
step (Right) and a correct sample which passed the second step in our introduced network output
modeling procedure (Left).

5.2 ABLATION STUDIES

Synthesized Transfer Set: We follow a two-step strategy to generate the network output in MRP.
Firstly, we follow the approach adopted in (Nayak et al., 2019) in which a Dirichlet distribution
Dir(d, β×α) is utilized to generate the vectors in sotmax space, where we need to set two parameters
in this distribution: α, and β (d is the dimension of the expected vector). α is the concentration
parameter to control the probability mass of a sample from the distribution. Decreasing its value
caused a vector that is hugely concentrated in only a few ingredients and vice versa. α is interpreted
as a class similarity vector obtained from the network’s final layer and can be scaled with the β
parameter. This method encounters false memory since some generated vectors are a mix-up of
several targets. To tackle this problem, we suggest applying a constraint to refine these vectors. An
examples of false memory and a correct one for the target class dog are shown in Fig. 4. Moreover,
we present several samples of retrieved images belonging to several classes, when querying the
learner network L using our novel MRP, as shown in Fig. 2. We can see how the network retains its
learned knowledge in its memory which is a specific pattern representing the target classes.

Hyper-parameters:λ, η and S: λ controls how much the transfer set S should be attended as Eq.
3, and η is related to how much the generated model output should be close to the recommendation
vector. To select the best one for the two mentioned parameter, we perform grid search, where a brief
of examination are reported in Fig. 3 (c) and (d), where a take λ and η as 0.3 and 0.45, respectively.
We also examine the impact of transfer set size on the performance of the incrementally learning
classes. To this end, we set up the proposed CF-IL on CIFAR-10 dataset with different sizes of
transfer sets, including [50, 500, 5000, 6000, 7000], wherein in the one before the latest case, the
retrieved data from the past is equal to the incremented class. Fig. 3 (a) shows the performance.
Obviously, increasing the number of synthesized samples in the transfer set has a significant impact
on the performance. It is worth noting that an optimal size for the transfer set depends on the task
complexity in terms of the number of classes and variations of the actual images. Thus, increasing
the set size higher than a reasonable one might increase the risk of overfitting.

CF-IL in memory-based works: We conduct a set of experiments on CIFAR-100 by adopting our
MRP as a buffer booster which means it can be used as an extension in any buffer-based works. In
this case, with having a fixed-sized buffer to store actual data from the past, we add the transfer set
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resulting in more balanced data when training on a new arrival task. We also consider two more cases
in which no actual data is buffered, and a few samples (10 samples per class) are buffered from the
past, specified by buffer size. The evaluation results are reported in the table below, where N means
the incremental phases equal the number of tasks. As shown in the table, while having the same IL
method, our method is a powerful extension while it has more consistent results when increasing the
number of incremental phases means our MRP can synthesise past samples effectively regardless of
how many classes have been learned by the learner network.

Table 1: Classification results (average accuracy) on CIFAR-100 dataset for buffer-based methods and ablative
models with adopting MRP as a buffer booster.

Method / N 5 10 25 buffer size
iCaRL 57.12 52.66 48.22 2K
iCaRL + mnemonics 59.88 57.53 54.30 2K
LUCIR 63.17 60.14 57.54 2K
LUCIR + mnemonics 64.95 63.25 63.70 2K
iCaRL + MRP 61.03 59.79 58.01 2K
LUCIR + MRP 65.32 65.21 65.80 2K
CF-IL 62.37 62.01 61.79 0
CF-IL 63.64 63.18 63.12 1K

5.3 COMPARED METHODS

To have a fair comparison, we first should determine that our work falls into which categories are
mentioned in Sec 2. Secondly, discuss two main aspects that should be considered when it comes
to comparing methods: Performance, complexity. Obviously, our method is neither model-growing
PNN (Rusu et al., 2016) nor parameter-isolation since our learner network has a fixed architecture
while the whole parameters are share among all tasks. In terms of replaying past samples, CF-IL
may be counted as a member of memory-replay-based group MER (Riemer et al., 2018), iCaRL
(Rebuffi et al., 2017), DER (Buzzega et al., 2020), GEM (Lopez-Paz & Ranzato, 2017), a-GEM
(Chaudhry et al., 2018), GSS (Aljundi et al., 2019), TPCIL (Tao et al., 2020), Mnemonics (Liu
et al., 2020), BiC (Wu et al., 2019) that more recent SOTAs fall into this category. However, keeping
past examples in a fixed-size buffer is not applicable when growing the number of tasks and has a
memory overhead resulting in increasing complexity of the system. Keeping these issues in mind,
we compare our method with prominent works in this category while allocating the same buffer
size and omit the buffer for our approach. Our work somehow can be regarded as a data-free work,
so it falls into the regularization-based group oEWC (Schwarz et al., 2018), SI (Zenke et al., 2017),
ALASSO (Park et al., 2019), UCB (Ebrahimi et al., 2019). Although this category of works performs
incremental learning without any equipment, they can’t gain outstanding performance, while CF-IL
achieves remarkable results. The more comparable group of works is pseudo-memory-rehearsal
DGM (Ostapenko et al., 2019), DGR (Shin et al., 2017), MeRGAN (Wu et al., 2018) which try to
synthesis past knowledge. Thanks to the generative adversarial networks, this group of papers meet
a comparable result against memory-rehearsal works without buffering strategy. However, CF-IL
has the same terminology while reducing the complexity by eliminating the need for an auxiliary
network along with improving performance.

5.4 RESULTS

Table 2 shows the performance of CF-IL in comparison to the other mentioned methods on the two
commonly used considered datasets. Our proposed method CF-IL has achieved the SOTA perfor-
mance in almost all settings. PNN (Rusu et al., 2016), one of the dynamic architecture works, pro-
duces the most substantial results in the task-IL setting, specifically 95.13% and 67.84% in CIFAR-
10 and tiny-ImageNet, respectively. However, it suffers from an exponential memory increasing
issue, making it impossible in class-IL and challenging datasets with more classes. Besides, our
method won second place in the Task-IL setting at the cost of keeping the network architecture fixed
with margins 2.01% on CIFAR-10 and 0.42% on Tiny-ImageNet than the top rank. Compared with
regularization-based methods SI (Zenke et al., 2017), oEWC (Schwarz et al., 2018), and ALASSO
(Park et al., 2019) the gap does not seem to be bridged, indicating that the old parameter set’s regu-
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Table 2: Classification results (average accuracy) for IL benchmarks, averaged across 10 runs. ”-” denotes
experiments we were unable to run, because of compatibility issues. Best performance is marked in bold in
each section. We use public code (Buzzega et al., 2020) to reproduce results. Sections show joint training,
model growing, parameter isolation, memory replay, regularization, and pseudo memory replay from the top.

Method CIFAR-10 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL

JOINT 92.02 98.29 59.45 82.07
PNN - 95.131 - 67.84
HAL 41.79 84.54 - -
MER 57.74 93.61 9.99 48.64
GEM 26.20 92.16 - -
a-GEM 22.67 89.48 8.06 25.33
iCaRL 47.55 88.22 9.38 31.55
DER 70.51 93.40 17.75 51.78
BiC 49.18 89.91 11.09 32.94
WA 53.76 94.21 15.42 37.12
Mnemonics 57.26 95.91 23.47 42.36
TPCIL 58.72 96.67 25.03 48.41
oEWC 19.49 68.29 7.58 19.20
SI 19.48 68.05 6.58 36.32
ALA 25.19 73.79 17.02 48.07
UCB 56.23 78.56 23.43 49.01
DGM 71.94 89.91 28.45 61.32
DGR 49.69 79.86 17.38 38.41
MeRGAN 66.76 84.76 23.86 58.32
CF-IL (Ours) 75.34 93.12 33.06 67.42

larization is not sufficient to mitigate forgetting since the wights’ importance, calculated in an earlier
task, might be unreliable in later ones. Even though CF-IL works without allocating memory buffer,
our method can achieve excellent results in both class-IL and task-IL on both datasets. In particular,
our proposed method obtains 75.43%, 93.12% in the class-IL, Task-IL settings on the CIFAR-10,
and 733.06%, 67.42% in the class-IL, Task-IL settings on the Tiny-ImageNet, respectively, making
the relative improvement over the recent SOTA TPCIL (Tao et al., 2020) by 16.62%, 8.03% in the
class-IL settings on the CIFAR-10 and Tiny-ImageNet, and 19.01% in the task-IL in the more chal-
lenging Tiny-ImageNet respectively. We further investigate the impact of buffering samples against
synthesizing samples in the ablation study. Compared to pseudo-rehearsal-based methods, which
have recently gained much attention due to the power of simulating past experiences rather than
storing them, the proposed method shows a significant outperformance in both accuracy and pro-
cessing time since there is no auxiliary network needed. In particular, our method achieves a relative
improvement of 3.40%,3.21%,4.61%,6.1% over DGM (Ostapenko et al., 2019).

6 CONCLUSION

We have proposed a novel strategy for IL to address the memory issue, which is crucial when the
number of classes becomes large. In particular, we perform IL in both class-IL and task-IL settings
in a cost-free manner. This strategy is implemented through a memory recovery paradigm with
no additional equipment. It only relies on the single DNN, known as the learner, to retrieve the
network’s past knowledge as a transfer set to look back on learned experiences. Our method has
outstanding results, compared with recent prominent works.
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