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Abstract
Recent non-autoregressive Spoken Language
Understanding (SLU) models attracts increas-
ing attention owing to the high inference speed.
However, most of them still (1) suffer from the
multi-modality problem since the prior knowl-
edge about the reference is relatively poor dur-
ing inference; (2) fail to achieve a satisfactory
inference speed limited by their complex frame-
works. To tackle these problems, in this paper,
we propose a Targeted Knowledge Distillation
Framework (TKDF), which applies knowledge
distillation to improve the performance. Specif-
ically, we first train an SLU model as a teacher
model, which has higher accuracy while slower
inference speed. Then we introduce an evalua-
tor and utilize the curriculum learning strategy
to select proper targets for the student model.
Experiment results on two public multi-intent
SLU datasets demonstrate that our method can
realize a flexible trade-off between inference
speed and accuracy, achieving comparable per-
formance to the state-of-the-art models while
speeding up by over 4.5 times.

1 Introduction

Spoken language understanding (SLU) plays a piv-
otal and indispensable role in task-oriented spoken
dialog systems (Young et al., 2013). It aims to un-
derstand the queries of users, which includes two
subtasks: intent detection and slot filling (Tur and
De Mori, 2011). Specifically, intent detection task
aims to predict the intent of the given utterance and
slot filling task aims to extract the additional infor-
mation or constraints expressed in the utterance.

In real-world scenarios, it is common for an ut-
terance to contain multiple intentions. In response
to this challenge, Xu and Sarikaya (2013) and Kim
et al. (2017) starts addressing the multi-intent SLU
task. Gangadharaiah and Narayanaswamy (2019)
makes the first attempt to use a multi-task frame-
work to jointly model multiple intent detection and
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Tokens Possibility Reference

city intent: atis_city, atis_airport atis_flight, atis_ground_fare
slot: B-toloc.city_name I-toloc.city_name

service intent: atis_meal, atis_aircraft atis_flight, atis_ground_fare
slot: I-transport_type O

angeles intent: atis_airline, atis_airport atis_flight, atis_ground_fare
slot: I-airport_name I-city_name

Table 1: Three examples of the multi-modality prob-
lem in non-autoregressive multi-intent SLU. We use the
ground-truth intent label of the utterance as the intent
of each token in the utterance.

slot filling. Recently, several graph-based models
have shown promising results in jointly handling
multiple intent detection and slot filling. Qin et al.
(2020) proposes AGIF, which utilizes graph atten-
tion networks (GAT) (Velickovic et al., 2018) to
predict fine-grained multi-intents by integrating in-
tent information into the autoregressive decoding
process of slot filling. Qin et al. (2021b) proposes
the first non-autoregressive SLU model, achieving
both speedup and the improved accuracy in multi-
intent situations. Xing and Tsang (2022a) proposes
the Co-guiding Net, which uses a two-stage frame-
work achieving the mutual guidance between slot
and intent. And Xing and Tsang (2022b) proposes
Rela-Net, which incorporates a heterogeneous la-
bel graph to represent the statistical dependencies
and hierarchies in rich relations, along with the re-
current heterogeneous label matching network to
capture and leverage beneficial label correlations in
an end-to-end manner. Song et al. (2022) proposes
to leverage the statistical co-occurrence frequency
between intents and slots as prior knowledge effec-
tively in order to enhance the joint multiple intent
detection and slot filling through constructing an
intent-slot co-occurrence graph based on the entire
training corpus to globally discover the correlation
between intents and slots. Although existing non-
autoregressive multi-intent SLU models have made
promising progress (Qin et al., 2021b; Xing and
Tsang, 2022a,b; Cheng et al., 2023c), we find that



most of them still suffer from two problems:

(1) Multi-modality Problem. As other non-
autoregressive methods (Gu et al., 2018; Ma et al.,
2019; Bao et al., 2021), non-autoregressive SLU
methods also suffer from the multi-modality prob-
lem. As shown in Table 1, there might be multiple
possible correct slots of a token and this problem
also appears in intent detection with the widespread
use of the token-level intent detection decoder. De-
spite (GAT) (Velickovic et al., 2018) is adopted to
model the interaction between intents and slots, ex-
isting models still have little prior knowledge about
the reference during the inference progress, leading
to some errors that do not generally occur in the au-
toregressive models, which limits the performance
of the non-autoregressive models.

(2) Poor trade-off between inference speed
and accuracy. Although Co-guiding Net (Xing
and Tsang, 2022a) and Rela-Net (Xing and Tsang,
2022b) achieve new state-of-the-art performance,
they are both limited by their complex model archi-
tectures and thus cannot infer as fast as the past non-
autoregressive SLU models, such as GL-GIN (Qin
et al., 2021b) and LR-Transformer (Cheng et al.,
2021a). For non-autoregressive models, inference
speed is a crucial evaluation metric. As a result, it
is crucial to implement a flexible trade-off between
inference speed and accuracy.

For the first problem, a very common solution is
to utilize knowledge distillation to first training an
autoregressive model in the original training corpus
and then applying the greedy outputs of the teacher
model as the targets to train the non-autoregressive
student model (Hinton et al., 2015; Gu et al., 2018;
Stahlberg, 2020; Gou et al., 2021). However, there
is still a lack of research on applying knowledge
distillation to address the multi-modality problem
in SLU. A very intuitive idea is to directly employ
knowledge distillation to non-autoregressive SLU
models, where the student SLU model could learn
from the teacher SLU model. Unfortunately, our
preliminary experimental results demonstrate that
this method fails to solve multi-modality problem
effectively, whose details could be seen in Sec.6.3.

We argue that the reason for these divergent re-
sults is that SLU is a classification task, while neu-
ral machine translation is a generative task (Liu and
Lane, 2016; Zhu et al., 2023a). Considering that it
has been verified that directly applying knowledge
distillation to the non-autoregressive machine trans-
lation models will lead to the significant decrease in

terms of prediction accuracy for the low-frequency
words (Ding et al., 2021; Du et al., 2021). In SLU
task, owing to the limited categories of intents and
slots, the decrease in terms of prediction accuracy
of low-frequency words has a more serious impact
on the overall performance.

For the second problem, knowledge distillation
also seems to be an effective solution. Knowledge
distillation has been widely used to improve reason-
ing speed without overly sacrificing performance
in various tasks (Heo et al., 2019; Liu et al., 2020;
Jiao et al., 2020). As a result, we decide to advance
along this technical path and apply knowledge dis-
tillation to choose the teacher model with the higher
accuracy and select a student model with the higher
inference speed. By this means, the distilled SLU
model would obtain a higher inference speed while
almost maintaining the accuracy.

In order to address these above two problems at
the same time, we try to improve the past methods
instead of directly applying traditional knowledge
distillation, thereby mitigating the multi-modality
problem and achieving the trade-off between infer-
ence speed and accuracy. Motivated by the recent
success of advanced knowledge distillation in other
tasks (Huang and Wang, 2017; Liu et al., 2023; Gou
et al., 2023a,b), we propose a Targeted Knowledge
Distillation Framework (TKDF). Specifically, we
first train a multi-intent SLU model as the teacher
SLU model with higher accuracy while slower in-
ference speed. We regard its output as the distilled
data. Then, we train a new SLU model with a sim-
pler network on the distilled data as the evaluator
and use a curriculum learning strategy to obtain the
selected data by replacing the original distilled data
with original data dynamically during the training
process. Finally we train an SLU model with the
same architecture as the evaluator on the selected
data as the student SLU model. We also propose a
metric to score the outputs, and the evaluator model
assesses each utterance in the original training set
through scoring the output intents and output slots.
The utterances with higher scores are chosen as the
targets, which typically contain more slight modal-
ity changes compared to the distilled data but show
better prediction quality. We believe the selected
utterances could be more safely exposed to the stu-
dent model during training, which is beneficial for
the overall performance.

We conduct all the experiments on two public
benchmark multi-intent SLU datasets, MixATIS



and MixSNIPS (Hemphill et al., 1990; Coucke
et al., 2018; Qin et al., 2020) and over three SLU
architectures, Co-guiding Net (Xing and Tsang,
2022a), Rela-Net (Xing and Tsang, 2022b) and
SSRAN (Cheng et al., 2022). Experiment results
demonstrate that our method can realize a flexible
trade-off between inference speed and accuracy,
and further analysis also verifies the advantages of
our framework. In summary, the core contributions
of this work could be concluded as follows:

• We propose a non-autoregressive multi-intent
SLU framework TKDF, which applies the tar-
geted knowledge distillation method.

• The proposed method can achieve comparable
performance to the state-of-the-art SLU mod-
els while achieving faster inference speed.

• Further analysis shows that distilling only 4%
of the original data could help the student SLU
model surpass its counterpart trained on the
original data by a large margin.

2 Related Work

2.1 Intent Detection and Slot Filling
As two primary subtasks of SLU, intent detection
and slot filling have sparked the research interests
of an increasing number of researchers (Surdeanu,
2013; Mesnil et al., 2014; Hakkani-Tür et al., 2016;
Zhang and Wang, 2016; Zhang et al., 2017; E et al.,
2019; Liu et al., 2019; Qin et al., 2019, 2021a;
Xie et al., 2023; Huang et al., 2023; Cheng et al.,
2023a,d; Zhu et al., 2023c). As the strong interde-
pendence between these two tasks is verified, an
increasing number of joint models are achieving
excellent performance (Chen and Yu, 2019; Zhang
et al., 2019a; Qin et al., 2020; Bhathiya and Thaya-
sivam, 2020; Qin et al., 2021b; Hui et al., 2021;
Xing and Tsang, 2022a; Abro et al., 2022; Xing
and Tsang, 2022b; Weld et al., 2022; Cheng et al.,
2023b,e; Wu et al., 2023).

Recently, as the multi-intent SLU problem grad-
ually obtains more and more attention, some SLU
models based on graph attention are proposed grad-
ually. AGIF proposed by Qin et al. (2020) is built
upon a graph attention model, enabling the direct
connections between the slot nodes of each token
and all predicted intent nodes. This deliberate es-
tablishment of the correlations between slots and in-
tents improves the grasp of their relationship, facil-
itating a deeper understanding. GL-GIN (Qin et al.,
2021b) constructs a non-autoregressive graph in-
teraction network conducting the parallel decoding

for slot filling. Co-guiding Net (Xing and Tsang,
2022a) introduces a two-stage framework to facil-
itate targeted enhancements through mutual guid-
ance between two tasks. Rela-Net (Xing and Tsang,
2022b) leverages the heterogeneous label graph to
further enhance the performance, incorporating sta-
tistical dependencies derived from co-occurrence
patterns and the hierarchies in slot labels, as well
as capturing rich relations among the label nodes.

Compared to previous works, the advantage of
our framework is that we mitigate the negative im-
pact of the multi-modality problem and achieve the
trade-off between inference speed and accuracy.

2.2 Knowledge Distillation
Knowledge distillation (Hinton et al., 2015) is re-
garded as an effective method to mitigate the multi-
modality problem in non-autoregressive models. In
neural machine translation, sequence-level knowl-
edge distillation (Kim and Rush, 2016) is widely
used to substitute the original translations with the
output generated by the pretrained teacher model.
Zhou et al. (2020a) further explores knowledge dis-
tillation and proposes a range of techniques to fine-
tune the complexity of a dataset in order to align it
with the capacity of the non-autoregressive neural
machine translation model, which aims to optimize
the performance through effectively matching the
intricacy of the dataset with the capabilities of the
model. Shao et al. (2022) proposes diverse distilla-
tion with reference selection, which generates the
new dataset with multiple high-quality references
for each source sentence and selects the most fitting
reference to train the non-autoregressive models,
underscoring the importance of incorporating the
diverse references in knowledge distillation.

Knowledge distillation has also proven its effec-
tiveness in SLU task. Chen et al. (2022) proposes a
self-distillation approach SDJN for improving joint
modeling, allowing the model to leverage an auxil-
iary loop and exploits the interrelated connection
between intent and slot information in depth. In our
work, we utilize knowledge distillation to mitigate
the multi-modality problem.

2.3 Curriculum Learning
Curriculum learning (Bengio et al., 2009) has been
applied in numerous tasks, showcasing its versatil-
ity and efficacy (Braun et al., 2017; Graves et al.,
2017; Matiisen et al., 2019). In the field of natu-
ral language understanding, Xu et al. (2020) uses
curriculum learning and defines several easy exam-



Teacher	
Model

Non-autoregressive	
Evaluator

Non-autoregressive						
Student	Model

Distilled	
Data

Original
Data

Targeted	Distillation	Module

Curriculum
Learning

Dynamic	
Threshold	Score

Selected
Data

Predicted	
Results

Figure 1: The architecture of our proposed framework, which consists of three components: (1) original data is
fed into the teacher model to obtain the distilled data; (2) an evaluator constructs the selected data via curriculum
learning according to the calculated score and the dynamic threshold; (3) an non-autoregressive student model is
trained on the selected data and produces predicted results.

ples as those well solved by exact models. In the
field of computer vision, Zhang et al. (2019b) pro-
poses a novel collaborative self-paced curriculum
learning regime, which leverages both the instance
level prior-knowledge and the image level prior-
knowledge in the unified, collaborative, and robust
learning framework. Recently, Huang et al. (2020)
embeds the idea of curriculum learning to the loss
function to achieve the novel training strategy for
deep face recognition, which mainly addresses easy
samples during the early training stage and hard
ones during the later stage.

3 Background

In general, intent detection and slot filling are two
subtasks in SLU. Given an input utterance x =
(x1, x2, . . . , xn), where n is the length of x, mul-
tiple intent detection is a multi-label classification
task and the reference intent sequence is denoted as
ŷI =

(
ŷ(1,I), ŷ(2,I), . . . , ŷ(m,I)

)
, where m is the

number of intents in x. Slot filling is a sequence
labeling task and the reference slot sequence is de-
noted as ŷS =

(
ŷ(1,S), ŷ(2,S), . . . , ŷ(n,S)

)
. And

we use ŷ to denote the the union of ŷI and ŷS .
Owing to the correlation between slots and in-

tents, joint models are utilized to jointly optimize
these two subtasks. The multi-intent detection ob-
jective and the slot filling objective are as follows:

CE(ŷ, y) = ŷ log (y) + (1− ŷ) log (1− y) (1)

LI = −
n∑

i=1

NI∑
j=1

CE(ŷ
(j,I)
i , y

(j,I)
i ) (2)

LS = −
n∑

i=1

NS∑
j=1

ŷ
(j,S)
i log

(
y
(j,S)
i

)
(3)

where NI denotes the number of the single intent
labels, NS denotes the number of slot labels, ŷ(j,I)i

denotes the reference intent, y(j,I)i denotes its asso-
ciated predicted intent, ŷ(j,S)i denotes the reference
slot, and y

(j,S)
i denotes its associated predicted slot.

Following Qin et al. (2020, 2021b); Zhu et al.
(2023b), the final joint objective is formulated as:

L = αLI + βLS (4)

where α and β are hyper-parameters.

4 Method

As shown in Figure 1, our TKDF could be divided
into the following parts. First, we feed the original
data into the teacher model with higher accuracy
while slower inference speed to obtain the distilled
data. Then, we utilize an evaluator module to con-
struct the selected data, replacing the distilled data
with the original data dynamically. Finally, we train
the student model on the selected data.

The presence of multi-modality problem poses a
challenge for the non-autoregressive SLU models,
because it hinders accurate slot filling for certain
tokens, consequently leading to misguided intent
detection. Furthermore, the wide adoption of token-
level intent detection decoders also exacerbates the
negative impact of the multi-modality problem on
intent detection performance.

In contrast, distilled data output by the teacher
SLU model could simplify the training process of
non-autoregressive models by reducing the target
complexity. However, relying exclusively on dis-
tilled data is not the optimal approach, as it can be
vulnerable to the errors made by the teacher model.



An intuitive approach is to leverage the strengths
of both the original data and the distilled data by
combining them. Motivated by Wang et al. (2021);
Liu et al. (2023), we propose a non-autoregressive
evaluator to determine whether the student model
should be trained on the original data or the distilled
data. The evaluator is first trained on the distilled
data. Subsequently, we feed the original utterances
into the evaluator, which assesses each prediction
made on the original data. In cases where the non-
autoregressive evaluator fails to produce outputs
that closely align with the reference, we substitute
the original labels with the corresponding distilled
versions. Specifically, for the utterance x, we first
get the output y including the predicted intents and
slots utilizing the non-autoregressive evaluator:

y = fteacher(x) (5)

Then we use the overall accuracy as the metric
score to evaluate the original label ŷ. Predictions
with the higher scores are considered more friendly
for the the non-autoregressive student model. The
score could be formulated as:

score(x, ŷ) = Overall(y, ŷ) (6)

Inspired by recent success of curriculum learn-
ing (Graves et al., 2017; Doan et al., 2019; Zhou
et al., 2020b; Luo et al., 2020), we apply curriculum
learning to improve the performance. As the train-
ing progresses, the ratio of original data gradually
diminishes. We establish a threshold T , wherein if
the score surpasses this threshold, the distilled data
will be replaced by the corresponding original data.
The specific threshold Tk is determined based on
the current training step k:

Tk = σ

(
k

K
− 1

2

)
(7)

where σ (·) denotes the sigmoid function and K
denotes the total number of updates.

5 Experiments

5.1 Datasets and Metrics
We evaluate our model using two public benchmark
multi-intent SLU datasets1, including the cleaned
versions of MixATIS and MixSNIPS. MixATIS
dataset is derived from the ATIS dataset (Hemphill
et al., 1990), while MixSNIPS dataset is derived

1https://github.com/LooperXX/AGIF

from SNIPS dataset (Coucke et al., 2018). Com-
pared to the single-domain MixATIS dataset, the
MixSNIPS dataset is more complex due to its di-
verse intents and larger vocabulary. The statistics
of datasets used are shown in Table 2.

Dataset MixATIS MixSNIPS

Vocabulary Size 722 11241
Intent Categories 17 6
Slot Categories 116 71
Training Set Size 13162 39776
Validation Set Size 756 2198
Test Set Size 828 2199

Table 2: Dataset statistics.

For all the experiments, we select the SLU model
which works the best on the dev set and then evalu-
ate it on the test set. For slot filling, we measure the
performance using the F1 score, which provides an
evaluation of the ability to correctly identify and
fill slots in the input utterances. For intent detec-
tion, we utilize the accuracy score, which measures
the ability to accurately predict the intent behind
each utterance. Furthermore, we evaluate the over-
all accuracy of the utterance-level semantic frame
parsing, which accounts for the correctness of all
predicted metrics within an utterance.

5.2 Baselines
We compare our method with the following strong
multi-intent SLU baselines:

• Attention BiRNN (Liu and Lane, 2016): an
attention-based neural network model for joint
intent detection and slot filling.

• Slot-Gated (Goo et al., 2018): a joint SLU
model with a slot gate that focuses on learn-
ing the relationship between slot and intent to
obtain better semantic frame result.

• Bi-Model (Wang et al., 2018): a Bi-model to
consider the impact between slot and intent.

• SF-ID (E et al., 2019): a joint model to estab-
lish the connections for slot and intent.

• Stack-Propagation (Qin et al., 2019): a stack-
propagation framework to incorporate intent
detection to guide slot filling.

• AGIF (Qin et al., 2020): an LSTM-based adap-
tive framework to achieve the multi-intent in-
formation integration.

• LR-Transformer (Cheng et al., 2021a): a joint
SLU model based on the Transformer with the

https://github.com/LooperXX/AGIF


Models
MixATIS MixSNIPS

Speedup
Overall(Acc) Slot (F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

Attention BiRNN (Liu and Lane, 2016) 39.1 86.4 74.6 59.5 89.4 95.4 1.0×
Slot-Gated (Goo et al., 2018) 35.5 87.7 63.9 55.4 87.9 94.6 0.9×
Bi-Model (Wang et al., 2018) 34.4 83.9 70.3 63.4 90.7 95.6 1.1×
SF-ID (E et al., 2019) 34.9 87.4 66.2 59.9 90.6 95.0 1.2×
Stack-Propagation (Qin et al., 2019) 40.1 87.8 72.1 72.9 94.2 96.0 1.4×
AGIF (Qin et al., 2020) 40.8 86.7 74.4 74.2 94.2 95.1 1.1×
LR-Transformer (Cheng et al., 2021b,a) 43.3 88.0 76.1 74.9 94.4 96.6 10.8×
GL-GIN (Qin et al., 2021b) 43.0 88.2 76.3 73.7 94.0 95.7 11.2×
SDJN (Chen et al., 2022) 44.6 88.2 77.1 75.7 94.4 96.5 0.8×
Co-guiding Net (Xing and Tsang, 2022a) 51.3 89.8 79.1 77.5 95.1 97.7 2.4×
GISCo (Song et al., 2022) 48.2 88.5 75.0 75.9 95.0 95.5 0.8×
DARER2 (Xing and Tsang, 2023) 49.0 89.2 77.3 76.3 94.9 96.7 2.5×
ReLa-Net (Xing and Tsang, 2022b) 52.2 90.1 78.5 76.1 94.7 97.6 2.8×
SSRAN (Cheng et al., 2022) 48.9 89.4 77.9 77.5 95.8 98.4 4.2×

Co-guiding w/ Standard KD 48.4† 88.5† 76.6† 74.8† 94.3† 96.2† 10.8×
Co-guiding w/ TKDF (ours) 50.8† 89.6† 78.8† 77.3† 94.6† 97.4† 10.8×
Rela-Net w/ Standard KD 48.8† 88.9† 76.3† 74.4† 94.1† 95.9† 14.3×
Rela-Net w/ TKDF (ours) 51.2† 89.8† 78.4† 75.9† 94.2† 97.0† 14.3×
SSRAN w/ Standard KD 46.8† 88.2† 76.8† 74.5† 94.8† 96.6† 19.3×
SSRAN w/ TKDF (ours) 48.5† 89.2† 77.6† 77.2† 95.4† 98.1† 19.3×

Table 3: Main results. † denotes our model significantly outperforms baselines with p < 0.01 under t-test. “w/
Standard KD” means that we use the same standard knowledge distillation method as Gu et al. (2018).

layered refined mechanism.
• GL-GIN (Qin et al., 2021b): a LSTM-based

global-locally graph interaction framework.
• SDJN (Chen et al., 2022): a joint SLU model

using self knowledge distillation.
• Co-guiding Net (Xing and Tsang, 2022a): a

two-stage model achieving the mutual guid-
ance between slot filling and intent detection.

• GISCo (Song et al., 2022): an SLU model
constructing co-occurrence graph based on the
entire corpus to make use of the co-occurrence
frequency between slot and intent.

• DARER2 (Xing and Tsang, 2023): an SLU
model utilizing the relational Transformer to
achieve fine-grained temporal modeling.

• ReLa-Net (Xing and Tsang, 2022b): an SLU
model exploiting the label typologies and re-
lations among the labels.

• SSRAN (Cheng et al., 2022): an SLU model
with a scope recognizer and a result network.

5.3 Training Settings

We select three models as the teacher models, in-
cluding Co-guiding (Xing and Tsang, 2022a), Rela-
Net (Xing and Tsang, 2022b) and SSRAN (Cheng
et al., 2022). And we select GL-GIN (Qin et al.,
2021b) as the evaluator model. We use Adam opti-

mizer (Kingma and Ba, 2015) with β1 = 0.9, β2 =
0.98 to optimize parameters in our model. The
learning rate warms up to 5e− 4 and then decays
with a inverse square-root schedule. The total num-
ber of updates K is set to 4000, and the value of
label smoothing is set to 0.1. For other hyperparam-
eters, we follow the values provided in the corre-
sponding paper. All the experiments are conducted
on a single Nvidia V100 GPU.

5.4 Main Results

Table 3 demonstrates the experiment results, from
which we find that TKDF could achieve the compa-
rable performance to three strong baselines, includ-
ing Co-guiding Net, Rela-Net and SSRAN while
increasing the inference speed by a large margin.
This is due to the fact that our TKDF mitigates
the negative impact of multi-modality problem by
introducing an evaluator to obtain the selected data
by replacing the original distilled data with original
data dynamically in the training process.

6 Model Analysis

6.1 Effect of Dynamic Threshold

To evaluate the effectiveness of the dynamic thresh-
old strategy, we conduct an experiment comparing
its performance with the use of a fixed threshold.
Co-guiding Net is employed as the teacher model,
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Figure 2: Overall accuracy of Co-guiding Net + TKDF
on the MixATIS dataset with the fixed threshold and the
proposed dynamical threshold.

while GL-GIN serves as the student model. In the
experiment, we set a fixed threshold value, denoted
as T , to ensure that the training data remained con-
stant throughout the training process.

As shown in Figure 2, the model demonstrates
significant improvements and surpasses its counter-
part by 14.6% in terms of overall accuracy, utilizing
only 4% of the refined data. This result further val-
idates the effectiveness of our targeted distillation
method. By selectively filtering original data, the
training data complexity could be reduced, lead-
ing to the enhanced performance. It is also worth
noting that as the percentage of distilled data in-
creases, the rate of performance growth begins to
gradually diminish. The superiority of the dynamic
threshold strategy over all fixed threshold settings
not only shows the advantages of curriculum learn-
ing strategy but also enhances the flexibility of our
proposed overall model architecture.

6.2 Effect of Targeted Knowledge Distillation

To verify the effectiveness of targeted distillation
strategy, we compare it against the standard distilla-
tion. Our experiments are conducted on utterances
of varying lengths, applying Co-guiding Net as the
teacher model and GL-GIN as the student model.
Figure 3 showcases the experimental results, specif-
ically the overall scores for utterances of different
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Figure 3: Overall accuracy of Co-guiding Net + TKDF
examples of different lengths on the MixATIS dataset.

lengths. Notably, we observe that longer utterances
benefit more from targeted knowledge distillation.

Intuitively, longer utterances are more prone to
errors throughout the distillation process. Conse-
quently, leveraging real data aids the student model
in avoiding or rectifying these errors, thereby en-
hancing its ability to effectively model the longer
utterances. We also observe a slight performance
decrease for utterances with fewer than 10 tokens.
It is owing to the fact that shorter utterances typi-
cally exhibit higher average scores, resulting in pro-
longed exposure to the non-autoregressive student
model. However, the extended exposure to the orig-
inal data may inadvertently introduce confounding
factors during model training, as the model be-
comes influenced by the inherent multi-modality
problem present in the original data.

6.3 Case Study

To further demonstrate the superiority of our model
relative to the previous works on the multiple intent
detection and slot-filling problems, we provide a
case study as illustrated in Figure 4 which includes
the prediction results of a utterance sequence un-
der different distillation strategies. From the case,
we can find that different distillation strategies can
improve the original predicted incorrect utterances
to various degrees. The prediction results for both
slots and intents without distillation have some er-



Utterance: tell me about the ground transportation from nashville airport

Slot: O O O O O O O B-airport_name I-airport_name

Intent:

Slot: O O O O O O O B-fromloc.airport_name I-fromloc.airport_name

Intent:

Slot: O O O O O O O B-airport_name I-airport_name

Intent:

Slot: O O O O O O O B-airport_name I-airport_name

Intent:

Ref.
atis_airfare     atis_day_name     atis_ground_service

w/o KD
atis_flight     atis_ground_service     atis_day_name

Models

Standard KD
atis_airfare     atis_ground_service     atis_day_name

TKDF
atis_airfare     atis_day_name     atis_ground_service

Figure 4: A case study of our framework under different distillation strategies. Intents and slots in red are those that
are predicted incorrectly, and intents in blue are those that are missed in prediction.

rors due to the multi-modality problem. The dis-
tilled data encompasses some valuable information
derived from high-accuracy teachers, and employ-
ing a standard distillation strategy could partially
alleviate aforementioned errors. However, the tar-
geted distillation strategy yields highly favorable
outcomes by accurately predicting intentions and
slots. We attribute this success to its capability to
not only amalgamate information from the teachers
but also retain the original and crucial information.

7 Conclusion

In this paper, we propose TKDF, a simple yet effec-
tive method to solve the multi-modality problem
of non-autoregressive SLU. We introduce an eval-
uator and apply a curriculum learning strategy to
select proper targets for the student model. Experi-
ments and analysis demonstrate the effectiveness
of TKDF, which could achieve a flexible trade-off
between inference speed and accuracy.

Ethics Statement

We conduct all the experiments using two public
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Limitations

Although our TKDF achieves a flexible trade-off
between inference speed and accuracy, it does not
change the inherent structure. We suppose that the
understanding module in existing SLU models is

not sufficient enough and limits the performance to
some extent. In the future, we plan to explore more
techniques to further improve the performance.
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Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE.

Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, and
Philip Yu. 2019a. Joint slot filling and intent detec-
tion via capsule neural networks. In Proc. of ACL.

Dingwen Zhang, Junwei Han, Long Zhao, and Deyu
Meng. 2019b. Leveraging prior-knowledge for
weakly supervised object detection under a collab-
orative self-paced curriculum learning framework.
International Journal of Computer Vision.

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for spo-
ken language understanding. In Proc. of IJCAI.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling. In
Proc. of EMNLP.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2020a. Understanding knowledge distillation in non-
autoregressive machine translation. In Proc. of ICLR.

Yikai Zhou, Baosong Yang, Derek F. Wong, Yu Wan,
and Lidia S. Chao. 2020b. Uncertainty-aware cur-
riculum learning for neural machine translation. In
Proc. of ACL.

Zhihong Zhu, Xuxin Cheng, Zhiqi Huang, Dongsheng
Chen, and Yuexian Zou. 2023a. Enhancing code-
switching for cross-lingual slu: A unified view of
semantic and grammatical coherence. In Proc. of
EMNLP.

Zhihong Zhu, Xuxin Cheng, Zhiqi Huang, Dongsheng
Chen, and Yuexian Zou. 2023b. Towards unified
spoken language understanding decoding via label-
aware compact linguistics representations. In Proc.
of ACL Findings.

Zhihong Zhu, Weiyuan Xu, Xuxin Cheng, Tengtao
Song, and Yuexian Zou. 2023c. A dynamic graph in-
teractive framework with label-semantic injection for
spoken language understanding. In Proc. of ICASSP.


