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ABSTRACT

Quantum computers are known to provide speedups over classical state-of-the-art
machine learning methods in some specialized settings. For example, quantum
kernel methods have been shown to provide an exponential speedup on a learning
version of the discrete logarithm problem. Understanding the generalization of
quantum models is essential to realizing similar speedups on problems of practical
interest. Recent results demonstrate that generalization is hindered by the exponen-
tial size of the quantum feature space. Although these results suggest that quantum
models cannot generalize when the number of qubits is large, in this paper we show
that these results rely on overly restrictive assumptions. We consider a wider class
of models by varying a hyperparameter that we call quantum kernel bandwidth. We
analyze the large-qubit limit and provide explicit formulas for the generalization
of a quantum model that can be solved in closed form. Specifically, we show that
changing the value of the bandwidth can take a model from provably not being
able to generalize to any target function to good generalization for well-aligned
targets. Our analysis shows how the bandwidth controls the spectrum of the kernel
integral operator and thereby the inductive bias of the model. We demonstrate
empirically that our theory correctly predicts how varying the bandwidth affects
generalization of quantum models on challenging datasets, including those far
outside our theoretical assumptions. We discuss the implications of our results for
quantum advantage in machine learning.

1 INTRODUCTION

Quantum computers have the potential to provide computational advantage over their classical
counterparts (Nielsen & Chuang, 2011), with machine learning commonly considered one of the most
promising application domains. Many approaches to leveraging quantum computers for machine
learning problems have been proposed. In this work, we focus on quantum machine learning methods
that only assume classical access to the data. Lack of strong assumptions on the data input makes
such methods a promising candidate for realizing quantum computational advantage. Specifically,
we consider an approach that has gained prominence in recent years wherein a classical data point
is embedded into some subspace of the quantum Hilbert space and learning is performed using this
embedding. This class of methods includes so-called quantum neural networks (Mitarai et al., 2018;
Farhi & Neven, 2018) and quantum kernel methods (Havlíček et al., 2019; Schuld & Killoran, 2019).
Quantum neural networks are parameterized quantum circuits that are trained by optimizing the
parameters to minimize some loss function. In quantum kernel methods, only the inner products
of the embeddings of the data points are evaluated on the quantum computer. The values of these
inner products (kernel values) are then used in a model optimized on a classical computer (e.g.,
support vector machine or kernel ridge regression). The two approaches are deeply connected and
can be shown to be equivalent reformulations of each other in many cases (Schuld, 2021). Since
the kernel perspective is more amenable to theoretical analysis, in this work we focus only on the
subset of models that can be reformulated as kernel methods. A support vector machine (SVM) with
a quantum kernel based on Shor’s algorithm has been shown to provide exponential (in the problem
size) speedup over any classical algorithm for a version of the discrete logarithm problem (Liu et al.,
2021), suggesting that a judicious embedding of classical data into the quantum Hilbert space can
enable a quantum kernel method to learn functions that would be hard to learn otherwise.
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While the quantum kernels provide a much larger class of learnable functions compared to their
classical counterpart, the ability of quantum kernels to generalize when the number of qubits is large
has been called into question. Informally, Kübler et al. (2021) show that generalization is impossible
if the largest eigenvalue of the kernel integral operator is small, and Huang et al. (2021) show that
generalization is unlikely if the rank of the kernel matrix is large. The two conditions are connected
since for a positive-definite kernel with fixed trace, a small value of the largest eigenvalue implies
that the spectrum of the kernel is “flat” with many nonzero eigenvalues. Under the assumptions used
by Kübler et al. (2021); Huang et al. (2021), as the number of qubits grows, the largest eigenvalue of
the integral operator gets smaller and the spectrum becomes “flat”. Therefore, Kübler et al. (2021);
Huang et al. (2021) conclude that learning is impossible for models with a large number of qubits
unless the amount of training data provided grows exponentially with qubit count. This causes the
curse of “exponential” dimensionality (Schölkopf et al., 2002) inherent in quantum kernels. However,
Shaydulin & Wild (2021) show that if the class of quantum embeddings is extended by allowing a
hyperparameter (denoted “kernel bandwidth”) to vary, learning is possible even for high qubit counts.
While extensive numerical evidence for the importance of bandwidth is provided, no analytical results
are known that explain the mechanism by which bandwidth enables generalization.

In this work, we show analytically that quantum kernel models can generalize even in the limit of
large numbers of qubits (and exponentially large feature space). The generalization is enabled by the
bandwidth hyperparameter (Schölkopf et al., 2002; Silverman, 2018) which controls the inductive
bias of the quantum model. We study the impact of the bandwidth on the spectrum of the kernel
using the framework of task-model alignment developed in Canatar et al. (2021), which is based
on the replica method of statistical physics (Seung et al., 1992; Dietrich et al., 1999; Mezard &
Montanari, 2009; Advani et al., 2013). While nonrigorous, this framework was shown to capture
various generalization phenomena accurately compared with the vacuous bounds from statistical
learning theory. Together with the spectral biases of the model, task-model alignment quantifies the
required amount of samples to learn a task correctly. A “flat” kernel with poor spectral bias implies
large sample complexities to learn each mode in a task, while poor task-model alignment implies a
large number of modes to learn. On an analytically tractable quantum kernel, we use this framework
to show generalization of bandwidth-equipped models in the limit of an infinite number of qubits.
Generalization in this infinite-dimensional limit contrasts sharply with previous results suggesting
that high dimensionality of quantum Hilbert spaces precludes learning.

Our main contribution is an analysis showing explicitly the impact of quantum kernel bandwidth on
the spectrum of the corresponding integral operator and on the generalization of the overall model.
On a toy quantum model, we first demonstrate this analytically by deriving closed-form formulas for
the spectrum of the integral operator, and show that larger bandwidth leads to larger values of the top
eigenvalue and to a less “flat” spectrum. We show that for an aligned target function the kernel can
generalize if bandwidth is optimized, whereas if bandwidth is chosen poorly, generalization requires
an exponential number of samples on any target. Furthermore, we provide numerical evidence that
the same mechanism allows for successful learning for a much broader class of quantum kernels,
where analytical derivation of the integral operator spectrum is impossible. While our results do not
necessarily imply quantum advantage, the evidence we provide suggests that, even with a compatible,
well-aligned task, the quantum machine learning methods require a form of spectral bias to escape
the curse of dimensionality and enable generalization.

2 BACKGROUND

We begin by reviewing relevant classical and quantum machine learning concepts and establishing
the notation used throughout the paper. We study the problem of regression, where the goal is to learn
a target function from data. Specifically, the input is the training set D = {xµ, yµ}Pµ=1 containing P
observations, with x drawn from some marginal probability density function p : X → R defined on
X ⊂ Rn and y produced by a target function f̄ : X → R as y = f̄(x).

Learning with kernels Given data in X distributed according to a probability density function
p : X → R, we consider a finite-dimensional complex reproducing kernel Hilbert space (RKHS)
H and a corresponding feature map ψ : X → H. This feature map gives rise to a kernel function
k(x,x′) = ⟨ψ(x), ψ(x′)⟩H. The RKHS H associated with k is endowed with an inner product ⟨·, ·⟩H
satisfying the reproducing property and comprises functions f : X → R such that ⟨f, f⟩H < ∞
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(Schölkopf et al., 2002). Given a set of P data points xµ ∈ X , the positive semidefinite Gram matrix
is defined elementwise by Kµν = k(xµ,xν). The continuous analogue to the Gram matrix K is the
integral kernel operator Tk : L2(X ) → L2(X ) defined according to its action:

(Tkf)(x) =

∫
X
k(x,x′)f(x′)p(x)dx. (1)

By Mercer’s theorem (Schölkopf et al., 2002), the eigenfunctions of Tk satisfying Tkϕk = ηkϕk are
orthonormal (i.e., ⟨ϕk, ϕl⟩ = δkl), span L2(X ), and give rise to an eigendecomposition of k given by
k(x,x′) =

∑
k ηkϕk(x)ϕ

∗
k(x

′), where {ηk} are real-valued, nonnegative eigenvalues of the integral
operator due to its Hermiticity. The inner product ⟨·, ·⟩H in the RKHS of k may be computed with
respect to the integral kernel operator of Eq. 1 as ⟨f, g⟩H = ⟨f, T−1

k g⟩L2(X ), with the null space of
Tk ignored in computing T−1

k . From the kernel eigendecomposition, any target f̄ ∈ L2(X ) that lies
in the RKHS may therefore be decomposed as f̄(x) =

∑
k ākϕk(x), where āk = ⟨f̄ , ϕk⟩H are the

target weights. We comment on the case where the target lies outside of the RKHS in Appendix C.

Kernel ridge regression (KRR) is a convex optimization problem over functions that belong to a
Hilbert space H and is stated as follows:

f∗ = argmin
f∈H

1

2

P∑
µ=1

(
f (xµ)− yµ

)2
+
λ

2
∥f∥2H, (2)

where ∥·∥H denotes the norm with respect to the inner product ⟨·, ·⟩H defined on the Hilbert space
and λ ≥ 0 is the ridge parameter introduced for regularizing the solution.

Using these definitions, one can show that the solution to the regression problem takes the form
f∗(x) = k(x)⊤ (K+ λI)

−1
ȳ, where k(x) is a vector with elements k(x)µ = k(x,xµ) and

ȳµ = ȳµ. The kernel trick (Schölkopf et al., 2002) allows one to perform regression without
explicitly computing the features if one has access to the analytical kernel function. While providing
a rich class of kernels, quantum kernels are typically not expressible analytically and hence require
explicit representations of the feature maps.

Machine learning with quantum computers The central motivation for applying quantum com-
puters to problems in machine learning is to leverage the ability of quantum systems to efficiently
perform computation in a high-dimensional quantum Hilbert space. We consider quantum systems
defined on n qubits whose dynamics may be described using complex-valued linear operators. A
general quantum state on n qubits may be described by a positive definite 2n×2n density matrix with
unit trace and contained in the quantum Hilbert space H = {ρ | ρ ≻ 0,Tr(ρ) = 1, ρ ∈ L(C2n)},
where L(Cd) denotes bounded linear operators of the form Cd → Cd or, equivalently, d× d complex
matrices. H is endowed with the inner product ⟨ρ, ρ′⟩H given by the Hilbert–Schmidt inner product
⟨A,B⟩HS = Tr

{
A†B

}
for A,B ∈ L(Cd).

The dynamics of quantum states are described by applying linear operators to ρ, and we here will
specifically consider unitary operations (represented by a 2n × 2n unitary matrix U ). Then, the
quantum states that we are interested in may be prepared by applying a unitary operator to the vacuum
state |0⟩, where the “ket” notation |j⟩ represents the jth standard basis vector êj in R2n . When n = 1,
quantum states may be represented by the Bloch sphere: the constraints Tr{ρ} = 1 and ρ = ρ† mean
that the components of a density matrix are parameterized by three real parameters n = (nx, ny, nz)
and the density matrix can be written in terms of Pauli matrices σ⃗ as ρ = 1

2 (1 + n · σ⃗). Since
∥n∥ ≤ 1 is required for ρ ≥ 0 subject to Tr{ρ} = 1, we can identify any single-qubit state ρ with a
vector n in the unit sphere S2 ⊂ R3. Similarly, any unitary operation acting on a single qubit may be
represented as a sequence of rotations on the Bloch sphere (Nielsen & Chuang, 2011), thus making
this representation convenient for visualizing feature maps associated with quantum kernels.

By associating the quantum Hilbert space with a feature space H, we can define a feature map
that gives rise to a quantum kernel (Havlíček et al., 2019; Schuld & Killoran, 2019). We consider
a data-dependent unitary operator U(x) and prepare a density matrix ρ(x) = U(x)|0⟩⟨0|U†(x),
where |0⟩⟨0| represents the 2n × 2n matrix with ”1” in the top left corner and zeros elsewhere; later
we discuss examples of how to construct data-dependent unitary operators. A natural choice for a
feature map is then ψ(x) = ρ(x) with the corresponding inner product ⟨ρ, ρ′⟩H = Tr

{
ρρ′
}

. Under
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this feature map, the quantum kernel is defined as k(x,x′) = ⟨ψ(x), ψ(x′)⟩H = Tr
{
ρ(x)ρ(x′)

}
,

which inherits symmetry in its arguments from ⟨·, ·⟩H. With this association between the feature
map ψ(x) and the quantum state ρ(x), we can freely apply existing theory for kernel methods in
terms of complex vector spaces to study the spectra and generalization behavior of quantum kernels.
In Appendix A we provide further details on the theory of quantum states and kernels, such as
construction of the RKHS from Hermitian linear operators (or observables) and the geometry and
probabilistic nature of quantum operations. In practice, a quantum kernel method computes the kernel
matrix entries on a quantum computer by evaluating the value of the observable |0⟩ ⟨0| on the state
U(x)U(x′) |0⟩ ⟨0|U†(x′)U†(x).

3 MOTIVATING EXAMPLE: NO GENERALIZATION WITHOUT BANDWIDTH

Despite existing techniques for empirically evaluating the potential performance of quantum kernels
on classical datasets (Huang et al., 2021) and examples of successful implementation on currently
available quantum computers (Glick et al., 2021; Peters et al., 2021; Wu et al., 2021; Hubregtsen et al.,
2021), it is often still unclear how to construct a quantum kernel that will be suitable for learning
on a real-world classical dataset. This uncertainty in the potential performance of quantum machine
learning methods is compounded by regimes in which generalization is apparently impossible with
a subexponential amount of training data. These regimes arise from the same feature of quantum
computing that originally motivated quantum kernel methods: the availability of exponentially large
feature spaces. In this section we discuss a simple example where the high dimensionality of the
feature space precludes learning with fixed quantum embeddings, and we show that the introduction
of bandwidth enables generalization.

One example of how high dimensionality of the feature space precludes learning is provided by
random feature maps. Given a feature map ψ consisting entirely of independent Gaussian features, the
operator Σ = EX [ψψ†] is proportional to the identity operator. Since Σ shares eigenvalues with Tk
of Eq. 1 (Appendix A), the eigenvalues of K concentrate around unity at a rate O(P−1/2) (Rosasco
et al., 2010). Analogously, we consider a quantum feature map where states ρ(x) are prepared by
2n-dimensional random unitaries U(x), with the uniform distribution over unitaries being described
by the Haar measure (e.g., Collins & Nechita (2016)). Then, identifying a correspondence Σ →
EU∼U(2n)[ρ(x)⊗ρT (x)] in the quantum case and applying standard results from measure theory, one
can directly compute the spectrum of Σ (Appendix A). This computation yields 2n−1(2n+1) nonzero
eigenvalues with magnitude 21−n(2n + 1)−1, and thus the nonzero eigenvalues of K again become
uniform as n→ ∞. Since the largest eigenvalue is exponentially small in n, generalization requires
the number of data points to be exponentially large in n. The connection between the magnitude
of the largest eigenvalue and the required number of training samples can be seen directly from
Kübler et al. (2021, Theorem 3), although it is a straightforward consequence of many older results,
for example, (Dietrich et al., 1999; Bengio et al., 2005; Liang et al., 2019; Bordelon et al., 2020;
Canatar et al., 2021). In other words, efficient generalization becomes impossible when the quantum
feature map uses the full extent of the quantum state space uniformly. Our results demonstrate that
the converse is true: restricting embeddings to a smaller region of quantum state space recovers the
possibility of efficient learning.

3.1 LIMITATIONS OF FIXED QUANTUM EMBEDDINGS

To make the example concrete, we consider the following learning problem. This learning problem and
the failure of fixed quantum embeddings on it were considered in Huang et al. (2021, Supplementary
Information 9). For an input x ∈ {0, π}n, the goal is to learn a target function f̄(x) = cos

(
x(n)

)
,

where x(n) is the last element of the vector x. Since learning this function is equivalent to learning
the value of the last element of x, it is trivial classically, and a simple linear regression succeeds. We
now show how KRR with a badly designed quantum kernel fails on this trivial task, and we show
how the introduction of bandwidth allows the KRR with a quantum kernel to learn the target.

Consider a quantum kernel equipped with feature map

U(x) =

n⊗
j=1

U(x(j)), U(x(j)) = Rx

(
x(j)

)
=

 cos
(
x(j)/2

)
i sin

(
x(j)/2

)
i sin

(
x(j)/2

)
cos
(
x(j)/2

)
 , (3)
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Figure 1: A A quantum kernel method involves embedding data using a quantum circuit, often
involving rotation by some angle about an axis. When angles are not rescaled properly, data can be
embedded far apart in a space with dimensionality O(2n) (Sec. 3). Similarly, λmax is suppressed
as the mean embedding EX [ρ(x)] approaches the center of the Bloch sphere (Kübler et al., 2021).
B High-dimensional feature space results in k(x,x′) with narrow width (Eq. 6 with n = 50 and
(top) c = 1 (bottom) c = 0.25) Tuning bandwidth escapes the “curse of dimensionality” associated
with high-dimensional feature space. For n = 50 and f̄(x) = cos

(
x(50)

)
, quantum features that

are nearly orthogonal result in a narrow kernel (c = 1, top) and failure to generalize, while tuning
bandwidth (c < 1, bottom) recovers KRR generalization performance.

where
⊗n

j=1 is the tensor product of single-qubit operations and Rx(θ) represents a rotation of θ
about the x-axis of the single-qubit Bloch sphere (see Fig. 1A). For this feature map, the embedding
factorizes over qubits as ρ(x) = U(x)|0⟩⟨0|U†(x) =

⊗n
j=1 ρ(x

(j)), and

ρ(x(j)) =

 cos2(x(j)/2) −i cos
(
x(j)/2

)
sin
(
x(j)/2

)
i cos

(
x(j)/2

)
sin
(
x(j)/2

)
sin2(x(j)/2)

 , (4)

with the kernel given by

k(x,x′) = Tr
(
ρ(x)ρ(x′)

)
=

n∏
j=1

cos2
((

x(j) − x′(j)
)
/2

)
. (5)

While this kernel is obtained via quantum operations, the fact that it has a closed form expression
makes it classically easy to simulate. Nevertheless, it is a useful toy model (Kübler et al., 2021;
Huang et al., 2021) for the analytical analysis of exponentially large quantum feature spaces. Since
the input data is x ∈ {0, π}n, the kernel becomes a delta function: k(x,x′) = δx,x′ . Therefore,
any two points in the feature space ρ(x) and ρ(x′) for x ̸= x′ are orthogonal and the kernel cannot
capture the correlations in data. KRR with this kernel simply memorizes the training set and cannot
generalize to any target function with a subexponential (in n) training set size.

3.2 BANDWIDTH ENABLES LEARNING

The preceding example highlights how quantum kernel methods utilizing high-dimensional spaces can
fail to generalize. Our central technique for mitigating this limitation will be to introduce bandwidth
to quantum kernels (Shaydulin & Wild, 2021). We now reconsider the kernel with the feature map
of Eq. 3 and introduce a scaling parameter c ∈ [0, 1] that controls the bandwidth of the kernel. The
feature map and the kernel become

U(x(j)) = Rx

(
cx(j)

)
, k(x,x′) =

n∏
j=1

cos2
(
c
(
x(j) − x′(j)

)
/2

)
. (6)

Geometrically, the factor c restricts features ρ(x) to a smaller region of the Bloch sphere (Fig. 1A).
Consequently, the kernel matrix is no longer diagonal, and we can straightforwardly check that simply
tuning c allows KRR with kernel Eq. 6 to generalize (see Fig. 1B).
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4 EFFECT OF BANDWIDTH ON SCALING AND SPECTRA

In the preceding section we provided a qualitative mechanism for how bandwidth improves the
generalization of quantum kernels. We now analyze the expected generalization error of quantum
kernels equipped with bandwidth. We derive explicitly the spectrum of the bandwidth-equipped
quantum kernel with the feature map Eq. 6 and show how the bandwidth makes the spectrum less
“flat,” thereby enabling learning. Our main tool is the theory developed in Bordelon et al. (2020);
Canatar et al. (2021) where the generalization error, as a function of the training set size, is analytically
obtained from the eigenvalues of the kernel and the projection of the target function on the RKHS
defined by the kernel.

4.1 EXPLICIT FORMULAS FOR GENERALIZATION OF BANDWIDTH-EQUIPPED KERNELS

We consider the quantum kernel with the feature map given by Eq. 6 and the input distribution
x ∼ Unif([−π, π]n), as previously studied by Kübler et al. (2021). For a single qubit, the kernel
becomes k(x, x′) = cos2(c(x − x′)/2) with bandwidth parameter c, and the eigenvalues can be
computed as follows (see Appendix B):

λ1 =
3

8
+

1

8
sinc(2πc) +

1

8

√
(1− sinc(2πc))2 + 16sinc(πc)2, λ2 =

1

4
− 1

4
sinc(2πc),

λ3 =
3

8
+

1

8
sinc(2πc)− 1

8

√
(1− sinc(2πc))2 + 16sinc(πc)2, λ4 = 0. (7)

For an n-qubit system, the largest eigenvalue ηmax of the kernel in Eq. 6 falls exponentially with n
for c ∼ On(1) and makes generalization impossible with P ∼ poly(n) amount data (Kübler et al.,
2021) (see Appendix. B). To prevent ηmax decreasing with n, we choose a bandwidth that scales with
n (i.e., c = an−α with a ∼ O(1) and α > 0). In Appendix B we show that α ≥ 1

2 is required for
generalization. We consider α = 1/2 henceforth. Then, all nonzero eigenvalues of the n-qubit kernel
Eq. 6 can be expressed as λk1

1 λ
k2
2 λ

k3
3 with k1 + k2 + k3 = n, where the single-qubit eigenvalues

asymptotically (with n) look like

λ1 ≈ 1, λ2 ≈ a2π2

6n
, λ3 ≈ a4π4

180n2
. (8)

Starting from k1 = n and k2 = k3 = 0, the hierarchy of eigenvalues obtained in this way are given
in Table 1. We denote each of these eigenvalues as ηk,z and their corresponding eigenfunctions as

Table 1: Hierarchy of eigenvalues based on their scaling. N(n, k) denotes the degeneracy of
eigenvalues with scaling n−k, and |n, k⟩ denotes the form of the corresponding eigenstates.

n−k Degeneracy N(n, k) Eigenstate |n, k⟩
n0 1 |ψ1⟩⊗n

n−1
(
n
1

)
|ψ1⟩⊗(n−1) |ψ2⟩

n−2
(
n
2

)
+
(
n
1

)
|ψ1⟩⊗(n−2) |ψ2⟩⊗2

, |ψ1⟩⊗(n−1) |ψ3⟩
n−3

(
n
3

)
+
(
n−1
1

)(
n
1

)
|ψ1⟩⊗(n−3) |ψ2⟩⊗3

, |ψ1⟩⊗(n−2) |ψ2⟩ |ψ3⟩

ϕk,z(x), where k indexes the overall scaling of the eigenvalue and z indexes each of the individual
eigenvalues with scaling n−k. The degeneracy N(n, k) ∼ O(nk) denotes the number of eigenvalues
ηk,z ∼ O(n−k) for each k. Notice that the quantity η̄k,z = N(n, k)ηk,z ∼ On(1) with respect to the
input dimension and its value depends on a and k. For each k, we will further make the approximation
η̄k,z ≈ η̄k,z′ for all pairs z, z′ since the spectrum is almost flat at each scaling k (see Figure 2A).

We obtain the projections of target function f̄(x) on the kernel eigenfunctions as āk,z =∫
f̄(x)ϕk,z(x)p(x)dx. We also define the total target power at each scaling ā2k ≡ ∑N(n,k)

z=1 ā2k,z .
With the eigenvalues and the target weights ā2k, the generalization error is given by (Canatar et al.,
2021) (Appendix C):

Eg =
κ2

1− γ

∑
k

ā2k(
κ+ αkη̄k

)2 , κ = λ+ κ
∑
k

η̄k
κ+ αkη̄k

, γ =
∑
k

αkη̄
2
k

(κ+ αkη̄k)2
, (9)
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where λ is the KRR regularization parameter, κ should be solved self-consistently, and we have
defined αk = P

N(n,k) . Taking the large qubit and large data limit (n → ∞ and P → ∞) while
keeping αl ∼ On(1) for some mode l (meaning P ∼ O(nl)), the generalization error decouples
across different scaling limits and becomes

Eg(αl) =

 κ2

1− γ

ā2l(
κ+ αlη̄l

)2 +
γ

1− γ

∑
k>l

ā2k

+
∑
k>l

ā2k. (10)

The target modes with k > l remain unlearned since αk>l = 0 and the modes k < l have already
been learned using the provided data since αk<l = ∞. This scaling defines learning stages where
at each stage a single mode l is being learned, and the remaining modes contribute as constant
error. The term in the parentheses goes to zero as αl → ∞ (see Appendix C). Hence, when
the mode l is completely learned, the ratio of the generalization error to its initial value becomes
Eg(αl=∞)

Eg(0)
= (
∑

k>l ā
2
k)/(

∑
k ā

2
k). Therefore, given a data budget P ∼ O(nl), the quantum kernel

is guaranteed to generalize to target functions whose weights beyond mode l are vanishing. The
quantity C(l) = 1 − Eg(αl=∞)

Eg(0)
, called the cumulative power (Canatar et al., 2021), describes the

amount of power placed in the first l modes and quantifies the task-model alignment.

It was shown in Canatar et al. (2021) that kernels generalize better for target functions with sharply
rising C(l). In our case, for generalizability at P ∼ O(nl) samples, it is a necessary but not sufficient
condition for target functions to have good task-model alignment for which C(l) ≈ 1. Note that
the trace of this kernel is

∫
k(x,x)p(x)dx = 1, and therefore the eigenvalues satisfy

∑
k,z ηk,z = 1.

Flatness of the spectrum, then, implies ηk,z ∼ O(3−n) since there are 3n nonzero modes of the
kernel in Eq. 6 (see Appendix B). Equation 9 suggests that even if the target is aligned well with the
kernel, it requires P ∼ O(3n) samples to learn each mode, and so generalization becomes impossible
with polynomial sample complexity P ∼ O(nl).

On the other hand, bandwidth enables sufficient decay in the spectrum of the kernel, and Eq. 9
shows that P ∼ O(nl) samples yield an excess generalization error Eg ≈ 1 − C(l). In Figure 2,
we show the results of simulating the kernel of Eq. 6 with n = 40 qubits for a target function
given by f̄(x) = e−∥x∥2/n2

. For c = 1, the kernel has a flat spectrum (Figure 2A) with poor
alignment with the task (Figure 2B). On the other hand, bandwidth introduces sufficient decay in
the eigenspectrum so that polynomial time learning becomes possible. Surprisingly, bandwidth also
improves the task-model alignment which, together with spectral bias, implies generalizability with
better sample efficiency. In Figure 2C, we perform kernel regression with our toy kernel and confirm
that generalization improves with bandwidth up to an optimal value after which it degrades again.
This is due to the fact that larger bandwidths cause underfitting of the data (Silverman, 2018) since
only a very few eigenmodes become learnable while the target cannot be fully explained by those
modes. In Figure 2, we find that the optimal bandwidth parameter is c∗ ≈ 2

n (see Appendix E).
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Figure 2: A Eigenvalues of the kernel Eq. 6 with respect to data x ∼ Unif([−π, π]40). Learnability
is explained by the preservation of large-eigenvalue eigenspaces; without bandwidth, the model
provably cannot learn in poly(n) complexity due to the flat spectrum. B The projections of the target
f̄(x) = e−∥x∥2/n2

on the eigenvectors of the kernel for each bandwidth. Apart from the flatness of
the c = 1 kernel, its eigenfunctions align poorly with the target. C Generalization error as a function
of the number of training samples computed by using theory (solid lines) (Eq. 9) and performing
kernel ridge regression empirically (dots). Bandwidth c = 1 yields a constant learning curve. While
all c < 1 kernels provide improvement, an optimal bandwidth parameter c∗ ≈ 2/n gives the best
task-model alignment.
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4.2 EVIDENCE OF PERFORMANCE GAINS IN REAL DATASETS

To evaluate our theory in a practical setting, we consider two previously proposed quantum kernels
that have been conjectured to be hard to simulate classically: a kernel with a feature map inspired by
instantaneous quantum polynomial-time (IQP) circuit (Shepherd & Bremner, 2009; Havlíček et al.,
2019; Huang et al., 2021) and a kernel with Hamiltonian evolution (EVO) feature map (Huang et al.,
2021; Shaydulin & Wild, 2021) (see Appendix E for details). Unlike the kernel considered in the
preceding section, the spectrum cannot be derived analytically for these kernels.

We evaluate these kernels on binary classification versions of FMNIST (Xiao et al., 2017), KMNIST
(Clanuwat et al., 2018), and PLAsTiCC (The PLAsTiCC team et al., 2018) datasets with the input
data downsized to n = 22 dimensions, which were previously used to evaluate quantum kernel
performance in Shaydulin & Wild (2021); Huang et al. (2021); Peters et al. (2021). We use the kernel
values reported in Shaydulin & Wild (2021), which were evaluated with high precision using an
idealized (noiseless) simulator. In practice, an additive error is introduced when evaluating the kernel
values on a fault-tolerant quantum computer. Bandwidth-equipped kernels are robust against this
error; see the discussion in Shaydulin & Wild (2021). We perform SVM for binary classification
using these kernels with varying bandwidths. In Table 2, we report the test accuracies with bandwidth
parameter c = 1 for the IQP and EVO kernels. We also report the test performance with bandwidth
parameters c∗ < c optimized by hyperparameter tuning for each kernel using cross validation (see
Appendix E). For both kernels, bandwidth significantly improves the test performance.

IQP EVO Random Guess
c∗ c = 1 c∗ c = 1

FMNIST 0.926 0.542 0.916 0.643 0.5
KMNIST 0.915 0.629 0.914 0.600 0.5

PLAsTiCC 0.789 0.5 0.788 0.613 0.5

Table 2: Bandwidth tuning recovers significant performance gains over out-of-the-box quantum
models, opening up the possibility of better workflows for general quantum machine learning on
many qubits via hyperparameter tuning.

To test our intuition, we present in Fig. 3A the shape of the IQP kernel where the kernel clearly
sharpens for larger values of bandwidth parameter implying flat spectrum. In Fig. 3B, we further
confirm that the spectrum decay improves with bandwidth when the IQP kernel is evaluated on the
FMNIST dataset. We also find that the task-model alignment improves greatly with the bandwidth
(Fig. 3C), thus implying, together with the previous point, possible generalization.
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Figure 3: A IQP kernel function example: Intuitive behavior of bandwidth persists even when
quantum kernel is not strictly shift-invariant. B IQP with the addition of bandwidth is capable of
recovering significant target alignment with FMNIST dataset. C While the spectrum for c = 1 IQP is
flat, it also has poor alignment with the target (see Appendix E).

5 RELATED WORK

Huang et al. (2021) introduce the idea that the exponential dimensionality of quantum feature
spaces precludes generalization of quantum kernel methods, and they provide an upper bound on
generalization error that includes the dimension of the space spanned by the training set. They connect
their results to the spectrum of the kernel by introducing a measure of “approximate dimension” of
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the span of the training set given by
∑n

k=1

(
1

n−k

∑m
l=k tl

)
, where {tl}nl=1 are the eigenvalues of

the n × n kernel matrix. This number is effectively a measure of the flatness of the spectrum of
the kernel and is used in numerical experiments in Huang et al. (2021). An alternative analysis is
given by Banchi et al. (2021), who derive bounds on generalization error using quantum information
techniques and show that near-identity kernels resulting from large dimensionality of the feature
space preclude generalization. We use the construction from Huang et al. (2021, Appendix I) as our
motivating example in Sec. 3.

Kübler et al. (2021) introduce techniques for deriving the spectrum of quantum kernels and obtain
the spectrum of the kernel Eq. 5. They then use these techniques to show that the purity of the
mean embedding provides an upper bound on the largest eigenvalue of the quantum kernel integral
operator and consequently that quantum kernel methods with feature maps that utilize the full
quantum Hilbert space require an exponential number of qubits of data to learn. However, Kübler
et al. (2021) did not consider bandwidth as a method for controlling the inductive bias of quantum
kernels. Our contribution is using the techniques of Kübler et al. (2021) to derive the spectrum of the
bandwidth-equipped kernel Eq. 6 and explicit formulas for the expected generalization error.

Shaydulin & Wild (2021) introduce the concept of quantum kernel bandwidth and provide numerical
evidence that bandwidth tuning (equivalent to rescaling of the input data) improves the generalization
of SVM with quantum kernels. An analogous mechanism has been observed to improve trainability of
quantum neural networks (Zhang et al., 2022). However, previous results make no connection between
the bandwidth and the spectrum of the kernel and provide no analytical results for generalization. We
reinterpret the data from Shaydulin & Wild (2021) in Sec. 4.2 and show how the bandwidth controls
the spectrum of the kernel and enables generalization.

6 DISCUSSION

In this work, we studied the kernels induced by quantum feature embeddings of data and their
generalization potential. Recent work suggests that machine learning models built in this way suffer
from the curse of dimensionality, requiring exponentially large training sets to learn. Note that
embedding n-dimensional data requires at least n qubits (where n ∼ 103 for standard datasets) which
span a 2n dimensional feature space. While quantum models may possess potentially powerful and
classically inaccessible representations for certain tasks, utilization of those necessarily requires a
control over the large space they span in order to generalize.

Here we showed that the bandwidth hyperparameter enables generalization of quantum kernel
methods when the numbers of qubits is large, and provided explicit formulas for the resulting
expected generalization error on a toy model. Our results open up promise for quantum machine
learning beyond intermediate numbers of qubits. A central lesson provided by our work is that
thoughtfully chosen hyperparameters can significantly improve the performance of quantum machine
learning methods. Identifying such hyperparameters that control the inductive bias of quantum
models is essential to realizing the full potential of quantum machine learning methods.

Unlike prior works, we focus not just on the spectrum of the quantum kernel but on the alignment
between the kernel and the real-world datasets. Our empirical results imply that scaling the bandwidth
not only makes the spectrum less flat, but also improves the alignment with real-world target
functions. These observations make us optimistic about the potential of quantum kernel methods to
solve classically challenging problems.

An important limitation of our results is that while bandwidth scaling is guaranteed to improve the
spectrum, it does not necessarily lead to good alignment. For example, in the limit of c → 0 the
spectrum has only one nonzero eigenvalue, although learning is still not possible (see Appendix D).
This suggests that optimizing bandwidth as a hyperparameter during training can balance triviality of
the feature map (c→ 0) with greater utilization of the quantum state space. At the same time, if the
feature map is chosen poorly, varying bandwidth would not lead to good generalization.

If the kernel values are evaluated on a noisy quantum computer, the quantum hardware noise would
affect the spectrum of the kernel. Hardware noise reduces the purity of embedding, leading to a trivial
lower bound on generalization error from Kübler et al. (2021, Theorem 1). Heyraud et al. (2022) give
a more detailed analysis. While outside the scope of this work, the impact of noise on generalization
is nonetheless an important consideration for near-term prospects of quantum kernel methods.
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A REVIEW OF CLASSICAL AND QUANTUM DATA OPERATORS

Here we discuss covariance operators and integral kernel operators for two types of data: classical
real-valued vectors and finite-dimensional complex Hermitian operators. The goal is to relate the
spectra of these operators in order to better understand how feature maps and distributions of input
data combine to affect the learnability of a distribution.

Given a symmetric positive semidefinite kernel function k : X ×X → R, the integral kernel operator
Tk : L2(X ) → L2(X ) is defined according to its action on f ∈ L2(X ) as

(Tkf)(x) =

∫
X
k(x,x′)f(x′)µ(dx′). (A.1)

A quantum kernel is defined as the inner product of two quantum states,

k(x,x′) = ⟨ρ(x), ρ(x′)⟩H = Tr
{
ρ(x)ρ(x′)

}
= Vec

(
ρ(x)

)†
Vec

(
ρ(x′)

)
,

where we have introduced the vectorization map (e.g., Watrous (2018)) Vec : L(Cd) → Cd2

, which
stacks rows of a d × d matrix into a d2 × 1 column vector and where L(Cd) denotes the space of
linear operators of the form Cd → Cd. Throughout this section we will consider d-dimensional
quantum states and operations (where d = 2n in the case of n qubits). We will frequently use the
identity

Vec (A)
†
Vec (B) = ⟨A,B⟩ = Tr

{
A†B

}
, ∀A,B ∈ L(Cd).

Observing that the RKHS of a kernel k is defined (see, e.g., Schuld (2021)) by functions of the form

f(x) = ⟨ρ(x), H⟩,
we can rewrite Eq. A.1 as

(Tkf)(x) = Vec
(
ρ(x)

)† ∫
X
Vec

(
ρ(x′)

)
Vec

(
ρ(x′)

)†
Vec (H)µ(dx′)

= ⟨Vec
(
ρ(x)

)
,Σ Vec (H)⟩, (A.2)

where we have defined the covariance operator,

Σ =

∫
X
Vec

(
ρ(x′)

)
Vec

(
ρ(x′)

)†
µ(dx′) =

∫
X
ρ(x′)⊗ ρ(x′)Tµ(dx′), (A.3)

and the last equality in Eq. A.2 holds whenever the quantum embedding is a pure state (i.e., ρ(x) =
|ψ(x)⟩⟨ψ(x)| for some |ψ(x)⟩). We can intuitively understand this operator by analogy to linear
feature maps: If we consider n-dimensional real-valued input vectors x ∈ X ⊂ Rn and assume x are
centered such that EX [x] = 0, then the covariance operator is defined as Σ = EX [xxT ] such that
(Σ)ij = E[xixj ]. Equation A.3 therefore describes a kind of quantum covariance operator, although
this is an imperfect analogy since a centered quantum feature map (EX [ρ(x)] = 0) would violate the
requirement Tr

{
ρ(x)

}
= 1.

We are interested in the eigenvalue equations

ΣVec (H) = ηVec (H)

(Tkϕ)(x) = ηϕ(x).

Given the operators defined in Eq. A.1 and Eq. A.3, one may verify (see, e.g., Shawe-Taylor et al.
(2005)) that the following statements hold under the identification ψ(x) → Vec

(
ρ(x)

)
described

above.

(S1) For every eigenfunction ϕ satisfying (Tkϕ)(x) = ηϕ(x), there is a corresponding eigenvec-
tor Vec (H) of Σ given by

Vec (H) =

∫
X
ϕ(x)Vec

(
ρ(x)

)
µ(dx)

such that ΣVec (H) = ηVec (H). Furthermore, from the bijectivity of the Vec operation
and the fact that Hermiticity is preserved under convex combination, it follows that H is
Hermitian.
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(S2) For every eigenvector Vec (H) of Σ satisfying ΣVec (H) = ηVec (H), there is a corre-
sponding eigenfunction of Tk given by

ϕ(x) = Tr
{
ρ(x)H

}
= Vec

(
ρ(x)

)†
Vec (H)

such that (Tkϕ)(x) = ηϕ(x).
(S3) Assuming that eigenfunctions ϕk of Tk indexed by eigenvalue ηk are orthonormal,

⟨ϕk, ϕl⟩L2(X ) =

∫
X
ϕk(x)

∗ϕl(x)µ(dx) = δkl,

the eigenvectors Vec (Hk) of Σ indexed according to eigenvalue ηk satisfy

Vec (Hk)
†
Vec (Hl) = Tr

{
H†

kHl

}
= η−1

k δkl

whenever ηk > 0 (when ηk = 0, we may safely ignore Vec (Hk) in the null space of Σ).

Letting spec (A) denote the sequence of eigenvalues of an operator A sorted in nonincreasing order,
it then follows from (S1) and (S2) that

spec (Tk) = spec (Σ) .

The mean embedding is defined as the average state with respect to a distribution over X :

ρµ =

∫
X
ρ(x)µ(dx).

As shown in Kübler et al. (2021, Lemma 1), the inequality ηmax(Σ) ≤
√
Tr
{
ρµ
}2

provides a bound
for the largest eigenvalue of Σ. Let n be the Bloch vector for ρµ defined on n = 1 qubits, which can
be parameterized as

n = (sin θ cosϕ, sin θ sinϕ, cosϕ) (A.4)

Then Tr
{
ρ2µ

}
= (1 + ∥n∥2)/2. This provides a geometric argument for the use of bandwidth in

a single-qubit system (or product thereof). For instance, consider each shaded region in Fig. 1A
representing the subspace spanned by quantum states associated with the feature map giving rise to k.
Then we have that the maximum eigenvalue of Σ is suppressed like ηmax(Σ) ≤ (1 + ∥n∥2)1/2/

√
2

as the centroid n of each region (representing ρµ) approaches the center of the Bloch sphere. By
limiting bandwidth (and therefore restricting the shaded region of Fig. 1B to a polar cap of the Bloch
sphere), the upper bound on ηmax(Σ) is lifted, and the possibility of learning on data is restored.

A.1 SPECTRUM OF A RANDOM QUANTUM EMBEDDING

A foundational observation for this work is that using a kernel associated with a feature map that
completely utilizes a high-dimensional feature space leads to poor learning guarantees due to the
flatness of the corresponding spectrum. Here, we present an extreme (and somewhat contrived)
example where a quantum feature map associated with random state vectors leads to a flat kernel
spectrum. We assume the existence of a data distribution and feature map x → U(x)|0⟩⟨0|U†(x)
for which unitaries U(x) are sampled uniformly over the space of n-qubit unitaries U(2n). Such a
distribution may be achieved by sampling uniformly with respect to the Haar measure µ(dU) (e.g.,
Collins & Nechita (2016)). As described in Rosasco et al. (2010), the spectrum of K concentrates
around the spectrum of Σ. We therefore explicitly compute the spectrum of Σ corresponding to
random quantum features. Using standard results for integration with respect to the Haar measure
(Puchała & Miszczak, 2017), we compute the average elements of Σ as

⟨ij|Σ|kℓ⟩ =
∫
U(2n)

⟨i|ρ(x)|k⟩⟨j|ρ(x)|ℓ⟩µ(dU)

=

∫
U(2n)

Ui0U
∗
k0Uj0U

∗
ℓ0µ(dU)

=
2n − 1

2n(22n − 1)

(
δikδjℓ + δiℓδjk

)
. (A.5)
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The terms associated with δikδjℓ = 1 correspond to the identity operator I4n , while the terms δiℓδjk
contribute to either 2n-many diagonal components Σii,ii for i = 1, . . . , 2n or 2n(2n − 1)-many
off-diagonal components Σij,ji whenever j ̸= i:

Σ → I4n +

2n∑
i=1

|ii⟩⟨ii|+
2n∑
i=1

∑
j ̸=i

|ij⟩⟨ji|. (A.6)

Equation A.6 is therefore a direct sum of subspaces proportional to 2I2 and subspaces proportional to
I2 + X2, the latter of which may be easily diagonalized. Combining with Eq. A.5 yields the spectrum

spec (Σ) =

{
2

2n(2n+1) with multiplicity 2n + 2n(2n−1)
2

0 with multiplicity 2n(2n−1)
2 .

Coincidentally, the mean embedding associated with this feature map is proportional to the identity;
that is, ρµ = EX [ρ(x)] = I/2n.

B SPECTRUM OF THE BANDWIDTH-EQUIPPED KERNEL

Here we derive the spectrum of the integral operator for kernel discussed in the main text. We follow
the technique of diagonalizing Σ described in Appendix A and used in Kübler et al. (2021, Appendix
C). We first derive the spectrum for the single-qubit (one-dimensional data) case. Then we leverage
the observation that the kernel factorizes over the qubits to obtain the full spectrum for the general
n-dimensional case.

We begin by considering the input x ∈ Uniform[−π, π]. Recall that the feature map ρ(x) is generated
by the unitary

U(x) = cos

(
cx

2

)
I + i sin

(
cx

2

)
X.

Then, the vectorization of the image of a data point x in feature space ρ(x) = U(x) |0⟩ ⟨0|U(x)† is

Vec
(
ρ(x)

)
=


cos2

(
cx
2

)
−i cos

(
cx
2

)
sin
(
cx
2

)
i cos

(
cx
2

)
sin
(
cx
2

)
sin2

(
cx
2

)
 ,

and the corresponding kernel is

k(x, x′) = Vec
(
ρ(x)

)†
Vec

(
ρ(x′)

)
= cos2

(
c
(x− x′)

2

)
. (A.7)

Our goal is to compute the eigenvalues of the integral operator Tk defined as

(Tkϕk)(x) =

∫
µ(dx′)k(x, x′)ϕk(x

′) = λkϕk(x). (A.8)

Here we refer to single-qubit eigenvalues as λk and many-qubit eigenvalues as ηk. As described in
Appendix A, this is equivalent to computing the eigenvalues of the covariance operator Σ given by

Σ =

∫
X
Vec

(
ρ(y)

)
Vec

(
ρ(y)

)†
µ(dy)

=
1

2π

∫ π

−π


cos4( cy

2 ) i cos3( cy
2 ) sin(

cy
2 ) −i cos3( cy

2 ) sin(
cy
2 ) cos2( cy

2 ) sin
2( cy

2 )
−i cos3( cy

2 ) sin(
cy
2 ) cos2( cy

2 ) sin
2( cy

2 ) − cos2( cy
2 ) sin

2( cy
2 ) −i cos( cy

2 ) sin
3( cy

2 )
i cos3( cy

2 ) sin(
cy
2 ) − cos2( cy

2 ) sin
2( cy

2 ) cos2( cy
2 ) sin

2( cy
2 ) i cos( cy

2 ) sin
3( cy

2 )
cos2( cy

2 ) sin
2( cy

2 ) i cos( cy
2 ) sin

3( cy
2 ) −i cos( cy

2 ) sin
3( cy

2 ) sin4( cy
2 )

 dy

=


a1 0 0 a2
0 a2 −a2 0
0 −a2 a2 0
a2 0 0 a3

 ,
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where

a1 =
3

8
+

1

2
sinc(cπ) +

1

8
sinc(2cπ)

a2 =
1

8
− 1

8
sinc(2cπ)

a3 =
3

8
− 1

2
sinc(cπ) +

1

8
sinc(2cπ).

We can easily obtain the eigenvalues of this matrix, which are

λ1 =
3

8
+

1

8
sinc(2πc) +

1

8

√
(1− sinc(2πc))2 + 16sinc(πc)2

λ2 =
1

4
− 1

4
sinc(2πc)

λ3 =
3

8
+

1

8
sinc(2πc)− 1

8

√
(1− sinc(2πc))2 + 16sinc(πc)2

λ4 = 0, (A.9)

where λ1 > λ2 ≥ λ3 > λ4 for all c ∈ [0, 1]. With c = 1, the eigenvalues become 1
2 ,

1
4 ,

1
4 , 0,

respectively. Now we can examine the impact of bandwidth on the eigenvalues (see Eq. A.9) of the
integral operator. We first observe that for c→ 0, all eigenvalues except the top eigenvalue become
zero; that is, λ1 → 1 and λ2, λ3, λ4 → 0. This confirms our intuition about the impact of bandwidth
on the spectrum of the integral operator. This also implies that for small c the approximate dimension
of the space spanned by the training data will be 1, which is consistent with the observation that in
this limit the feature maps become constant.

For an n-qubit system and an input data distribution that factorizes over the dimensions, the kernel
simply becomes the direct product of the n copies of the single-qubit system. Since the n qubits are
completely decoupled, the resulting kernel in Eq. 6 has eigenvalues of the form

ηn1n2n3n4 = λn1
1 λn2

2 λn3
3 λn4

4 , n1 + n2 + n3 + n4 = n, n1, n2, n3, n4 ∈ Z+ ∪ {0},

where the nonzero eigenvalues are obtained by setting n4 = 0 since λ4 = 0. Here, we note that the
number of zero eigenvalues grows exponentially with number of qubits as 4n − 3n. However, its
ratio to the total number of eigenvalues vanishes since

#{ηn1n2n3n4 = 0}
#{ηn1n2n3n4

} =
4n − 3n

4n
n→∞−−−−→ 0;

therefore the bulk of the spectrum remains nonzero.

For c ∼ On(1), the spectrum remains flat as n → ∞. This can be easily seen with the case c = 1
where the eigenvalues are given by

ηk = 2−n2−k,

where k = n2+n3 and takes values in {0, . . . , n}. Each eigenvalue ηk is degenerate with N(n, k) =
2k
(
n
k

)
, and of course

∑n
k=0N(n, k) = 3n gives the number of nonzero eigenvalues. To obtain a

nonflat spectrum, we need eigenvalues to scale with the number of qubits n. In the next section, we
do so by imposing scaling conditions on the eigenvalues.

For completeness, we also provide the unnormalized eigenfunctions of the kernel using the eigenvec-
tors of Σ. Inverting the Vec operation, we get the matrices

H1 =

(
4sinc(πc)+

√
(1−sinc(2πc))2+16sinc(πc)2

1−sinc(2πc) 0

0 1

)
, H2 =

(
0 −1
1 0

)

H3 =

(
4sinc(πc)−

√
(1−sinc(2πc))2+16sinc(πc)2

1−sinc(2πc) 0

0 1

)
, H4 =

(
0 1
1 0

)
.
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The corresponding eigenfunctions are given by ϕ1(x) = Tr
(
ρ(x)Hi

)
and become

ϕ1(x) = sin2
(
cx

2

)
+ cos2

(
cx

2

)
4sinc(πc) +

√
(1− sinc(2πc))2 + 16sinc(πc)2

1− sinc(2πc)
ϕ2(x) = i sin(cx)

ϕ3(x) = sin2
(
cx

2

)
+ cos2

(
cx

2

)
4sinc(πc)−

√
(1− sinc(2πc))2 + 16sinc(πc)2

1− sinc(2πc)
ϕ4(x) = 0.

Setting c = 1, we obtain the eigenfunctions given in Kübler et al. (2021): ϕ1(x) = 1, ϕ2(x) =
i sin(x), ϕ3(x) = − cos(x), and ϕ4 = 0. Note that unlike the c = 1 case, the eigenfunction ϕ1(x) in
general is not constant.

B.1 SCALING RESTRICTIONS TO THE BANDWIDTH

The argument given by Kübler et al. (2021, Theorem 1) is that when the largest eigenvalue of the
kernel is sufficiently small compared with the sample size, the generalization error is lower bounded
by the L2 norm of the target function with probability at least 1− ϵ as

Eg ≥ (1− ϵ)
∥∥f̄∥∥2 = (1− ϵ)

∑
k

ā2k,

which matches our result from Sec. 4. The result in Kübler et al. (2021) depends on the exponentially
small largest eigenvalue of the kernel compared with the amount of training samples. In fact, from
Eq. 9 it easily follows that for a polynomial number of training samples P ∼ nl and exponentially
suppressed largest eigenvalue ηmax ∼ 2−n, the learning is impossible as n→ ∞. Kübler et al. (2021,
Lemma 1) proves that the largest eigenvalue of the kernel is upper bounded by the so-called purity:

ηmax ≤
√
Mµ,

where purity is given by Mµ =
∫
µ(dx)µ(dx′)k(x,x′). We also demonstrate their proof here for the

reader’s convenience. Consider a normalized kernel satisfying k(x,x) = 1 for all x. The normalized
eigenfunction ϕmax(x) corresponding to the largest eigenvalue ηmax is L2 bounded by the constant
function η−1/2

max 1(x) since

1 = k(x,x) > ηmaxϕmax(x)
2.

Here 1(x) = 1 is the constant function. This immediately implies that

ηmax =

∫
µ(dx)µ(dx′)k(x,x′)ϕmax(x)ϕmax(x

′)

≤ η−1
max

∫
µ(dx)µ(dx′)k(x,x′)1(x)1(x′) = η−1

maxMµ.

Given this bound, we demand that the bandwidth should scale such that the purity stays constant with
respect to the number of qubits n. For our example kernel, this condition translates into

Mµ =
1

2n
(
1 + sinc(πc(n))

)n
.

Inverting this equation is not possible. However, its numerical solution yields a scaling for bandwidth
as

c(n) =
a√
n
, (A.10)

where a ∼ On(1) depends on the fixed purity Mµ. Note that this is a lower bound for the bandwidth
to keep purity from inversely scaling with n. In principle, we could allow purity to increase with n
depending on the target function. For example, c(n) = an−∞ → 0 yields perfect purity since there
is only a single mode. Hence, we conclude that the bandwidth should at least scale as

c = an−α, α ≥ 1

2
.

We remark, however, that the spectrum will collapse to a single mode for large exponents α and
generalization will not be possible except for very specific target functions.
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B.2 SCALING OF EIGENVALUES WITH BANDWIDTH

Using the bandwidth scaling derived in Eq. A.10, we now study the scaling of eigenvalues at the
large qubit limit n→ ∞. Asymptotically, the kth power of these eigenvalues looks like

λk1 ≈ 1− a2π2

6n
k +O

(
1

n2

)

λk2 ≈
(
a2π2

6n

)k(
1− a2π2

5n
k +O

(
1

n2

))

λk3 ≈
(
a4π4

180n2

)k(
1 +

a2π2

42n
k +O

(
1

n2

))
.

Notice that with this scaling of the bandwidth parameter, the largest eigenvalue remains constant
asymptotically. We also remark that eigenvalues composed of a large number (k ≈ n) of λ2 and λ3
scale as e−n logn, and we consider them decoupled since none of these modes can be learned with
a polynomial amount of data. Hence, we conclude that the spectral bias induced by the bandwidth
restricts the space of learnable functions to lie in the space spanned by eigenfunctions of the form

|ψ1⟩⊗(n−n2−n3) |ψ2⟩⊗n2 |ψ3⟩⊗n3 ,

such that n2 + n2 ≪ n. It can be shown that the hierarchy of eigenvalues obtained in this way scale
polynomially with n, as discussed in Sec. 4. In Table B.2, we present the first few eigenvalue scalings
where N(n, k) denotes the number of eigenvalues with scaling ηk,z ∼ O(n−k) and |Ψ⟩ denotes the
corresponding states. We denote each eigenvalue ηk,z with two indices: k corresponds to the scaling
of the eigenvalue as n−k, and z = 1, . . . , N(n, k) indexes the N(n, k) eigenvalues with the same
scaling.

Table 3: Degeneracies N(n, k) of quantum states for the first few scalings.
Degenerate States and Spectrum Scaling

Scaling
n−k

Degeneracy N(n, k) States |Ψ⟩

n0 1 |ψ1⟩⊗n

n−1
(
n
1

)
|ψ1⟩⊗(n−1) |ψ2⟩

n−2
(
n
2

)
+
(
n
1

)
|ψ1⟩⊗(n−2) |ψ2⟩⊗2

, |ψ1⟩⊗(n−1) |ψ3⟩
n−3

(
n
3

)
+
(
n−1
1

)(
n
1

)
|ψ1⟩⊗(n−3) |ψ2⟩⊗3

, |ψ1⟩⊗(n−2) |ψ2⟩ |ψ3⟩
n−4

(
n
4

)
+
(
n−1
2

)(
n
1

)
+
(
n
2

)
|ψ1⟩⊗(n−4) |ψ2⟩⊗4

, |ψ1⟩⊗(n−3) |ψ2⟩⊗2 |ψ3⟩ , |ψ1⟩⊗(n−2) |ψ3⟩⊗2

B.3 BANDWIDTH AND PROJECTED (BIASED) KERNELS

An alternative way to control the inductive bias of the quantum model is to define the kernel in terms
of the reduced density matrix (e.g., single-qubit): ρ̃(x) = Tr[1...n−1] (ρ(x)), where Tr[1...n−1] (·)
denotes the partial trace over qubits 1, . . . , n− 1 of a n-qubit system. For a detailed discussion of
such kernels, the interested reader is referred to Kübler et al. (2021); Huang et al. (2021). Here, we
briefly comment on the similarities and differences between the impacts of projection and bandwidth
tuning on the spectrum of the kernel.

As shown in (Kübler et al., 2021, Theorem 2), the spectrum of a generic projected kernel has one
constant (with n) eigenvalue, and the rest are exponentially small with n. Contrast that with the
spectrum of the bandwidth-equipped kernel given in Table B.2. Similarly to projected kernels,
in bandwidth-equipped kernels the first eigenvalue stays constant as the number of qubits grows.
However, the spectrum decay behavior is different, since the eigenvalues decay polynomially and not
exponentially with n. This leads to a qualitatively different inductive bias, which may be beneficial
in some settings.
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B.4 BANDWIDTH AND TRAINABILITY OF QUANTUM NEURAL NETWORKS

The phenomenon of flat spectrum of the quantum kernels is deeply connected to the barren plateaus
phenomenon in quantum neural networks (QNNs) (McClean et al., 2018) since both stem from the
exponential dimensionality of the space in which the classical data points are embedded (Kübler
et al., 2021; Holmes et al., 2022). “Barren plateaus” in the context of QNNs refers to the gradients of
the loss function becoming exponentially small with the number of qubits for sufficiently deep QNNs
because of the loss function concentrating around its mean in high-dimensional quantum Hilbert
space. Notably, a mechanism analogous to rescaling the bandwidth has been observed to enable
training of quantum neural networks. Zhang et al. (2022) show that if the parameters are initialized
from a Gaussian distribution with zero mean and variance O( 1

L ) for circuits of depth L, the barren
plateaus are provably avoided. Rescaling the initialization of trainable parameters avoids barren
plateaus by limiting the effective dimensionality of the subspace of the quantum Hilbert space being
used. This is analogous to how scaling down of the data controls the bandwidth and the spectrum of
quantum kernels, with the connection coming from the equivalency between quantum kernel methods
and infinitely deep QNNs (Schuld, 2021).

C GENERALIZATION ERROR IN KERNEL RIDGE REGRESSION

In this section we review the theoretical generalization error curves for kernel ridge regression
developed by Bordelon et al. (2020); Canatar et al. (2021) and extend our results to the cases with a
nonzero ridge parameter and noise on the labels. For kernel machines, a reproducing kernel Hilbert
space H defines a set of functions over which the empirical loss function is minimized. Consider
a training set D = {xµ, yµ}Pµ=1, where the inputs are drawn i.i.d. from a distribution p(x) on
x ∈ X and the labels are generated through a target function f̄(x) as yµ = f̄(xµ) + ϵµ, where
ϵµ ∼ N (0, σ2) is an additive noise with variance σ2. Then the predictor is given by minimizing the
empirical mean-squared-error over H:

f∗(x) = argmin
f∈H

1

2

P∑
µ=1

(
f(xµ)− yµ

)2
+
λ

2
∥f∥2H, (A.11)

where λ is the ridge parameter regularizing the Hilbert norm of the predictor. Associated with the
RKHS H is a positive semi-definite kernel k(x,x′) satisfying the reproducing property:

⟨k(x, ·), f(·)⟩H = f(x),

where ⟨·, ·⟩H is the Hilbert inner product on H. A basis for H can be obtained by solving the integral
eigenvalue problem with respect to the input distribution p(x):∫

k(x,x′)ϕk(x
′)p(x′)dx′ = ηkϕk(x),

∫
ϕk(x)ϕl(x)p(x)dx = δkl,

where {ϕk(x)} is a basis for L2(X ) with respect to the distribution p(x). A normalized basis for the
RKHS H is obtained by the features ψk(x) ≡ √

ηkϕk(x) that satisfy

⟨ψk(·), ψl(·)⟩H = δkl.

With these bases, the kernel can be decomposed as

k(x,x′) =
∑
k

ηkϕk(x)ϕk(x
′) =

∑
k

ψk(x)ψk(x
′).

Furthermore, any target function in L2(X ) can be decomposed as

f̄(x) =
∑
k

ākϕk(x) =
∑
k

āk√
ηk
ψk(x), ∥f∥2H =

∑
k

ā2k
ηk
.

Note that a function belongs to the RKHS only if ∥f∥H < ∞. In the case where K(x,x′) has
zero eigenvalues while the function f has components along the corresponding eigenfunctions, this
function is said to be out-of-RKHS (since ∥f∥H = ∞), and a kernel machine can learn only the
components along the nonzero eigenvalues. We show that the formula for generalization error in
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Canatar et al. (2021, Eq. 4) also extends to out-of-RKHS targets by appropriately taking the ηk → 0
limit.

Given the P ×P kernel Gram matrix Kµν = k(xµ,xν), the solution to the kernel regression problem
Eq. A.11 is

f∗(x) = k(x)⊤ (K+ λI)
−1

y,

where k(x) is a P -dimensional vector with components k(x)µ = k(x,xµ) and yµ = yµ is a P -
dimensional vector of the labels. Then generalization error, as function of number of training samples
P and the dataset D, is defined as

Eg(P,D) =

∫ (
f∗(x)− f̄(x)

)2
p(x)dx.

However, the dependency of this quantity to the particular choices of datasets of size P makes it
analytically intractable. Instead, we are interested in the averaged generalization error ⟨Eg(P,D)⟩D
over the datasets of size P , which has been calculated using replica theory in Canatar et al. (2021).

As a function of number of training samples P , ridge parameter λ, and variance of label noise σ2 as
well as the kernel eigenvalues {ηk} and the target weights {āk}, the result for ⟨Eg(P,D)⟩D becomes
(Canatar et al., 2021):

Eg(P ) =
κ2

1− γ

∑
k

ā2k
(Pηk + κ)2

+ σ2 γ

1− γ
, (A.12)

where

κ = λ+ κ
∑
k

ηk
Pηk + κ

, γ =
∑
k

Pη2k
(Pηk + κ)2

.

Here κ is to be solved self-consistently, and it acts as an effective ridge parameter that depends on
the kernel eigenvalues and number of training samples. Even in the absence of an explicit ridge
parameter (i.e. λ = 0), implicit regularization prevents the predictor from having large variance.

C.1 DERIVATION OF EQ. 9 IN MAIN TEXT

In Sec. 4 of the main text and in Appendix B, we have shown that the top eigenvalues ηk,z of the
kernel in Eq. 6 scale polynomially with the number of input dimensions, that is, ηk,z ∼ O(n−k),
where the index k = 1, 2, . . . represents different scalings and index z = 1, . . . , N(n, k) represents
the degenerate modes in scaling k. Note that the number of degenerate modes N(n, k) grows as
O(nk) such that η̄k ≡ N(n, k)ηk ∼ O(1). We also decomposed the target function onto the kernel
basis as

āk,z =

∫
f̄(x)ϕk,z(x)p(x)dx

and defined ā2k ≡∑N(n,k)
z=1 ā2k,z as the total weight at scaling k. Plugging these quantities in Eq. A.12,

we get

Eg(P ) =
κ2

1− γ

∑
k

N(n,k)∑
z=1

ā2k,z
(Pηk,z + κ)2

+ σ2 γ

1− γ
,

κ = λ+ κ
∑
k

N(n,k)∑
z=1

ηk,z
Pηk,z + κ

, γ =
∑
k

N(n,k)∑
z=1

Pη2k,z
(Pηk,z + κ)2

.

Furthermore, we made the approximation that ηk,z ≈ ηk,z′ for all z, z′ since, in large n limit, modes
in the same scaling differ from each other with some On(1) quantity. Hence, we drop the index z.
Then, in terms of η̄k ≡ N(n, k)ηk, generalization error simplifies to

Eg(P ) =
κ2

1− γ

∑
k

ā2k
(αkη̄k + κ)2

+ σ2 γ

1− γ
,

κ = λ+ κ
∑
k

η̄k
αkη̄k + κ

, γ =
∑
k

αkη̄
2
k

(αkη̄k + κ)2
,
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where we define αk ≡ P
N(n,k) denoting the learning stage. Now, consider the number of samples P

to scale with O(nl) for some integer l. Since N(n, k) ∼ O(nl), as n→ ∞ the quantity αk becomes

αk<l = ∞,

αk=l ∼ O(1),

αk<l ≈ 0.

Therefore, in the large n limit, generalization error simplifies greatly and becomes

Eg(P ) =
κ2

1− γ

ā2l
(αlη̄l + κ)2

+ σ̃2 γ

1− γ
+
∑
k>l

ā2k, γ =
αlη̄

2
l

(αlη̄l + κ)2
,

where σ̃2 = σ2 +
∑

k>l ā
2
k is the effective noise and κ has an explicit solution:

κ =


1
2 (λ̃+ η̄l − η̄lαl)

(
1 +

√
1 + 4λ̃η̄lαl

(λ̃+η̄l−η̄lαl)2

)
αl ≤ 1 + λ̃/η̄l

1
2 (λ̃+ η̄l − η̄lαl)

(
1−

√
1 + 4λ̃η̄lαl

(λ̃+η̄l−η̄lαl)2

)
αl ≥ 1 + λ̃/η̄l

,

where λ̃ = λ+
∑

k>l η̄k is the effective ridge parameter and describes the implicit regularization of
the kernel model. Note that the total power beyond mode-l acts as label noise and also irreducible
error.

C.2 OUT-OF-RKHS TARGET FUNCTIONS AND LABEL NOISE

We treat the case where target function has out-of-RKHS components by setting eigenvalues with
indices in an index set I in the generalization error formula to zero; that is, ηk∈I = 0:

Eg(P ) =
κ2

1− γ

∑
k

ā2k
(Pηk + κ)2

+ σ2 γ

1− γ

=
κ2

1− γ

∑
k ̸∈I

ā2k
(Pηk + κ)2

+

σ2 +
∑
k∈I

ā2k

 γ

1− γ
+
∑
k∈I

ā2k,

where κ and γ are again

κ = λ+ κ
∑
k ̸∈I

ηk
Pηk + κ

, γ =
∑
k ̸∈I

Pη2k
(Pηk + κ)2

.

Notice that target power placed on the modes corresponding to zero eigenvalues act both as label
noise and irreducible error (Canatar et al., 2021). This implies that the inaccessible modes in target
function due to small training set sizes simply lie outside the effective RKHS defined by the accessible,
large eigenvalues. This also implies that very large bandwidths can also impair generalization; for
c ≈ 0 only a single non-zero eigenvalue survives and therefore generic targets which may have many
modes corresponding to the remaining zero eigenvalues lie outside the effective RKHS. Therefore,
the extreme case of very large bandwidth also creates a problem. This is just a restatement of the
well-known bias-variance trade-off.

D BANDWIDTH MAKES BOUNDS ON GENERALIZATION VACUOUS

The following is a sketch of how the main theorem of Kübler et al. (2021) becomes vacuous (“fails”)
in a certain context where we can guarantee that k(x, x′) is lower bounded by some bandwidth-
dependent constant.

We first note that this cannot be a positive proof: nothing about lower bounding k(x, x′) can provide
a guarantee on classifier accuracy. Rather, this scenario just shows a context in which a lower bound
on the ridge regression classifier accuracy based on the largest eigenvalue ηmax is no longer effective
at showing a failure of quantum kernel methods.
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Now, we suppose that we can use bandwidth to require that states are “not too far away” in Hilbert
space. More specifically, we suppose that there is some function ∆c such that

k(xµ,xν) ≥ ∆c. (A.13)

Note that this does not interfere with the requirement that k is Lµ
2 integrable since we assume that k

is defined on a restricted support x ∈ [−π, π]n (without this assumption, k is not integrable in a more
general treatment). We will show that some choice of ∆c always ensures that the largest eigenvalue
of K (and therefore the largest eigenvalue of Tk with high probability) is bounded. Denote the
eigenvalues of K as ηk, and in particular let ηmax be the largest eigenvalue of K and Ku = ηmaxu
for some eigenvector u ∈ RP . By definition, ηmax = max∥v∥=1⟨v,Kv⟩ for all v ∈ RP , and in
particular

ηmax =
⟨u,Ku⟩
⟨u, u⟩ ≥ ⟨1,K1⟩

⟨1,1⟩ =
1

P

P∑
µ,ν=1

Kµν ≥ (P − 1)∆c,

where 1 is the vector of all ones and we have applied the inequality of Eq. A.13. Proposition 10 of
Rosasco et al. (2010) states that

Pr

sup
k

∣∣∣∣ηkP − γk

∣∣∣∣ ≤ 2

√
log
(
4/δ2

)
P

 ≥ 1− δ,

where we contrast the empirical eigenvalues ηk with the eigenvalues γk of the integral operator Tk.
Note that the empirical eigenvalues ηk → γk as P → ∞. Hence, with probability at least 1− δ it
holds that ∣∣∣∣∣ηmax −

(
P − 1

P

)
∆c

∣∣∣∣∣ ≤ 2

√
log
(
4/δ2

)
P

. (A.14)

Theorem 1 of Kübler et al. (2021) states that, with probability at least 1− ϵ− ηmaxP
4, the empirical

risk for KRR with penalty λ and P training data is lower bounded by

Remp(f
λ
m) ≥

(
1−

√
2ηmaxP 2

ϵ

)
∥f∥2. (A.15)

From Eq. A.14, however, we see that ηmax approaches a constant ∆c at a rate of O(1/
√
P ); for

sufficiently large P , Eq. A.15 holds with vanishing probability, and for all other choices of P the
bound becomes vacuous with high probability under the condition that

√
2ηmaxP 2/ϵ ≥ 1, which

may be achieved within O(1/
√
P ) precision by choosing

∆c ≥
P

P − 1

√
ϵ

2P 2
.

Importantly, this outcome does not guarantee that KRR using k satisfying the inequality in Eq. A.13
will achieve good generalization error. In particular, the choice ∆c = 1 will result in Tk having
a single nonzero eigenvalue associated with the constant function. Rather, this demonstration
reemphasizes that there are two conditions to successful classification using quantum kernels: (i) the
kernel should be chosen such that the eigenfunctions of Tk align with the target function, and (ii)
the corresponding eigenvalues should be large. By lower bounding k in this way, we can guarantee
condition (ii); however, successful generalization will still depend on a choice of k satisfying condition
(i).

E NUMERICAL METHODS

E.1 EXPERIMENTS WITH TOY MODEL

In Figs. 1 and 2 in the main text, we consider the toy kernel k(x,x′) =
∏n

i=1 cos
(
c
(xi−x′

i)
2

)
for

varying bandwidth parameter c and n-dimensional input data x ∈ [−π, π]n and drawn uniformly
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(Kübler et al., 2021). We generate a dataset of size P by uniformly sampling P input points and
computing the corresponding labels using a target function f̄(x). We denote the vector of labels by
ȳ ∈ RP and denote the kernel Gram matrix by K whose elements are Kµν = k(xµ,xν). We obtain
the eigenvalues and eigenvectors of the kernel by solving the empirical eigenvalue problem:

1

P

P∑
ν=1

KµνΦν,k = ηkΦµ,k,
1

P

P∑
µ=1

Φµ,kΦµ,l = δkl,

where Φµ,k is the matrix of eigenvalues whose columns are the orthonormal eigenvectors and
{ηk}Pk=1 are the eigenvalues. Note that we obtain at most P eigenmodes with P samples and hence k
runs from 1, . . . , P . Finally, we obtain the target weights by projecting the targets on the eigenvectors
of K:

a =
1

P
Φ⊤ȳ.

Using the eigenvalues {ηk}Pk=1 and target weights a, we directly compute the generalization error by
plugging them in Eq. A.12. To perform the experiments, we used the Kernel Generalization code by
Canatar et al. (2021) and utilized a single NVIDIA V100 GPU with 32 GB of RAM. In Fig. E.1, we
present the same experiment as Fig. 2 but for different input dimensions n. We find that the optimal
bandwidth parameter is c∗ = 2/n. Therefore, the optimal scaling of the bandwidth parameter is
O(n−α) for α = 1 in this special case. Note that bandwidth changes both the eigenvalues and the
eigenfunctions of the kernel that affect spectral bias and task-model alignment, respectively. For
certain tasks, faster decaying bandwidths might improve the task-model alignment and hence yield
better generalization.
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Figure A.1: Generalization error as a function of the number of training samples computed by using
both theory (solid lines) and performing kernel ridge regression empirically (dots). The target function
is f̄(x) = e−∥x∥2/n2

, and data is drawn uniformly from Unif([−π, π]n) for n = 20, 40, 80, 200.
Bandwidth c = 1 yields a constant learning curve. While all c < 1 kernels provide improvement, there
is an optimal bandwidth parameter c∗ ≈ 2/n that gives the best task-model alignment. Regularization
with a small ridge parameter λ = 10−10 is applied for numerical stability.
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E.2 BANDWIDTH IN QUANTUM MACHINE LEARNING ARCHITECTURES

We use the experimental data provided by Shaydulin & Wild (2021).1 We use the kernel given
by the instantaneous quantum polynomial-time (IQP) circuit feature map (Shepherd & Bremner,
2009; Havlíček et al., 2019; Huang et al., 2021) and Hamiltonian evolution circuit (EVO) feature
map(Huang et al., 2021; Shaydulin & Wild, 2021) and real datasets FMNIST (Xiao et al., 2017),
KMNIST (Clanuwat et al., 2018), and PLAsTiCC (The PLAsTiCC team et al., 2018).

Since the dimensionality of the datapoints in these datasets is too large (e.g., 784 for FMNIST and
KMNIST) and leads to quantum circuits that cannot be simulated by using available tools, the inputs
were downsized to 22-dimensions by using PCA (Shaydulin & Wild, 2021). Following Shaydulin &
Wild (2021); Huang et al. (2021), we consider a binary classification problem where for each dataset,
only two classes were chosen (see Shaydulin & Wild (2021) for the details on data preprocessing).

For n-dimensional inputs, the quantum circuit used to compute the n-qubit IQP kernel is given by

UIQP(x) = UZ(x)H
⊗nUZ(x)H

⊗n, UZ(x) = exp

c n∑
j=1

xjZj + c2
n∑

j,j′=1

xjxj′ ZjZj′

 ,

where H is the Hadamard gate and Z is the Pauli Z-gate (see Havlíček et al. (2019)). This unitary acts
on the n-qubit ground state to embed an input xµ to a quantum state |xµ⟩ = UIQP(x

µ) |0⟩⊗n. Then
the resulting feature map is given by ρIQP(x

µ) = |xµ⟩ ⟨xµ| with the corresponding quantum kernel
KIQP(x

µ,xν) = Tr
(
ρIQP(x

µ)ρIQP(x
ν)
)
.

For n-dimensional inputs, the quantum circuit used to compute the EVO kernel (Huang et al., 2021;
Shaydulin & Wild, 2021) has n+ 1 qubits and is given by

UEVO(x) =

n∏
j=1

e−icxij(XjXj+1+YjYj+1+ZjZj+1).

Here, c parameterizes time evolution and corresponds to the bandwidth of the resulting kernel. The
initial (n+ 1)-qubit state is given by

|Ψ0⟩ =
n+1⊗
j=1

|ψj⟩ ,

where each |ψj⟩ is randomly generated with respect to a single-qubit Haar measure (Huang et al.,
2021). Then the quantum embedding of a sample xµ is |xµ⟩ = UEVO(x

µ) |Ψ0⟩ with the feature map
ρEVO(x

µ) = |xµ⟩ ⟨xµ| and kernel KEVO(x
µ,xν) = Tr

(
ρEVO(x

µ)ρEVO(x
ν)
)
.

In both cases, the resulting kernel is conjectured to be intractable to compute analytically, and both
models utilize Hilbert spaces that are exponentially large in the number of qubits n. These quantum
circuits were simulated in Shaydulin & Wild (2021) using Qiskit (Abraham et al., 2019) software to
compute the kernel Gram matrices on the data. Then the resulting kernels were used to perform SVM
for the binary classification task.

The datasets were split into 800 training sets and 200 test sets. Each input was down-
sized to 22 dimensions using PCA, which leads to 222- and 223-dimensional Hilbert
spaces for IQP and EVO circuits, respectively (Shaydulin & Wild, 2021). The code
for accessing and processing the data was obtained at https://github.com/rsln-s/
Importance-of-Kernel-Bandwidth-in-Quantum-Machine-Learning/.

KERNEL RIDGE REGRESSION WITH REALISTIC QUANTUM KERNELS

Apart from the classification task shown in the main text, we also use the same quantum kernels to
perform kernel ridge regression on real data as shown in Figure A.2. We again find that there is an
optimal bandwidth for both kernels signaled by low test loss.

1The code and the data are publicly provided by Shaydulin & Wild (2021) at https://github.com/
rsln-s/Importance-of-Kernel-Bandwidth-in-Quantum-Machine-Learning/.
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Figure A.2: Kernel Ridge Regression performed with k-fold cross-validation and λ = 0.1 ridge
parameter yields the optimal bandwidth. The vertical axis shows the test loss of the estimator when
evaluated on held-out data.

OPTIMAL BANDWIDTH IN REALISTIC QUANTUM KERNELS

We have obtained the optimal bandwidths through k-fold cross-validation for the SVM task. In
Figure A.3, we report our results for each kernel method on all three datasets. Furthermore, we
present the eigenvalues and target weights corresponding to both quantum model on all three dataset
domains in Figure A.4 and Figure A.5, respectively. We find that the spectrum in all cases are flat
without the bandwidth, and that the bandwidth improves the spectral properties in all cases. However,
the task alignment with the quantum kernels depends significantly on the choice of the dataset, and it
remains poor even with the bandwidth cure. This is in agreement with our arguments that bandwidth
does not guarantee generalization, but only enables a model to potentially generalize if the target is
suitable.

Here, we also empirically show that the optimal bandwidth scales inversely with the number of
qubits n as c∗ ∼ O(n−α), where α ≥ 0.5. Using the data provided by Shaydulin & Wild (2021),
we first extract the maximum kernel eigenvalue for the IQP kernel on FMNIST dataset. The IQP
kernel is evaluated for various input dimensions n (also the number of qubits) and various bandwidth
parameters.

First, we normalize each top eigenvalue ηmax(n) as a function of n with the maximum eigenvalue
corresponding to the smallest qubit size ηmax(n0), and define the quantity

η̃max(n) =
ηmax(n)

ηmax(n0)
,

where n0 = 4 in this case. In Figure A.6a, we plot these normalized eigenvalues against the number
of qubits, and we fit exponential curves to extrapolate the behavior for large qubits which are not
accessible experimentally. As the number of qubits increase, the maximum eigenvalue corresponding
to c = 1 kernel falls much faster than the kernels with c < 1 bandwidth as expected. Note that in
Appendix B we found that the bandwidth prevents the maximum eigenvalues to fall exponentially
fast in n using our toy model, and this is also what we observe here.

Next, we consider a fixed eigenvalue η0 = 0.8 line in Figure A.6a, and in Figure A.6b we analyze
where this line intersects each of the normalized eigenvalues η̃max(n) corresponding to different
bandwidth parameters c. Similar to our calculation in Appendix B for the toy kernel, we aim to find
the scaling of the bandwidth with the number of qubits such that the maximum eigenvalue stays
constant. By identifying the intersection points in Figure A.6b, we obtain a relation between the
optimal bandwidth and the number of qubits as shown in Figure A.6c. In this case, we numerically
find that the optimal bandwidth scales as:

c∗(n) ∝ n−0.506. (A.16)
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This is in agreement with the bound for the exponent we derived in Eq. A.10. Finally, in Figure A.7
and Figure A.8, for both models when evaluated on the FMNIST data, we show the empirical scaling
of the optimal bandwidth to keep their top eigenvalues constant for varying η0’s. Again, we find that
the decay exponent never violates α ≥ 0.5.
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Figure A.3: SVM performed with k-fold cross-validation yields the optimal bandwidth.
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Figure A.4: Eigenvalues of the quantum kernels are always flat when the bandwidth is not tuned.
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Figure A.5: Task-model alignment improves with bandwidth tuning. Note that a decaying eigenspec-
trum is not enough alone for generalizability. Empirically, we find that bandwidth improves both the
eigenspectrum and the task-model alignment.

a)

c)

b)

Figure A.6: Empirical scaling of the optimal bandwidth with the number of qubits.
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Figure A.7: IQP Kernel: Empirical scaling of the optimal bandwidth with the number of qubits for
all η0. Note that the empirical scaling never exceeds α = 0.5 for the optimal bandwidth c∗ ≈ n−α.

Figure A.8: EVO Kernel: Empirical scaling of the optimal bandwidth with the number of qubits for
all η0. Note that the empirical scaling never exceeds α = 0.5 for the optimal bandwidth c∗ ≈ n−α.
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