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Abstract

Improving the quality and size of the training001
corpus is known to enhance overall downstream002
performance of language models on general003
language understanding tasks. However, the004
impact of text complexity on downstream per-005
formance has been less studied. Text complex-006
ity refers to how much easier or harder a text is007
to read compared to others, taking into account008
lexical (e.g., vocabulary choice), syntactic (e.g.,009
sentence structure), and semantic complexity010
(e.g., information content), among others. In011
this work, we focus on reducing lexical and012
syntactic complexity, while controlling for se-013
mantic complexity. We ask two core questions:014
(1) Does text complexity matter in pretraining?015
and (2) How does the text complexity of our016
pretraining corpora affect the performance of017
language models on general language under-018
standing tasks? To answer these questions, we019
simplify human-written texts using a large lan-020
guage model (with the goal of retaining the021
information content) and pretrain GPT2-small022
models on both the original and simplified ver-023
sions. We show empirical evidence that lexical024
and syntactic complexity do not significantly025
affect performance on general language under-026
standing tasks, emphasizing the importance of027
information content when pretraining language028
models.029

1 Introduction030

Let’s compare two versions of text:031

(A) As the sunset cast its warm orange glow over032

Manila Bay, people relaxed on the sideline033

benches, enjoying the peaceful view of the034

sunset.035

(B) The sunset gave Manila Bay a warm, orange036

light. People sat on the benches and enjoyed037

the view of the sunset.038
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Figure 1: Relative performance of gpt2-simp (trained
on simplified texts) vs. gpt2-hw (trained on human-
written texts) across the 8 SuperGLUE tasks shows min-
imal differences, suggesting text complexity has little
impact on general language understanding. Accuracy is
used for all tasks.

The two versions convey the same core mean- 039

ing, but one uses more nuanced, complex language, 040

whereas the other is simpler and less nuanced. This 041

can be likened to lossy compression, where ver- 042

sion (B) requires fewer bits to represent the in- 043

formation in (A) but loses some of its nuance. It 044

compresses by using common words and simpler 045

sentence structures while retaining the core infor- 046

mation. 047

What if our corpus is more like (B)? Can we 048

still learn useful representations by training solely 049

on simplified text with a simpler vocabulary and 050

sentence structure? To answer this, we explore 051

the relationship between text complexity and down- 052

stream performance, focusing on lexical and syntac- 053

tic complexity while keeping information content 054

mostly constant. 055

It is well-known that language models acquire 056

world knowledge during pretraining (Petroni et al., 057
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2019; Roberts et al., 2020; Zhang et al., 2021; Wei058

et al., 2022), and transfer learning is more effective059

when the pretraining corpus aligns with the target060

task domain (Ruder and Plank, 2017; Gururangan061

et al., 2020). For example, pretraining on medical062

texts and fine-tuning on medical tasks is more effec-063

tive than pretraining on social media texts. In other064

words, a model’s knowledge significantly impacts065

its downstream performance. Therefore, to isolate066

the effect of text complexity, it’s crucial to control067

for information content. In this paper, we ask two068

core questions:069

(1) Can we learn useful representations in our070

base models by training solely on simpler text,071

with simpler vocabulary and sentence struc-072

ture?073

(2) How does the text complexity of our pretrain-074

ing corpora impact language model perfor-075

mance on general understanding tasks?076

To answer these questions, we collect human-077

written texts and transform them into simpler lan-078

guage using a Large Language Model (LLM) while079

preserving the core information content. We pre-080

train GPT2-small models (Radford et al., 2019)081

from scratch in two controlled setups, one on082

human-written (more complex) texts and another083

on the simplified version of the same texts. Lastly,084

we finetune and evaluate these models on the Su-085

perGLUE benchmark (Wang et al., 2019), which086

is a collection of general language understanding087

tasks.088

Our empirical evidence shows that reducing lex-089

ical and syntactic complexity doesn’t significantly090

impact performance on general language under-091

standing tasks. This highlights that, at the pretrain-092

ing stage, the content of the training data matters093

more than its form.094

2 Related Work095

Text complexity (also known as readability).096

Text complexity or readability refers to how dif-097

ficult a text is to understand (DuBay, 2004), in-098

fluenced by linguistic factors such as word choice099

(e.g., "utilize" vs. "use"), sentence structure (com-100

plex vs. simple), and content type (academic vs.101

children’s books) (Dale and Chall, 1948, 1949;102

Graesser et al., 2004). Although other factors such103

as the reader’s background knowledge also affect104

readability (Ozuru et al., 2009), this work focuses105

solely on linguistic aspects.106

Several metrics have been proposed for readabil- 107

ity such as Flesch Reading Ease (Flesch, 1948) 108

(FRE), Dale–Chall (Dale and Chall, 1948), and 109

SMOG (Mc Laughlin, 1969). These formulas rely 110

on surface-level features like text length, word 111

count, and word length. While they’re useful es- 112

timates, they don’t tell the whole story. This lim- 113

itation has prompted the use of machine learning 114

and deep learning approaches (Hancke et al., 2012; 115

Imperial and Ong, 2021; Chatzipanagiotidis et al., 116

2021; Imperial, 2021; Meng et al., 2020) to capture 117

features beyond the surface level, such as coher- 118

ence and writing style. More recently, researchers 119

have begun exploring the use of Large Language 120

Models (LLMs) for estimating readability (Trott 121

and Rivière, 2024; Lee and Lee, 2023; Rooein et al., 122

2024). LLMs have shown strong correlations with 123

human judgments compared to traditional formulas 124

even without explicit finetuning (Trott and Rivière, 125

2024). However, using an LLM to score a large 126

corpus is costly. For this reason, we use FRE to 127

measure the complexity of our corpus. 128

Text simplification. Text simplification (TS) 129

aims to make text easier to understand while pre- 130

serving content (Agrawal and Carpuat, 2023; Alva- 131

Manchego et al., 2019; Truică et al., 2023). While 132

simplified texts tend to be shorter, that is not al- 133

ways the case (Shardlow, 2014). This is different 134

from Text Summarization, where the goal is to 135

shorten the text even if it changes the organization 136

and content. Saggion and Hirst (2017); Shardlow 137

(2014); Kriz et al. (2018) approached TS via word- 138

substitution by replacing difficult words with easier 139

synonyms using a lexicon. Other works approached 140

TS as a translation problem using statistical ma- 141

chine translation (SMT) (Wubben et al., 2012; Scar- 142

ton et al., 2018; Specia, 2010; Xu et al., 2016). 143

Beyond SMT approaches, other works employed 144

deep learning approaches such as encoder-decoder 145

models (Zhang and Lapata, 2017; Alva-Manchego 146

et al., 2019; Agrawal and Carpuat, 2023). Re- 147

cent works explore LLMs for text simplification 148

(Trott and Rivière, 2024; Imperial and Tayyar Mad- 149

abushi, 2023; Farajidizaji et al., 2024; Padovani 150

et al., 2024). While some works are concerned 151

with simplifying texts to a specific grade-level, we 152

are only concerned with making complex texts sim- 153

pler, similar to Trott and Rivière (2024), which 154

observes encouraging results on text simplification 155

just by prompting LLMs. In this work, we use an 156

LLM for text simplification. 157

2



Pretraining language models on simple texts.158

In recent years, there has been an increased in-159

terest in pretraining language models on simple160

texts. Zhao et al. (2023) found that a small lan-161

guage model (SLM), called BabyBERTa, trained162

on child-directed speech, performs on par with163

larger models on a set of probing tasks. Eldan and164

Li (2023) has shown that SLMs can learn to gener-165

ate coherent and fluent text by training on synthetic166

texts of short stories that contain only words that167

3- to 4-year-olds usually understand. Deshpande168

et al. (2023); Muckatira et al. (2024) has shown169

that SLMs pretrained on simplified language can170

achieve comparable performance to larger models171

when the problem is transformed to simple lan-172

guage. There is also a research community effort173

called “The BabyLM Challenge” (Warstadt et al.,174

2023; Hu et al., 2024) that emphasizes training on a175

fixed budget of 100 million words or less, sourced176

from texts intended for children, which are concep-177

tually simpler.178

Pretraining dataset design. Pretraining on mas-179

sive texts is one of the main drivers of performance180

for modern language models (Brown et al., 2020;181

Kaplan et al., 2020; Hoffmann et al., 2022). Pre-182

training data design choices such as domain com-183

position, quality and toxicity filters, and collec-184

tion date affect model performance in ways that185

cannot be adjusted by finetuning (Longpre et al.,186

2024). Most related to our work is Agrawal and187

Singh (2023) which studies the impact of corpus188

complexity on the downstream performance of lan-189

guage models. They observed that models trained190

on more complex texts (e.g., wiki), as measured by191

Flesch Reading Ease, yield stronger performance192

over less complex texts (e.g., children’s books).193

While we are trying to answer the same question,194

the main difference between Agrawal and Singh195

(2023) and our work is that we preserve the in-196

formation content and only vary the lexical and197

syntactic complexity.198

Prior works have shown encouraging results for199

pretraining on simple texts. However, there is no200

work that looks at the direct impact of text complex-201

ity, more specifically at the lexical and syntactic202

level, on the downstream performance of language203

models at a relatively larger data scale i.e. 2.1B204

tokens and 5 domains. This calls for controlled205

experiments that will give evidence that a useful206

model can be learned by just training on simple207

texts.208

3 Creating the Pretraining Datasets 209

3.1 Human-Written Corpora 210

We curated human-written English texts from two 211

publicly available datasets: Dolma v1.6 (Soldaini 212

et al., 2024) and Wiki-40B (Guo et al., 2020). Both 213

have permissive licenses1, and our usage complies 214

with their intended purposes. The final corpus has 215

around 2.34B tokens2 uniformly distributed across 216

5 domains: web, books, social media, academic, 217

and wiki. All domains are sourced from Dolma, 218

except for wiki which is from Wiki-40B. We limit 219

our dataset to 2.34B tokens because processing the 220

full corpus would be too expensive. This number is 221

based on Chinchilla Compute-Optimal guideline of 222

1:20 parameter-tokens ratio (Hoffmann et al., 2022) 223

as a rough guideline3. According to this, if we’re 224

using GPT2-small with 124M parameters, 2.48B is 225

a good dataset size. 226

Since Dolma and Wiki-40B are too large, we 227

only process a subset of shards. For Dolma, initial 228

subset per domain was picked manually (see Ap- 229

pendix A for more details). For Wiki-40B, we only 230

use English subset. For each domain subset, we 231

count the tokens and sample the longest documents 232

within the 75th-100th percentile for Wiki-40B and 233

the 50th-75th percentile for Dolma, continuing un- 234

til we reach 468M tokens per domain. We sample 235

within a specific percentile because outliers tend 236

to occur on extreme ends. The sampling strategy 237

prioritizes longer documents to enhance the mod- 238

els’ exposure to extended texts, aiming to improve 239

its ability to capture long-distance relationships 240

between dispersed pieces of information. 241

3.2 Text Simplification via Large Language 242

Model 243

We prompt Llama 3.1 8B instruction model 244

(Grattafiori et al., 2024) to transform human- 245

written texts into simplified texts. For efficient 246

inference, we use the INT8 quantized version4 of 247

the model and vLLM (Kwon et al., 2023) as our 248

LLM serving system. We discuss more about the 249

prompt engineering and include the final prompt in 250

Appendix B. 251

1ODC-BY license for Dolma, and Creative Commons for
Wikipedia.

2We used GPT2 Tokenizer: https://huggingface.co/
openai-community/gpt2.

3We initially used 117M as parameter count instead of
124M which is why our corpus is 2.34B.

4https://huggingface.co/neuralmagic/
Meta-Llama-3.1-8B-Instruct-quantized.w8a8

3
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We split the documents from the human-written252

corpora into paragraphs, resulting in a total of253

28.5M paragraphs. We apply the transformation254

paragraph-wise because the model tends to sum-255

marize rather than simplify multi-paragraph docu-256

ments. This approach preserves the original con-257

tent and structure. However, not all paragraphs are258

transformed. This can happen under three condi-259

tions: (1) when a paragraph is too short relative260

to its full document; (2) when a paragraph is too261

long; or (3) when the transformation is significantly262

shorter or longer than the original text. In the case263

of (3), we revert to the original text in the final264

corpus. We include a more detailed breakdown of265

these conditions in Appendix C.266

3.3 Resulting Simplified Texts267

The final simplified corpus has around 2.12B to-268

kens. There is a total of 28.5M paragraphs, of269

which 34.9% are not transformed (i.e., 22.21% are270

skipped and 12.69% are transformed but reverted271

back to the original). The domain distribution of272

the paragraphs that are not transformed are as fol-273

lows: web (26.85%), books (25.49%), social media274

(21.90%), academic (6.97%), and wiki (18.80%).275

Overall, this accounts for 36.69% of total tokens of276

the final simplified corpus. Note that most of these277

texts are very short or very long inputs that are278

not informative (e.g., author names, table of con-279

tents, etc.), or already concise enough to require no280

further simplification.281

To get a rough idea of what the simplified texts282

look like, see the following example:283

Original: Your comment really helped284

me feel better the most. I was sitting in285

my office, feeling so bad that I didn’t286

say how inappropriate and out of line his287

comments were, and this helped.288

Simplified: Your comment really helped289

me feel better. I was feeling bad because290

I didn’t speak up when someone made291

inappropriate comments.292

4 Experimental Setup293

In our study, we investigate the effect of text com-294

plexity on both the pretraining dynamics and down-295

stream performance of language models. To do296

this, we compare models trained on human-written297

texts with those trained on simplified texts, con-298

duct domain ablation experiments, and examine a299

curriculum approach that begins by presenting sim- 300

plified texts to the model, followed by transitioning 301

to complex texts. 302

4.1 Model Architecture and Training Details 303

We train GPT2-small models from scratch. Our 304

configuration follows the standard GPT2-small 305

setup: 124M parameter models with 12 transformer 306

layers, 12 attention heads, and a hidden dimension 307

of 768. These specifications are consistent with the 308

original GPT2 publication (Radford et al., 2019) as 309

implemented by HuggingFace5. All experiments 310

are conducted using 8x P100 GPUs. 311

4.2 Pretraining Configurations 312

4.2.1 Human-Written vs. Simplified 313

We investigate how text complexity influences the 314

model’s ability to learn adaptable representations. 315

Our primary motivation is to assess whether re- 316

ducing lexical and syntactic complexity—while 317

preserving semantic content—affects pretraining. 318

By comparing a model trained on original human- 319

written texts with one trained on simplified ver- 320

sions, we aim to isolate the specific role of text 321

complexity. 322

In our experiments, both models train for a sin- 323

gle epoch. The baseline model, gpt2-hw, pro- 324

cesses about 2.34B tokens from human-written 325

texts, while the simplified text model, gpt2-simp, 326

is exposed to around 2.12B tokens. Additionally, 327

human-written, domain-specific validation sets of 328

roughly 23.4M tokens (about 5% of each domain) 329

are evaluated every 300M tokens for regular check- 330

points. Details on hyperparameter selection are 331

provided in Appendix D. Pretraining for both mod- 332

els requires approximately 16 hours. 333

4.2.2 Domain Ablation Studies 334

A key aspect of our research examines whether 335

text complexity’s impact varies across content do- 336

mains. The domain ablation experiments address 337

this by systematically omitting one domain at a 338

time and observing the effect on model perfor- 339

mance. This approach is based on the idea that 340

certain domains—such as legal or academic texts, 341

which require a high degree of nuance—may rely 342

more on complex linguistic structures, while other 343

domains can effectively communicate core infor- 344

mation even when simplified. 345

To investigate, we train 10 models—five on 346

human-written texts and five on simplified texts. In 347

5https://huggingface.co/gpt2
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each ablation run, one of the five domains is omit-348

ted, removing approximately 468M tokens from349

the training data. Pretraining for these ablation350

experiments takes around 13 hours per run, and351

the resulting models are fine-tuned on the Super-352

GLUE benchmark. This evaluation aims to deter-353

mine whether omitting complex linguistic struc-354

tures in specific domains differentially affects the355

model’s general language understanding.356

4.2.3 Simple-to-Complex Curriculum357

Beyond directly comparing text complexity, we358

explore a two-phase pretraining strategy based on359

a simple-to-complex curriculum. We hypothesize360

that starting with simplified texts enables the model361

to quickly learn fundamental syntactic and seman-362

tic patterns, forming a foundation that is refined363

with later exposure to more intricate human-written364

texts.365

To evaluate this, we compare two strategies. In366

the baseline, the model is trained for two epochs367

solely on the human-written corpus (roughly 4.68B368

tokens); we refer to this model as gpt2-hw-2epoch.369

The curriculum strategy trains on a concatenated370

corpus where the model first processes simplified371

texts and then transitions to human-written texts372

(roughly 4.46B tokens); we refer to this model as373

gpt2-curriculum. Validation loss is recorded ev-374

ery 600M tokens across domains, with seven inter-375

mediate checkpoints and a final model saved. Both376

runs require roughly 32 hours, and each checkpoint377

model is fine-tuned on SuperGLUE tasks. This378

approach tracks the evolution of language repre-379

sentations and determines whether early simplified380

pretraining provides lasting downstream benefits.381

4.3 Downstream Tasks382

To assess whether pretraining differences influ-383

enced by text complexity impact downstream per-384

formance, we fine-tune our pretrained models on385

the SuperGLUE benchmark (Wang et al., 2019),386

which offers a comprehensive suite for evaluating387

general language understanding. Our evaluation388

covers eight core tasks: BoolQ, CB, COPA, Mul-389

tiRC, ReCoRD, RTE, WiC, and WSC.390

For each task, we reformat the data into prompt-391

based inputs by appending the correct label and392

computing loss only on these label tokens. This393

ensures the model aligns its predictions with the394

desired output without being distracted by other395

tokens. During inference, candidate label tokens396

are appended to the prompt, and the candidate with397
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Figure 2: Flesh-Kincaid Reading Ease (FRE) scores of
the human-written and simplified texts on each domain.
Some documents fall outside the 0-100 range, so we
clip them to 0 and 100 respectively.

the highest total log probability is selected (see 398

Appendix E for examples). 399

The fine-tuning phase involves a per-task grid 400

search for the best hyperparameters with a total 401

combined runtime of approximately 26 hours per 402

model. More details on hyperparameter selection, 403

grid search, and final model selection are provided 404

in Appendix D. 405

For evaluation, we use accuracy for 5 tasks 406

(BoolQ, COPA, RTE, WiC, and WSC). For CB, 407

MultiRC, and ReCoRD, we deviate from the offi- 408

cial metrics since they do not reliably reflect per- 409

formance in our setup. In CB, we report only ac- 410

curacy—omitting F1, as predicting a single neutral 411

label can boost F1 by over 11 points on a small, 412

imbalanced dataset (16/250 in train, 5/56 in valida- 413

tion). For MultiRC, we report only micro F1 (equiv- 414

alent to accuracy) and omit Exact Match (EM), 415

which measures perfect passage-wise recall. For 416

ReCoRD, we rely solely on EM, as token-overlap 417

F1 can be inflated by partial matches. For trans- 418

parency, we include additional results and analysis 419

on the official metrics in Appendix G. 420

5 Results and Discussion 421

All results are from a single run only. For down- 422

stream performance, we report the best outcomes 423

from a fixed hyperparameter grid. For reproducibil- 424

ity, we ensured that random seeds are properly set 425

for all experiments. 426
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Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC

gpt2-hw 58.3 68.2 71.4 58.0 68.3 18.4 61.7 64.9 55.8
gpt2-simp 57.4 66.7 71.4 56.0 68.2 17.9 60.3 64.0 54.8

(-0.9) (-1.5) (0.0) (-2.0) (-0.1) (-0.5) (-1.4) (-0.9) (-1.0)

Table 1: Comparison of gpt2-hw and gpt2-simp accuracy scores on the validation sets of eight SuperGLUE tasks.
The Avg. column is the average of the eight task scores. The row below gpt2-simp shows the difference from
gpt2-hw (green if higher, red if lower, gray if equal).

Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC

gpt2-hw 56.5 68.5 74.0 46.6 64.0 17.8 58.4 62.4 60.3
gpt2-simp 54.7 66.9 69.6 47.8 63.9 17.9 54.4 61.4 55.5

(-1.8) (-1.6) (-4.4) (+1.2) (-0.1) (+0.1) (-4.0) (-1.0) (-4.8)

Table 2: Comparison of gpt2-hw and gpt2-simp accuracy scores on the official test sets of eight SuperGLUE tasks.
The Avg. column is the average of the eight task scores. The row below gpt2-simp shows the difference from
gpt2-hw (green if higher, red if lower, gray if equal).

Corpus Words Types TTR Entropy

human-written 1.98B 7.98M 0.40% 10.75
simplified 1.83B 6.04M 0.33% 10.38

Table 3: Corpus statistics. Words are space-separated
words, Types are unique word count, TTR is Type-
Token Ratio, and Entropy refers to Unigram Entropy.
Lower TTR means lower lexical diversity. Lower En-
tropy means lower complexity.

5.1 Dataset Complexity Verification427

Is our simplified text really simpler? To answer that428

question, we compute corpus corpus-level complex-429

ity metrics presented in Table 3 and document-level430

text complexity using the Flesch Reading Ease or431

FRE (Flesch, 1948). The simplified corpus has432

fewer words, lower Type-Token Ratio (TTR), and433

lower Unigram Entropy than its human-written434

counterpart which are all indicators of reduced com-435

plexity of simplified corpus.436

For computing FRE, we use437

py-readability-metrics6. FRE considers438

text length, word count, and syllables per word,439

offering a rough complexity measure. A higher440

FRE implies simpler text (e.g., scores of 60 and441

above are considered easy; scores between 50442

and 60 are fairly difficult; and scores below 50443

are considered hard). While it doesn’t capture all444

factors such as rare words or complex sentence445

structures, we use it for its practicality and446

simplicity.447

Figure 2 shows that the FRE distribution of our448

simplified corpus is consistently higher than that449

6https://github.com/cdimascio/
py-readability-metrics

Figure 3: Perplexity vs. tokens seen graphs on the
human-written validation set for both gpt2-hw and
gpt2-simp. Perplexity is the exponentiation of loss
and quantifies the model’s "uncertainty."

of the human-written corpus across all domains. 450

Some documents fall outside the 0–100 range, so 451

we clip negative values to 0 and values above 100 452

to 100 (e.g., very long documents or texts with 453

no punctuations). Notably, the academic and wiki 454

domains are more complex than others. 455

5.2 Main Comparison: Human-Written vs. 456

Simplified 457

5.2.1 Language Modeling Performance 458

To compare the relative language modeling perfor- 459

mance of gpt2-simp with gpt2-hw in modeling 460

human-written text, we compute the perplexity of 461

both models on held-out human-written texts. Fig- 462

ure 3 shows that gpt2-simp exhibits comparable 463

perplexity with gpt2-hw. The results are not sur- 464

prising since a slight difference in the distribution 465

between human-written and simplified texts is ex- 466

6
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Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Task Performance

Full Dataset

No Academic (-20%)

No Books (-20%)

No Socmed (-20%)

No Web (-20%)

No Wiki (-20%)

58.3 68.2 71.4 58.0 68.3 18.4 61.7 64.9 55.8

-1.5 +0.1 -1.8 -3.0 -1.0 -0.1 -0.4 -2.4 -3.8

-1.8 -1.1 0.0 -5.0 -2.2 -1.0 -4.3 -5.3 +4.8

-1.7 -1.8 -1.8 -6.0 -0.5 -1.1 -1.4 -3.1 +1.9

-2.7 -1.2 -3.6 -5.0 -1.5 -1.6 -4.3 -6.1 +1.9

+0.5 +0.2 +3.6 +1.0 -0.2 -2.6 -0.4 -0.5 +2.9

Human-Written Texts

Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Task Performance

Full Dataset

No Academic (-20%)

No Books (-20%)

No Socmed (-20%)

No Web (-20%)

No Wiki (-20%)

57.4 66.7 71.4 56.0 68.2 17.9 60.3 64.0 54.8

-0.8 +1.3 0.0 -5.0 -0.7 -0.3 +2.2 -0.5 -3.8

-1.3 -2.1 -1.8 +2.0 -3.1 -1.6 -2.9 -3.6 +2.9

-1.1 -0.2 -1.8 -4.0 -0.5 -0.8 +2.2 -2.5 -1.0

-1.3 -1.0 0.0 +3.0 -1.1 -0.8 -2.5 -3.6 -4.8

-0.6 -1.2 -5.4 +1.0 -1.9 -1.8 +1.1 -2.2 +5.8
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Figure 4: A heatmap of the differences on SuperGLUE task scores when removing one domain at a time from
both the human-written and simplified datasets. Blue represents an increase in performance while red represents a
decrease.

pected (e.g., stylistic differences and word choices).467

However, it is interesting to note that despite train-468

ing solely on simplified texts, gpt2-simp was able469

to learn representations that can model human-470

written texts, comparable to gpt2-hw. These re-471

sults suggest that the learned representations on472

simplified texts may be suitable for adaptation to473

human-written texts. For a detailed discussion on474

the spike in perplexity for gpt2-simp and domain-475

level perplexity, see Appendix F.476

5.2.2 SuperGLUE Performance477

Table 1 summarizes performance on the valida-478

tion sets for eight SuperGLUE tasks. gpt2-simp479

achieves an average score of 57.4, just below the480

58.3 of gpt2-hw. Most tasks show only slight dif-481

ferences between the models. Similarly, Table 2482

shows that on the test set, gpt2-simp reaches an483

average of 54.7 compared to 56.5 for gpt2-hw, re-484

flecting a very modest overall gap. While a few485

tasks even register small improvements, most dif-486

ferences remain minimal. These observations in-487

dicate that reducing linguistic complexity while488

keeping the core meaning intact has a limited ef-489

fect on downstream performance.490

5.3 Domain Ablation Results 491

Our domain ablation experiments (see Figure 4) 492

systematically omit each domain from the train- 493

ing corpus in both human-written and simplified 494

datasets, one at a time, to assess each domain’s 495

importance for downstream tasks under different 496

linguistic conditions. 497

On the average SuperGLUE scores, omitting 498

almost any domain slightly reduces performance. 499

The primary exception is the wiki domain: re- 500

moving it from the human-written dataset yields 501

a modest improvement, while excluding it from 502

the simplified dataset causes a small drop. In 503

contrast, the other four domains incur greater 504

losses when removed from human-written data 505

compared to when they are removed from simpli- 506

fied data—seemingly more so for the academic and 507

web domains—suggesting that complex, human- 508

written text in these domains captures nuanced style 509

and content better, whereas wiki text may be more 510

effective in simplified form. 511

A detailed discussion on individual task effects 512

is provided in Appendix H. 513

5.4 Curriculum Learning Effects 514

Figure 5 shows that gpt2-curriculum achieves 515

overall lower perplexity on human-written texts 516

7



Figure 5: Perplexity on human-written validation
set for both gpt2-hw-2epoch and gpt2-curriculum.
gpt2-curriculum achieved lower perplexity on human-
written text than the gpt2-hw-2epoch which was
trained solely on human-written text.

compared to gpt2-hw-2epoch. We hypothesize517

that exposure to varied text versions, rather than518

repeated texts, enhances learning, similar to the519

findings of Allen-Zhu and Li (2024).520

Figure 6 illustrates the average performance521

across all tasks, showing that gpt2-curriculum522

consistently achieves higher scores between523

1200M and 3000M tokens. For a detailed break-524

down of performance trends by task, see Appendix525

I.526

The checkpoint experiments demonstrate that a527

curriculum training strategy, beginning with simpli-528

fied texts and later transitioning to human-written529

texts, can accelerate early learning compared to530

the baseline model trained solely on human-written531

texts (gpt2-hw-2epoch). Although the early ad-532

vantage of the curriculum approach eventually con-533

verges with the baseline, our findings indicate that534

it ultimately delivers performance on par with train-535

ing exclusively on premium, human-written data,536

effectively replicating the long-term benefits of us-537

ing only high-quality inputs.538

6 Conclusion539

In this work, we investigated the role of text540

complexity in the pretraining of language mod-541

els, specifically examining whether simplified lan-542

guage, while preserving core information content,543

can yield representations that are as effective as544

those learned from more complex, human-written545

texts. Our experiments, which compared GPT2-546
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Figure 6: Average SuperGLUE score vs. num-
ber of tokens seen for both gpt2-hw-2epoch and
gpt2-curriculum. Scores are obtained from the check-
points of both models every 600M tokens seen.

small models pretrained on human-written versus 547

simplified corpora, reveal that reducing lexical and 548

syntactic complexity does not significantly impair 549

downstream performance on a broad set of lan- 550

guage understanding tasks such as those in the 551

SuperGLUE benchmark. These findings suggest 552

that, for the purposes of pretraining, the richness 553

of information content is the primary driver of per- 554

formance, rather than the complexity of the text 555

form. 556

While our study is limited to the GPT2-small 557

architecture and a specific experimental setting, the 558

evidence presented here motivates future research 559

into the interplay between text complexity, infor- 560

mation content, and model performance across dif- 561

ferent architectures and larger-scale datasets. 562

Limitations 563

Our study has several limitations. First, the LLM- 564

based simplification process can introduce inconsis- 565

tencies in the information content due to the tenden- 566

cies of LLMs to hallucinate. Second, the Flesch 567

Reading Ease score only measures surface-level 568

features and may not fully reflect deeper linguistic 569

nuances. Third, our experiments are restricted to 570

the GPT2-small architecture, so it is unclear how 571

these findings extend to larger models with more 572

parameters or different architectures. Fourth, our 573

evaluation relies solely on the SuperGLUE bench- 574

mark, which might not capture all facets of lan- 575

guage understanding, especially for more complex 576

or generative tasks. Lastly, our domain ablation ex- 577

periments cover only a subset of domains, limiting 578

broader domain-specific insights. 579
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A Manual selection of Dolma shards1064

For Dolma7, We manually selected shards to re-1065

duce the total dataset size before we do any of our1066

subsequent subsetting. We list below the specific1067

shards (all are .json.gz) we used from Dolma:1068

books-0000, books-0001,1069

c4-0000, c4-0001,1070

pes2o_v2-0012,1071

reddit-v5-dedupe-pii-nsfw-toxic-0000,1072

reddit-v5-dedupe-pii-nsfw-toxic-0001,1073

reddit-v5-dedupe-pii-nsfw-toxic-00021074

B Text Simplification Prompt1075

The prompt engineering is done through trial-and-1076

error and judged by the authors according to the1077

following qualitative criteria:1078

• Does it use simpler words? By "simpler1079

words," we mean commonly used words.1080

• Does it convert compound or complex sen-1081

tences into simple sentences?1082

• Does it preserve the original content and orga-1083

nization of thoughts?1084

Once we found a prompt that can reliably do1085

all those things on a small sample, we used that1086

prompt to transform the whole corpus.1087

The final prompt is shown below:1088

—1089

Role Description: You are an experi-1090

enced educator and linguist specializing1091

in simplifying complex texts without los-1092

ing any key information or changing the1093

content. Your focus is to make texts1094

7https://huggingface.co/datasets/allenai/dolma

more accessible and readable for primary 1095

and secondary school students, ensur- 1096

ing that the essential information is pre- 1097

served while the language and structure 1098

are adapted for easier comprehension. 1099

— 1100

Task Instructions: 1. Read the Following 1101

Text Carefully: - Thoroughly understand 1102

the content, context, and purpose of the 1103

text to ensure all key information is re- 1104

tained in the simplified version. 1105

2. Simplify the Text for Pri- 1106

mary/Secondary School Students: 1107

- Rewrite the text to make it more 1108

accessible and easier to understand. 1109

- Use age-appropriate language and 1110

simpler sentence structures. - Maintain 1111

all key information and do not omit 1112

any essential details. - Ensure that the 1113

original meaning and intent of the text 1114

remain unchanged. 1115

3. Preserve Key Information: - Identify 1116

all essential points, facts, and ideas in 1117

the original text. - Ensure these elements 1118

are clearly presented in the simplified 1119

version. 1120

4. Avoid Adding Personal Opinions or 1121

Interpretations: - Do not introduce new 1122

information or personal views. - Focus 1123

solely on simplifying the original con- 1124

tent. 1125

— 1126

Simplification Guidelines: 1127

Sentence Structure: - Use simple or com- 1128

pound sentences. - Break down long or 1129

complex sentences into shorter ones. - 1130

Ensure each sentence conveys a clear 1131

idea. 1132

Vocabulary: - Use common words famil- 1133

iar to primary and secondary school stu- 1134

dents. - Replace advanced or technical 1135

terms with simpler synonyms or provide 1136

brief explanations. - Avoid jargon unless 1137

it is essential, and explain it if used. 1138

Clarity and Coherence: - Organize the 1139

text logically with clear paragraphs. - 1140

Use transitional words to connect ideas 1141

smoothly. - Ensure pronouns clearly re- 1142

fer to the correct nouns to avoid confu- 1143
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sion. - Eliminate redundancies and un-1144

necessary repetitions.1145

Tone and Style: - Maintain a neutral and1146

informative tone. - Avoid overly formal1147

language. - Write in the third person1148

unless the text requires otherwise.1149

—1150

Output Format: Provide the simplified
text in clear, well-organized paragraphs.
Do not include the original text in your
output. Do not add any additional com-
mentary or notes. Ensure the final out-
put is free of grammatical errors and
is easy to read. Output <|eotid| >
rightafterthesimplifiedtext.

—1151

Example Simplifications:1152

Example 1:1153

Original Text: "Photosynthesis is the process by1154

which green plants and some other organisms use1155

sunlight to synthesize foods from carbon dioxide1156

and water. Photosynthesis in plants generally in-1157

volves the green pigment chlorophyll and generates1158

oxygen as a byproduct."1159

Simplified Text: "Photosynthesis is how green
plants make food using sunlight, carbon diox-
ide, and water. They use a green substance
called chlorophyll, and the process produces
oxygen.<|eotid| > ”

Example 2:1160

Original Text: "Global warming refers to the long-1161

term rise in the average temperature of the Earth’s1162

climate system, an aspect of climate change shown1163

by temperature measurements and by multiple ef-1164

fects of the warming."1165

Simplified Text: "Global warming means the
Earth’s average temperature is increasing over
a long time. This is part of climate change
and is shown by temperature records and various
effects.<|eotid| > ”

Example 3:1166

Original Text: "The mitochondrion, often referred1167

to as the powerhouse of the cell, is a double-1168

membrane-bound organelle found in most eukary-1169

otic organisms, responsible for the biochemical pro-1170

cesses of respiration and energy production through1171

the generation of adenosine triphosphate (ATP)."1172

Simplified Text: "A mitochondrion is a part of most
cells that acts like a powerhouse. It has two mem-
branes and makes energy for the cell by producing
something called ATP.<|eotid| > ”

— 1173

Text to Simplify: <Insert Text Here> 1174

— 1175

Your Output: 1176

C Skipping or Rejecting Simplification 1177

We choose to skip or reject the simplification step 1178

under the following conditions: (1) the paragraph 1179

is too short relative to its full document; (2) the 1180

paragraph is too long; or (3) the transformation is 1181

significantly shorter or longer than the original text. 1182

Condition (1) is based on two key observations. 1183

First, some textual artifacts, like titles and author 1184

names, don’t require simplification. Second, very 1185

short inputs often trigger text completion instead 1186

of simplification. For example, the input "MA- 1187

HATMA GANDHI" generates a passage about the 1188

person rather than a simplified version. To handle 1189

such cases, we use heuristics to determine whether 1190

a document or paragraph should be skipped. First, 1191

we apply a hard rule: a document is skipped if 1192

there is only one paragraph or the minimum para- 1193

graph length is greater than or equal to the standard 1194

deviation of paragraph token counts within a docu- 1195

ment. Otherwise, each paragraph in the document 1196

is evaluated based on two criteria: it is skipped if 1197

it contains 10 or fewer space-separated words or 1198

if its GPT-2 token count falls below the quan- 1199

tile threshold. The quantile threshold varies by 1200

domain (e.g., 0.25 for books, 0.15 for others). For 1201

example, for the books domain, the quantile thresh- 1202

old is 0.25 (25th percentile), meaning paragraphs 1203

with token counts below the 25th percentile will be 1204

skipped. 1205

Condition (2) is based on the observation that 1206

paragraphs exceeding 1,500 tokens tend to be struc- 1207

tured texts like tables, name lists, or tables of con- 1208

tents, which do not need simplification. To handle 1209

such cases, we simply skip the paragraph if it ex- 1210

ceeds 1,500 tokens. While quantile heuristics could 1211

be used, we chose the simpler heuristic. 1212

Condition (3) is motivated by two observations. 1213

First, we observed that when asked to simplify a 1214

long input, the model tends to summarize it, signif- 1215

icantly shortening the text and losing its original 1216

structure. Second, the model sometimes appends 1217

14



extra text, such as explanations after the answer.1218

To detect cases where the output is too short or too1219

long relative to the source, we compute the doc-1220

ument length ratio (output_length/source_length)1221

and reject outputs with a ratio below 0.5 or above1222

1.5 (i.e. a change of more than 50%), reverting to1223

the original paragraph.1224

D Training Hyperparameters1225

For pretraining all of our models, to ensure smooth1226

convergence, we employ a warmup ratio of 5%1227

alongside a linear learning rate scheduler. The ef-1228

fective batch size is set to 384, achieved by running1229

a batch size of 4 per GPU across 8 GPUs with 121230

gradient accumulation steps. A preliminary two-1231

stage learning rate sweep on 10% of the human-1232

written corpus helped us determine a final learning1233

rate of 6e-4.1234

The experimental configuration for finetuning1235

on SuperGLUE tasks varies per task, depending on1236

dataset size: for smaller tasks such as CB, COPA,1237

RTE, WiC, and WSC, we use an effective batch1238

size of 8 (distributed as one per GPU on 8 GPUs),1239

whereas for larger datasets like BoolQ, MultiRC,1240

and ReCoRD, an effective batch size of 32 (4 per1241

GPU on 8 GPUs) is utilized. For all tasks, we1242

perform a grid search over 1–2 epochs, exploring1243

learning rates ranging from 2e-6 to 1e-4, and select1244

the optimal hyperparameters for each pretrained1245

model based on their highest macro F1 score on the1246

validation sets. The use of macro F1 is particularly1247

crucial as it offers a more balanced evaluation in1248

scenarios where class imbalance might otherwise1249

skew accuracy metrics; in the worst case, we found1250

models collapsing to only predicting a single label1251

for the entire dataset, indicating too much bias to-1252

wards the tokens for one of the labels. We therefore1253

avoid selecting a model that exhibits such imbal-1254

anced prediction strategies. We include the final1255

macro F1 scores for gpt2-hw and gpt2-simp in1256

Table 5.1257

E SuperGLUE Prompts1258

The following illustrate our prompt structures for1259

each of the 8 SuperGLUE tasks:1260

For BoolQ, a question is paired with a passage,1261

and the binary answer is appended:1262

Question: Is water wet?1263

Passage: Water is a liquid at room tem-1264

perature with cohesive properties.1265

Answer: Yes 1266

For CB, a premise and a hypothesis are provided, 1267

followed by a label indicating their relationship: 1268

Premise: The new policy will reduce 1269

emissions. 1270

Hypothesis: The policy is effective in 1271

reducing emissions. 1272

Label: Contradiction 1273

For COPA, a premise, a question, and two 1274

choices are presented; the answer indicates the 1275

most plausible outcome: 1276

Premise: Sarah forgot her umbrella. 1277

Question: What is the most likely out- 1278

come? 1279

Choice 1: She got wet in the rain. 1280

Choice 2: She stayed dry. Answer: 2 1281

For MultiRC, each candidate answer is treated 1282

as a separate entry, and the model classifies its 1283

correctness: 1284

Passage: The experiment showed a sig- 1285

nificant increase in reaction times. 1286

Question: Did the reaction times in- 1287

crease? 1288

Candidate Answer: Yes, they did. 1289

Is this answer correct? Yes 1290

For ReCoRD, the passage is first cleaned by re- 1291

moving any @highlight tokens. The query is then 1292

truncated at the @placeholder (removing it and all 1293

subsequent text), and concatenated with the cleaned 1294

passage. The gold answer is appended so that the 1295

model learns next-token prediction for the missing 1296

entity: 1297

In the heart of the desert, ancient ruins 1298

spoke of a lost civilization. A recent dis- 1299

covery suggests that Remnants 1300

For RTE, a premise and a hypothesis are pro- 1301

vided with a label indicating entailment: 1302

Premise: The cat sat on the mat. 1303

Hypothesis: A cat is resting on a mat. 1304

Label: Entailment 1305

For WiC, a target word is given along with two 1306

sentences, and the task is to determine if the word’s 1307

meaning is the same in both: 1308
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Word: bank1309

Sentence 1: I sat on the river bank.1310

Sentence 2: I deposited money at the1311

bank.1312

Same meaning? No1313

For WSC, a sentence is provided that requires1314

resolving a pronoun reference:1315

Text: The trophy didn’t fit in the brown1316

suitcase because it was too large.1317

Is the reference correct? Yes1318

F Perplexity Spike and Domain-wise1319

Perplexity1320

The spikes in the validation perplexity of1321

gpt2-simp is due to the instabilities during pre-1322

training. Figure 8 shows the training loss for both1323

models. Note that in both setups, the spikes oc-1324

curred at around the same time. However, it didn’t1325

show a spike for gpt2-hw because the checkpoint1326

validation occurred before the spike, and by the1327

time the next checkpoint was reached, gpt2-hw1328

had already recovered. Our hypothesis is that there1329

must have been very bad batches of data at those1330

steps which caused the model to diverge. However,1331

we continued the training since the model ended1332

up recovering in later steps.1333

The domain-wise perplexity of gpt2-hw and1334

gpt2-simp is presented at Figure 7. gpt2-simp1335

exhibits perplexity comparable to gpt2-hw, differ-1336

ing by 6 to 9 points across all domains.1337

G Official SuperGLUE Results1338

Table 4 showcases the official results obtained1339

from the online submission portal of SuperGLUE.1340

gpt2-simp scores 50.3, only 2.2 lower than1341

gpt2-hw, which scores 52.5.1342

H Domain Ablation Results1343

Examining the results for each individual task in1344

our domain ablations (see Figure 4) reveals further1345

subtleties. COPA and RTE show particularly strong1346

sensitivity to domain removal, and in opposite ways1347

for human-written vs. simplified datasets. For1348

COPA, excluding books or web from the human-1349

written corpus reduces accuracy by up to 5 points,1350

but excluding these same domains from the sim-1351

plified corpus actually improves accuracy by 2-31352

points. A likely explanation is that COPA scenarios1353

are often grounded in nuanced, real-world contexts 1354

that the human-written books domain captures bet- 1355

ter than its simplified counterpart. For example: 1356

Premise: “The host cancelled the party.” 1357

Choice 1: “She was certain she had the 1358

flu.” 1359

Choice 2: “She worried she would catch 1360

the flu.” 1361

Label: “Choice 1” 1362

By contrast, RTE also suffers large losses from 1363

excluding the books and web domains in the 1364

human-written corpus, yet still sees small drops 1365

when those domains are removed from the simpli- 1366

fied corpus. Meanwhile, removing the academic, 1367

social media, or wiki domains from the human- 1368

written dataset causes only minor performance de- 1369

creases, whereas omitting them from the simplified 1370

dataset actually produces moderate gains. This 1371

pattern suggests that, for tasks like RTE requiring 1372

more complex reading comprehension, the simpli- 1373

fied versions of certain domains (e.g., academic or 1374

wiki) may not convey the linguistic subtleties well 1375

enough. For example: 1376

Premise: “It rewrites the rules of global 1377

trade, established by the General Agree- 1378

ment on Tariffs and Trade, or GATT, in 1379

1947, and modified in multiple rounds of 1380

negotiations since then.” 1381

Hypothesis: “GATT was formed in 1382

1947.” 1383

Label: “Not Entailment” 1384

Overall, these findings show that even seem- 1385

ingly small shifts in domain coverage can have 1386

task-specific consequences, and that the linguistic 1387

complexity of the text in a domain may be criti- 1388

cal, not only for accurately capturing the nuances 1389

in the content, but also for developing the linguis- 1390

tic foundations appropriate for certain downstream 1391

tasks. Maintaining diversity in pretraining data, 1392

while also aligning text complexity to the needs of 1393

each target task, appears to be key in optimizing 1394

performance. 1395

I Curriculum Experiment Results 1396

This appendix contains a more detailed dis- 1397

cussion on the task-by-task performance of 1398

gpt2-hw-2epoch and gpt2-curriculum every 1399

600M tokens seen. 1400
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Figure 7: Domain-wise perplexity vs. tokens seen graphs on the human-written validation set for both gpt2-hw and
gpt2-simp.

Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Acc. F1 / Acc. Acc. F1a / EM F1 / EM Acc. Acc. Acc.

gpt2-hw 52.5 68.5 59.8 / 74.0 46.6 64.0 / 14.7 18.1 / 17.8 58.4 62.4 60.3
gpt2-simp 50.3 66.9 47.9 / 69.6 47.8 63.9 / 14.7 18.2 / 17.9 54.4 61.4 55.5

(-2.2) (-1.6) (-11.9 / -4.4) (+1.2) (-0.1 / 0.0) (+0.1 / +0.1) (-4.0) (-1.0) (-4.8)

Table 4: Comparison of gpt2-hw vs. gpt2-simp scores on the official test set metrics on the eight SuperGLUE
tasks. For BoolQ, COPA, RTE, WiC, and WSC the metric is Accuracy; for CB the metrics are F1 / Accuracy; for
MultiRC the metrics are F1a / EM; for ReCoRD the metrics are F1 / Accuracy. The Avg. column indicates the
overall score. The row below the Simplified scores shows the difference from Baseline (green if higher, red if lower,
gray if equal).
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Figure 8: Training loss of gpt2-hw-2epoch and
gpt2-curriculum exhibits spikes at around the same
time.

As depicted in Figure 9, which presents eight 1401

subplots corresponding to each SuperGLUE task, 1402

the curriculum model (gpt2-curriculum) shows 1403

clear upward trends on tasks such as BoolQ, 1404

RTE, WiC, and MultiRC. Between the 1200M and 1405

2400M token checkpoints, gpt2-curriculum’s 1406

performance even marginally surpasses that of 1407

gpt2-hw-2epoch on said tasks, demonstrating the 1408

early advantages of a simple-to-complex training 1409

approach. Moreover, the final gpt2-curriculum 1410

slightly outperforms the final gpt2-hw-2epoch on 1411

five tasks (BoolQ, CB, MultiRC, RTE, and WSC). 1412

A plausible explanation for these trends is that 1413

the initial exposure to simplified texts enables the 1414

model to more easily acquire essential syntactic and 1415

semantic patterns, thereby establishing a stronger 1416

linguistic foundation early on. 1417

In contrast, on the ReCoRD task, 1418

gpt2-hw-2epoch consistently outperforms 1419

gpt2-curriculum at every checkpoint. Notably, 1420
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Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
F1 F1 F1 F1 - F1 F1 F1

gpt2-hw 60.0 65.1 60.2 50.9 68.0 - 60.0 64.4 51.1

gpt2-simp
57.6 62.8 49.8 51.6 68.0 - 56.8 63.4 51.0
(-2.4) (-2.3) (-10.4) (+0.7) (0.0) - (-3.2) (-1.0) (-0.1)

Table 5: Comparison of gpt2-hw vs. gpt2-simp macro F1 scores on 7 out of 8 SuperGLUE task validation sets.
No values are included for ReCoRD since it is not a fixed-choice task.
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Figure 9: Subplots for SuperGLUE task scores vs. number of tokens seen on each task for both gpt2-hw-2epoch
and gpt2-curriculum. Scores are obtained from the checkpoints of both models every 600M tokens seen.

however, both models show uniformly poor1421

performance on ReCoRD, with scores ranging1422

only between 16 and 20, compared to most other1423

tasks that fall between 50 and 80. Possible reasons1424

for these low ReCoRD scores include the inherent1425

difficulty of the task, the GPT2-small architecture’s1426

limited capacity, and the mismatch between1427

ReCoRD’s advanced reading-comprehension style1428

and a next-token prediction paradigm.1429

It is important to note, however, that the average1430

performance curve of gpt2-curriculum exhibits1431

a spike at the 2400M token checkpoint, driven pre-1432

dominantly by an anomalously high score on CB.1433

Additionally, performance on CB and COPA ap-1434

pear erratic for both models, without a clear trend1435

of improvement as pretraining continues. This in-1436

stability is likely due to the inherent sensitivity of1437

their small datasets to statistical noise, random data1438

sampling variations, and potential overfitting, being1439

only a few hundred instances each.1440

Overall, these findings suggest that a simple-to-1441

complex curriculum provides a beneficial “warm-1442

up” phase for many language understanding tasks.1443
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